| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * fs/f2fs/super.c |
| * |
| * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com/ |
| */ |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/fs.h> |
| #include <linux/fs_context.h> |
| #include <linux/sched/mm.h> |
| #include <linux/statfs.h> |
| #include <linux/kthread.h> |
| #include <linux/parser.h> |
| #include <linux/mount.h> |
| #include <linux/seq_file.h> |
| #include <linux/proc_fs.h> |
| #include <linux/random.h> |
| #include <linux/exportfs.h> |
| #include <linux/blkdev.h> |
| #include <linux/quotaops.h> |
| #include <linux/f2fs_fs.h> |
| #include <linux/sysfs.h> |
| #include <linux/quota.h> |
| #include <linux/unicode.h> |
| #include <linux/part_stat.h> |
| #include <linux/zstd.h> |
| #include <linux/lz4.h> |
| |
| #include "f2fs.h" |
| #include "node.h" |
| #include "segment.h" |
| #include "xattr.h" |
| #include "gc.h" |
| #include "iostat.h" |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/f2fs.h> |
| |
| static struct kmem_cache *f2fs_inode_cachep; |
| |
| #ifdef CONFIG_F2FS_FAULT_INJECTION |
| |
| const char *f2fs_fault_name[FAULT_MAX] = { |
| [FAULT_KMALLOC] = "kmalloc", |
| [FAULT_KVMALLOC] = "kvmalloc", |
| [FAULT_PAGE_ALLOC] = "page alloc", |
| [FAULT_PAGE_GET] = "page get", |
| [FAULT_ALLOC_NID] = "alloc nid", |
| [FAULT_ORPHAN] = "orphan", |
| [FAULT_BLOCK] = "no more block", |
| [FAULT_DIR_DEPTH] = "too big dir depth", |
| [FAULT_EVICT_INODE] = "evict_inode fail", |
| [FAULT_TRUNCATE] = "truncate fail", |
| [FAULT_READ_IO] = "read IO error", |
| [FAULT_CHECKPOINT] = "checkpoint error", |
| [FAULT_DISCARD] = "discard error", |
| [FAULT_WRITE_IO] = "write IO error", |
| [FAULT_SLAB_ALLOC] = "slab alloc", |
| [FAULT_DQUOT_INIT] = "dquot initialize", |
| [FAULT_LOCK_OP] = "lock_op", |
| [FAULT_BLKADDR_VALIDITY] = "invalid blkaddr", |
| [FAULT_BLKADDR_CONSISTENCE] = "inconsistent blkaddr", |
| [FAULT_NO_SEGMENT] = "no free segment", |
| }; |
| |
| int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate, |
| unsigned long type) |
| { |
| struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; |
| |
| if (rate) { |
| if (rate > INT_MAX) |
| return -EINVAL; |
| atomic_set(&ffi->inject_ops, 0); |
| ffi->inject_rate = (int)rate; |
| } |
| |
| if (type) { |
| if (type >= BIT(FAULT_MAX)) |
| return -EINVAL; |
| ffi->inject_type = (unsigned int)type; |
| } |
| |
| if (!rate && !type) |
| memset(ffi, 0, sizeof(struct f2fs_fault_info)); |
| else |
| f2fs_info(sbi, |
| "build fault injection attr: rate: %lu, type: 0x%lx", |
| rate, type); |
| return 0; |
| } |
| #endif |
| |
| /* f2fs-wide shrinker description */ |
| static struct shrinker *f2fs_shrinker_info; |
| |
| static int __init f2fs_init_shrinker(void) |
| { |
| f2fs_shrinker_info = shrinker_alloc(0, "f2fs-shrinker"); |
| if (!f2fs_shrinker_info) |
| return -ENOMEM; |
| |
| f2fs_shrinker_info->count_objects = f2fs_shrink_count; |
| f2fs_shrinker_info->scan_objects = f2fs_shrink_scan; |
| |
| shrinker_register(f2fs_shrinker_info); |
| |
| return 0; |
| } |
| |
| static void f2fs_exit_shrinker(void) |
| { |
| shrinker_free(f2fs_shrinker_info); |
| } |
| |
| enum { |
| Opt_gc_background, |
| Opt_disable_roll_forward, |
| Opt_norecovery, |
| Opt_discard, |
| Opt_nodiscard, |
| Opt_noheap, |
| Opt_heap, |
| Opt_user_xattr, |
| Opt_nouser_xattr, |
| Opt_acl, |
| Opt_noacl, |
| Opt_active_logs, |
| Opt_disable_ext_identify, |
| Opt_inline_xattr, |
| Opt_noinline_xattr, |
| Opt_inline_xattr_size, |
| Opt_inline_data, |
| Opt_inline_dentry, |
| Opt_noinline_dentry, |
| Opt_flush_merge, |
| Opt_noflush_merge, |
| Opt_barrier, |
| Opt_nobarrier, |
| Opt_fastboot, |
| Opt_extent_cache, |
| Opt_noextent_cache, |
| Opt_noinline_data, |
| Opt_data_flush, |
| Opt_reserve_root, |
| Opt_resgid, |
| Opt_resuid, |
| Opt_mode, |
| Opt_fault_injection, |
| Opt_fault_type, |
| Opt_quota, |
| Opt_noquota, |
| Opt_usrquota, |
| Opt_grpquota, |
| Opt_prjquota, |
| Opt_usrjquota, |
| Opt_grpjquota, |
| Opt_prjjquota, |
| Opt_offusrjquota, |
| Opt_offgrpjquota, |
| Opt_offprjjquota, |
| Opt_jqfmt_vfsold, |
| Opt_jqfmt_vfsv0, |
| Opt_jqfmt_vfsv1, |
| Opt_alloc, |
| Opt_fsync, |
| Opt_test_dummy_encryption, |
| Opt_inlinecrypt, |
| Opt_checkpoint_disable, |
| Opt_checkpoint_disable_cap, |
| Opt_checkpoint_disable_cap_perc, |
| Opt_checkpoint_enable, |
| Opt_checkpoint_merge, |
| Opt_nocheckpoint_merge, |
| Opt_compress_algorithm, |
| Opt_compress_log_size, |
| Opt_compress_extension, |
| Opt_nocompress_extension, |
| Opt_compress_chksum, |
| Opt_compress_mode, |
| Opt_compress_cache, |
| Opt_atgc, |
| Opt_gc_merge, |
| Opt_nogc_merge, |
| Opt_discard_unit, |
| Opt_memory_mode, |
| Opt_age_extent_cache, |
| Opt_errors, |
| Opt_err, |
| }; |
| |
| static match_table_t f2fs_tokens = { |
| {Opt_gc_background, "background_gc=%s"}, |
| {Opt_disable_roll_forward, "disable_roll_forward"}, |
| {Opt_norecovery, "norecovery"}, |
| {Opt_discard, "discard"}, |
| {Opt_nodiscard, "nodiscard"}, |
| {Opt_noheap, "no_heap"}, |
| {Opt_heap, "heap"}, |
| {Opt_user_xattr, "user_xattr"}, |
| {Opt_nouser_xattr, "nouser_xattr"}, |
| {Opt_acl, "acl"}, |
| {Opt_noacl, "noacl"}, |
| {Opt_active_logs, "active_logs=%u"}, |
| {Opt_disable_ext_identify, "disable_ext_identify"}, |
| {Opt_inline_xattr, "inline_xattr"}, |
| {Opt_noinline_xattr, "noinline_xattr"}, |
| {Opt_inline_xattr_size, "inline_xattr_size=%u"}, |
| {Opt_inline_data, "inline_data"}, |
| {Opt_inline_dentry, "inline_dentry"}, |
| {Opt_noinline_dentry, "noinline_dentry"}, |
| {Opt_flush_merge, "flush_merge"}, |
| {Opt_noflush_merge, "noflush_merge"}, |
| {Opt_barrier, "barrier"}, |
| {Opt_nobarrier, "nobarrier"}, |
| {Opt_fastboot, "fastboot"}, |
| {Opt_extent_cache, "extent_cache"}, |
| {Opt_noextent_cache, "noextent_cache"}, |
| {Opt_noinline_data, "noinline_data"}, |
| {Opt_data_flush, "data_flush"}, |
| {Opt_reserve_root, "reserve_root=%u"}, |
| {Opt_resgid, "resgid=%u"}, |
| {Opt_resuid, "resuid=%u"}, |
| {Opt_mode, "mode=%s"}, |
| {Opt_fault_injection, "fault_injection=%u"}, |
| {Opt_fault_type, "fault_type=%u"}, |
| {Opt_quota, "quota"}, |
| {Opt_noquota, "noquota"}, |
| {Opt_usrquota, "usrquota"}, |
| {Opt_grpquota, "grpquota"}, |
| {Opt_prjquota, "prjquota"}, |
| {Opt_usrjquota, "usrjquota=%s"}, |
| {Opt_grpjquota, "grpjquota=%s"}, |
| {Opt_prjjquota, "prjjquota=%s"}, |
| {Opt_offusrjquota, "usrjquota="}, |
| {Opt_offgrpjquota, "grpjquota="}, |
| {Opt_offprjjquota, "prjjquota="}, |
| {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, |
| {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, |
| {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, |
| {Opt_alloc, "alloc_mode=%s"}, |
| {Opt_fsync, "fsync_mode=%s"}, |
| {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, |
| {Opt_test_dummy_encryption, "test_dummy_encryption"}, |
| {Opt_inlinecrypt, "inlinecrypt"}, |
| {Opt_checkpoint_disable, "checkpoint=disable"}, |
| {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, |
| {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, |
| {Opt_checkpoint_enable, "checkpoint=enable"}, |
| {Opt_checkpoint_merge, "checkpoint_merge"}, |
| {Opt_nocheckpoint_merge, "nocheckpoint_merge"}, |
| {Opt_compress_algorithm, "compress_algorithm=%s"}, |
| {Opt_compress_log_size, "compress_log_size=%u"}, |
| {Opt_compress_extension, "compress_extension=%s"}, |
| {Opt_nocompress_extension, "nocompress_extension=%s"}, |
| {Opt_compress_chksum, "compress_chksum"}, |
| {Opt_compress_mode, "compress_mode=%s"}, |
| {Opt_compress_cache, "compress_cache"}, |
| {Opt_atgc, "atgc"}, |
| {Opt_gc_merge, "gc_merge"}, |
| {Opt_nogc_merge, "nogc_merge"}, |
| {Opt_discard_unit, "discard_unit=%s"}, |
| {Opt_memory_mode, "memory=%s"}, |
| {Opt_age_extent_cache, "age_extent_cache"}, |
| {Opt_errors, "errors=%s"}, |
| {Opt_err, NULL}, |
| }; |
| |
| void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, |
| const char *fmt, ...) |
| { |
| struct va_format vaf; |
| va_list args; |
| int level; |
| |
| va_start(args, fmt); |
| |
| level = printk_get_level(fmt); |
| vaf.fmt = printk_skip_level(fmt); |
| vaf.va = &args; |
| if (limit_rate) |
| printk_ratelimited("%c%cF2FS-fs (%s): %pV\n", |
| KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); |
| else |
| printk("%c%cF2FS-fs (%s): %pV\n", |
| KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); |
| |
| va_end(args); |
| } |
| |
| #if IS_ENABLED(CONFIG_UNICODE) |
| static const struct f2fs_sb_encodings { |
| __u16 magic; |
| char *name; |
| unsigned int version; |
| } f2fs_sb_encoding_map[] = { |
| {F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, |
| }; |
| |
| static const struct f2fs_sb_encodings * |
| f2fs_sb_read_encoding(const struct f2fs_super_block *sb) |
| { |
| __u16 magic = le16_to_cpu(sb->s_encoding); |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) |
| if (magic == f2fs_sb_encoding_map[i].magic) |
| return &f2fs_sb_encoding_map[i]; |
| |
| return NULL; |
| } |
| |
| struct kmem_cache *f2fs_cf_name_slab; |
| static int __init f2fs_create_casefold_cache(void) |
| { |
| f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name", |
| F2FS_NAME_LEN); |
| return f2fs_cf_name_slab ? 0 : -ENOMEM; |
| } |
| |
| static void f2fs_destroy_casefold_cache(void) |
| { |
| kmem_cache_destroy(f2fs_cf_name_slab); |
| } |
| #else |
| static int __init f2fs_create_casefold_cache(void) { return 0; } |
| static void f2fs_destroy_casefold_cache(void) { } |
| #endif |
| |
| static inline void limit_reserve_root(struct f2fs_sb_info *sbi) |
| { |
| block_t limit = min((sbi->user_block_count >> 3), |
| sbi->user_block_count - sbi->reserved_blocks); |
| |
| /* limit is 12.5% */ |
| if (test_opt(sbi, RESERVE_ROOT) && |
| F2FS_OPTION(sbi).root_reserved_blocks > limit) { |
| F2FS_OPTION(sbi).root_reserved_blocks = limit; |
| f2fs_info(sbi, "Reduce reserved blocks for root = %u", |
| F2FS_OPTION(sbi).root_reserved_blocks); |
| } |
| if (!test_opt(sbi, RESERVE_ROOT) && |
| (!uid_eq(F2FS_OPTION(sbi).s_resuid, |
| make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || |
| !gid_eq(F2FS_OPTION(sbi).s_resgid, |
| make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) |
| f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", |
| from_kuid_munged(&init_user_ns, |
| F2FS_OPTION(sbi).s_resuid), |
| from_kgid_munged(&init_user_ns, |
| F2FS_OPTION(sbi).s_resgid)); |
| } |
| |
| static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) |
| { |
| if (!F2FS_OPTION(sbi).unusable_cap_perc) |
| return; |
| |
| if (F2FS_OPTION(sbi).unusable_cap_perc == 100) |
| F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; |
| else |
| F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * |
| F2FS_OPTION(sbi).unusable_cap_perc; |
| |
| f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", |
| F2FS_OPTION(sbi).unusable_cap, |
| F2FS_OPTION(sbi).unusable_cap_perc); |
| } |
| |
| static void init_once(void *foo) |
| { |
| struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; |
| |
| inode_init_once(&fi->vfs_inode); |
| } |
| |
| #ifdef CONFIG_QUOTA |
| static const char * const quotatypes[] = INITQFNAMES; |
| #define QTYPE2NAME(t) (quotatypes[t]) |
| static int f2fs_set_qf_name(struct super_block *sb, int qtype, |
| substring_t *args) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| char *qname; |
| int ret = -EINVAL; |
| |
| if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { |
| f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); |
| return -EINVAL; |
| } |
| if (f2fs_sb_has_quota_ino(sbi)) { |
| f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); |
| return 0; |
| } |
| |
| qname = match_strdup(args); |
| if (!qname) { |
| f2fs_err(sbi, "Not enough memory for storing quotafile name"); |
| return -ENOMEM; |
| } |
| if (F2FS_OPTION(sbi).s_qf_names[qtype]) { |
| if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) |
| ret = 0; |
| else |
| f2fs_err(sbi, "%s quota file already specified", |
| QTYPE2NAME(qtype)); |
| goto errout; |
| } |
| if (strchr(qname, '/')) { |
| f2fs_err(sbi, "quotafile must be on filesystem root"); |
| goto errout; |
| } |
| F2FS_OPTION(sbi).s_qf_names[qtype] = qname; |
| set_opt(sbi, QUOTA); |
| return 0; |
| errout: |
| kfree(qname); |
| return ret; |
| } |
| |
| static int f2fs_clear_qf_name(struct super_block *sb, int qtype) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| |
| if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { |
| f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); |
| return -EINVAL; |
| } |
| kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); |
| F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; |
| return 0; |
| } |
| |
| static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) |
| { |
| /* |
| * We do the test below only for project quotas. 'usrquota' and |
| * 'grpquota' mount options are allowed even without quota feature |
| * to support legacy quotas in quota files. |
| */ |
| if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { |
| f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); |
| return -1; |
| } |
| if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || |
| F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || |
| F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { |
| if (test_opt(sbi, USRQUOTA) && |
| F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) |
| clear_opt(sbi, USRQUOTA); |
| |
| if (test_opt(sbi, GRPQUOTA) && |
| F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) |
| clear_opt(sbi, GRPQUOTA); |
| |
| if (test_opt(sbi, PRJQUOTA) && |
| F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) |
| clear_opt(sbi, PRJQUOTA); |
| |
| if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || |
| test_opt(sbi, PRJQUOTA)) { |
| f2fs_err(sbi, "old and new quota format mixing"); |
| return -1; |
| } |
| |
| if (!F2FS_OPTION(sbi).s_jquota_fmt) { |
| f2fs_err(sbi, "journaled quota format not specified"); |
| return -1; |
| } |
| } |
| |
| if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { |
| f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); |
| F2FS_OPTION(sbi).s_jquota_fmt = 0; |
| } |
| return 0; |
| } |
| #endif |
| |
| static int f2fs_set_test_dummy_encryption(struct super_block *sb, |
| const char *opt, |
| const substring_t *arg, |
| bool is_remount) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| struct fs_parameter param = { |
| .type = fs_value_is_string, |
| .string = arg->from ? arg->from : "", |
| }; |
| struct fscrypt_dummy_policy *policy = |
| &F2FS_OPTION(sbi).dummy_enc_policy; |
| int err; |
| |
| if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { |
| f2fs_warn(sbi, "test_dummy_encryption option not supported"); |
| return -EINVAL; |
| } |
| |
| if (!f2fs_sb_has_encrypt(sbi)) { |
| f2fs_err(sbi, "Encrypt feature is off"); |
| return -EINVAL; |
| } |
| |
| /* |
| * This mount option is just for testing, and it's not worthwhile to |
| * implement the extra complexity (e.g. RCU protection) that would be |
| * needed to allow it to be set or changed during remount. We do allow |
| * it to be specified during remount, but only if there is no change. |
| */ |
| if (is_remount && !fscrypt_is_dummy_policy_set(policy)) { |
| f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); |
| return -EINVAL; |
| } |
| |
| err = fscrypt_parse_test_dummy_encryption(¶m, policy); |
| if (err) { |
| if (err == -EEXIST) |
| f2fs_warn(sbi, |
| "Can't change test_dummy_encryption on remount"); |
| else if (err == -EINVAL) |
| f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", |
| opt); |
| else |
| f2fs_warn(sbi, "Error processing option \"%s\" [%d]", |
| opt, err); |
| return -EINVAL; |
| } |
| f2fs_warn(sbi, "Test dummy encryption mode enabled"); |
| return 0; |
| } |
| |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| static bool is_compress_extension_exist(struct f2fs_sb_info *sbi, |
| const char *new_ext, bool is_ext) |
| { |
| unsigned char (*ext)[F2FS_EXTENSION_LEN]; |
| int ext_cnt; |
| int i; |
| |
| if (is_ext) { |
| ext = F2FS_OPTION(sbi).extensions; |
| ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; |
| } else { |
| ext = F2FS_OPTION(sbi).noextensions; |
| ext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; |
| } |
| |
| for (i = 0; i < ext_cnt; i++) { |
| if (!strcasecmp(new_ext, ext[i])) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * 1. The same extension name cannot not appear in both compress and non-compress extension |
| * at the same time. |
| * 2. If the compress extension specifies all files, the types specified by the non-compress |
| * extension will be treated as special cases and will not be compressed. |
| * 3. Don't allow the non-compress extension specifies all files. |
| */ |
| static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi) |
| { |
| unsigned char (*ext)[F2FS_EXTENSION_LEN]; |
| unsigned char (*noext)[F2FS_EXTENSION_LEN]; |
| int ext_cnt, noext_cnt, index = 0, no_index = 0; |
| |
| ext = F2FS_OPTION(sbi).extensions; |
| ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; |
| noext = F2FS_OPTION(sbi).noextensions; |
| noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; |
| |
| if (!noext_cnt) |
| return 0; |
| |
| for (no_index = 0; no_index < noext_cnt; no_index++) { |
| if (!strcasecmp("*", noext[no_index])) { |
| f2fs_info(sbi, "Don't allow the nocompress extension specifies all files"); |
| return -EINVAL; |
| } |
| for (index = 0; index < ext_cnt; index++) { |
| if (!strcasecmp(ext[index], noext[no_index])) { |
| f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension", |
| ext[index]); |
| return -EINVAL; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| #ifdef CONFIG_F2FS_FS_LZ4 |
| static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str) |
| { |
| #ifdef CONFIG_F2FS_FS_LZ4HC |
| unsigned int level; |
| |
| if (strlen(str) == 3) { |
| F2FS_OPTION(sbi).compress_level = 0; |
| return 0; |
| } |
| |
| str += 3; |
| |
| if (str[0] != ':') { |
| f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); |
| return -EINVAL; |
| } |
| if (kstrtouint(str + 1, 10, &level)) |
| return -EINVAL; |
| |
| if (!f2fs_is_compress_level_valid(COMPRESS_LZ4, level)) { |
| f2fs_info(sbi, "invalid lz4hc compress level: %d", level); |
| return -EINVAL; |
| } |
| |
| F2FS_OPTION(sbi).compress_level = level; |
| return 0; |
| #else |
| if (strlen(str) == 3) { |
| F2FS_OPTION(sbi).compress_level = 0; |
| return 0; |
| } |
| f2fs_info(sbi, "kernel doesn't support lz4hc compression"); |
