| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _LINUX_MM_H |
| #define _LINUX_MM_H |
| |
| #include <linux/errno.h> |
| #include <linux/mmdebug.h> |
| #include <linux/gfp.h> |
| #include <linux/pgalloc_tag.h> |
| #include <linux/bug.h> |
| #include <linux/list.h> |
| #include <linux/mmzone.h> |
| #include <linux/rbtree.h> |
| #include <linux/atomic.h> |
| #include <linux/debug_locks.h> |
| #include <linux/mm_types.h> |
| #include <linux/mmap_lock.h> |
| #include <linux/range.h> |
| #include <linux/pfn.h> |
| #include <linux/percpu-refcount.h> |
| #include <linux/bit_spinlock.h> |
| #include <linux/shrinker.h> |
| #include <linux/resource.h> |
| #include <linux/page_ext.h> |
| #include <linux/err.h> |
| #include <linux/page-flags.h> |
| #include <linux/page_ref.h> |
| #include <linux/overflow.h> |
| #include <linux/sizes.h> |
| #include <linux/sched.h> |
| #include <linux/pgtable.h> |
| #include <linux/kasan.h> |
| #include <linux/memremap.h> |
| #include <linux/slab.h> |
| |
| struct mempolicy; |
| struct anon_vma; |
| struct anon_vma_chain; |
| struct user_struct; |
| struct pt_regs; |
| struct folio_batch; |
| |
| extern int sysctl_page_lock_unfairness; |
| |
| void mm_core_init(void); |
| void init_mm_internals(void); |
| |
| #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ |
| extern unsigned long max_mapnr; |
| |
| static inline void set_max_mapnr(unsigned long limit) |
| { |
| max_mapnr = limit; |
| } |
| #else |
| static inline void set_max_mapnr(unsigned long limit) { } |
| #endif |
| |
| extern atomic_long_t _totalram_pages; |
| static inline unsigned long totalram_pages(void) |
| { |
| return (unsigned long)atomic_long_read(&_totalram_pages); |
| } |
| |
| static inline void totalram_pages_inc(void) |
| { |
| atomic_long_inc(&_totalram_pages); |
| } |
| |
| static inline void totalram_pages_dec(void) |
| { |
| atomic_long_dec(&_totalram_pages); |
| } |
| |
| static inline void totalram_pages_add(long count) |
| { |
| atomic_long_add(count, &_totalram_pages); |
| } |
| |
| extern void * high_memory; |
| extern int page_cluster; |
| extern const int page_cluster_max; |
| |
| #ifdef CONFIG_SYSCTL |
| extern int sysctl_legacy_va_layout; |
| #else |
| #define sysctl_legacy_va_layout 0 |
| #endif |
| |
| #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS |
| extern const int mmap_rnd_bits_min; |
| extern int mmap_rnd_bits_max __ro_after_init; |
| extern int mmap_rnd_bits __read_mostly; |
| #endif |
| #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS |
| extern const int mmap_rnd_compat_bits_min; |
| extern const int mmap_rnd_compat_bits_max; |
| extern int mmap_rnd_compat_bits __read_mostly; |
| #endif |
| |
| #ifndef PHYSMEM_END |
| # ifdef MAX_PHYSMEM_BITS |
| # define PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) |
| # else |
| # define PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) |
| # endif |
| #endif |
| |
| #include <asm/page.h> |
| #include <asm/processor.h> |
| |
| #ifndef __pa_symbol |
| #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) |
| #endif |
| |
| #ifndef page_to_virt |
| #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) |
| #endif |
| |
| #ifndef lm_alias |
| #define lm_alias(x) __va(__pa_symbol(x)) |
| #endif |
| |
| /* |
| * To prevent common memory management code establishing |
| * a zero page mapping on a read fault. |
| * This macro should be defined within <asm/pgtable.h>. |
| * s390 does this to prevent multiplexing of hardware bits |
| * related to the physical page in case of virtualization. |
| */ |
| #ifndef mm_forbids_zeropage |
| #define mm_forbids_zeropage(X) (0) |
| #endif |
| |
| /* |
| * On some architectures it is expensive to call memset() for small sizes. |
| * If an architecture decides to implement their own version of |
| * mm_zero_struct_page they should wrap the defines below in a #ifndef and |
| * define their own version of this macro in <asm/pgtable.h> |
| */ |
| #if BITS_PER_LONG == 64 |
| /* This function must be updated when the size of struct page grows above 96 |
| * or reduces below 56. The idea that compiler optimizes out switch() |
| * statement, and only leaves move/store instructions. Also the compiler can |