| return -EINVAL; |
| #endif |
| } |
| #endif |
| |
| #ifdef CONFIG_F2FS_FS_ZSTD |
| static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str) |
| { |
| int level; |
| int len = 4; |
| |
| if (strlen(str) == len) { |
| F2FS_OPTION(sbi).compress_level = F2FS_ZSTD_DEFAULT_CLEVEL; |
| return 0; |
| } |
| |
| str += len; |
| |
| if (str[0] != ':') { |
| f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); |
| return -EINVAL; |
| } |
| if (kstrtoint(str + 1, 10, &level)) |
| return -EINVAL; |
| |
| /* f2fs does not support negative compress level now */ |
| if (level < 0) { |
| f2fs_info(sbi, "do not support negative compress level: %d", level); |
| return -ERANGE; |
| } |
| |
| if (!f2fs_is_compress_level_valid(COMPRESS_ZSTD, level)) { |
| f2fs_info(sbi, "invalid zstd compress level: %d", level); |
| return -EINVAL; |
| } |
| |
| F2FS_OPTION(sbi).compress_level = level; |
| return 0; |
| } |
| #endif |
| #endif |
| |
| static int parse_options(struct super_block *sb, char *options, bool is_remount) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| substring_t args[MAX_OPT_ARGS]; |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| unsigned char (*ext)[F2FS_EXTENSION_LEN]; |
| unsigned char (*noext)[F2FS_EXTENSION_LEN]; |
| int ext_cnt, noext_cnt; |
| #endif |
| char *p, *name; |
| int arg = 0; |
| kuid_t uid; |
| kgid_t gid; |
| int ret; |
| |
| if (!options) |
| goto default_check; |
| |
| while ((p = strsep(&options, ",")) != NULL) { |
| int token; |
| |
| if (!*p) |
| continue; |
| /* |
| * Initialize args struct so we know whether arg was |
| * found; some options take optional arguments. |
| */ |
| args[0].to = args[0].from = NULL; |
| token = match_token(p, f2fs_tokens, args); |
| |
| switch (token) { |
| case Opt_gc_background: |
| name = match_strdup(&args[0]); |
| |
| if (!name) |
| return -ENOMEM; |
| if (!strcmp(name, "on")) { |
| F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; |
| } else if (!strcmp(name, "off")) { |
| if (f2fs_sb_has_blkzoned(sbi)) { |
| f2fs_warn(sbi, "zoned devices need bggc"); |
| kfree(name); |
| return -EINVAL; |
| } |
| F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; |
| } else if (!strcmp(name, "sync")) { |
| F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; |
| } else { |
| kfree(name); |
| return -EINVAL; |
| } |
| kfree(name); |
| break; |
| case Opt_disable_roll_forward: |
| set_opt(sbi, DISABLE_ROLL_FORWARD); |
| break; |
| case Opt_norecovery: |
| /* this option mounts f2fs with ro */ |
| set_opt(sbi, NORECOVERY); |
| if (!f2fs_readonly(sb)) |
| return -EINVAL; |
| break; |
| case Opt_discard: |
| if (!f2fs_hw_support_discard(sbi)) { |
| f2fs_warn(sbi, "device does not support discard"); |
| break; |
| } |
| set_opt(sbi, DISCARD); |
| break; |
| case Opt_nodiscard: |
| if (f2fs_hw_should_discard(sbi)) { |
| f2fs_warn(sbi, "discard is required for zoned block devices"); |
| return -EINVAL; |
| } |
| clear_opt(sbi, DISCARD); |
| break; |
| case Opt_noheap: |
| case Opt_heap: |
| f2fs_warn(sbi, "heap/no_heap options were deprecated"); |
| break; |
| #ifdef CONFIG_F2FS_FS_XATTR |
| case Opt_user_xattr: |
| set_opt(sbi, XATTR_USER); |
| break; |
| case Opt_nouser_xattr: |
| clear_opt(sbi, XATTR_USER); |
| break; |
| case Opt_inline_xattr: |
| set_opt(sbi, INLINE_XATTR); |
| break; |
| case Opt_noinline_xattr: |
| clear_opt(sbi, INLINE_XATTR); |
| break; |
| case Opt_inline_xattr_size: |
| if (args->from && match_int(args, &arg)) |
| return -EINVAL; |
| set_opt(sbi, INLINE_XATTR_SIZE); |
| F2FS_OPTION(sbi).inline_xattr_size = arg; |
| break; |
| #else |
| case Opt_user_xattr: |
| f2fs_info(sbi, "user_xattr options not supported"); |
| break; |
| case Opt_nouser_xattr: |
| f2fs_info(sbi, "nouser_xattr options not supported"); |
| break; |
| case Opt_inline_xattr: |
| f2fs_info(sbi, "inline_xattr options not supported"); |
| break; |
| case Opt_noinline_xattr: |
| f2fs_info(sbi, "noinline_xattr options not supported"); |
| break; |
| #endif |
| #ifdef CONFIG_F2FS_FS_POSIX_ACL |
| case Opt_acl: |
| set_opt(sbi, POSIX_ACL); |
| break; |
| case Opt_noacl: |
| clear_opt(sbi, POSIX_ACL); |
| break; |
| #else |
| case Opt_acl: |
| f2fs_info(sbi, "acl options not supported"); |
| break; |
| case Opt_noacl: |
| f2fs_info(sbi, "noacl options not supported"); |
| break; |
| #endif |
| case Opt_active_logs: |
| if (args->from && match_int(args, &arg)) |
| return -EINVAL; |
| if (arg != 2 && arg != 4 && |
| arg != NR_CURSEG_PERSIST_TYPE) |
| return -EINVAL; |
| F2FS_OPTION(sbi).active_logs = arg; |
| break; |
| case Opt_disable_ext_identify: |
| set_opt(sbi, DISABLE_EXT_IDENTIFY); |
| break; |
| case Opt_inline_data: |
| set_opt(sbi, INLINE_DATA); |
| break; |
| case Opt_inline_dentry: |
| set_opt(sbi, INLINE_DENTRY); |
| break; |
| case Opt_noinline_dentry: |
| clear_opt(sbi, INLINE_DENTRY); |
| break; |
| case Opt_flush_merge: |
| set_opt(sbi, FLUSH_MERGE); |
| break; |
| case Opt_noflush_merge: |
| clear_opt(sbi, FLUSH_MERGE); |
| break; |
| case Opt_nobarrier: |
| set_opt(sbi, NOBARRIER); |
| break; |
| case Opt_barrier: |
| clear_opt(sbi, NOBARRIER); |
| break; |
| case Opt_fastboot: |
| set_opt(sbi, FASTBOOT); |
| break; |
| case Opt_extent_cache: |
| set_opt(sbi, READ_EXTENT_CACHE); |
| break; |
| case Opt_noextent_cache: |
| clear_opt(sbi, READ_EXTENT_CACHE); |
| break; |
| case Opt_noinline_data: |
| clear_opt(sbi, INLINE_DATA); |
| break; |
| case Opt_data_flush: |
| set_opt(sbi, DATA_FLUSH); |
| break; |
| case Opt_reserve_root: |
| if (args->from && match_int(args, &arg)) |
| return -EINVAL; |
| if (test_opt(sbi, RESERVE_ROOT)) { |
| f2fs_info(sbi, "Preserve previous reserve_root=%u", |
| F2FS_OPTION(sbi).root_reserved_blocks); |
| } else { |
| F2FS_OPTION(sbi).root_reserved_blocks = arg; |
| set_opt(sbi, RESERVE_ROOT); |
| } |
| break; |
| case Opt_resuid: |
| if (args->from && match_int(args, &arg)) |
| return -EINVAL; |
| uid = make_kuid(current_user_ns(), arg); |
| if (!uid_valid(uid)) { |
| f2fs_err(sbi, "Invalid uid value %d", arg); |
| return -EINVAL; |
| } |
| F2FS_OPTION(sbi).s_resuid = uid; |
| break; |
| case Opt_resgid: |
| if (args->from && match_int(args, &arg)) |
| return -EINVAL; |
| gid = make_kgid(current_user_ns(), arg); |
| if (!gid_valid(gid)) { |
| f2fs_err(sbi, "Invalid gid value %d", arg); |
| return -EINVAL; |
| } |
| F2FS_OPTION(sbi).s_resgid = gid; |
| break; |
| case Opt_mode: |
| name = match_strdup(&args[0]); |
| |
| if (!name) |
| return -ENOMEM; |
| if (!strcmp(name, "adaptive")) { |
| F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; |
| } else if (!strcmp(name, "lfs")) { |
| F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; |
| } else if (!strcmp(name, "fragment:segment")) { |
| F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG; |
| } else if (!strcmp(name, "fragment:block")) { |
| F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK; |
| } else { |
| kfree(name); |
| return -EINVAL; |
| } |
| kfree(name); |
| break; |
| #ifdef CONFIG_F2FS_FAULT_INJECTION |
| case Opt_fault_injection: |
| if (args->from && match_int(args, &arg)) |
| return -EINVAL; |
| if (f2fs_build_fault_attr(sbi, arg, |
| F2FS_ALL_FAULT_TYPE)) |
| return -EINVAL; |
| set_opt(sbi, FAULT_INJECTION); |
| break; |
| |
| case Opt_fault_type: |
| if (args->from && match_int(args, &arg)) |
| return -EINVAL; |
| if (f2fs_build_fault_attr(sbi, 0, arg)) |
| return -EINVAL; |
| set_opt(sbi, FAULT_INJECTION); |
| break; |
| #else |
| case Opt_fault_injection: |
| f2fs_info(sbi, "fault_injection options not supported"); |
| break; |
| |
| case Opt_fault_type: |
| f2fs_info(sbi, "fault_type options not supported"); |
| break; |
| #endif |
| #ifdef CONFIG_QUOTA |
| case Opt_quota: |
| case Opt_usrquota: |
| set_opt(sbi, USRQUOTA); |
| break; |
| case Opt_grpquota: |
| set_opt(sbi, GRPQUOTA); |
| break; |
| case Opt_prjquota: |
| set_opt(sbi, PRJQUOTA); |
| break; |
| case Opt_usrjquota: |
| ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); |
| if (ret) |
| return ret; |
| break; |
| case Opt_grpjquota: |
| ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); |
| if (ret) |
| return ret; |
| break; |
| case Opt_prjjquota: |
| ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); |
| if (ret) |
| return ret; |
| break; |
| case Opt_offusrjquota: |
| ret = f2fs_clear_qf_name(sb, USRQUOTA); |
| if (ret) |
| return ret; |
| break; |
| case Opt_offgrpjquota: |
| ret = f2fs_clear_qf_name(sb, GRPQUOTA); |
| if (ret) |
| return ret; |
| break; |
| case Opt_offprjjquota: |
| ret = f2fs_clear_qf_name(sb, PRJQUOTA); |
| if (ret) |
| return ret; |
| break; |
| case Opt_jqfmt_vfsold: |
| F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; |
| break; |
| case Opt_jqfmt_vfsv0: |
| F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; |
| break; |
| case Opt_jqfmt_vfsv1: |
| F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; |
| break; |
| case Opt_noquota: |
| clear_opt(sbi, QUOTA); |
| clear_opt(sbi, USRQUOTA); |
| clear_opt(sbi, GRPQUOTA); |
| clear_opt(sbi, PRJQUOTA); |
| break; |
| #else |
| case Opt_quota: |
| case Opt_usrquota: |
| case Opt_grpquota: |
| case Opt_prjquota: |
| case Opt_usrjquota: |
| case Opt_grpjquota: |
| case Opt_prjjquota: |
| case Opt_offusrjquota: |
| case Opt_offgrpjquota: |
| case Opt_offprjjquota: |
| case Opt_jqfmt_vfsold: |
| case Opt_jqfmt_vfsv0: |
| case Opt_jqfmt_vfsv1: |
| case Opt_noquota: |
| f2fs_info(sbi, "quota operations not supported"); |
| break; |
| #endif |
| case Opt_alloc: |
| name = match_strdup(&args[0]); |
| if (!name) |
| return -ENOMEM; |
| |
| if (!strcmp(name, "default")) { |
| F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; |
| } else if (!strcmp(name, "reuse")) { |
| F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; |
| } else { |
| kfree(name); |
| return -EINVAL; |
| } |
| kfree(name); |
| break; |
| case Opt_fsync: |
| name = match_strdup(&args[0]); |
| if (!name) |
| return -ENOMEM; |
| if (!strcmp(name, "posix")) { |
| F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; |
| } else if (!strcmp(name, "strict")) { |
| F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; |
| } else if (!strcmp(name, "nobarrier")) { |
| F2FS_OPTION(sbi).fsync_mode = |
| FSYNC_MODE_NOBARRIER; |
| } else { |
| kfree(name); |
| return -EINVAL; |
| } |
| kfree(name); |
| break; |
| case Opt_test_dummy_encryption: |
| ret = f2fs_set_test_dummy_encryption(sb, p, &args[0], |
| is_remount); |
| if (ret) |
| return ret; |
| break; |
| case Opt_inlinecrypt: |
| #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT |
| sb->s_flags |= SB_INLINECRYPT; |
| #else |
| f2fs_info(sbi, "inline encryption not supported"); |
| #endif |
| break; |
| case Opt_checkpoint_disable_cap_perc: |
| if (args->from && match_int(args, &arg)) |
| return -EINVAL; |
| if (arg < 0 || arg > 100) |
| return -EINVAL; |
| F2FS_OPTION(sbi).unusable_cap_perc = arg; |
| set_opt(sbi, DISABLE_CHECKPOINT); |
| break; |
| case Opt_checkpoint_disable_cap: |
| if (args->from && match_int(args, &arg)) |
| return -EINVAL; |
| F2FS_OPTION(sbi).unusable_cap = arg; |
| set_opt(sbi, DISABLE_CHECKPOINT); |
| break; |
| case Opt_checkpoint_disable: |
| set_opt(sbi, DISABLE_CHECKPOINT); |
| break; |
| case Opt_checkpoint_enable: |
| clear_opt(sbi, DISABLE_CHECKPOINT); |
| break; |
| case Opt_checkpoint_merge: |
| set_opt(sbi, MERGE_CHECKPOINT); |
| break; |
| case Opt_nocheckpoint_merge: |
| clear_opt(sbi, MERGE_CHECKPOINT); |
| break; |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| case Opt_compress_algorithm: |
| if (!f2fs_sb_has_compression(sbi)) { |
| f2fs_info(sbi, "Image doesn't support compression"); |
| break; |
| } |
| name = match_strdup(&args[0]); |
| if (!name) |
| return -ENOMEM; |
| if (!strcmp(name, "lzo")) { |
| #ifdef CONFIG_F2FS_FS_LZO |
| F2FS_OPTION(sbi).compress_level = 0; |
| F2FS_OPTION(sbi).compress_algorithm = |
| COMPRESS_LZO; |
| #else |
| f2fs_info(sbi, "kernel doesn't support lzo compression"); |
| #endif |
| } else if (!strncmp(name, "lz4", 3)) { |
| #ifdef CONFIG_F2FS_FS_LZ4 |
| ret = f2fs_set_lz4hc_level(sbi, name); |
| if (ret) { |
| kfree(name); |
| return -EINVAL; |
| } |
| F2FS_OPTION(sbi).compress_algorithm = |
| COMPRESS_LZ4; |
| #else |
| f2fs_info(sbi, "kernel doesn't support lz4 compression"); |
| #endif |
| } else if (!strncmp(name, "zstd", 4)) { |
| #ifdef CONFIG_F2FS_FS_ZSTD |
| ret = f2fs_set_zstd_level(sbi, name); |
| if (ret) { |
| kfree(name); |
| return -EINVAL; |
| } |
| F2FS_OPTION(sbi).compress_algorithm = |
| COMPRESS_ZSTD; |
| #else |
| f2fs_info(sbi, "kernel doesn't support zstd compression"); |
| #endif |
| } else if (!strcmp(name, "lzo-rle")) { |
| #ifdef CONFIG_F2FS_FS_LZORLE |
| F2FS_OPTION(sbi).compress_level = 0; |
| F2FS_OPTION(sbi).compress_algorithm = |
| COMPRESS_LZORLE; |
| #else |
| f2fs_info(sbi, "kernel doesn't support lzorle compression"); |
| #endif |
| } else { |
| kfree(name); |
| return -EINVAL; |
| } |
| kfree(name); |
| break; |
| case Opt_compress_log_size: |
| if (!f2fs_sb_has_compression(sbi)) { |
| f2fs_info(sbi, "Image doesn't support compression"); |
| break; |
| } |
| if (args->from && match_int(args, &arg)) |
| return -EINVAL; |
| if (arg < MIN_COMPRESS_LOG_SIZE || |
| arg > MAX_COMPRESS_LOG_SIZE) { |
| f2fs_err(sbi, |
| "Compress cluster log size is out of range"); |
| return -EINVAL; |
| } |
| F2FS_OPTION(sbi).compress_log_size = arg; |
| break; |
| case Opt_compress_extension: |
| if (!f2fs_sb_has_compression(sbi)) { |
| f2fs_info(sbi, "Image doesn't support compression"); |
| break; |
| } |
| name = match_strdup(&args[0]); |
| if (!name) |
| return -ENOMEM; |
| |
| ext = F2FS_OPTION(sbi).extensions; |
| ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; |
| |
| if (strlen(name) >= F2FS_EXTENSION_LEN || |
| ext_cnt >= COMPRESS_EXT_NUM) { |
| f2fs_err(sbi, |
| "invalid extension length/number"); |
| kfree(name); |
| return -EINVAL; |
| } |
| |
| if (is_compress_extension_exist(sbi, name, true)) { |
| kfree(name); |
| break; |
| } |
| |
| strcpy(ext[ext_cnt], name); |
| F2FS_OPTION(sbi).compress_ext_cnt++; |
| kfree(name); |
| break; |
| case Opt_nocompress_extension: |
| if (!f2fs_sb_has_compression(sbi)) { |
| f2fs_info(sbi, "Image doesn't support compression"); |
| break; |
| } |
| name = match_strdup(&args[0]); |
| if (!name) |
| return -ENOMEM; |
| |
| noext = F2FS_OPTION(sbi).noextensions; |
| noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; |
| |
| if (strlen(name) >= F2FS_EXTENSION_LEN || |
| noext_cnt >= COMPRESS_EXT_NUM) { |
| f2fs_err(sbi, |
| "invalid extension length/number"); |
| kfree(name); |
| return -EINVAL; |
| } |
| |
| if (is_compress_extension_exist(sbi, name, false)) { |
| kfree(name); |
| break; |
| } |
| |
| strcpy(noext[noext_cnt], name); |
| F2FS_OPTION(sbi).nocompress_ext_cnt++; |
| kfree(name); |
| break; |
| case Opt_compress_chksum: |
| if (!f2fs_sb_has_compression(sbi)) { |
| f2fs_info(sbi, "Image doesn't support compression"); |
| break; |
| } |
| F2FS_OPTION(sbi).compress_chksum = true; |
| break; |
| case Opt_compress_mode: |
| if (!f2fs_sb_has_compression(sbi)) { |
| f2fs_info(sbi, "Image doesn't support compression"); |
| break; |
| } |
| name = match_strdup(&args[0]); |
| if (!name) |
| return -ENOMEM; |
| if (!strcmp(name, "fs")) { |
| F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; |
| } else if (!strcmp(name, "user")) { |
| F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER; |
| } else { |
| kfree(name); |
| return -EINVAL; |
| } |
| kfree(name); |
| break; |
| case Opt_compress_cache: |
| if (!f2fs_sb_has_compression(sbi)) { |
| f2fs_info(sbi, "Image doesn't support compression"); |
| break; |
| } |
| set_opt(sbi, COMPRESS_CACHE); |
| break; |
| #else |
| case Opt_compress_algorithm: |
| case Opt_compress_log_size: |
| case Opt_compress_extension: |
| case Opt_nocompress_extension: |
| case Opt_compress_chksum: |
| case Opt_compress_mode: |
| case Opt_compress_cache: |
| f2fs_info(sbi, "compression options not supported"); |
| break; |
| #endif |
| case Opt_atgc: |
| set_opt(sbi, ATGC); |
| break; |
| case Opt_gc_merge: |
| set_opt(sbi, GC_MERGE); |
| break; |
| case Opt_nogc_merge: |
| clear_opt(sbi, GC_MERGE); |
| break; |
| case Opt_discard_unit: |
| name = match_strdup(&args[0]); |
| if (!name) |
| return -ENOMEM; |
| if (!strcmp(name, "block")) { |
| F2FS_OPTION(sbi).discard_unit = |
| DISCARD_UNIT_BLOCK; |
| } else if (!strcmp(name, "segment")) { |
| F2FS_OPTION(sbi).discard_unit = |
| DISCARD_UNIT_SEGMENT; |
| } else if (!strcmp(name, "section")) { |
| F2FS_OPTION(sbi).discard_unit = |
| DISCARD_UNIT_SECTION; |
| } else { |
| kfree(name); |
| return -EINVAL; |
| } |
| kfree(name); |
| break; |
| case Opt_memory_mode: |
| name = match_strdup(&args[0]); |
| if (!name) |
| return -ENOMEM; |
| if (!strcmp(name, "normal")) { |
| F2FS_OPTION(sbi).memory_mode = |
| MEMORY_MODE_NORMAL; |
| } else if (!strcmp(name, "low")) { |
| F2FS_OPTION(sbi).memory_mode = |
| MEMORY_MODE_LOW; |
| } else { |
| kfree(name); |
| return -EINVAL; |
| } |
| kfree(name); |
| break; |
| case Opt_age_extent_cache: |
| set_opt(sbi, AGE_EXTENT_CACHE); |
| break; |
| case Opt_errors: |
| name = match_strdup(&args[0]); |
| if (!name) |
| return -ENOMEM; |
| if (!strcmp(name, "remount-ro")) { |
| F2FS_OPTION(sbi).errors = |
| MOUNT_ERRORS_READONLY; |
| } else if (!strcmp(name, "continue")) { |
| F2FS_OPTION(sbi).errors = |
| MOUNT_ERRORS_CONTINUE; |
| } else if (!strcmp(name, "panic")) { |
| F2FS_OPTION(sbi).errors = |
| MOUNT_ERRORS_PANIC; |
| } else { |
| kfree(name); |
| return -EINVAL; |
| } |
| kfree(name); |
| break; |
| default: |
| f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", |
| p); |
| return -EINVAL; |
| } |
| } |
| default_check: |
| #ifdef CONFIG_QUOTA |
| if (f2fs_check_quota_options(sbi)) |
| return -EINVAL; |
| #else |
| if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { |
| f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); |
| return -EINVAL; |
| } |
| if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { |
| f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); |
| return -EINVAL; |
| } |
| #endif |
| |
| if (!IS_ENABLED(CONFIG_UNICODE) && f2fs_sb_has_casefold(sbi)) { |
| f2fs_err(sbi, |
| "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); |
| return -EINVAL; |
| } |
| |
| /* |
| * The BLKZONED feature indicates that the drive was formatted with |