| * combine write statements if they are both assignments and can be reordered, |
| * this can result in several of the writes here being dropped. |
| */ |
| #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) |
| static inline void __mm_zero_struct_page(struct page *page) |
| { |
| unsigned long *_pp = (void *)page; |
| |
| /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ |
| BUILD_BUG_ON(sizeof(struct page) & 7); |
| BUILD_BUG_ON(sizeof(struct page) < 56); |
| BUILD_BUG_ON(sizeof(struct page) > 96); |
| |
| switch (sizeof(struct page)) { |
| case 96: |
| _pp[11] = 0; |
| fallthrough; |
| case 88: |
| _pp[10] = 0; |
| fallthrough; |
| case 80: |
| _pp[9] = 0; |
| fallthrough; |
| case 72: |
| _pp[8] = 0; |
| fallthrough; |
| case 64: |
| _pp[7] = 0; |
| fallthrough; |
| case 56: |
| _pp[6] = 0; |
| _pp[5] = 0; |
| _pp[4] = 0; |
| _pp[3] = 0; |
| _pp[2] = 0; |
| _pp[1] = 0; |
| _pp[0] = 0; |
| } |
| } |
| #else |
| #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) |
| #endif |
| |
| /* |
| * Default maximum number of active map areas, this limits the number of vmas |
| * per mm struct. Users can overwrite this number by sysctl but there is a |
| * problem. |
| * |
| * When a program's coredump is generated as ELF format, a section is created |
| * per a vma. In ELF, the number of sections is represented in unsigned short. |
| * This means the number of sections should be smaller than 65535 at coredump. |
| * Because the kernel adds some informative sections to a image of program at |
| * generating coredump, we need some margin. The number of extra sections is |
| * 1-3 now and depends on arch. We use "5" as safe margin, here. |
| * |
| * ELF extended numbering allows more than 65535 sections, so 16-bit bound is |
| * not a hard limit any more. Although some userspace tools can be surprised by |
| * that. |
| */ |
| #define MAPCOUNT_ELF_CORE_MARGIN (5) |
| #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) |
| |
| extern int sysctl_max_map_count; |
| |
| extern unsigned long sysctl_user_reserve_kbytes; |
| extern unsigned long sysctl_admin_reserve_kbytes; |
| |
| extern int sysctl_overcommit_memory; |
| extern int sysctl_overcommit_ratio; |
| extern unsigned long sysctl_overcommit_kbytes; |
| |
| int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *, |
| loff_t *); |
| int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *, |
| loff_t *); |
| int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *, |
| loff_t *); |
| |
| #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) |
| #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) |
| #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) |
| #else |
| #define nth_page(page,n) ((page) + (n)) |
| #define folio_page_idx(folio, p) ((p) - &(folio)->page) |
| #endif |
| |
| /* to align the pointer to the (next) page boundary */ |
| #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) |
| |
| /* to align the pointer to the (prev) page boundary */ |
| #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) |
| |
| /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ |
| #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) |
| |
| static inline struct folio *lru_to_folio(struct list_head *head) |
| { |
| return list_entry((head)->prev, struct folio, lru); |
| } |
| |
| void setup_initial_init_mm(void *start_code, void *end_code, |
| void *end_data, void *brk); |
| |
| /* |
| * Linux kernel virtual memory manager primitives. |
| * The idea being to have a "virtual" mm in the same way |
| * we have a virtual fs - giving a cleaner interface to the |
| * mm details, and allowing different kinds of memory mappings |
| * (from shared memory to executable loading to arbitrary |
| * mmap() functions). |
| */ |
| |
| struct vm_area_struct *vm_area_alloc(struct mm_struct *); |
| struct vm_area_struct *vm_area_dup(struct vm_area_struct *); |
| void vm_area_free(struct vm_area_struct *); |
| /* Use only if VMA has no other users */ |
| void __vm_area_free(struct vm_area_struct *vma); |
| |
| #ifndef CONFIG_MMU |
| extern struct rb_root nommu_region_tree; |
| extern struct rw_semaphore nommu_region_sem; |
| |
| extern unsigned int kobjsize(const void *objp); |
| #endif |
| |
| /* |
| * vm_flags in vm_area_struct, see mm_types.h. |
| * When changing, update also include/trace/events/mmflags.h |
| */ |
| #define VM_NONE 0x00000000 |
| |
| #define VM_READ 0x00000001 /* currently active flags */ |
| #define VM_WRITE 0x00000002 |
| #define VM_EXEC 0x00000004 |
| #define VM_SHARED 0x00000008 |
| |
| /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ |
| #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ |
| #define VM_MAYWRITE 0x00000020 |
| #define VM_MAYEXEC 0x00000040 |
| #define VM_MAYSHARE 0x00000080 |
| |
| #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ |
| #ifdef CONFIG_MMU |
| #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ |
| #else /* CONFIG_MMU */ |
| #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ |
| #define VM_UFFD_MISSING 0 |
| #endif /* CONFIG_MMU */ |
| #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ |
| #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ |
| |
| #define VM_LOCKED 0x00002000 |
| #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ |
| |
| /* Used by sys_madvise() */ |
| #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ |
| #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ |
| |
| #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ |
| #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ |
| #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ |
| #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ |
| #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ |
| #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ |
| #define VM_SYNC 0x00800000 /* Synchronous page faults */ |
| #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ |
| #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ |
| #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ |
| |
| #ifdef CONFIG_MEM_SOFT_DIRTY |
| # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ |
| #else |
| # define VM_SOFTDIRTY 0 |
| #endif |
| |
| #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ |
| #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ |
| #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ |
| #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ |
| |
| #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS |
| #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ |
| #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ |
| #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ |
| #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ |
| #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ |
| #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ |
| #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) |
| #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) |
| #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) |
| #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) |
| #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) |
| #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) |
| #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ |
| |
| #ifdef CONFIG_ARCH_HAS_PKEYS |
| # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 |
| # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 |
| # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 |
| # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 |
| #if CONFIG_ARCH_PKEY_BITS > 3 |
| # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 |
| #else |
| # define VM_PKEY_BIT3 0 |
| #endif |
| #if CONFIG_ARCH_PKEY_BITS > 4 |
| # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 |
| #else |
| # define VM_PKEY_BIT4 0 |
| #endif |
| #endif /* CONFIG_ARCH_HAS_PKEYS */ |
| |
| #ifdef CONFIG_X86_USER_SHADOW_STACK |
| /* |
| * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of |
| * support core mm. |
| * |
| * These VMAs will get a single end guard page. This helps userspace protect |
| * itself from attacks. A single page is enough for current shadow stack archs |
| * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c |
| * for more details on the guard size. |
| */ |
| # define VM_SHADOW_STACK VM_HIGH_ARCH_5 |
| #else |
| # define VM_SHADOW_STACK VM_NONE |
| #endif |
| |
| #if defined(CONFIG_X86) |
| # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ |
| #elif defined(CONFIG_PPC64) |
| # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ |
| #elif defined(CONFIG_PARISC) |
| # define VM_GROWSUP VM_ARCH_1 |
| #elif defined(CONFIG_SPARC64) |
| # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ |
| # define VM_ARCH_CLEAR VM_SPARC_ADI |
| #elif defined(CONFIG_ARM64) |
| # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ |
| # define VM_ARCH_CLEAR VM_ARM64_BTI |
| #elif !defined(CONFIG_MMU) |
| # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ |
| #endif |
| |
| #if defined(CONFIG_ARM64_MTE) |
| # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */ |
| # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */ |
| #else |
| # define VM_MTE VM_NONE |
| # define VM_MTE_ALLOWED VM_NONE |
| #endif |
| |
| #ifndef VM_GROWSUP |
| # define VM_GROWSUP VM_NONE |
| #endif |
| |
| #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR |
| # define VM_UFFD_MINOR_BIT 38 |
| # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ |
| #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ |
| # define VM_UFFD_MINOR VM_NONE |
| #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ |
| |
| /* |
| * This flag is used to connect VFIO to arch specific KVM code. It |
| * indicates that the memory under this VMA is safe for use with any |
| * non-cachable memory type inside KVM. Some VFIO devices, on some |
| * platforms, are thought to be unsafe and can cause machine crashes |
| * if KVM does not lock down the memory type. |
| */ |
| #ifdef CONFIG_64BIT |
| #define VM_ALLOW_ANY_UNCACHED_BIT 39 |
| #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) |
| #else |
| #define VM_ALLOW_ANY_UNCACHED VM_NONE |
| #endif |
| |
| #ifdef CONFIG_64BIT |
| #define VM_DROPPABLE_BIT 40 |
| #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) |
| #elif defined(CONFIG_PPC32) |
| #define VM_DROPPABLE VM_ARCH_1 |
| #else |
| #define VM_DROPPABLE VM_NONE |
| #endif |
| |
| #ifdef CONFIG_64BIT |
| /* VM is sealed, in vm_flags */ |
| #define VM_SEALED _BITUL(63) |
| #endif |
| |
| /* Bits set in the VMA until the stack is in its final location */ |
| #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) |
| |
| #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) |
| |
| /* Common data flag combinations */ |
| #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ |
| VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) |
| #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ |
| VM_MAYWRITE | VM_MAYEXEC) |
| #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ |
| VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) |
| |
| #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ |
| #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC |
| #endif |
| |
| #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ |
| #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS |
| #endif |
| |
| #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) |
| |
| #ifdef CONFIG_STACK_GROWSUP |
| #define VM_STACK VM_GROWSUP |
| #define VM_STACK_EARLY VM_GROWSDOWN |
| #else |
| #define VM_STACK VM_GROWSDOWN |
| #define VM_STACK_EARLY 0 |
| #endif |
| |
| #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) |
| |
| /* VMA basic access permission flags */ |
| #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) |
| |
| |
| /* |
| * Special vmas that are non-mergable, non-mlock()able. |
| */ |
| #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) |
| |
| /* This mask prevents VMA from being scanned with khugepaged */ |
| #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) |
| |
| /* This mask defines which mm->def_flags a process can inherit its parent */ |
| #define VM_INIT_DEF_MASK VM_NOHUGEPAGE |
| |
| /* This mask represents all the VMA flag bits used by mlock */ |
| #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) |
| |
| /* Arch-specific flags to clear when updating VM flags on protection change */ |
| #ifndef VM_ARCH_CLEAR |
| # define VM_ARCH_CLEAR VM_NONE |
| #endif |
| #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) |
| |
| /* |
| * mapping from the currently active vm_flags protection bits (the |
| * low four bits) to a page protection mask.. |
| */ |
| |
| /* |
| * The default fault flags that should be used by most of the |