| * zone alignment optimization. This is optional for host-aware |
| * devices, but mandatory for host-managed zoned block devices. |
| */ |
| if (f2fs_sb_has_blkzoned(sbi)) { |
| #ifdef CONFIG_BLK_DEV_ZONED |
| if (F2FS_OPTION(sbi).discard_unit != |
| DISCARD_UNIT_SECTION) { |
| f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default"); |
| F2FS_OPTION(sbi).discard_unit = |
| DISCARD_UNIT_SECTION; |
| } |
| |
| if (F2FS_OPTION(sbi).fs_mode != FS_MODE_LFS) { |
| f2fs_info(sbi, "Only lfs mode is allowed with zoned block device feature"); |
| return -EINVAL; |
| } |
| #else |
| f2fs_err(sbi, "Zoned block device support is not enabled"); |
| return -EINVAL; |
| #endif |
| } |
| |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| if (f2fs_test_compress_extension(sbi)) { |
| f2fs_err(sbi, "invalid compress or nocompress extension"); |
| return -EINVAL; |
| } |
| #endif |
| |
| if (test_opt(sbi, INLINE_XATTR_SIZE)) { |
| int min_size, max_size; |
| |
| if (!f2fs_sb_has_extra_attr(sbi) || |
| !f2fs_sb_has_flexible_inline_xattr(sbi)) { |
| f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); |
| return -EINVAL; |
| } |
| if (!test_opt(sbi, INLINE_XATTR)) { |
| f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); |
| return -EINVAL; |
| } |
| |
| min_size = MIN_INLINE_XATTR_SIZE; |
| max_size = MAX_INLINE_XATTR_SIZE; |
| |
| if (F2FS_OPTION(sbi).inline_xattr_size < min_size || |
| F2FS_OPTION(sbi).inline_xattr_size > max_size) { |
| f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", |
| min_size, max_size); |
| return -EINVAL; |
| } |
| } |
| |
| if (test_opt(sbi, ATGC) && f2fs_lfs_mode(sbi)) { |
| f2fs_err(sbi, "LFS is not compatible with ATGC"); |
| return -EINVAL; |
| } |
| |
| if (f2fs_is_readonly(sbi) && test_opt(sbi, FLUSH_MERGE)) { |
| f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode"); |
| return -EINVAL; |
| } |
| |
| if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) { |
| f2fs_err(sbi, "Allow to mount readonly mode only"); |
| return -EROFS; |
| } |
| return 0; |
| } |
| |
| static struct inode *f2fs_alloc_inode(struct super_block *sb) |
| { |
| struct f2fs_inode_info *fi; |
| |
| if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC)) |
| return NULL; |
| |
| fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO); |
| if (!fi) |
| return NULL; |
| |
| init_once((void *) fi); |
| |
| /* Initialize f2fs-specific inode info */ |
| atomic_set(&fi->dirty_pages, 0); |
| atomic_set(&fi->i_compr_blocks, 0); |
| init_f2fs_rwsem(&fi->i_sem); |
| spin_lock_init(&fi->i_size_lock); |
| INIT_LIST_HEAD(&fi->dirty_list); |
| INIT_LIST_HEAD(&fi->gdirty_list); |
| init_f2fs_rwsem(&fi->i_gc_rwsem[READ]); |
| init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]); |
| init_f2fs_rwsem(&fi->i_xattr_sem); |
| |
| /* Will be used by directory only */ |
| fi->i_dir_level = F2FS_SB(sb)->dir_level; |
| |
| return &fi->vfs_inode; |
| } |
| |
| static int f2fs_drop_inode(struct inode *inode) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| int ret; |
| |
| /* |
| * during filesystem shutdown, if checkpoint is disabled, |
| * drop useless meta/node dirty pages. |
| */ |
| if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { |
| if (inode->i_ino == F2FS_NODE_INO(sbi) || |
| inode->i_ino == F2FS_META_INO(sbi)) { |
| trace_f2fs_drop_inode(inode, 1); |
| return 1; |
| } |
| } |
| |
| /* |
| * This is to avoid a deadlock condition like below. |
| * writeback_single_inode(inode) |
| * - f2fs_write_data_page |
| * - f2fs_gc -> iput -> evict |
| * - inode_wait_for_writeback(inode) |
| */ |
| if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { |
| if (!inode->i_nlink && !is_bad_inode(inode)) { |
| /* to avoid evict_inode call simultaneously */ |
| atomic_inc(&inode->i_count); |
| spin_unlock(&inode->i_lock); |
| |
| /* should remain fi->extent_tree for writepage */ |
| f2fs_destroy_extent_node(inode); |
| |
| sb_start_intwrite(inode->i_sb); |
| f2fs_i_size_write(inode, 0); |
| |
| f2fs_submit_merged_write_cond(F2FS_I_SB(inode), |
| inode, NULL, 0, DATA); |
| truncate_inode_pages_final(inode->i_mapping); |
| |
| if (F2FS_HAS_BLOCKS(inode)) |
| f2fs_truncate(inode); |
| |
| sb_end_intwrite(inode->i_sb); |
| |
| spin_lock(&inode->i_lock); |
| atomic_dec(&inode->i_count); |
| } |
| trace_f2fs_drop_inode(inode, 0); |
| return 0; |
| } |
| ret = generic_drop_inode(inode); |
| if (!ret) |
| ret = fscrypt_drop_inode(inode); |
| trace_f2fs_drop_inode(inode, ret); |
| return ret; |
| } |
| |
| int f2fs_inode_dirtied(struct inode *inode, bool sync) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| int ret = 0; |
| |
| spin_lock(&sbi->inode_lock[DIRTY_META]); |
| if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { |
| ret = 1; |
| } else { |
| set_inode_flag(inode, FI_DIRTY_INODE); |
| stat_inc_dirty_inode(sbi, DIRTY_META); |
| } |
| if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { |
| list_add_tail(&F2FS_I(inode)->gdirty_list, |
| &sbi->inode_list[DIRTY_META]); |
| inc_page_count(sbi, F2FS_DIRTY_IMETA); |
| } |
| spin_unlock(&sbi->inode_lock[DIRTY_META]); |
| return ret; |
| } |
| |
| void f2fs_inode_synced(struct inode *inode) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| |
| spin_lock(&sbi->inode_lock[DIRTY_META]); |
| if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { |
| spin_unlock(&sbi->inode_lock[DIRTY_META]); |
| return; |
| } |
| if (!list_empty(&F2FS_I(inode)->gdirty_list)) { |
| list_del_init(&F2FS_I(inode)->gdirty_list); |
| dec_page_count(sbi, F2FS_DIRTY_IMETA); |
| } |
| clear_inode_flag(inode, FI_DIRTY_INODE); |
| clear_inode_flag(inode, FI_AUTO_RECOVER); |
| stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); |
| spin_unlock(&sbi->inode_lock[DIRTY_META]); |
| } |
| |
| /* |
| * f2fs_dirty_inode() is called from __mark_inode_dirty() |
| * |
| * We should call set_dirty_inode to write the dirty inode through write_inode. |
| */ |
| static void f2fs_dirty_inode(struct inode *inode, int flags) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| |
| if (inode->i_ino == F2FS_NODE_INO(sbi) || |
| inode->i_ino == F2FS_META_INO(sbi)) |
| return; |
| |
| if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) |
| clear_inode_flag(inode, FI_AUTO_RECOVER); |
| |
| f2fs_inode_dirtied(inode, false); |
| } |
| |
| static void f2fs_free_inode(struct inode *inode) |
| { |
| fscrypt_free_inode(inode); |
| kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); |
| } |
| |
| static void destroy_percpu_info(struct f2fs_sb_info *sbi) |
| { |
| percpu_counter_destroy(&sbi->total_valid_inode_count); |
| percpu_counter_destroy(&sbi->rf_node_block_count); |
| percpu_counter_destroy(&sbi->alloc_valid_block_count); |
| } |
| |
| static void destroy_device_list(struct f2fs_sb_info *sbi) |
| { |
| int i; |
| |
| for (i = 0; i < sbi->s_ndevs; i++) { |
| if (i > 0) |
| bdev_fput(FDEV(i).bdev_file); |
| #ifdef CONFIG_BLK_DEV_ZONED |
| kvfree(FDEV(i).blkz_seq); |
| #endif |
| } |
| kvfree(sbi->devs); |
| } |
| |
| static void f2fs_put_super(struct super_block *sb) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| int i; |
| int err = 0; |
| bool done; |
| |
| /* unregister procfs/sysfs entries in advance to avoid race case */ |
| f2fs_unregister_sysfs(sbi); |
| |
| f2fs_quota_off_umount(sb); |
| |
| /* prevent remaining shrinker jobs */ |
| mutex_lock(&sbi->umount_mutex); |
| |
| /* |
| * flush all issued checkpoints and stop checkpoint issue thread. |
| * after then, all checkpoints should be done by each process context. |
| */ |
| f2fs_stop_ckpt_thread(sbi); |
| |
| /* |
| * We don't need to do checkpoint when superblock is clean. |
| * But, the previous checkpoint was not done by umount, it needs to do |
| * clean checkpoint again. |
| */ |
| if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || |
| !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { |
| struct cp_control cpc = { |
| .reason = CP_UMOUNT, |
| }; |
| stat_inc_cp_call_count(sbi, TOTAL_CALL); |
| err = f2fs_write_checkpoint(sbi, &cpc); |
| } |
| |
| /* be sure to wait for any on-going discard commands */ |
| done = f2fs_issue_discard_timeout(sbi); |
| if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) { |
| struct cp_control cpc = { |
| .reason = CP_UMOUNT | CP_TRIMMED, |
| }; |
| stat_inc_cp_call_count(sbi, TOTAL_CALL); |
| err = f2fs_write_checkpoint(sbi, &cpc); |
| } |
| |
| /* |
| * normally superblock is clean, so we need to release this. |
| * In addition, EIO will skip do checkpoint, we need this as well. |
| */ |
| f2fs_release_ino_entry(sbi, true); |
| |
| f2fs_leave_shrinker(sbi); |
| mutex_unlock(&sbi->umount_mutex); |
| |
| /* our cp_error case, we can wait for any writeback page */ |
| f2fs_flush_merged_writes(sbi); |
| |
| f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); |
| |
| if (err || f2fs_cp_error(sbi)) { |
| truncate_inode_pages_final(NODE_MAPPING(sbi)); |
| truncate_inode_pages_final(META_MAPPING(sbi)); |
| } |
| |
| for (i = 0; i < NR_COUNT_TYPE; i++) { |
| if (!get_pages(sbi, i)) |
| continue; |
| f2fs_err(sbi, "detect filesystem reference count leak during " |
| "umount, type: %d, count: %lld", i, get_pages(sbi, i)); |
| f2fs_bug_on(sbi, 1); |
| } |
| |
| f2fs_bug_on(sbi, sbi->fsync_node_num); |
| |
| f2fs_destroy_compress_inode(sbi); |
| |
| iput(sbi->node_inode); |
| sbi->node_inode = NULL; |
| |
| iput(sbi->meta_inode); |
| sbi->meta_inode = NULL; |
| |
| /* |
| * iput() can update stat information, if f2fs_write_checkpoint() |
| * above failed with error. |
| */ |
| f2fs_destroy_stats(sbi); |
| |
| /* destroy f2fs internal modules */ |
| f2fs_destroy_node_manager(sbi); |
| f2fs_destroy_segment_manager(sbi); |
| |
| /* flush s_error_work before sbi destroy */ |
| flush_work(&sbi->s_error_work); |
| |
| f2fs_destroy_post_read_wq(sbi); |
| |
| kvfree(sbi->ckpt); |
| |
| if (sbi->s_chksum_driver) |
| crypto_free_shash(sbi->s_chksum_driver); |
| kfree(sbi->raw_super); |
| |
| f2fs_destroy_page_array_cache(sbi); |
| f2fs_destroy_xattr_caches(sbi); |
| #ifdef CONFIG_QUOTA |
| for (i = 0; i < MAXQUOTAS; i++) |
| kfree(F2FS_OPTION(sbi).s_qf_names[i]); |
| #endif |
| fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); |
| destroy_percpu_info(sbi); |
| f2fs_destroy_iostat(sbi); |
| for (i = 0; i < NR_PAGE_TYPE; i++) |
| kvfree(sbi->write_io[i]); |
| #if IS_ENABLED(CONFIG_UNICODE) |
| utf8_unload(sb->s_encoding); |
| #endif |
| } |
| |
| int f2fs_sync_fs(struct super_block *sb, int sync) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| int err = 0; |
| |
| if (unlikely(f2fs_cp_error(sbi))) |
| return 0; |
| if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) |
| return 0; |
| |
| trace_f2fs_sync_fs(sb, sync); |
| |
| if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) |
| return -EAGAIN; |
| |
| if (sync) { |
| stat_inc_cp_call_count(sbi, TOTAL_CALL); |
| err = f2fs_issue_checkpoint(sbi); |
| } |
| |
| return err; |
| } |
| |
| static int f2fs_freeze(struct super_block *sb) |
| { |
| if (f2fs_readonly(sb)) |
| return 0; |
| |
| /* IO error happened before */ |
| if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) |
| return -EIO; |
| |
| /* must be clean, since sync_filesystem() was already called */ |
| if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) |
| return -EINVAL; |
| |
| /* Let's flush checkpoints and stop the thread. */ |
| f2fs_flush_ckpt_thread(F2FS_SB(sb)); |
| |
| /* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */ |
| set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); |
| return 0; |
| } |
| |
| static int f2fs_unfreeze(struct super_block *sb) |
| { |
| clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); |
| return 0; |
| } |
| |
| #ifdef CONFIG_QUOTA |
| static int f2fs_statfs_project(struct super_block *sb, |
| kprojid_t projid, struct kstatfs *buf) |
| { |
| struct kqid qid; |
| struct dquot *dquot; |
| u64 limit; |
| u64 curblock; |
| |
| qid = make_kqid_projid(projid); |
| dquot = dqget(sb, qid); |
| if (IS_ERR(dquot)) |
| return PTR_ERR(dquot); |
| spin_lock(&dquot->dq_dqb_lock); |
| |
| limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, |
| dquot->dq_dqb.dqb_bhardlimit); |
| if (limit) |
| limit >>= sb->s_blocksize_bits; |
| |
| if (limit && buf->f_blocks > limit) { |
| curblock = (dquot->dq_dqb.dqb_curspace + |
| dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; |
| buf->f_blocks = limit; |
| buf->f_bfree = buf->f_bavail = |
| (buf->f_blocks > curblock) ? |
| (buf->f_blocks - curblock) : 0; |
| } |
| |
| limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, |
| dquot->dq_dqb.dqb_ihardlimit); |
| |
| if (limit && buf->f_files > limit) { |
| buf->f_files = limit; |
| buf->f_ffree = |
| (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? |
| (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; |
| } |
| |
| spin_unlock(&dquot->dq_dqb_lock); |
| dqput(dquot); |
| return 0; |
| } |
| #endif |
| |
| static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) |
| { |
| struct super_block *sb = dentry->d_sb; |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| u64 id = huge_encode_dev(sb->s_bdev->bd_dev); |
| block_t total_count, user_block_count, start_count; |
| u64 avail_node_count; |
| unsigned int total_valid_node_count; |
| |
| total_count = le64_to_cpu(sbi->raw_super->block_count); |
| start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); |
| buf->f_type = F2FS_SUPER_MAGIC; |
| buf->f_bsize = sbi->blocksize; |
| |
| buf->f_blocks = total_count - start_count; |
| |
| spin_lock(&sbi->stat_lock); |
| |
| user_block_count = sbi->user_block_count; |
| total_valid_node_count = valid_node_count(sbi); |
| avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; |
| buf->f_bfree = user_block_count - valid_user_blocks(sbi) - |
| sbi->current_reserved_blocks; |
| |
| if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) |
| buf->f_bfree = 0; |
| else |
| buf->f_bfree -= sbi->unusable_block_count; |
| spin_unlock(&sbi->stat_lock); |
| |
| if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) |
| buf->f_bavail = buf->f_bfree - |
| F2FS_OPTION(sbi).root_reserved_blocks; |
| else |
| buf->f_bavail = 0; |
| |
| if (avail_node_count > user_block_count) { |
| buf->f_files = user_block_count; |
| buf->f_ffree = buf->f_bavail; |
| } else { |
| buf->f_files = avail_node_count; |
| buf->f_ffree = min(avail_node_count - total_valid_node_count, |
| buf->f_bavail); |
| } |
| |
| buf->f_namelen = F2FS_NAME_LEN; |
| buf->f_fsid = u64_to_fsid(id); |
| |
| #ifdef CONFIG_QUOTA |
| if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && |
| sb_has_quota_limits_enabled(sb, PRJQUOTA)) { |
| f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); |
| } |
| #endif |
| return 0; |
| } |
| |
| static inline void f2fs_show_quota_options(struct seq_file *seq, |
| struct super_block *sb) |
| { |
| #ifdef CONFIG_QUOTA |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| |
| if (F2FS_OPTION(sbi).s_jquota_fmt) { |
| char *fmtname = ""; |
| |
| switch (F2FS_OPTION(sbi).s_jquota_fmt) { |
| case QFMT_VFS_OLD: |
| fmtname = "vfsold"; |
| break; |
| case QFMT_VFS_V0: |
| fmtname = "vfsv0"; |
| break; |
| case QFMT_VFS_V1: |
| fmtname = "vfsv1"; |
| break; |
| } |
| seq_printf(seq, ",jqfmt=%s", fmtname); |
| } |
| |
| if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) |
| seq_show_option(seq, "usrjquota", |
| F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); |
| |
| if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) |
| seq_show_option(seq, "grpjquota", |
| F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); |
| |
| if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) |
| seq_show_option(seq, "prjjquota", |
| F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); |
| #endif |
| } |
| |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| static inline void f2fs_show_compress_options(struct seq_file *seq, |
| struct super_block *sb) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| char *algtype = ""; |
| int i; |
| |
| if (!f2fs_sb_has_compression(sbi)) |
| return; |
| |
| switch (F2FS_OPTION(sbi).compress_algorithm) { |
| case COMPRESS_LZO: |
| algtype = "lzo"; |
| break; |
| case COMPRESS_LZ4: |
| algtype = "lz4"; |
| break; |
| case COMPRESS_ZSTD: |
| algtype = "zstd"; |
| break; |
| case COMPRESS_LZORLE: |
| algtype = "lzo-rle"; |
| break; |
| } |
| seq_printf(seq, ",compress_algorithm=%s", algtype); |
| |
| if (F2FS_OPTION(sbi).compress_level) |
| seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level); |
| |
| seq_printf(seq, ",compress_log_size=%u", |
| F2FS_OPTION(sbi).compress_log_size); |
| |
| for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { |
| seq_printf(seq, ",compress_extension=%s", |
| F2FS_OPTION(sbi).extensions[i]); |
| } |
| |
| for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) { |
| seq_printf(seq, ",nocompress_extension=%s", |
| F2FS_OPTION(sbi).noextensions[i]); |
| } |
| |
| if (F2FS_OPTION(sbi).compress_chksum) |
| seq_puts(seq, ",compress_chksum"); |
| |
| if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS) |
| seq_printf(seq, ",compress_mode=%s", "fs"); |
| else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER) |
| seq_printf(seq, ",compress_mode=%s", "user"); |
| |
| if (test_opt(sbi, COMPRESS_CACHE)) |
| seq_puts(seq, ",compress_cache"); |
| } |
| #endif |
| |
| static int f2fs_show_options(struct seq_file *seq, struct dentry *root) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); |
| |
| if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) |
| seq_printf(seq, ",background_gc=%s", "sync"); |
| else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) |
| seq_printf(seq, ",background_gc=%s", "on"); |
| else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) |
| seq_printf(seq, ",background_gc=%s", "off"); |
| |
| if (test_opt(sbi, GC_MERGE)) |
| seq_puts(seq, ",gc_merge"); |
| else |
| seq_puts(seq, ",nogc_merge"); |
| |
| if (test_opt(sbi, DISABLE_ROLL_FORWARD)) |
| seq_puts(seq, ",disable_roll_forward"); |
| if (test_opt(sbi, NORECOVERY)) |
| seq_puts(seq, ",norecovery"); |
| if (test_opt(sbi, DISCARD)) { |
| seq_puts(seq, ",discard"); |
| if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK) |
| seq_printf(seq, ",discard_unit=%s", "block"); |
| else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) |
| seq_printf(seq, ",discard_unit=%s", "segment"); |
| else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) |
| seq_printf(seq, ",discard_unit=%s", "section"); |
| } else { |
| seq_puts(seq, ",nodiscard"); |
| } |
| #ifdef CONFIG_F2FS_FS_XATTR |
| if (test_opt(sbi, XATTR_USER)) |
| seq_puts(seq, ",user_xattr"); |
| else |
| seq_puts(seq, ",nouser_xattr"); |
| if (test_opt(sbi, INLINE_XATTR)) |
| seq_puts(seq, ",inline_xattr"); |
| else |
| seq_puts(seq, ",noinline_xattr"); |
| if (test_opt(sbi, INLINE_XATTR_SIZE)) |
| seq_printf(seq, ",inline_xattr_size=%u", |
| F2FS_OPTION(sbi).inline_xattr_size); |
| #endif |
| #ifdef CONFIG_F2FS_FS_POSIX_ACL |
| if (test_opt(sbi, POSIX_ACL)) |
| seq_puts(seq, ",acl"); |
| else |
| seq_puts(seq, ",noacl"); |
| #endif |
| if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) |
| seq_puts(seq, ",disable_ext_identify"); |
| if (test_opt(sbi, INLINE_DATA)) |
| seq_puts(seq, ",inline_data"); |
| else |
| seq_puts(seq, ",noinline_data"); |
| if (test_opt(sbi, INLINE_DENTRY)) |
| seq_puts(seq, ",inline_dentry"); |
| else |
| seq_puts(seq, ",noinline_dentry"); |
| if (test_opt(sbi, FLUSH_MERGE)) |
| seq_puts(seq, ",flush_merge"); |
| else |
| seq_puts(seq, ",noflush_merge"); |
| if (test_opt(sbi, NOBARRIER)) |
| seq_puts(seq, ",nobarrier"); |
| else |
| seq_puts(seq, ",barrier"); |
| if (test_opt(sbi, FASTBOOT)) |
| seq_puts(seq, ",fastboot"); |
| if (test_opt(sbi, READ_EXTENT_CACHE)) |
| seq_puts(seq, ",extent_cache"); |
| else |
| seq_puts(seq, ",noextent_cache"); |
| if (test_opt(sbi, AGE_EXTENT_CACHE)) |
| seq_puts(seq, ",age_extent_cache"); |
| if (test_opt(sbi, DATA_FLUSH)) |
| seq_puts(seq, ",data_flush"); |
| |
| seq_puts(seq, ",mode="); |
| if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) |
| seq_puts(seq, "adaptive"); |
| else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) |
| seq_puts(seq, "lfs"); |
| else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG) |
| seq_puts(seq, "fragment:segment"); |
| else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) |
| seq_puts(seq, "fragment:block"); |
| seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); |
| if (test_opt(sbi, RESERVE_ROOT)) |
| seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", |
| F2FS_OPTION(sbi).root_reserved_blocks, |
| from_kuid_munged(&init_user_ns, |
| F2FS_OPTION(sbi).s_resuid), |
| from_kgid_munged(&init_user_ns, |
| F2FS_OPTION(sbi).s_resgid)); |
| #ifdef CONFIG_F2FS_FAULT_INJECTION |
| if (test_opt(sbi, FAULT_INJECTION)) { |
| seq_printf(seq, ",fault_injection=%u", |
| F2FS_OPTION(sbi).fault_info.inject_rate); |
| seq_printf(seq, ",fault_type=%u", |
| F2FS_OPTION(sbi).fault_info.inject_type); |
| } |
| #endif |
| #ifdef CONFIG_QUOTA |
| if (test_opt(sbi, QUOTA)) |
| seq_puts(seq, ",quota"); |
| if (test_opt(sbi, USRQUOTA)) |
| seq_puts(seq, ",usrquota"); |
| if (test_opt(sbi, GRPQUOTA)) |
| seq_puts(seq, ",grpquota"); |
| if (test_opt(sbi, PRJQUOTA)) |
| seq_puts(seq, ",prjquota"); |
| #endif |
| f2fs_show_quota_options(seq, sbi->sb); |
| |
| fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); |
| |
| if (sbi->sb->s_flags & SB_INLINECRYPT) |
| seq_puts(seq, ",inlinecrypt"); |
| |
| if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) |
| seq_printf(seq, ",alloc_mode=%s", "default"); |
| else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) |
| seq_printf(seq, ",alloc_mode=%s", "reuse"); |
| |
| if (test_opt(sbi, DISABLE_CHECKPOINT)) |
| seq_printf(seq, ",checkpoint=disable:%u", |
| F2FS_OPTION(sbi).unusable_cap); |
| if (test_opt(sbi, MERGE_CHECKPOINT)) |
| seq_puts(seq, ",checkpoint_merge"); |
| else |
| seq_puts(seq, ",nocheckpoint_merge"); |
| if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) |
| seq_printf(seq, ",fsync_mode=%s", "posix"); |
| else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) |
| seq_printf(seq, ",fsync_mode=%s", "strict"); |
| else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) |
| seq_printf(seq, ",fsync_mode=%s", "nobarrier"); |
| |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| f2fs_show_compress_options(seq, sbi->sb); |
| #endif |
| |
| if (test_opt(sbi, ATGC)) |
| seq_puts(seq, ",atgc"); |
| |
| if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL) |
| seq_printf(seq, ",memory=%s", "normal"); |
| else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW) |
| seq_printf(seq, ",memory=%s", "low"); |
| |
| if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) |
| seq_printf(seq, ",errors=%s", "remount-ro"); |
| else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE) |
| seq_printf(seq, ",errors=%s", "continue"); |
| else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC) |
| seq_printf(seq, ",errors=%s", "panic"); |
| |
| return 0; |
| } |
| |
| static void default_options(struct f2fs_sb_info *sbi, bool remount) |
| { |
| /* init some FS parameters */ |
| if (!remount) { |
| set_opt(sbi, READ_EXTENT_CACHE); |
| clear_opt(sbi, DISABLE_CHECKPOINT); |
| |
| if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) |
| set_opt(sbi, DISCARD); |
| |
| if (f2fs_sb_has_blkzoned(sbi)) |
| F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION; |
| else |
| F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK; |
| } |
| |
| if (f2fs_sb_has_readonly(sbi)) |
| F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE; |
| else |
| F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; |
| |
| F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; |
| if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <= |
| SMALL_VOLUME_SEGMENTS) |
| F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; |
| else |
| F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; |
| F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; |
| F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); |
| F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); |
| if (f2fs_sb_has_compression(sbi)) { |
| F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; |
| F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; |
| F2FS_OPTION(sbi).compress_ext_cnt = 0; |
| F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; |
| } |
| F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; |
| F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL; |
| F2FS_OPTION(sbi).errors = MOUNT_ERRORS_CONTINUE; |
| |
| set_opt(sbi, INLINE_XATTR); |
| set_opt(sbi, INLINE_DATA); |
| set_opt(sbi, INLINE_DENTRY); |
| set_opt(sbi, MERGE_CHECKPOINT); |
| F2FS_OPTION(sbi).unusable_cap = 0; |
| sbi->sb->s_flags |= SB_LAZYTIME; |
| if (!f2fs_is_readonly(sbi)) |
| set_opt(sbi, FLUSH_MERGE); |
| if (f2fs_sb_has_blkzoned(sbi)) |
| F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; |
| else |
| F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; |
| |
| #ifdef CONFIG_F2FS_FS_XATTR |
| set_opt(sbi, XATTR_USER); |
| #endif |
| #ifdef CONFIG_F2FS_FS_POSIX_ACL |
| set_opt(sbi, POSIX_ACL); |
| #endif |
| |
| f2fs_build_fault_attr(sbi, 0, 0); |
| } |
| |
| #ifdef CONFIG_QUOTA |
| static int f2fs_enable_quotas(struct super_block *sb); |
| #endif |
| |
| static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) |
| { |
| unsigned int s_flags = sbi->sb->s_flags; |
| struct cp_control cpc; |
| unsigned int gc_mode = sbi->gc_mode; |
| int err = 0; |
| int ret; |
| block_t unusable; |
| |
| if (s_flags & SB_RDONLY) { |
| f2fs_err(sbi, "checkpoint=disable on readonly fs"); |
| return -EINVAL; |
| } |
| sbi->sb->s_flags |= SB_ACTIVE; |
| |
| /* check if we need more GC first */ |
| unusable = f2fs_get_unusable_blocks(sbi); |
| if (!f2fs_disable_cp_again(sbi, unusable)) |
| goto skip_gc; |
| |
| f2fs_update_time(sbi, DISABLE_TIME); |
| |
| sbi->gc_mode = GC_URGENT_HIGH; |
| |
| while (!f2fs_time_over(sbi, DISABLE_TIME)) { |
| struct f2fs_gc_control gc_control = { |
| .victim_segno = NULL_SEGNO, |
| .init_gc_type = FG_GC, |
| .should_migrate_blocks = false, |
| .err_gc_skipped = true, |
| .no_bg_gc = true, |
| .nr_free_secs = 1 }; |
| |
| f2fs_down_write(&sbi->gc_lock); |
| stat_inc_gc_call_count(sbi, FOREGROUND); |
| err = f2fs_gc(sbi, &gc_control); |
| if (err == -ENODATA) { |
| err = 0; |
| break; |
| } |
| if (err && err != -EAGAIN) |
| break; |
| } |
| |
| ret = sync_filesystem(sbi->sb); |
| if (ret || err) { |
| err = ret ? ret : err; |
| goto restore_flag; |
| } |
| |
| unusable = f2fs_get_unusable_blocks(sbi); |
| if (f2fs_disable_cp_again(sbi, unusable)) { |
| err = -EAGAIN; |
| goto restore_flag; |
| } |
| |
| skip_gc: |
| f2fs_down_write(&sbi->gc_lock); |
| cpc.reason = CP_PAUSE; |
| set_sbi_flag(sbi, SBI_CP_DISABLED); |
| stat_inc_cp_call_count(sbi, TOTAL_CALL); |
| err = f2fs_write_checkpoint(sbi, &cpc); |
| if (err) |
| goto out_unlock; |
| |
| spin_lock(&sbi->stat_lock); |
| sbi->unusable_block_count = unusable; |
| spin_unlock(&sbi->stat_lock); |
| |
| out_unlock: |
| f2fs_up_write(&sbi->gc_lock); |
| restore_flag: |
| sbi->gc_mode = gc_mode; |
| sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ |
| return err; |
| } |
| |
| static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) |
| { |
| int retry = DEFAULT_RETRY_IO_COUNT; |
| |
| /* we should flush all the data to keep data consistency */ |
| do { |
| sync_inodes_sb(sbi->sb); |
| f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); |
| } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--); |
| |
| if (unlikely(retry < 0)) |
| f2fs_warn(sbi, "checkpoint=enable has some unwritten data."); |
| |
| f2fs_down_write(&sbi->gc_lock); |
| f2fs_dirty_to_prefree(sbi); |
| |
| clear_sbi_flag(sbi, SBI_CP_DISABLED); |
| set_sbi_flag(sbi, SBI_IS_DIRTY); |
| f2fs_up_write(&sbi->gc_lock); |
| |
| f2fs_sync_fs(sbi->sb, 1); |
| |
| /* Let's ensure there's no pending checkpoint anymore */ |
| f2fs_flush_ckpt_thread(sbi); |
| } |
| |
| static int f2fs_remount(struct super_block *sb, int *flags, char *data) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| struct f2fs_mount_info org_mount_opt; |
| unsigned long old_sb_flags; |
| int err; |
| bool need_restart_gc = false, need_stop_gc = false; |
| bool need_restart_flush = false, need_stop_flush = false; |
| bool need_restart_discard = false, need_stop_discard = false; |
| bool need_enable_checkpoint = false, need_disable_checkpoint = false; |
| bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE); |
| bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE); |
| bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT); |
| bool no_atgc = !test_opt(sbi, ATGC); |
| bool no_discard = !test_opt(sbi, DISCARD); |
| bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE); |
| bool block_unit_discard = f2fs_block_unit_discard(sbi); |
| #ifdef CONFIG_QUOTA |
| int i, j; |
| #endif |
| |
| /* |
| * Save the old mount options in case we |
| * need to restore them. |
| */ |
| org_mount_opt = sbi->mount_opt; |
| old_sb_flags = sb->s_flags; |
| |
| #ifdef CONFIG_QUOTA |
| org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; |
| for (i = 0; i < MAXQUOTAS; i++) { |
| if (F2FS_OPTION(sbi).s_qf_names[i]) { |
| org_mount_opt.s_qf_names[i] = |
| kstrdup(F2FS_OPTION(sbi).s_qf_names[i], |
| GFP_KERNEL); |
| if (!org_mount_opt.s_qf_names[i]) { |
| for (j = 0; j < i; j++) |
| kfree(org_mount_opt.s_qf_names[j]); |
| return -ENOMEM; |
| } |
| } else { |
| org_mount_opt.s_qf_names[i] = NULL; |
| } |
| } |
| #endif |
| |
| /* recover superblocks we couldn't write due to previous RO mount */ |
| if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { |
| err = f2fs_commit_super(sbi, false); |
| f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", |
| err); |
| if (!err) |
| clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); |
| } |
| |
| default_options(sbi, true); |
| |
| /* parse mount options */ |
| err = parse_options(sb, data, true); |
| if (err) |
| goto restore_opts; |
| |
| #ifdef CONFIG_BLK_DEV_ZONED |
| if (f2fs_sb_has_blkzoned(sbi) && |
| sbi->max_open_zones < F2FS_OPTION(sbi).active_logs) { |
| f2fs_err(sbi, |
| "zoned: max open zones %u is too small, need at least %u open zones", |
| sbi->max_open_zones, F2FS_OPTION(sbi).active_logs); |
| err = -EINVAL; |
| goto restore_opts; |
| } |
| #endif |
| |
| /* flush outstanding errors before changing fs state */ |
| flush_work(&sbi->s_error_work); |
| |
| /* |
| * Previous and new state of filesystem is RO, |
| * so skip checking GC and FLUSH_MERGE conditions. |
| */ |
| if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) |
| goto skip; |
| |
| if (f2fs_dev_is_readonly(sbi) && !(*flags & SB_RDONLY)) { |
| err = -EROFS; |
| goto restore_opts; |
| } |
| |
| #ifdef CONFIG_QUOTA |
| if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { |
| err = dquot_suspend(sb, -1); |
| if (err < 0) |
| goto restore_opts; |
| } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { |
| /* dquot_resume needs RW */ |
| sb->s_flags &= ~SB_RDONLY; |
| if (sb_any_quota_suspended(sb)) { |
| dquot_resume(sb, -1); |
| } else if (f2fs_sb_has_quota_ino(sbi)) { |
| err = f2fs_enable_quotas(sb); |
| if (err) |
| goto restore_opts; |
| } |
| } |
| #endif |
| if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) { |
| err = -EINVAL; |
| f2fs_warn(sbi, "LFS is not compatible with IPU"); |
| goto restore_opts; |
| } |
| |
| /* disallow enable atgc dynamically */ |
| if (no_atgc == !!test_opt(sbi, ATGC)) { |
| err = -EINVAL; |
| f2fs_warn(sbi, "switch atgc option is not allowed"); |
| goto restore_opts; |
| } |
| |
| /* disallow enable/disable extent_cache dynamically */ |
| if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) { |
| err = -EINVAL; |
| f2fs_warn(sbi, "switch extent_cache option is not allowed"); |
| goto restore_opts; |
| } |
| /* disallow enable/disable age extent_cache dynamically */ |
| if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) { |
| err = -EINVAL; |
| f2fs_warn(sbi, "switch age_extent_cache option is not allowed"); |
| goto restore_opts; |
| } |
| |
| if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) { |
| err = -EINVAL; |
| f2fs_warn(sbi, "switch compress_cache option is not allowed"); |
| goto restore_opts; |
| } |
| |
| if (block_unit_discard != f2fs_block_unit_discard(sbi)) { |
| err = -EINVAL; |
| f2fs_warn(sbi, "switch discard_unit option is not allowed"); |
| goto restore_opts; |
| } |
| |
| if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { |
| err = -EINVAL; |
| f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); |
| goto restore_opts; |
| } |
| |
| /* |
| * We stop the GC thread if FS is mounted as RO |
| * or if background_gc = off is passed in mount |
| * option. Also sync the filesystem. |
| */ |
| if ((*flags & SB_RDONLY) || |
| (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF && |
| !test_opt(sbi, GC_MERGE))) { |
| if (sbi->gc_thread) { |
| f2fs_stop_gc_thread(sbi); |
| need_restart_gc = true; |
| } |
| } else if (!sbi->gc_thread) { |
| err = f2fs_start_gc_thread(sbi); |
| if (err) |
| goto restore_opts; |
| need_stop_gc = true; |
| } |
| |
| if (*flags & SB_RDONLY) { |
| sync_inodes_sb(sb); |
| |
| set_sbi_flag(sbi, SBI_IS_DIRTY); |
| set_sbi_flag(sbi, SBI_IS_CLOSE); |
| f2fs_sync_fs(sb, 1); |
| clear_sbi_flag(sbi, SBI_IS_CLOSE); |
| } |
| |
| /* |
| * We stop issue flush thread if FS is mounted as RO |
| * or if flush_merge is not passed in mount option. |
| */ |
| if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { |
| clear_opt(sbi, FLUSH_MERGE); |
| f2fs_destroy_flush_cmd_control(sbi, false); |
| need_restart_flush = true; |
| } else { |
| err = f2fs_create_flush_cmd_control(sbi); |
| if (err) |
| goto restore_gc; |
| need_stop_flush = true; |
| } |
| |
| if (no_discard == !!test_opt(sbi, DISCARD)) { |
| if (test_opt(sbi, DISCARD)) { |
| err = f2fs_start_discard_thread(sbi); |
| if (err) |
| goto restore_flush; |
| need_stop_discard = true; |
| } else { |
| f2fs_stop_discard_thread(sbi); |
| f2fs_issue_discard_timeout(sbi); |
| need_restart_discard = true; |
| } |
| } |
| |
| if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) { |
| if (test_opt(sbi, DISABLE_CHECKPOINT)) { |
| err = f2fs_disable_checkpoint(sbi); |
| if (err) |
| goto restore_discard; |
| need_enable_checkpoint = true; |
| } else { |
| f2fs_enable_checkpoint(sbi); |
| need_disable_checkpoint = true; |
| } |
| } |
| |
| /* |
| * Place this routine at the end, since a new checkpoint would be |
| * triggered while remount and we need to take care of it before |
| * returning from remount. |
| */ |
| if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) || |
| !test_opt(sbi, MERGE_CHECKPOINT)) { |
| f2fs_stop_ckpt_thread(sbi); |
| } else { |
| /* Flush if the prevous checkpoint, if exists. */ |
| f2fs_flush_ckpt_thread(sbi); |
| |
| err = f2fs_start_ckpt_thread(sbi); |
| if (err) { |
| f2fs_err(sbi, |
| "Failed to start F2FS issue_checkpoint_thread (%d)", |
| err); |
| goto restore_checkpoint; |
| } |
| } |
| |
| skip: |
| #ifdef CONFIG_QUOTA |
| /* Release old quota file names */ |
| for (i = 0; i < MAXQUOTAS; i++) |
| kfree(org_mount_opt.s_qf_names[i]); |
| #endif |
| /* Update the POSIXACL Flag */ |
| sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | |
| (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); |
| |
| limit_reserve_root(sbi); |
| adjust_unusable_cap_perc(sbi); |
| *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); |
| return 0; |
| restore_checkpoint: |
| if (need_enable_checkpoint) { |
| f2fs_enable_checkpoint(sbi); |
| } else if (need_disable_checkpoint) { |
| if (f2fs_disable_checkpoint(sbi)) |
| f2fs_warn(sbi, "checkpoint has not been disabled"); |
| } |
| restore_discard: |
| if (need_restart_discard) { |
| if (f2fs_start_discard_thread(sbi)) |
| f2fs_warn(sbi, "discard has been stopped"); |
| } else if (need_stop_discard) { |
| f2fs_stop_discard_thread(sbi); |
| } |
| restore_flush: |
| if (need_restart_flush) { |
| if (f2fs_create_flush_cmd_control(sbi)) |
| f2fs_warn(sbi, "background flush thread has stopped"); |
| } else if (need_stop_flush) { |
| clear_opt(sbi, FLUSH_MERGE); |
| f2fs_destroy_flush_cmd_control(sbi, false); |
| } |
| restore_gc: |
| if (need_restart_gc) { |
| if (f2fs_start_gc_thread(sbi)) |
| f2fs_warn(sbi, "background gc thread has stopped"); |
| } else if (need_stop_gc) { |
| f2fs_stop_gc_thread(sbi); |
| } |
| restore_opts: |
| #ifdef CONFIG_QUOTA |
| F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; |
| for (i = 0; i < MAXQUOTAS; i++) { |
| kfree(F2FS_OPTION(sbi).s_qf_names[i]); |
| F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; |
| } |
| #endif |
| sbi->mount_opt = org_mount_opt; |
| sb->s_flags = old_sb_flags; |
| return err; |
| } |
| |
| static void f2fs_shutdown(struct super_block *sb) |