| * arch-specific page fault handlers. |
| */ |
| #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ |
| FAULT_FLAG_KILLABLE | \ |
| FAULT_FLAG_INTERRUPTIBLE) |
| |
| /** |
| * fault_flag_allow_retry_first - check ALLOW_RETRY the first time |
| * @flags: Fault flags. |
| * |
| * This is mostly used for places where we want to try to avoid taking |
| * the mmap_lock for too long a time when waiting for another condition |
| * to change, in which case we can try to be polite to release the |
| * mmap_lock in the first round to avoid potential starvation of other |
| * processes that would also want the mmap_lock. |
| * |
| * Return: true if the page fault allows retry and this is the first |
| * attempt of the fault handling; false otherwise. |
| */ |
| static inline bool fault_flag_allow_retry_first(enum fault_flag flags) |
| { |
| return (flags & FAULT_FLAG_ALLOW_RETRY) && |
| (!(flags & FAULT_FLAG_TRIED)); |
| } |
| |
| #define FAULT_FLAG_TRACE \ |
| { FAULT_FLAG_WRITE, "WRITE" }, \ |
| { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ |
| { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ |
| { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ |
| { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ |
| { FAULT_FLAG_TRIED, "TRIED" }, \ |
| { FAULT_FLAG_USER, "USER" }, \ |
| { FAULT_FLAG_REMOTE, "REMOTE" }, \ |
| { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ |
| { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ |
| { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } |
| |
| /* |
| * vm_fault is filled by the pagefault handler and passed to the vma's |
| * ->fault function. The vma's ->fault is responsible for returning a bitmask |
| * of VM_FAULT_xxx flags that give details about how the fault was handled. |
| * |
| * MM layer fills up gfp_mask for page allocations but fault handler might |
| * alter it if its implementation requires a different allocation context. |
| * |
| * pgoff should be used in favour of virtual_address, if possible. |
| */ |
| struct vm_fault { |
| const struct { |
| struct vm_area_struct *vma; /* Target VMA */ |
| gfp_t gfp_mask; /* gfp mask to be used for allocations */ |
| pgoff_t pgoff; /* Logical page offset based on vma */ |
| unsigned long address; /* Faulting virtual address - masked */ |
| unsigned long real_address; /* Faulting virtual address - unmasked */ |
| }; |
| enum fault_flag flags; /* FAULT_FLAG_xxx flags |
| * XXX: should really be 'const' */ |
| pmd_t *pmd; /* Pointer to pmd entry matching |
| * the 'address' */ |
| pud_t *pud; /* Pointer to pud entry matching |
| * the 'address' |
| */ |
| union { |
| pte_t orig_pte; /* Value of PTE at the time of fault */ |
| pmd_t orig_pmd; /* Value of PMD at the time of fault, |
| * used by PMD fault only. |
| */ |
| }; |
| |
| struct page *cow_page; /* Page handler may use for COW fault */ |
| struct page *page; /* ->fault handlers should return a |
| * page here, unless VM_FAULT_NOPAGE |
| * is set (which is also implied by |
| * VM_FAULT_ERROR). |
| */ |
| /* These three entries are valid only while holding ptl lock */ |
| pte_t *pte; /* Pointer to pte entry matching |
| * the 'address'. NULL if the page |
| * table hasn't been allocated. |
| */ |
| spinlock_t *ptl; /* Page table lock. |
| * Protects pte page table if 'pte' |
| * is not NULL, otherwise pmd. |
| */ |
| pgtable_t prealloc_pte; /* Pre-allocated pte page table. |
| * vm_ops->map_pages() sets up a page |
| * table from atomic context. |
| * do_fault_around() pre-allocates |
| * page table to avoid allocation from |
| * atomic context. |
| */ |
| }; |
| |
| /* |
| * These are the virtual MM functions - opening of an area, closing and |
| * unmapping it (needed to keep files on disk up-to-date etc), pointer |
| * to the functions called when a no-page or a wp-page exception occurs. |
| */ |
| struct vm_operations_struct { |
| void (*open)(struct vm_area_struct * area); |
| /** |
| * @close: Called when the VMA is being removed from the MM. |
| * Context: User context. May sleep. Caller holds mmap_lock. |
| */ |
| void (*close)(struct vm_area_struct * area); |
| /* Called any time before splitting to check if it's allowed */ |