| { |
| f2fs_do_shutdown(F2FS_SB(sb), F2FS_GOING_DOWN_NOSYNC, false, false); |
| } |
| |
| #ifdef CONFIG_QUOTA |
| static bool f2fs_need_recovery(struct f2fs_sb_info *sbi) |
| { |
| /* need to recovery orphan */ |
| if (is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) |
| return true; |
| /* need to recovery data */ |
| if (test_opt(sbi, DISABLE_ROLL_FORWARD)) |
| return false; |
| if (test_opt(sbi, NORECOVERY)) |
| return false; |
| return !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG); |
| } |
| |
| static bool f2fs_recover_quota_begin(struct f2fs_sb_info *sbi) |
| { |
| bool readonly = f2fs_readonly(sbi->sb); |
| |
| if (!f2fs_need_recovery(sbi)) |
| return false; |
| |
| /* it doesn't need to check f2fs_sb_has_readonly() */ |
| if (f2fs_hw_is_readonly(sbi)) |
| return false; |
| |
| if (readonly) { |
| sbi->sb->s_flags &= ~SB_RDONLY; |
| set_sbi_flag(sbi, SBI_IS_WRITABLE); |
| } |
| |
| /* |
| * Turn on quotas which were not enabled for read-only mounts if |
| * filesystem has quota feature, so that they are updated correctly. |
| */ |
| return f2fs_enable_quota_files(sbi, readonly); |
| } |
| |
| static void f2fs_recover_quota_end(struct f2fs_sb_info *sbi, |
| bool quota_enabled) |
| { |
| if (quota_enabled) |
| f2fs_quota_off_umount(sbi->sb); |
| |
| if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) { |
| clear_sbi_flag(sbi, SBI_IS_WRITABLE); |
| sbi->sb->s_flags |= SB_RDONLY; |
| } |
| } |
| |
| /* Read data from quotafile */ |
| static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, |
| size_t len, loff_t off) |
| { |
| struct inode *inode = sb_dqopt(sb)->files[type]; |
| struct address_space *mapping = inode->i_mapping; |
| block_t blkidx = F2FS_BYTES_TO_BLK(off); |
| int offset = off & (sb->s_blocksize - 1); |
| int tocopy; |
| size_t toread; |
| loff_t i_size = i_size_read(inode); |
| struct page *page; |
| |
| if (off > i_size) |
| return 0; |
| |
| if (off + len > i_size) |
| len = i_size - off; |
| toread = len; |
| while (toread > 0) { |
| tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); |
| repeat: |
| page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); |
| if (IS_ERR(page)) { |
| if (PTR_ERR(page) == -ENOMEM) { |
| memalloc_retry_wait(GFP_NOFS); |
| goto repeat; |
| } |
| set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); |
| return PTR_ERR(page); |
| } |
| |
| lock_page(page); |
| |
| if (unlikely(page->mapping != mapping)) { |
| f2fs_put_page(page, 1); |
| goto repeat; |
| } |
| if (unlikely(!PageUptodate(page))) { |
| f2fs_put_page(page, 1); |
| set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); |
| return -EIO; |
| } |
| |
| memcpy_from_page(data, page, offset, tocopy); |
| f2fs_put_page(page, 1); |
| |
| offset = 0; |
| toread -= tocopy; |
| data += tocopy; |
| blkidx++; |
| } |
| return len; |
| } |
| |
| /* Write to quotafile */ |
| static ssize_t f2fs_quota_write(struct super_block *sb, int type, |
| const char *data, size_t len, loff_t off) |
| { |
| struct inode *inode = sb_dqopt(sb)->files[type]; |
| struct address_space *mapping = inode->i_mapping; |
| const struct address_space_operations *a_ops = mapping->a_ops; |
| int offset = off & (sb->s_blocksize - 1); |
| size_t towrite = len; |
| struct folio *folio; |
| void *fsdata = NULL; |
| int err = 0; |
| int tocopy; |
| |
| while (towrite > 0) { |
| tocopy = min_t(unsigned long, sb->s_blocksize - offset, |
| towrite); |
| retry: |
| err = a_ops->write_begin(NULL, mapping, off, tocopy, |
| &folio, &fsdata); |
| if (unlikely(err)) { |
| if (err == -ENOMEM) { |
| f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); |
| goto retry; |
| } |
| set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); |
| break; |
| } |
| |
| memcpy_to_folio(folio, offset_in_folio(folio, off), data, tocopy); |
| |
| a_ops->write_end(NULL, mapping, off, tocopy, tocopy, |
| folio, fsdata); |
| offset = 0; |
| towrite -= tocopy; |
| off += tocopy; |
| data += tocopy; |
| cond_resched(); |
| } |
| |
| if (len == towrite) |
| return err; |
| inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); |
| f2fs_mark_inode_dirty_sync(inode, false); |
| return len - towrite; |
| } |
| |
| int f2fs_dquot_initialize(struct inode *inode) |
| { |
| if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) |
| return -ESRCH; |
| |
| return dquot_initialize(inode); |
| } |
| |
| static struct dquot __rcu **f2fs_get_dquots(struct inode *inode) |
| { |
| return F2FS_I(inode)->i_dquot; |
| } |
| |
| static qsize_t *f2fs_get_reserved_space(struct inode *inode) |
| { |
| return &F2FS_I(inode)->i_reserved_quota; |
| } |
| |
| static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) |
| { |
| if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { |
| f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); |
| return 0; |
| } |
| |
| return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], |
| F2FS_OPTION(sbi).s_jquota_fmt, type); |
| } |
| |
| int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) |
| { |
| int enabled = 0; |
| int i, err; |
| |
| if (f2fs_sb_has_quota_ino(sbi) && rdonly) { |
| err = f2fs_enable_quotas(sbi->sb); |
| if (err) { |
| f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); |
| return 0; |
| } |
| return 1; |
| } |
| |
| for (i = 0; i < MAXQUOTAS; i++) { |
| if (F2FS_OPTION(sbi).s_qf_names[i]) { |
| err = f2fs_quota_on_mount(sbi, i); |
| if (!err) { |
| enabled = 1; |
| continue; |
| } |
| f2fs_err(sbi, "Cannot turn on quotas: %d on %d", |
| err, i); |
| } |
| } |
| return enabled; |
| } |
| |
| static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, |
| unsigned int flags) |
| { |
| struct inode *qf_inode; |
| unsigned long qf_inum; |
| unsigned long qf_flag = F2FS_QUOTA_DEFAULT_FL; |
| int err; |
| |
| BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); |
| |
| qf_inum = f2fs_qf_ino(sb, type); |
| if (!qf_inum) |
| return -EPERM; |
| |
| qf_inode = f2fs_iget(sb, qf_inum); |
| if (IS_ERR(qf_inode)) { |
| f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); |
| return PTR_ERR(qf_inode); |
| } |
| |
| /* Don't account quota for quota files to avoid recursion */ |
| inode_lock(qf_inode); |
| qf_inode->i_flags |= S_NOQUOTA; |
| |
| if ((F2FS_I(qf_inode)->i_flags & qf_flag) != qf_flag) { |
| F2FS_I(qf_inode)->i_flags |= qf_flag; |
| f2fs_set_inode_flags(qf_inode); |
| } |
| inode_unlock(qf_inode); |
| |
| err = dquot_load_quota_inode(qf_inode, type, format_id, flags); |
| iput(qf_inode); |
| return err; |
| } |
| |
| static int f2fs_enable_quotas(struct super_block *sb) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| int type, err = 0; |
| unsigned long qf_inum; |
| bool quota_mopt[MAXQUOTAS] = { |
| test_opt(sbi, USRQUOTA), |
| test_opt(sbi, GRPQUOTA), |
| test_opt(sbi, PRJQUOTA), |
| }; |
| |
| if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { |
| f2fs_err(sbi, "quota file may be corrupted, skip loading it"); |
| return 0; |
| } |
| |
| sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; |
| |
| for (type = 0; type < MAXQUOTAS; type++) { |
| qf_inum = f2fs_qf_ino(sb, type); |
| if (qf_inum) { |
| err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, |
| DQUOT_USAGE_ENABLED | |
| (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); |
| if (err) { |
| f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", |
| type, err); |
| for (type--; type >= 0; type--) |
| dquot_quota_off(sb, type); |
| set_sbi_flag(F2FS_SB(sb), |
| SBI_QUOTA_NEED_REPAIR); |
| return err; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type) |
| { |
| struct quota_info *dqopt = sb_dqopt(sbi->sb); |
| struct address_space *mapping = dqopt->files[type]->i_mapping; |
| int ret = 0; |
| |
| ret = dquot_writeback_dquots(sbi->sb, type); |
| if (ret) |
| goto out; |
| |
| ret = filemap_fdatawrite(mapping); |
| if (ret) |
| goto out; |
| |
| /* if we are using journalled quota */ |
| if (is_journalled_quota(sbi)) |
| goto out; |
| |
| ret = filemap_fdatawait(mapping); |
| |
| truncate_inode_pages(&dqopt->files[type]->i_data, 0); |
| out: |
| if (ret) |
| set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); |
| return ret; |
| } |
| |
| int f2fs_quota_sync(struct super_block *sb, int type) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| struct quota_info *dqopt = sb_dqopt(sb); |
| int cnt; |
| int ret = 0; |
| |
| /* |
| * Now when everything is written we can discard the pagecache so |
| * that userspace sees the changes. |
| */ |
| for (cnt = 0; cnt < MAXQUOTAS; cnt++) { |
| |
| if (type != -1 && cnt != type) |
| continue; |
| |
| if (!sb_has_quota_active(sb, cnt)) |
| continue; |
| |
| if (!f2fs_sb_has_quota_ino(sbi)) |
| inode_lock(dqopt->files[cnt]); |
| |
| /* |
| * do_quotactl |
| * f2fs_quota_sync |
| * f2fs_down_read(quota_sem) |
| * dquot_writeback_dquots() |
| * f2fs_dquot_commit |
| * block_operation |
| * f2fs_down_read(quota_sem) |
| */ |
| f2fs_lock_op(sbi); |
| f2fs_down_read(&sbi->quota_sem); |
| |
| ret = f2fs_quota_sync_file(sbi, cnt); |
| |
| f2fs_up_read(&sbi->quota_sem); |
| f2fs_unlock_op(sbi); |
| |
| if (!f2fs_sb_has_quota_ino(sbi)) |
| inode_unlock(dqopt->files[cnt]); |
| |
| if (ret) |
| break; |
| } |
| return ret; |
| } |
| |
| static int f2fs_quota_on(struct super_block *sb, int type, int format_id, |
| const struct path *path) |
| { |
| struct inode *inode; |
| int err; |
| |
| /* if quota sysfile exists, deny enabling quota with specific file */ |
| if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { |
| f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); |
| return -EBUSY; |
| } |
| |
| if (path->dentry->d_sb != sb) |
| return -EXDEV; |
| |
| err = f2fs_quota_sync(sb, type); |
| if (err) |
| return err; |
| |
| inode = d_inode(path->dentry); |
| |
| err = filemap_fdatawrite(inode->i_mapping); |
| if (err) |
| return err; |
| |
| err = filemap_fdatawait(inode->i_mapping); |
| if (err) |
| return err; |
| |
| err = dquot_quota_on(sb, type, format_id, path); |
| if (err) |
| return err; |
| |
| inode_lock(inode); |
| F2FS_I(inode)->i_flags |= F2FS_QUOTA_DEFAULT_FL; |
| f2fs_set_inode_flags(inode); |
| inode_unlock(inode); |
| f2fs_mark_inode_dirty_sync(inode, false); |
| |
| return 0; |
| } |
| |
| static int __f2fs_quota_off(struct super_block *sb, int type) |
| { |
| struct inode *inode = sb_dqopt(sb)->files[type]; |
| int err; |
| |
| if (!inode || !igrab(inode)) |
| return dquot_quota_off(sb, type); |
| |
| err = f2fs_quota_sync(sb, type); |
| if (err) |
| goto out_put; |
| |
| err = dquot_quota_off(sb, type); |
| if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) |
| goto out_put; |
| |
| inode_lock(inode); |
| F2FS_I(inode)->i_flags &= ~F2FS_QUOTA_DEFAULT_FL; |
| f2fs_set_inode_flags(inode); |
| inode_unlock(inode); |
| f2fs_mark_inode_dirty_sync(inode, false); |
| out_put: |
| iput(inode); |
| return err; |
| } |
| |
| static int f2fs_quota_off(struct super_block *sb, int type) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| int err; |
| |
| err = __f2fs_quota_off(sb, type); |
| |
| /* |
| * quotactl can shutdown journalled quota, result in inconsistence |
| * between quota record and fs data by following updates, tag the |
| * flag to let fsck be aware of it. |
| */ |
| if (is_journalled_quota(sbi)) |
| set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); |
| return err; |
| } |
| |
| void f2fs_quota_off_umount(struct super_block *sb) |
| { |
| int type; |
| int err; |
| |
| for (type = 0; type < MAXQUOTAS; type++) { |
| err = __f2fs_quota_off(sb, type); |
| if (err) { |
| int ret = dquot_quota_off(sb, type); |
| |
| f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", |
| type, err, ret); |
| set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); |
| } |
| } |
| /* |
| * In case of checkpoint=disable, we must flush quota blocks. |
| * This can cause NULL exception for node_inode in end_io, since |
| * put_super already dropped it. |
| */ |
| sync_filesystem(sb); |
| } |
| |
| static void f2fs_truncate_quota_inode_pages(struct super_block *sb) |
| { |
| struct quota_info *dqopt = sb_dqopt(sb); |
| int type; |
| |
| for (type = 0; type < MAXQUOTAS; type++) { |
| if (!dqopt->files[type]) |
| continue; |
| f2fs_inode_synced(dqopt->files[type]); |
| } |
| } |
| |
| static int f2fs_dquot_commit(struct dquot *dquot) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); |
| int ret; |
| |
| f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); |
| ret = dquot_commit(dquot); |
| if (ret < 0) |
| set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); |
| f2fs_up_read(&sbi->quota_sem); |
| return ret; |
| } |
| |
| static int f2fs_dquot_acquire(struct dquot *dquot) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); |
| int ret; |
| |
| f2fs_down_read(&sbi->quota_sem); |
| ret = dquot_acquire(dquot); |
| if (ret < 0) |
| set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); |
| f2fs_up_read(&sbi->quota_sem); |
| return ret; |
| } |
| |
| static int f2fs_dquot_release(struct dquot *dquot) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); |
| int ret = dquot_release(dquot); |
| |
| if (ret < 0) |
| set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); |
| return ret; |
| } |
| |
| static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) |
| { |
| struct super_block *sb = dquot->dq_sb; |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| int ret = dquot_mark_dquot_dirty(dquot); |
| |
| /* if we are using journalled quota */ |
| if (is_journalled_quota(sbi)) |
| set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); |
| |
| return ret; |
| } |
| |
| static int f2fs_dquot_commit_info(struct super_block *sb, int type) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| int ret = dquot_commit_info(sb, type); |
| |
| if (ret < 0) |
| set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); |
| return ret; |
| } |
| |
| static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) |
| { |
| *projid = F2FS_I(inode)->i_projid; |
| return 0; |
| } |
| |
| static const struct dquot_operations f2fs_quota_operations = { |
| .get_reserved_space = f2fs_get_reserved_space, |
| .write_dquot = f2fs_dquot_commit, |
| .acquire_dquot = f2fs_dquot_acquire, |
| .release_dquot = f2fs_dquot_release, |
| .mark_dirty = f2fs_dquot_mark_dquot_dirty, |
| .write_info = f2fs_dquot_commit_info, |
| .alloc_dquot = dquot_alloc, |
| .destroy_dquot = dquot_destroy, |
| .get_projid = f2fs_get_projid, |
| .get_next_id = dquot_get_next_id, |
| }; |
| |
| static const struct quotactl_ops f2fs_quotactl_ops = { |
| .quota_on = f2fs_quota_on, |
| .quota_off = f2fs_quota_off, |
| .quota_sync = f2fs_quota_sync, |
| .get_state = dquot_get_state, |
| .set_info = dquot_set_dqinfo, |
| .get_dqblk = dquot_get_dqblk, |
| .set_dqblk = dquot_set_dqblk, |
| .get_nextdqblk = dquot_get_next_dqblk, |
| }; |
| #else |
| int f2fs_dquot_initialize(struct inode *inode) |
| { |
| return 0; |
| } |
| |
| int f2fs_quota_sync(struct super_block *sb, int type) |
| { |
| return 0; |
| } |
| |
| void f2fs_quota_off_umount(struct super_block *sb) |
| { |
| } |
| #endif |
| |
| static const struct super_operations f2fs_sops = { |
| .alloc_inode = f2fs_alloc_inode, |
| .free_inode = f2fs_free_inode, |
| .drop_inode = f2fs_drop_inode, |
| .write_inode = f2fs_write_inode, |
| .dirty_inode = f2fs_dirty_inode, |
| .show_options = f2fs_show_options, |
| #ifdef CONFIG_QUOTA |
| .quota_read = f2fs_quota_read, |
| .quota_write = f2fs_quota_write, |
| .get_dquots = f2fs_get_dquots, |
| #endif |
| .evict_inode = f2fs_evict_inode, |
| .put_super = f2fs_put_super, |
| .sync_fs = f2fs_sync_fs, |
| .freeze_fs = f2fs_freeze, |
| .unfreeze_fs = f2fs_unfreeze, |
| .statfs = f2fs_statfs, |
| .remount_fs = f2fs_remount, |
| .shutdown = f2fs_shutdown, |
| }; |
| |
| #ifdef CONFIG_FS_ENCRYPTION |
| static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) |
| { |
| return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, |
| F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, |
| ctx, len, NULL); |
| } |
| |
| static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, |
| void *fs_data) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| |
| /* |
| * Encrypting the root directory is not allowed because fsck |
| * expects lost+found directory to exist and remain unencrypted |
| * if LOST_FOUND feature is enabled. |
| * |
| */ |
| if (f2fs_sb_has_lost_found(sbi) && |
| inode->i_ino == F2FS_ROOT_INO(sbi)) |
| return -EPERM; |
| |
| return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, |
| F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, |
| ctx, len, fs_data, XATTR_CREATE); |
| } |
| |
| static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) |
| { |
| return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; |
| } |
| |
| static bool f2fs_has_stable_inodes(struct super_block *sb) |
| { |
| return true; |
| } |
| |
| static struct block_device **f2fs_get_devices(struct super_block *sb, |
| unsigned int *num_devs) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| struct block_device **devs; |
| int i; |
| |
| if (!f2fs_is_multi_device(sbi)) |
| return NULL; |
| |
| devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL); |
| if (!devs) |
| return ERR_PTR(-ENOMEM); |
| |
| for (i = 0; i < sbi->s_ndevs; i++) |
| devs[i] = FDEV(i).bdev; |
| *num_devs = sbi->s_ndevs; |
| return devs; |
| } |
| |
| static const struct fscrypt_operations f2fs_cryptops = { |
| .needs_bounce_pages = 1, |
| .has_32bit_inodes = 1, |
| .supports_subblock_data_units = 1, |
| .legacy_key_prefix = "f2fs:", |
| .get_context = f2fs_get_context, |
| .set_context = f2fs_set_context, |
| .get_dummy_policy = f2fs_get_dummy_policy, |
| .empty_dir = f2fs_empty_dir, |
| .has_stable_inodes = f2fs_has_stable_inodes, |
| .get_devices = f2fs_get_devices, |
| }; |
| #endif |
| |
| static struct inode *f2fs_nfs_get_inode(struct super_block *sb, |
| u64 ino, u32 generation) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| struct inode *inode; |
| |
| if (f2fs_check_nid_range(sbi, ino)) |
| return ERR_PTR(-ESTALE); |
| |
| /* |
| * f2fs_iget isn't quite right if the inode is currently unallocated! |
| * However f2fs_iget currently does appropriate checks to handle stale |
| * inodes so everything is OK. |
| */ |
| inode = f2fs_iget(sb, ino); |
| if (IS_ERR(inode)) |
| return ERR_CAST(inode); |
| if (unlikely(generation && inode->i_generation != generation)) { |
| /* we didn't find the right inode.. */ |
| iput(inode); |
| return ERR_PTR(-ESTALE); |
| } |
| return inode; |
| } |
| |
| static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, |
| int fh_len, int fh_type) |
| { |
| return generic_fh_to_dentry(sb, fid, fh_len, fh_type, |
| f2fs_nfs_get_inode); |
| } |
| |
| static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, |
| int fh_len, int fh_type) |
| { |
| return generic_fh_to_parent(sb, fid, fh_len, fh_type, |
| f2fs_nfs_get_inode); |
| } |
| |
| static const struct export_operations f2fs_export_ops = { |
| .encode_fh = generic_encode_ino32_fh, |
| .fh_to_dentry = f2fs_fh_to_dentry, |
| .fh_to_parent = f2fs_fh_to_parent, |
| .get_parent = f2fs_get_parent, |
| }; |
| |
| loff_t max_file_blocks(struct inode *inode) |
| { |
| loff_t result = 0; |
| loff_t leaf_count; |
| |
| /* |
| * note: previously, result is equal to (DEF_ADDRS_PER_INODE - |
| * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more |
| * space in inode.i_addr, it will be more safe to reassign |
| * result as zero. |
| */ |
| |
| if (inode && f2fs_compressed_file(inode)) |
| leaf_count = ADDRS_PER_BLOCK(inode); |
| else |
| leaf_count = DEF_ADDRS_PER_BLOCK; |
| |
| /* two direct node blocks */ |
| result += (leaf_count * 2); |
| |
| /* two indirect node blocks */ |
| leaf_count *= NIDS_PER_BLOCK; |
| result += (leaf_count * 2); |
| |
| /* one double indirect node block */ |
| leaf_count *= NIDS_PER_BLOCK; |
| result += leaf_count; |
| |
| /* |
| * For compatibility with FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{64,32} with |
| * a 4K crypto data unit, we must restrict the max filesize to what can |
| * fit within U32_MAX + 1 data units. |
| */ |
| |
| result = min(result, F2FS_BYTES_TO_BLK(((loff_t)U32_MAX + 1) * 4096)); |
| |
| return result; |
| } |
| |
| static int __f2fs_commit_super(struct f2fs_sb_info *sbi, struct folio *folio, |
| pgoff_t index, bool update) |
| { |
| struct bio *bio; |
| /* it's rare case, we can do fua all the time */ |
| blk_opf_t opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA; |
| int ret; |
| |
| folio_lock(folio); |
| folio_wait_writeback(folio); |
| if (update) |
| memcpy(F2FS_SUPER_BLOCK(folio, index), F2FS_RAW_SUPER(sbi), |
| sizeof(struct f2fs_super_block)); |
| folio_mark_dirty(folio); |
| folio_clear_dirty_for_io(folio); |
| folio_start_writeback(folio); |
| folio_unlock(folio); |
| |
| bio = bio_alloc(sbi->sb->s_bdev, 1, opf, GFP_NOFS); |
| |
| /* it doesn't need to set crypto context for superblock update */ |
| bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(folio_index(folio)); |
| |
| if (!bio_add_folio(bio, folio, folio_size(folio), 0)) |
| f2fs_bug_on(sbi, 1); |
| |
| ret = submit_bio_wait(bio); |
| folio_end_writeback(folio); |
| |
| return ret; |
| } |
| |
| static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, |
| struct folio *folio, pgoff_t index) |
| { |
| struct f2fs_super_block *raw_super = F2FS_SUPER_BLOCK(folio, index); |
| struct super_block *sb = sbi->sb; |
| u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); |
| u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); |
| u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); |
| u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); |
| u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); |
| u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); |
| u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); |
| u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); |
| u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); |
| u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); |
| u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); |
| u32 segment_count = le32_to_cpu(raw_super->segment_count); |
| u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); |
| u64 main_end_blkaddr = main_blkaddr + |
| ((u64)segment_count_main << log_blocks_per_seg); |
| u64 seg_end_blkaddr = segment0_blkaddr + |
| ((u64)segment_count << log_blocks_per_seg); |
| |
| if (segment0_blkaddr != cp_blkaddr) { |
| f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", |
| segment0_blkaddr, cp_blkaddr); |
| return true; |
| } |
| |
| if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != |
| sit_blkaddr) { |
| f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", |
| cp_blkaddr, sit_blkaddr, |
| segment_count_ckpt << log_blocks_per_seg); |
| return true; |
| } |
| |
| if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != |
| nat_blkaddr) { |
| f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", |
| sit_blkaddr, nat_blkaddr, |
| segment_count_sit << log_blocks_per_seg); |
| return true; |
| } |
| |
| if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != |
| ssa_blkaddr) { |
| f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", |
| nat_blkaddr, ssa_blkaddr, |
| segment_count_nat << log_blocks_per_seg); |
| return true; |
| } |
| |
| if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != |
| main_blkaddr) { |
| f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", |
| ssa_blkaddr, main_blkaddr, |
| segment_count_ssa << log_blocks_per_seg); |
| return true; |
| } |
| |
| if (main_end_blkaddr > seg_end_blkaddr) { |
| f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", |
| main_blkaddr, seg_end_blkaddr, |
| segment_count_main << log_blocks_per_seg); |
| return true; |
| } else if (main_end_blkaddr < seg_end_blkaddr) { |
| int err = 0; |
| char *res; |
| |
| /* fix in-memory information all the time */ |
| raw_super->segment_count = cpu_to_le32((main_end_blkaddr - |
| segment0_blkaddr) >> log_blocks_per_seg); |
| |
| if (f2fs_readonly(sb) || f2fs_hw_is_readonly(sbi)) { |
| set_sbi_flag(sbi, SBI_NEED_SB_WRITE); |
| res = "internally"; |
| } else { |
| err = __f2fs_commit_super(sbi, folio, index, false); |
| res = err ? "failed" : "done"; |
| } |
| f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", |
| res, main_blkaddr, seg_end_blkaddr, |
| segment_count_main << log_blocks_per_seg); |
| if (err) |
| return true; |
| } |
| return false; |
| } |
| |
| static int sanity_check_raw_super(struct f2fs_sb_info *sbi, |
| struct folio *folio, pgoff_t index) |
| { |
| block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; |
| block_t total_sections, blocks_per_seg; |
| struct f2fs_super_block *raw_super = F2FS_SUPER_BLOCK(folio, index); |
| size_t crc_offset = 0; |
| __u32 crc = 0; |
| |
| if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { |
| f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", |
| F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); |
| return -EINVAL; |
| } |
| |
| /* Check checksum_offset and crc in superblock */ |
| if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { |
| crc_offset = le32_to_cpu(raw_super->checksum_offset); |
| if (crc_offset != |
| offsetof(struct f2fs_super_block, crc)) { |
| f2fs_info(sbi, "Invalid SB checksum offset: %zu", |
| crc_offset); |
| return -EFSCORRUPTED; |
| } |
| crc = le32_to_cpu(raw_super->crc); |
| if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { |
| f2fs_info(sbi, "Invalid SB checksum value: %u", crc); |
| return -EFSCORRUPTED; |
| } |
| } |
| |
| /* only support block_size equals to PAGE_SIZE */ |
| if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { |
| f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", |
| le32_to_cpu(raw_super->log_blocksize), |
| F2FS_BLKSIZE_BITS); |
| return -EFSCORRUPTED; |
| } |
| |
| /* check log blocks per segment */ |
| if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { |
| f2fs_info(sbi, "Invalid log blocks per segment (%u)", |
| le32_to_cpu(raw_super->log_blocks_per_seg)); |
| return -EFSCORRUPTED; |
| } |
| |
| /* Currently, support 512/1024/2048/4096/16K bytes sector size */ |
| if (le32_to_cpu(raw_super->log_sectorsize) > |
| F2FS_MAX_LOG_SECTOR_SIZE || |
| le32_to_cpu(raw_super->log_sectorsize) < |
| F2FS_MIN_LOG_SECTOR_SIZE) { |
| f2fs_info(sbi, "Invalid log sectorsize (%u)", |
| le32_to_cpu(raw_super->log_sectorsize)); |
| return -EFSCORRUPTED; |
| } |
| if (le32_to_cpu(raw_super->log_sectors_per_block) + |
| le32_to_cpu(raw_super->log_sectorsize) != |
| F2FS_MAX_LOG_SECTOR_SIZE) { |
| f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", |
| le32_to_cpu(raw_super->log_sectors_per_block), |
| le32_to_cpu(raw_super->log_sectorsize)); |
| return -EFSCORRUPTED; |
| } |
| |
| segment_count = le32_to_cpu(raw_super->segment_count); |
| segment_count_main = le32_to_cpu(raw_super->segment_count_main); |
| segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); |
| secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); |
| total_sections = le32_to_cpu(raw_super->section_count); |
| |
| /* blocks_per_seg should be 512, given the above check */ |
| blocks_per_seg = BIT(le32_to_cpu(raw_super->log_blocks_per_seg)); |
| |
| if (segment_count > F2FS_MAX_SEGMENT || |
| segment_count < F2FS_MIN_SEGMENTS) { |
| f2fs_info(sbi, "Invalid segment count (%u)", segment_count); |
| return -EFSCORRUPTED; |
| } |
| |
| if (total_sections > segment_count_main || total_sections < 1 || |
| segs_per_sec > segment_count || !segs_per_sec) { |
| f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", |
| segment_count, total_sections, segs_per_sec); |
| return -EFSCORRUPTED; |
| } |
| |
| if (segment_count_main != total_sections * segs_per_sec) { |
| f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", |
| segment_count_main, total_sections, segs_per_sec); |
| return -EFSCORRUPTED; |
| } |
| |
| if ((segment_count / segs_per_sec) < total_sections) { |
| f2fs_info(sbi, "Small segment_count (%u < %u * %u)", |
| segment_count, segs_per_sec, total_sections); |
| return -EFSCORRUPTED; |
| } |
| |
| if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { |
| f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", |
| segment_count, le64_to_cpu(raw_super->block_count)); |
| return -EFSCORRUPTED; |
| } |
| |
| if (RDEV(0).path[0]) { |
| block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); |
| int i = 1; |
| |
| while (i < MAX_DEVICES && RDEV(i).path[0]) { |
| dev_seg_count += le32_to_cpu(RDEV(i).total_segments); |
| i++; |
| } |
| if (segment_count != dev_seg_count) { |
| f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", |
| segment_count, dev_seg_count); |
| return -EFSCORRUPTED; |
| } |
| } else { |
| if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && |
| !bdev_is_zoned(sbi->sb->s_bdev)) { |
| f2fs_info(sbi, "Zoned block device path is missing"); |
| return -EFSCORRUPTED; |
| } |
| } |
| |
| if (secs_per_zone > total_sections || !secs_per_zone) { |
| f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", |
| secs_per_zone, total_sections); |
| return -EFSCORRUPTED; |
| } |
| if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || |
| raw_super->hot_ext_count > F2FS_MAX_EXTENSION || |
| (le32_to_cpu(raw_super->extension_count) + |
| raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { |
| f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", |
| le32_to_cpu(raw_super->extension_count), |
| raw_super->hot_ext_count, |
| F2FS_MAX_EXTENSION); |
| return -EFSCORRUPTED; |
| } |
| |
| if (le32_to_cpu(raw_super->cp_payload) >= |
| (blocks_per_seg - F2FS_CP_PACKS - |
| NR_CURSEG_PERSIST_TYPE)) { |
| f2fs_info(sbi, "Insane cp_payload (%u >= %u)", |
| le32_to_cpu(raw_super->cp_payload), |
| blocks_per_seg - F2FS_CP_PACKS - |
| NR_CURSEG_PERSIST_TYPE); |
| return -EFSCORRUPTED; |
| } |
| |
| /* check reserved ino info */ |
| if (le32_to_cpu(raw_super->node_ino) != 1 || |
| le32_to_cpu(raw_super->meta_ino) != 2 || |
| le32_to_cpu(raw_super->root_ino) != 3) { |
| f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", |
| le32_to_cpu(raw_super->node_ino), |
| le32_to_cpu(raw_super->meta_ino), |
| le32_to_cpu(raw_super->root_ino)); |
| return -EFSCORRUPTED; |
| } |
| |
| /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ |
| if (sanity_check_area_boundary(sbi, folio, index)) |
| return -EFSCORRUPTED; |
| |
| return 0; |
| } |
| |
| int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) |
| { |
| unsigned int total, fsmeta; |
| struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| unsigned int ovp_segments, reserved_segments; |
| unsigned int main_segs, blocks_per_seg; |
| unsigned int sit_segs, nat_segs; |
| unsigned int sit_bitmap_size, nat_bitmap_size; |
| unsigned int log_blocks_per_seg; |
| unsigned int segment_count_main; |
| unsigned int cp_pack_start_sum, cp_payload; |
| block_t user_block_count, valid_user_blocks; |
| block_t avail_node_count, valid_node_count; |
| unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks; |
| int i, j; |
| |
| total = le32_to_cpu(raw_super->segment_count); |
| fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); |
| sit_segs = le32_to_cpu(raw_super->segment_count_sit); |
| fsmeta += sit_segs; |
| nat_segs = le32_to_cpu(raw_super->segment_count_nat); |
| fsmeta += nat_segs; |
| fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); |
| fsmeta += le32_to_cpu(raw_super->segment_count_ssa); |
| |
| if (unlikely(fsmeta >= total)) |
| return 1; |
| |
| ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); |
| reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); |
| |
| if (!f2fs_sb_has_readonly(sbi) && |
| unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || |
| ovp_segments == 0 || reserved_segments == 0)) { |
| f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); |
| return 1; |
| } |
| user_block_count = le64_to_cpu(ckpt->user_block_count); |
| segment_count_main = le32_to_cpu(raw_super->segment_count_main) + |
| (f2fs_sb_has_readonly(sbi) ? 1 : 0); |
| log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); |
| if (!user_block_count || user_block_count >= |
| segment_count_main << log_blocks_per_seg) { |
| f2fs_err(sbi, "Wrong user_block_count: %u", |
| user_block_count); |
| return 1; |
| } |
| |
| valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); |
| if (valid_user_blocks > user_block_count) { |
| f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", |
| valid_user_blocks, user_block_count); |
| return 1; |
| } |
| |
| valid_node_count = le32_to_cpu(ckpt->valid_node_count); |
| avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; |
| if (valid_node_count > avail_node_count) { |
| f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", |
| valid_node_count, avail_node_count); |
| return 1; |
| } |
| |
| main_segs = le32_to_cpu(raw_super->segment_count_main); |
| blocks_per_seg = BLKS_PER_SEG(sbi); |
| |
| for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { |
| if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || |
| le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) |
| return 1; |
| |
| if (f2fs_sb_has_readonly(sbi)) |
| goto check_data; |
| |
| for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { |
| if (le32_to_cpu(ckpt->cur_node_segno[i]) == |
| le32_to_cpu(ckpt->cur_node_segno[j])) { |
| f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", |
| i, j, |
| le32_to_cpu(ckpt->cur_node_segno[i])); |
| return 1; |
| } |
| } |
| } |
| check_data: |
| for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { |
| if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || |
| le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) |
| return 1; |
| |
| if (f2fs_sb_has_readonly(sbi)) |
| goto skip_cross; |
| |
| for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { |
| if (le32_to_cpu(ckpt->cur_data_segno[i]) == |
| le32_to_cpu(ckpt->cur_data_segno[j])) { |
| f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", |
| i, j, |
| le32_to_cpu(ckpt->cur_data_segno[i])); |
| return 1; |
| } |
| } |
| } |
| for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { |
| for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { |
| if (le32_to_cpu(ckpt->cur_node_segno[i]) == |
| le32_to_cpu(ckpt->cur_data_segno[j])) { |
| f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", |
| i, j, |
| le32_to_cpu(ckpt->cur_node_segno[i])); |
| return 1; |
| } |
| } |
| } |
| skip_cross: |
| sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); |
| nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); |
| |
| if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || |
| nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { |
| f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", |
| sit_bitmap_size, nat_bitmap_size); |
| return 1; |
| } |
| |
| cp_pack_start_sum = __start_sum_addr(sbi); |
| cp_payload = __cp_payload(sbi); |
| if (cp_pack_start_sum < cp_payload + 1 || |
| cp_pack_start_sum > blocks_per_seg - 1 - |
| NR_CURSEG_PERSIST_TYPE) { |
| f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", |
| cp_pack_start_sum); |
| return 1; |
| } |
| |
| if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && |
| le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { |
| f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " |
| "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " |
| "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", |
| le32_to_cpu(ckpt->checksum_offset)); |
| return 1; |
| } |
| |
| nat_blocks = nat_segs << log_blocks_per_seg; |
| nat_bits_bytes = nat_blocks / BITS_PER_BYTE; |
| nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); |
| if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) && |
| (cp_payload + F2FS_CP_PACKS + |
| NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) { |
| f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)", |
| cp_payload, nat_bits_blocks); |
| return 1; |
| } |
| |
| if (unlikely(f2fs_cp_error(sbi))) { |
| f2fs_err(sbi, "A bug case: need to run fsck"); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void init_sb_info(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_super_block *raw_super = sbi->raw_super; |
| int i; |
| |
| sbi->log_sectors_per_block = |
| le32_to_cpu(raw_super->log_sectors_per_block); |
| sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); |
| sbi->blocksize = BIT(sbi->log_blocksize); |
| sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); |
| sbi->blocks_per_seg = BIT(sbi->log_blocks_per_seg); |
| sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); |
| sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); |
| sbi->total_sections = le32_to_cpu(raw_super->section_count); |
| sbi->total_node_count = SEGS_TO_BLKS(sbi, |
| ((le32_to_cpu(raw_super->segment_count_nat) / 2) * |
| NAT_ENTRY_PER_BLOCK)); |