| int (*may_split)(struct vm_area_struct *area, unsigned long addr); |
| int (*mremap)(struct vm_area_struct *area); |
| /* |
| * Called by mprotect() to make driver-specific permission |
| * checks before mprotect() is finalised. The VMA must not |
| * be modified. Returns 0 if mprotect() can proceed. |
| */ |
| int (*mprotect)(struct vm_area_struct *vma, unsigned long start, |
| unsigned long end, unsigned long newflags); |
| vm_fault_t (*fault)(struct vm_fault *vmf); |
| vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); |
| vm_fault_t (*map_pages)(struct vm_fault *vmf, |
| pgoff_t start_pgoff, pgoff_t end_pgoff); |
| unsigned long (*pagesize)(struct vm_area_struct * area); |
| |
| /* notification that a previously read-only page is about to become |
| * writable, if an error is returned it will cause a SIGBUS */ |
| vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); |
| |
| /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ |
| vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); |
| |
| /* called by access_process_vm when get_user_pages() fails, typically |
| * for use by special VMAs. See also generic_access_phys() for a generic |
| * implementation useful for any iomem mapping. |
| */ |
| int (*access)(struct vm_area_struct *vma, unsigned long addr, |
| void *buf, int len, int write); |
| |
| /* Called by the /proc/PID/maps code to ask the vma whether it |
| * has a special name. Returning non-NULL will also cause this |
| * vma to be dumped unconditionally. */ |
| const char *(*name)(struct vm_area_struct *vma); |
| |
| #ifdef CONFIG_NUMA |
| /* |
| * set_policy() op must add a reference to any non-NULL @new mempolicy |
| * to hold the policy upon return. Caller should pass NULL @new to |
| * remove a policy and fall back to surrounding context--i.e. do not |
| * install a MPOL_DEFAULT policy, nor the task or system default |
| * mempolicy. |
| */ |
| int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); |
| |
| /* |
| * get_policy() op must add reference [mpol_get()] to any policy at |
| * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure |
| * in mm/mempolicy.c will do this automatically. |
| * get_policy() must NOT add a ref if the policy at (vma,addr) is not |
| * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. |
| * If no [shared/vma] mempolicy exists at the addr, get_policy() op |
| * must return NULL--i.e., do not "fallback" to task or system default |
| * policy. |
| */ |
| struct mempolicy *(*get_policy)(struct vm_area_struct *vma, |
| unsigned long addr, pgoff_t *ilx); |
| #endif |
| /* |
| * Called by vm_normal_page() for special PTEs to find the |
| * page for @addr. This is useful if the default behavior |
| * (using pte_page()) would not find the correct page. |
| */ |
| struct page *(*find_special_page)(struct vm_area_struct *vma, |
| unsigned long addr); |
| }; |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| static inline void vma_numab_state_init(struct vm_area_struct *vma) |
| { |
| vma->numab_state = NULL; |
| } |
| static inline void vma_numab_state_free(struct vm_area_struct *vma) |
| { |
| kfree(vma->numab_state); |
| } |
| #else |
| static inline void vma_numab_state_init(struct vm_area_struct *vma) {} |
| static inline void vma_numab_state_free(struct vm_area_struct *vma) {} |
| #endif /* CONFIG_NUMA_BALANCING */ |
| |
| #ifdef CONFIG_PER_VMA_LOCK |
| /* |
| * Try to read-lock a vma. The function is allowed to occasionally yield false |
| * locked result to avoid performance overhead, in which case we fall back to |
| * using mmap_lock. The function should never yield false unlocked result. |
| */ |
| static inline bool vma_start_read(struct vm_area_struct *vma) |
| { |
| /* |
| * Check before locking. A race might cause false locked result. |
| * We can use READ_ONCE() for the mm_lock_seq here, and don't need |
| * ACQUIRE semantics, because this is just a lockless check whose result |
| * we don't rely on for anything - the mm_lock_seq read against which we |
| * need ordering is below. |
| */ |
| if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) |
| return false; |
| |
| if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) |
| return false; |
| |
| /* |
| * Overflow might produce false locked result. |