| F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino); |
| F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino); |
| F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino); |
| sbi->cur_victim_sec = NULL_SECNO; |
| sbi->gc_mode = GC_NORMAL; |
| sbi->next_victim_seg[BG_GC] = NULL_SEGNO; |
| sbi->next_victim_seg[FG_GC] = NULL_SEGNO; |
| sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; |
| sbi->migration_granularity = SEGS_PER_SEC(sbi); |
| sbi->migration_window_granularity = f2fs_sb_has_blkzoned(sbi) ? |
| DEF_MIGRATION_WINDOW_GRANULARITY_ZONED : SEGS_PER_SEC(sbi); |
| sbi->seq_file_ra_mul = MIN_RA_MUL; |
| sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE; |
| sbi->max_fragment_hole = DEF_FRAGMENT_SIZE; |
| spin_lock_init(&sbi->gc_remaining_trials_lock); |
| atomic64_set(&sbi->current_atomic_write, 0); |
| |
| sbi->dir_level = DEF_DIR_LEVEL; |
| sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; |
| sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; |
| sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; |
| sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; |
| sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; |
| sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = |
| DEF_UMOUNT_DISCARD_TIMEOUT; |
| clear_sbi_flag(sbi, SBI_NEED_FSCK); |
| |
| for (i = 0; i < NR_COUNT_TYPE; i++) |
| atomic_set(&sbi->nr_pages[i], 0); |
| |
| for (i = 0; i < META; i++) |
| atomic_set(&sbi->wb_sync_req[i], 0); |
| |
| INIT_LIST_HEAD(&sbi->s_list); |
| mutex_init(&sbi->umount_mutex); |
| init_f2fs_rwsem(&sbi->io_order_lock); |
| spin_lock_init(&sbi->cp_lock); |
| |
| sbi->dirty_device = 0; |
| spin_lock_init(&sbi->dev_lock); |
| |
| init_f2fs_rwsem(&sbi->sb_lock); |
| init_f2fs_rwsem(&sbi->pin_sem); |
| } |
| |
| static int init_percpu_info(struct f2fs_sb_info *sbi) |
| { |
| int err; |
| |
| err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); |
| if (err) |
| return err; |
| |
| err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL); |
| if (err) |
| goto err_valid_block; |
| |
| err = percpu_counter_init(&sbi->total_valid_inode_count, 0, |
| GFP_KERNEL); |
| if (err) |
| goto err_node_block; |
| return 0; |
| |
| err_node_block: |
| percpu_counter_destroy(&sbi->rf_node_block_count); |
| err_valid_block: |
| percpu_counter_destroy(&sbi->alloc_valid_block_count); |
| return err; |
| } |
| |
| #ifdef CONFIG_BLK_DEV_ZONED |
| |
| struct f2fs_report_zones_args { |
| struct f2fs_sb_info *sbi; |
| struct f2fs_dev_info *dev; |
| }; |
| |
| static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, |
| void *data) |
| { |
| struct f2fs_report_zones_args *rz_args = data; |
| block_t unusable_blocks = (zone->len - zone->capacity) >> |
| F2FS_LOG_SECTORS_PER_BLOCK; |
| |
| if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) |
| return 0; |
| |
| set_bit(idx, rz_args->dev->blkz_seq); |
| if (!rz_args->sbi->unusable_blocks_per_sec) { |
| rz_args->sbi->unusable_blocks_per_sec = unusable_blocks; |
| return 0; |
| } |
| if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) { |
| f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n"); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) |
| { |
| struct block_device *bdev = FDEV(devi).bdev; |
| sector_t nr_sectors = bdev_nr_sectors(bdev); |
| struct f2fs_report_zones_args rep_zone_arg; |
| u64 zone_sectors; |
| unsigned int max_open_zones; |
| int ret; |
| |
| if (!f2fs_sb_has_blkzoned(sbi)) |
| return 0; |
| |
| if (bdev_is_zoned(FDEV(devi).bdev)) { |
| max_open_zones = bdev_max_open_zones(bdev); |
| if (max_open_zones && (max_open_zones < sbi->max_open_zones)) |
| sbi->max_open_zones = max_open_zones; |
| if (sbi->max_open_zones < F2FS_OPTION(sbi).active_logs) { |
| f2fs_err(sbi, |
| "zoned: max open zones %u is too small, need at least %u open zones", |
| sbi->max_open_zones, F2FS_OPTION(sbi).active_logs); |
| return -EINVAL; |
| } |
| } |
| |
| zone_sectors = bdev_zone_sectors(bdev); |
| if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != |
| SECTOR_TO_BLOCK(zone_sectors)) |
| return -EINVAL; |
| sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors); |
| FDEV(devi).nr_blkz = div_u64(SECTOR_TO_BLOCK(nr_sectors), |
| sbi->blocks_per_blkz); |
| if (nr_sectors & (zone_sectors - 1)) |
| FDEV(devi).nr_blkz++; |
| |
| FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, |
| BITS_TO_LONGS(FDEV(devi).nr_blkz) |
| * sizeof(unsigned long), |
| GFP_KERNEL); |
| if (!FDEV(devi).blkz_seq) |
| return -ENOMEM; |
| |
| rep_zone_arg.sbi = sbi; |
| rep_zone_arg.dev = &FDEV(devi); |
| |
| ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, |
| &rep_zone_arg); |
| if (ret < 0) |
| return ret; |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Read f2fs raw super block. |
| * Because we have two copies of super block, so read both of them |
| * to get the first valid one. If any one of them is broken, we pass |
| * them recovery flag back to the caller. |
| */ |
| static int read_raw_super_block(struct f2fs_sb_info *sbi, |
| struct f2fs_super_block **raw_super, |
| int *valid_super_block, int *recovery) |
| { |
| struct super_block *sb = sbi->sb; |
| int block; |
| struct folio *folio; |
| struct f2fs_super_block *super; |
| int err = 0; |
| |
| super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); |
| if (!super) |
| return -ENOMEM; |
| |
| for (block = 0; block < 2; block++) { |
| folio = read_mapping_folio(sb->s_bdev->bd_mapping, block, NULL); |
| if (IS_ERR(folio)) { |
| f2fs_err(sbi, "Unable to read %dth superblock", |
| block + 1); |
| err = PTR_ERR(folio); |
| *recovery = 1; |
| continue; |
| } |
| |
| /* sanity checking of raw super */ |
| err = sanity_check_raw_super(sbi, folio, block); |
| if (err) { |
| f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", |
| block + 1); |
| folio_put(folio); |
| *recovery = 1; |
| continue; |
| } |
| |
| if (!*raw_super) { |
| memcpy(super, F2FS_SUPER_BLOCK(folio, block), |
| sizeof(*super)); |
| *valid_super_block = block; |
| *raw_super = super; |
| } |
| folio_put(folio); |
| } |
| |
| /* No valid superblock */ |
| if (!*raw_super) |
| kfree(super); |
| else |
| err = 0; |
| |
| return err; |
| } |
| |
| int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) |
| { |
| struct folio *folio; |
| pgoff_t index; |
| __u32 crc = 0; |
| int err; |
| |
| if ((recover && f2fs_readonly(sbi->sb)) || |
| f2fs_hw_is_readonly(sbi)) { |
| set_sbi_flag(sbi, SBI_NEED_SB_WRITE); |
| return -EROFS; |
| } |
| |
| /* we should update superblock crc here */ |
| if (!recover && f2fs_sb_has_sb_chksum(sbi)) { |
| crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), |
| offsetof(struct f2fs_super_block, crc)); |
| F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); |
| } |
| |
| /* write back-up superblock first */ |
| index = sbi->valid_super_block ? 0 : 1; |
| folio = read_mapping_folio(sbi->sb->s_bdev->bd_mapping, index, NULL); |
| if (IS_ERR(folio)) |
| return PTR_ERR(folio); |
| err = __f2fs_commit_super(sbi, folio, index, true); |
| folio_put(folio); |
| |
| /* if we are in recovery path, skip writing valid superblock */ |
| if (recover || err) |
| return err; |
| |
| /* write current valid superblock */ |
| index = sbi->valid_super_block; |
| folio = read_mapping_folio(sbi->sb->s_bdev->bd_mapping, index, NULL); |
| if (IS_ERR(folio)) |
| return PTR_ERR(folio); |
| err = __f2fs_commit_super(sbi, folio, index, true); |
| folio_put(folio); |
| return err; |
| } |
| |
| static void save_stop_reason(struct f2fs_sb_info *sbi, unsigned char reason) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&sbi->error_lock, flags); |
| if (sbi->stop_reason[reason] < GENMASK(BITS_PER_BYTE - 1, 0)) |
| sbi->stop_reason[reason]++; |
| spin_unlock_irqrestore(&sbi->error_lock, flags); |
| } |
| |
| static void f2fs_record_stop_reason(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); |
| unsigned long flags; |
| int err; |
| |
| f2fs_down_write(&sbi->sb_lock); |
| |
| spin_lock_irqsave(&sbi->error_lock, flags); |
| if (sbi->error_dirty) { |
| memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, |
| MAX_F2FS_ERRORS); |
| sbi->error_dirty = false; |
| } |
| memcpy(raw_super->s_stop_reason, sbi->stop_reason, MAX_STOP_REASON); |
| spin_unlock_irqrestore(&sbi->error_lock, flags); |
| |
| err = f2fs_commit_super(sbi, false); |
| |
| f2fs_up_write(&sbi->sb_lock); |
| if (err) |
| f2fs_err_ratelimited(sbi, |
| "f2fs_commit_super fails to record stop_reason, err:%d", |
| err); |
| } |
| |
| void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&sbi->error_lock, flags); |
| if (!test_bit(flag, (unsigned long *)sbi->errors)) { |
| set_bit(flag, (unsigned long *)sbi->errors); |
| sbi->error_dirty = true; |
| } |
| spin_unlock_irqrestore(&sbi->error_lock, flags); |
| } |
| |
| static bool f2fs_update_errors(struct f2fs_sb_info *sbi) |
| { |
| unsigned long flags; |
| bool need_update = false; |
| |
| spin_lock_irqsave(&sbi->error_lock, flags); |
| if (sbi->error_dirty) { |
| memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, |
| MAX_F2FS_ERRORS); |
| sbi->error_dirty = false; |
| need_update = true; |
| } |
| spin_unlock_irqrestore(&sbi->error_lock, flags); |
| |
| return need_update; |
| } |
| |
| static void f2fs_record_errors(struct f2fs_sb_info *sbi, unsigned char error) |
| { |
| int err; |
| |
| f2fs_down_write(&sbi->sb_lock); |
| |
| if (!f2fs_update_errors(sbi)) |
| goto out_unlock; |
| |
| err = f2fs_commit_super(sbi, false); |
| if (err) |
| f2fs_err_ratelimited(sbi, |
| "f2fs_commit_super fails to record errors:%u, err:%d", |
| error, err); |
| out_unlock: |
| f2fs_up_write(&sbi->sb_lock); |
| } |
| |
| void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error) |
| { |
| f2fs_save_errors(sbi, error); |
| f2fs_record_errors(sbi, error); |
| } |
| |
| void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error) |
| { |
| f2fs_save_errors(sbi, error); |
| |
| if (!sbi->error_dirty) |
| return; |
| if (!test_bit(error, (unsigned long *)sbi->errors)) |
| return; |
| schedule_work(&sbi->s_error_work); |
| } |
| |
| static bool system_going_down(void) |
| { |
| return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF |
| || system_state == SYSTEM_RESTART; |
| } |
| |
| void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason, |
| bool irq_context) |
| { |
| struct super_block *sb = sbi->sb; |
| bool shutdown = reason == STOP_CP_REASON_SHUTDOWN; |
| bool continue_fs = !shutdown && |
| F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE; |
| |
| set_ckpt_flags(sbi, CP_ERROR_FLAG); |
| |
| if (!f2fs_hw_is_readonly(sbi)) { |
| save_stop_reason(sbi, reason); |
| |
| if (irq_context && !shutdown) |
| schedule_work(&sbi->s_error_work); |
| else |
| f2fs_record_stop_reason(sbi); |
| } |
| |
| /* |
| * We force ERRORS_RO behavior when system is rebooting. Otherwise we |
| * could panic during 'reboot -f' as the underlying device got already |
| * disabled. |
| */ |
| if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC && |
| !shutdown && !system_going_down() && |
| !is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) |
| panic("F2FS-fs (device %s): panic forced after error\n", |
| sb->s_id); |
| |
| if (shutdown) |
| set_sbi_flag(sbi, SBI_IS_SHUTDOWN); |
| |
| /* |
| * Continue filesystem operators if errors=continue. Should not set |
| * RO by shutdown, since RO bypasses thaw_super which can hang the |
| * system. |
| */ |
| if (continue_fs || f2fs_readonly(sb) || shutdown) { |
| f2fs_warn(sbi, "Stopped filesystem due to reason: %d", reason); |
| return; |
| } |
| |
| f2fs_warn(sbi, "Remounting filesystem read-only"); |
| |
| /* |
| * We have already set CP_ERROR_FLAG flag to stop all updates |
| * to filesystem, so it doesn't need to set SB_RDONLY flag here |
| * because the flag should be set covered w/ sb->s_umount semaphore |
| * via remount procedure, otherwise, it will confuse code like |
| * freeze_super() which will lead to deadlocks and other problems. |
| */ |
| } |
| |
| static void f2fs_record_error_work(struct work_struct *work) |
| { |
| struct f2fs_sb_info *sbi = container_of(work, |
| struct f2fs_sb_info, s_error_work); |
| |
| f2fs_record_stop_reason(sbi); |
| } |
| |
| static int f2fs_scan_devices(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); |
| unsigned int max_devices = MAX_DEVICES; |
| unsigned int logical_blksize; |
| blk_mode_t mode = sb_open_mode(sbi->sb->s_flags); |
| int i; |
| |
| /* Initialize single device information */ |
| if (!RDEV(0).path[0]) { |
| if (!bdev_is_zoned(sbi->sb->s_bdev)) |
| return 0; |
| max_devices = 1; |
| } |
| |
| /* |
| * Initialize multiple devices information, or single |
| * zoned block device information. |
| */ |
| sbi->devs = f2fs_kzalloc(sbi, |
| array_size(max_devices, |
| sizeof(struct f2fs_dev_info)), |
| GFP_KERNEL); |
| if (!sbi->devs) |
| return -ENOMEM; |
| |
| logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev); |
| sbi->aligned_blksize = true; |
| #ifdef CONFIG_BLK_DEV_ZONED |
| sbi->max_open_zones = UINT_MAX; |
| sbi->blkzone_alloc_policy = BLKZONE_ALLOC_PRIOR_SEQ; |
| #endif |
| |
| for (i = 0; i < max_devices; i++) { |
| if (i == 0) |
| FDEV(0).bdev_file = sbi->sb->s_bdev_file; |
| else if (!RDEV(i).path[0]) |
| break; |
| |
| if (max_devices > 1) { |
| /* Multi-device mount */ |
| memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); |
| FDEV(i).total_segments = |
| le32_to_cpu(RDEV(i).total_segments); |
| if (i == 0) { |
| FDEV(i).start_blk = 0; |
| FDEV(i).end_blk = FDEV(i).start_blk + |
| SEGS_TO_BLKS(sbi, |
| FDEV(i).total_segments) - 1 + |
| le32_to_cpu(raw_super->segment0_blkaddr); |
| } else { |
| FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; |
| FDEV(i).end_blk = FDEV(i).start_blk + |
| SEGS_TO_BLKS(sbi, |
| FDEV(i).total_segments) - 1; |
| FDEV(i).bdev_file = bdev_file_open_by_path( |
| FDEV(i).path, mode, sbi->sb, NULL); |
| } |
| } |
| if (IS_ERR(FDEV(i).bdev_file)) |
| return PTR_ERR(FDEV(i).bdev_file); |
| |
| FDEV(i).bdev = file_bdev(FDEV(i).bdev_file); |
| /* to release errored devices */ |
| sbi->s_ndevs = i + 1; |
| |
| if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev)) |
| sbi->aligned_blksize = false; |
| |
| #ifdef CONFIG_BLK_DEV_ZONED |
| if (bdev_is_zoned(FDEV(i).bdev)) { |
| if (!f2fs_sb_has_blkzoned(sbi)) { |
| f2fs_err(sbi, "Zoned block device feature not enabled"); |
| return -EINVAL; |
| } |
| if (init_blkz_info(sbi, i)) { |
| f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); |
| return -EINVAL; |
| } |
| if (max_devices == 1) |
| break; |
| f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: Host-managed)", |
| i, FDEV(i).path, |
| FDEV(i).total_segments, |
| FDEV(i).start_blk, FDEV(i).end_blk); |
| continue; |
| } |
| #endif |
| f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", |
| i, FDEV(i).path, |
| FDEV(i).total_segments, |
| FDEV(i).start_blk, FDEV(i).end_blk); |
| } |
| return 0; |
| } |
| |
| static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) |
| { |
| #if IS_ENABLED(CONFIG_UNICODE) |
| if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { |
| const struct f2fs_sb_encodings *encoding_info; |
| struct unicode_map *encoding; |
| __u16 encoding_flags; |
| |
| encoding_info = f2fs_sb_read_encoding(sbi->raw_super); |
| if (!encoding_info) { |
| f2fs_err(sbi, |
| "Encoding requested by superblock is unknown"); |
| return -EINVAL; |
| } |
| |
| encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags); |
| encoding = utf8_load(encoding_info->version); |
| if (IS_ERR(encoding)) { |
| f2fs_err(sbi, |
| "can't mount with superblock charset: %s-%u.%u.%u " |
| "not supported by the kernel. flags: 0x%x.", |
| encoding_info->name, |
| unicode_major(encoding_info->version), |
| unicode_minor(encoding_info->version), |
| unicode_rev(encoding_info->version), |
| encoding_flags); |
| return PTR_ERR(encoding); |
| } |
| f2fs_info(sbi, "Using encoding defined by superblock: " |
| "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, |
| unicode_major(encoding_info->version), |
| unicode_minor(encoding_info->version), |
| unicode_rev(encoding_info->version), |
| encoding_flags); |
| |
| sbi->sb->s_encoding = encoding; |
| sbi->sb->s_encoding_flags = encoding_flags; |
| } |
| #else |
| if (f2fs_sb_has_casefold(sbi)) { |
| f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); |
| return -EINVAL; |
| } |
| #endif |
| return 0; |
| } |
| |
| static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) |
| { |
| /* adjust parameters according to the volume size */ |
| if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) { |
| if (f2fs_block_unit_discard(sbi)) |
| SM_I(sbi)->dcc_info->discard_granularity = |
| MIN_DISCARD_GRANULARITY; |
| if (!f2fs_lfs_mode(sbi)) |
| SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) | |
| BIT(F2FS_IPU_HONOR_OPU_WRITE); |
| } |
| |
| sbi->readdir_ra = true; |
| } |
| |
| static int f2fs_fill_super(struct super_block *sb, void *data, int silent) |
| { |
| struct f2fs_sb_info *sbi; |
| struct f2fs_super_block *raw_super; |
| struct inode *root; |
| int err; |
| bool skip_recovery = false, need_fsck = false; |
| char *options = NULL; |
| int recovery, i, valid_super_block; |
| struct curseg_info *seg_i; |
| int retry_cnt = 1; |
| #ifdef CONFIG_QUOTA |
| bool quota_enabled = false; |
| #endif |
| |
| try_onemore: |
| err = -EINVAL; |
| raw_super = NULL; |
| valid_super_block = -1; |
| recovery = 0; |
| |
| /* allocate memory for f2fs-specific super block info */ |
| sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); |
| if (!sbi) |
| return -ENOMEM; |
| |
| sbi->sb = sb; |
| |
| /* initialize locks within allocated memory */ |
| init_f2fs_rwsem(&sbi->gc_lock); |
| mutex_init(&sbi->writepages); |
| init_f2fs_rwsem(&sbi->cp_global_sem); |
| init_f2fs_rwsem(&sbi->node_write); |
| init_f2fs_rwsem(&sbi->node_change); |
| spin_lock_init(&sbi->stat_lock); |
| init_f2fs_rwsem(&sbi->cp_rwsem); |
| init_f2fs_rwsem(&sbi->quota_sem); |
| init_waitqueue_head(&sbi->cp_wait); |
| spin_lock_init(&sbi->error_lock); |
| |
| for (i = 0; i < NR_INODE_TYPE; i++) { |
| INIT_LIST_HEAD(&sbi->inode_list[i]); |
| spin_lock_init(&sbi->inode_lock[i]); |
| } |
| mutex_init(&sbi->flush_lock); |
| |
| /* Load the checksum driver */ |
| sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); |
| if (IS_ERR(sbi->s_chksum_driver)) { |
| f2fs_err(sbi, "Cannot load crc32 driver."); |
| err = PTR_ERR(sbi->s_chksum_driver); |
| sbi->s_chksum_driver = NULL; |
| goto free_sbi; |
| } |
| |
| /* set a block size */ |
| if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { |
| f2fs_err(sbi, "unable to set blocksize"); |
| goto free_sbi; |
| } |
| |
| err = read_raw_super_block(sbi, &raw_super, &valid_super_block, |
| &recovery); |
| if (err) |
| goto free_sbi; |
| |
| sb->s_fs_info = sbi; |
| sbi->raw_super = raw_super; |
| |
| INIT_WORK(&sbi->s_error_work, f2fs_record_error_work); |
| memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS); |
| memcpy(sbi->stop_reason, raw_super->s_stop_reason, MAX_STOP_REASON); |
| |
| /* precompute checksum seed for metadata */ |
| if (f2fs_sb_has_inode_chksum(sbi)) |
| sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, |
| sizeof(raw_super->uuid)); |
| |
| default_options(sbi, false); |
| /* parse mount options */ |
| options = kstrdup((const char *)data, GFP_KERNEL); |
| if (data && !options) { |
| err = -ENOMEM; |
| goto free_sb_buf; |
| } |
| |
| err = parse_options(sb, options, false); |
| if (err) |
| goto free_options; |
| |
| sb->s_maxbytes = max_file_blocks(NULL) << |
| le32_to_cpu(raw_super->log_blocksize); |
| sb->s_max_links = F2FS_LINK_MAX; |
| |
| err = f2fs_setup_casefold(sbi); |
| if (err) |
| goto free_options; |
| |
| #ifdef CONFIG_QUOTA |
| sb->dq_op = &f2fs_quota_operations; |
| sb->s_qcop = &f2fs_quotactl_ops; |
| sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; |
| |
| if (f2fs_sb_has_quota_ino(sbi)) { |
| for (i = 0; i < MAXQUOTAS; i++) { |
| if (f2fs_qf_ino(sbi->sb, i)) |
| sbi->nquota_files++; |
| } |
| } |
| #endif |
| |
| sb->s_op = &f2fs_sops; |
| #ifdef CONFIG_FS_ENCRYPTION |
| sb->s_cop = &f2fs_cryptops; |
| #endif |
| #ifdef CONFIG_FS_VERITY |
| sb->s_vop = &f2fs_verityops; |
| #endif |
| sb->s_xattr = f2fs_xattr_handlers; |
| sb->s_export_op = &f2fs_export_ops; |
| sb->s_magic = F2FS_SUPER_MAGIC; |
| sb->s_time_gran = 1; |
| sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | |
| (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); |
| super_set_uuid(sb, (void *) raw_super->uuid, sizeof(raw_super->uuid)); |
| super_set_sysfs_name_bdev(sb); |
| sb->s_iflags |= SB_I_CGROUPWB; |
| |
| /* init f2fs-specific super block info */ |
| sbi->valid_super_block = valid_super_block; |
| |
| /* disallow all the data/node/meta page writes */ |
| set_sbi_flag(sbi, SBI_POR_DOING); |
| |
| err = f2fs_init_write_merge_io(sbi); |
| if (err) |
| goto free_bio_info; |
| |
| init_sb_info(sbi); |
| |
| err = f2fs_init_iostat(sbi); |
| if (err) |
| goto free_bio_info; |
| |
| err = init_percpu_info(sbi); |
| if (err) |
| goto free_iostat; |
| |
| /* init per sbi slab cache */ |
| err = f2fs_init_xattr_caches(sbi); |
| if (err) |
| goto free_percpu; |
| err = f2fs_init_page_array_cache(sbi); |
| if (err) |
| goto free_xattr_cache; |
| |
| /* get an inode for meta space */ |
| sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); |
| if (IS_ERR(sbi->meta_inode)) { |
| f2fs_err(sbi, "Failed to read F2FS meta data inode"); |
| err = PTR_ERR(sbi->meta_inode); |
| goto free_page_array_cache; |
| } |
| |
| err = f2fs_get_valid_checkpoint(sbi); |
| if (err) { |
| f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); |
| goto free_meta_inode; |
| } |
| |
| if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) |
| set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); |
| if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { |
| set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); |
| sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; |
| } |
| |
| if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) |
| set_sbi_flag(sbi, SBI_NEED_FSCK); |
| |
| /* Initialize device list */ |
| err = f2fs_scan_devices(sbi); |
| if (err) { |
| f2fs_err(sbi, "Failed to find devices"); |
| goto free_devices; |
| } |
| |
| err = f2fs_init_post_read_wq(sbi); |
| if (err) { |
| f2fs_err(sbi, "Failed to initialize post read workqueue"); |
| goto free_devices; |
| } |
| |
| sbi->total_valid_node_count = |
| le32_to_cpu(sbi->ckpt->valid_node_count); |
| percpu_counter_set(&sbi->total_valid_inode_count, |
| le32_to_cpu(sbi->ckpt->valid_inode_count)); |
| sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); |
| sbi->total_valid_block_count = |
| le64_to_cpu(sbi->ckpt->valid_block_count); |
| sbi->last_valid_block_count = sbi->total_valid_block_count; |
| sbi->reserved_blocks = 0; |
| sbi->current_reserved_blocks = 0; |
| limit_reserve_root(sbi); |
| adjust_unusable_cap_perc(sbi); |
| |
| f2fs_init_extent_cache_info(sbi); |
| |
| f2fs_init_ino_entry_info(sbi); |
| |
| f2fs_init_fsync_node_info(sbi); |
| |
| /* setup checkpoint request control and start checkpoint issue thread */ |
| f2fs_init_ckpt_req_control(sbi); |
| if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) && |
| test_opt(sbi, MERGE_CHECKPOINT)) { |
| err = f2fs_start_ckpt_thread(sbi); |
| if (err) { |
| f2fs_err(sbi, |
| "Failed to start F2FS issue_checkpoint_thread (%d)", |
| err); |
| goto stop_ckpt_thread; |
| } |
| } |
| |
| /* setup f2fs internal modules */ |
| err = f2fs_build_segment_manager(sbi); |
| if (err) { |
| f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", |
| err); |
| goto free_sm; |
| } |
| err = f2fs_build_node_manager(sbi); |
| if (err) { |
| f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", |
| err); |
| goto free_nm; |
| } |
| |
| /* For write statistics */ |
| sbi->sectors_written_start = f2fs_get_sectors_written(sbi); |
| |
| /* Read accumulated write IO statistics if exists */ |
| seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); |
| if (__exist_node_summaries(sbi)) |
| sbi->kbytes_written = |
| le64_to_cpu(seg_i->journal->info.kbytes_written); |
| |
| f2fs_build_gc_manager(sbi); |
| |
| err = f2fs_build_stats(sbi); |
| if (err) |
| goto free_nm; |
| |
| /* get an inode for node space */ |
| sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); |
| if (IS_ERR(sbi->node_inode)) { |
| f2fs_err(sbi, "Failed to read node inode"); |
| err = PTR_ERR(sbi->node_inode); |
| goto free_stats; |
| } |
| |
| /* read root inode and dentry */ |
| root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); |
| if (IS_ERR(root)) { |
| f2fs_err(sbi, "Failed to read root inode"); |
| err = PTR_ERR(root); |
| goto free_node_inode; |
| } |
| if (!S_ISDIR(root->i_mode) || !root->i_blocks || |
| !root->i_size || !root->i_nlink) { |
| iput(root); |
| err = -EINVAL; |
| goto free_node_inode; |
| } |
| |
| generic_set_sb_d_ops(sb); |
| sb->s_root = d_make_root(root); /* allocate root dentry */ |
| if (!sb->s_root) { |
| err = -ENOMEM; |
| goto free_node_inode; |
| } |
| |
| err = f2fs_init_compress_inode(sbi); |
| if (err) |
| goto free_root_inode; |
| |
| err = f2fs_register_sysfs(sbi); |
| if (err) |
| goto free_compress_inode; |
| |
| #ifdef CONFIG_QUOTA |
| /* Enable quota usage during mount */ |
| if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { |
| err = f2fs_enable_quotas(sb); |
| if (err) |
| f2fs_err(sbi, "Cannot turn on quotas: error %d", err); |
| } |
| |
| quota_enabled = f2fs_recover_quota_begin(sbi); |
| #endif |
| /* if there are any orphan inodes, free them */ |
| err = f2fs_recover_orphan_inodes(sbi); |
| if (err) |
| goto free_meta; |
| |
| if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) |
| goto reset_checkpoint; |
| |
| /* recover fsynced data */ |
| if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && |
| !test_opt(sbi, NORECOVERY)) { |
| /* |
| * mount should be failed, when device has readonly mode, and |
| * previous checkpoint was not done by clean system shutdown. |
| */ |
| if (f2fs_hw_is_readonly(sbi)) { |
| if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { |
| err = f2fs_recover_fsync_data(sbi, true); |
| if (err > 0) { |
| err = -EROFS; |
| f2fs_err(sbi, "Need to recover fsync data, but " |
| "write access unavailable, please try " |
| "mount w/ disable_roll_forward or norecovery"); |
| } |
| if (err < 0) |
| goto free_meta; |
| } |
| f2fs_info(sbi, "write access unavailable, skipping recovery"); |
| goto reset_checkpoint; |
| } |
| |
| if (need_fsck) |
| set_sbi_flag(sbi, SBI_NEED_FSCK); |
| |
| if (skip_recovery) |
| goto reset_checkpoint; |
| |
| err = f2fs_recover_fsync_data(sbi, false); |
| if (err < 0) { |
| if (err != -ENOMEM) |
| skip_recovery = true; |
| need_fsck = true; |
| f2fs_err(sbi, "Cannot recover all fsync data errno=%d", |
| err); |
| goto free_meta; |
| } |
| } else { |
| err = f2fs_recover_fsync_data(sbi, true); |
| |
| if (!f2fs_readonly(sb) && err > 0) { |
| err = -EINVAL; |
| f2fs_err(sbi, "Need to recover fsync data"); |
| goto free_meta; |
| } |
| } |
| |
| #ifdef CONFIG_QUOTA |
| f2fs_recover_quota_end(sbi, quota_enabled); |
| #endif |
| reset_checkpoint: |
| /* |
| * If the f2fs is not readonly and fsync data recovery succeeds, |
| * check zoned block devices' write pointer consistency. |
| */ |
| if (f2fs_sb_has_blkzoned(sbi) && !f2fs_readonly(sb)) { |
| int err2; |
| |
| f2fs_notice(sbi, "Checking entire write pointers"); |
| err2 = f2fs_check_write_pointer(sbi); |
| if (err2) |
| err = err2; |
| } |
| if (err) |
| goto free_meta; |
| |
| err = f2fs_init_inmem_curseg(sbi); |
| if (err) |
| goto sync_free_meta; |
| |
| /* f2fs_recover_fsync_data() cleared this already */ |
| clear_sbi_flag(sbi, SBI_POR_DOING); |
| |
| if (test_opt(sbi, DISABLE_CHECKPOINT)) { |
| err = f2fs_disable_checkpoint(sbi); |
| if (err) |
| goto sync_free_meta; |
| } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { |
| f2fs_enable_checkpoint(sbi); |
| } |
| |
| /* |
| * If filesystem is not mounted as read-only then |
| * do start the gc_thread. |
| */ |
| if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF || |
| test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) { |
| /* After POR, we can run background GC thread.*/ |
| err = f2fs_start_gc_thread(sbi); |
| if (err) |
| goto sync_free_meta; |
| } |
| kvfree(options); |
| |
| /* recover broken superblock */ |
| if (recovery) { |
| err = f2fs_commit_super(sbi, true); |
| f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", |
| sbi->valid_super_block ? 1 : 2, err); |
| } |
| |
| f2fs_join_shrinker(sbi); |
| |
| f2fs_tuning_parameters(sbi); |
| |
| f2fs_notice(sbi, "Mounted with checkpoint version = %llx", |
| cur_cp_version(F2FS_CKPT(sbi))); |
| f2fs_update_time(sbi, CP_TIME); |
| f2fs_update_time(sbi, REQ_TIME); |
| clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); |
| return 0; |
| |
| sync_free_meta: |
| /* safe to flush all the data */ |
| sync_filesystem(sbi->sb); |
| retry_cnt = 0; |
| |
| free_meta: |
| #ifdef CONFIG_QUOTA |
| f2fs_truncate_quota_inode_pages(sb); |
| if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) |
| f2fs_quota_off_umount(sbi->sb); |
| #endif |
| /* |
| * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() |
| * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() |
| * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which |
| * falls into an infinite loop in f2fs_sync_meta_pages(). |
| */ |
| truncate_inode_pages_final(META_MAPPING(sbi)); |
| /* evict some inodes being cached by GC */ |
| evict_inodes(sb); |
| f2fs_unregister_sysfs(sbi); |
| free_compress_inode: |
| f2fs_destroy_compress_inode(sbi); |
| free_root_inode: |
| dput(sb->s_root); |
| sb->s_root = NULL; |
| free_node_inode: |
| f2fs_release_ino_entry(sbi, true); |
| truncate_inode_pages_final(NODE_MAPPING(sbi)); |
| iput(sbi->node_inode); |
| sbi->node_inode = NULL; |
| free_stats: |
| f2fs_destroy_stats(sbi); |
| free_nm: |
| /* stop discard thread before destroying node manager */ |
| f2fs_stop_discard_thread(sbi); |
| f2fs_destroy_node_manager(sbi); |
| free_sm: |
| f2fs_destroy_segment_manager(sbi); |
| stop_ckpt_thread: |
| f2fs_stop_ckpt_thread(sbi); |
| /* flush s_error_work before sbi destroy */ |
| flush_work(&sbi->s_error_work); |
| f2fs_destroy_post_read_wq(sbi); |
| free_devices: |
| destroy_device_list(sbi); |
| kvfree(sbi->ckpt); |
| free_meta_inode: |
| make_bad_inode(sbi->meta_inode); |
| iput(sbi->meta_inode); |
| sbi->meta_inode = NULL; |
| free_page_array_cache: |
| f2fs_destroy_page_array_cache(sbi); |
| free_xattr_cache: |
| f2fs_destroy_xattr_caches(sbi); |
| free_percpu: |
| destroy_percpu_info(sbi); |
| free_iostat: |
| f2fs_destroy_iostat(sbi); |
| free_bio_info: |
| for (i = 0; i < NR_PAGE_TYPE; i++) |
| kvfree(sbi->write_io[i]); |
| |
| #if IS_ENABLED(CONFIG_UNICODE) |
| utf8_unload(sb->s_encoding); |
| sb->s_encoding = NULL; |
| #endif |
| free_options: |
| #ifdef CONFIG_QUOTA |
| for (i = 0; i < MAXQUOTAS; i++) |
| kfree(F2FS_OPTION(sbi).s_qf_names[i]); |
| #endif |
| fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); |
| kvfree(options); |
| free_sb_buf: |
| kfree(raw_super); |
| free_sbi: |
| if (sbi->s_chksum_driver) |
| crypto_free_shash(sbi->s_chksum_driver); |
| kfree(sbi); |
| sb->s_fs_info = NULL; |
| |
| /* give only one another chance */ |
| if (retry_cnt > 0 && skip_recovery) { |
| retry_cnt--; |
| shrink_dcache_sb(sb); |
| goto try_onemore; |
| } |
| return err; |
| } |
| |
| static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, |
| const char *dev_name, void *data) |
| { |
| return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); |
| } |
| |
| static void kill_f2fs_super(struct super_block *sb) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| |
| if (sb->s_root) { |
| set_sbi_flag(sbi, SBI_IS_CLOSE); |
| f2fs_stop_gc_thread(sbi); |
| f2fs_stop_discard_thread(sbi); |
| |
| #ifdef CONFIG_F2FS_FS_COMPRESSION |
| /* |
| * latter evict_inode() can bypass checking and invalidating |
| * compress inode cache. |
| */ |
| if (test_opt(sbi, COMPRESS_CACHE)) |
| truncate_inode_pages_final(COMPRESS_MAPPING(sbi)); |
| #endif |
| |
| if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || |
| !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { |
| struct cp_control cpc = { |
| .reason = CP_UMOUNT, |
| }; |
| stat_inc_cp_call_count(sbi, TOTAL_CALL); |
| f2fs_write_checkpoint(sbi, &cpc); |
| } |
| |
| if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) |
| sb->s_flags &= ~SB_RDONLY; |
| } |
| kill_block_super(sb); |
| /* Release block devices last, after fscrypt_destroy_keyring(). */ |
| if (sbi) { |
| destroy_device_list(sbi); |
| kfree(sbi); |
| sb->s_fs_info = NULL; |
| } |
| } |
| |
| static struct file_system_type f2fs_fs_type = { |
| .owner = THIS_MODULE, |
| .name = "f2fs", |
| .mount = f2fs_mount, |
| .kill_sb = kill_f2fs_super, |
| .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, |
| }; |
| MODULE_ALIAS_FS("f2fs"); |
| |
| static int __init init_inodecache(void) |
| { |
| f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", |
| sizeof(struct f2fs_inode_info), 0, |
| SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); |
| return f2fs_inode_cachep ? 0 : -ENOMEM; |
| } |
| |
| static void destroy_inodecache(void) |
| { |
| /* |
| * Make sure all delayed rcu free inodes are flushed before we |
| * destroy cache. |
| */ |
| rcu_barrier(); |
| kmem_cache_destroy(f2fs_inode_cachep); |
| } |
| |
| static int __init init_f2fs_fs(void) |
| { |
| int err; |
| |
| err = init_inodecache(); |
| if (err) |
| goto fail; |
| err = f2fs_create_node_manager_caches(); |
| if (err) |
| goto free_inodecache; |
| err = f2fs_create_segment_manager_caches(); |
| if (err) |
| goto free_node_manager_caches; |
| err = f2fs_create_checkpoint_caches(); |
| if (err) |
| goto free_segment_manager_caches; |
| err = f2fs_create_recovery_cache(); |
| if (err) |
| goto free_checkpoint_caches; |
| err = f2fs_create_extent_cache(); |
| if (err) |
| goto free_recovery_cache; |
| err = f2fs_create_garbage_collection_cache(); |
| if (err) |
| goto free_extent_cache; |
| err = f2fs_init_sysfs(); |
| if (err) |
| goto free_garbage_collection_cache; |
| err = f2fs_init_shrinker(); |
| if (err) |
| goto free_sysfs; |
| err = register_filesystem(&f2fs_fs_type); |
| if (err) |
| goto free_shrinker; |
| f2fs_create_root_stats(); |
| err = f2fs_init_post_read_processing(); |
| if (err) |
| goto free_root_stats; |
| err = f2fs_init_iostat_processing(); |
| if (err) |
| goto free_post_read; |
| err = f2fs_init_bio_entry_cache(); |
| if (err) |
| goto free_iostat; |
| err = f2fs_init_bioset(); |
| if (err) |
| goto free_bio_entry_cache; |
| err = f2fs_init_compress_mempool(); |
| if (err) |
| goto free_bioset; |
| err = f2fs_init_compress_cache(); |
| if (err) |
| goto free_compress_mempool; |
| err = f2fs_create_casefold_cache(); |
| if (err) |
| goto free_compress_cache; |
| return 0; |
| free_compress_cache: |
| f2fs_destroy_compress_cache(); |
| free_compress_mempool: |
| f2fs_destroy_compress_mempool(); |
| free_bioset: |
| f2fs_destroy_bioset(); |
| free_bio_entry_cache: |
| f2fs_destroy_bio_entry_cache(); |
| free_iostat: |
| f2fs_destroy_iostat_processing(); |
| free_post_read: |
| f2fs_destroy_post_read_processing(); |
| free_root_stats: |
| f2fs_destroy_root_stats(); |
| unregister_filesystem(&f2fs_fs_type); |
| free_shrinker: |
| f2fs_exit_shrinker(); |
| free_sysfs: |
| f2fs_exit_sysfs(); |
| free_garbage_collection_cache: |
| f2fs_destroy_garbage_collection_cache(); |
| free_extent_cache: |
| f2fs_destroy_extent_cache(); |
| free_recovery_cache: |
| f2fs_destroy_recovery_cache(); |
| free_checkpoint_caches: |
| f2fs_destroy_checkpoint_caches(); |
| free_segment_manager_caches: |
| f2fs_destroy_segment_manager_caches(); |
| free_node_manager_caches: |
| f2fs_destroy_node_manager_caches(); |
| free_inodecache: |
| destroy_inodecache(); |
| fail: |
| return err; |
| } |
| |
| static void __exit exit_f2fs_fs(void) |
| { |
| f2fs_destroy_casefold_cache(); |
| f2fs_destroy_compress_cache(); |
| f2fs_destroy_compress_mempool(); |
| f2fs_destroy_bioset(); |
| f2fs_destroy_bio_entry_cache(); |
| f2fs_destroy_iostat_processing(); |
| f2fs_destroy_post_read_processing(); |
| f2fs_destroy_root_stats(); |
| unregister_filesystem(&f2fs_fs_type); |
| f2fs_exit_shrinker(); |
| f2fs_exit_sysfs(); |
| f2fs_destroy_garbage_collection_cache(); |
| f2fs_destroy_extent_cache(); |
| f2fs_destroy_recovery_cache(); |
| f2fs_destroy_checkpoint_caches(); |
| f2fs_destroy_segment_manager_caches(); |
| f2fs_destroy_node_manager_caches(); |
| destroy_inodecache(); |
| } |
| |
| module_init(init_f2fs_fs) |
| module_exit(exit_f2fs_fs) |
| |
| MODULE_AUTHOR("Samsung Electronics's Praesto Team"); |
| MODULE_DESCRIPTION("Flash Friendly File System"); |
| MODULE_LICENSE("GPL"); |
| MODULE_SOFTDEP("pre: crc32"); |
| |