| * False unlocked result is impossible because we modify and check |
| * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq |
| * modification invalidates all existing locks. |
| * |
| * We must use ACQUIRE semantics for the mm_lock_seq so that if we are |
| * racing with vma_end_write_all(), we only start reading from the VMA |
| * after it has been unlocked. |
| * This pairs with RELEASE semantics in vma_end_write_all(). |
| */ |
| if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { |
| up_read(&vma->vm_lock->lock); |
| return false; |
| } |
| return true; |
| } |
| |
| static inline void vma_end_read(struct vm_area_struct *vma) |
| { |
| rcu_read_lock(); /* keeps vma alive till the end of up_read */ |
| up_read(&vma->vm_lock->lock); |
| rcu_read_unlock(); |
| } |
| |
| /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ |
| static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) |
| { |
| mmap_assert_write_locked(vma->vm_mm); |
| |
| /* |
| * current task is holding mmap_write_lock, both vma->vm_lock_seq and |
| * mm->mm_lock_seq can't be concurrently modified. |
| */ |
| *mm_lock_seq = vma->vm_mm->mm_lock_seq; |
| return (vma->vm_lock_seq == *mm_lock_seq); |
| } |
| |
| /* |
| * Begin writing to a VMA. |
| * Exclude concurrent readers under the per-VMA lock until the currently |
| * write-locked mmap_lock is dropped or downgraded. |
| */ |
| static inline void vma_start_write(struct vm_area_struct *vma) |
| { |
| int mm_lock_seq; |
| |
| if (__is_vma_write_locked(vma, &mm_lock_seq)) |
| return; |
| |
| down_write(&vma->vm_lock->lock); |
| /* |
| * We should use WRITE_ONCE() here because we can have concurrent reads |
| * from the early lockless pessimistic check in vma_start_read(). |
| * We don't really care about the correctness of that early check, but |
| * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. |
| */ |
| WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); |
| up_write(&vma->vm_lock->lock); |
| } |
| |
| static inline void vma_assert_write_locked(struct vm_area_struct *vma) |
| { |
| int mm_lock_seq; |
| |
| VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); |
| } |
| |
| static inline void vma_assert_locked(struct vm_area_struct *vma) |
| { |
| if (!rwsem_is_locked(&vma->vm_lock->lock)) |
| vma_assert_write_locked(vma); |
| } |
| |
| static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) |
| { |
| /* When detaching vma should be write-locked */ |
| if (detached) |
| vma_assert_write_locked(vma); |
| vma->detached = detached; |
| } |
| |
| static inline void release_fault_lock(struct vm_fault *vmf) |
| { |
| if (vmf->flags & FAULT_FLAG_VMA_LOCK) |
| vma_end_read(vmf->vma); |
| else |
| mmap_read_unlock(vmf->vma->vm_mm); |
| } |
| |
| static inline void assert_fault_locked(struct vm_fault *vmf) |
| { |
| if (vmf->flags & FAULT_FLAG_VMA_LOCK) |
| vma_assert_locked(vmf->vma); |
| else |
| mmap_assert_locked(vmf->vma->vm_mm); |
| } |
| |
| struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, |
| unsigned long address); |
| |
| #else /* CONFIG_PER_VMA_LOCK */ |
| |
| static inline bool vma_start_read(struct vm_area_struct *vma) |
| { return false; } |
| static inline void vma_end_read(struct vm_area_struct *vma) {} |
| static inline void vma_start_write(struct vm_area_struct *vma) {} |
| static inline void vma_assert_write_locked(struct vm_area_struct *vma) |
| { mmap_assert_write_locked(vma->vm_mm); } |
| static inline void vma_mark_detached(struct vm_area_struct *vma, |
| bool detached) {} |
| |
| static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, |
| unsigned long address) |
| { |
| return NULL; |
| } |
| |
| static inline void vma_assert_locked(struct vm_area_struct *vma) |
| { |
| mmap_assert_locked(vma->vm_mm); |
| } |
| |
| static inline void release_fault_lock(struct vm_fault *vmf) |
| { |
| mmap_read_unlock(vmf->vma->vm_mm); |
| } |
| |
| static inline void assert_fault_locked(struct vm_fault *vmf) |
| { |
| mmap_assert_locked(vmf->vma->vm_mm); |
| } |
| |
| #endif /* CONFIG_PER_VMA_LOCK */ |
| |
| extern const struct vm_operations_struct vma_dummy_vm_ops; |
| |
| /* |
| * WARNING: vma_init does not initialize vma->vm_lock. |
| * Use vm_area_alloc()/vm_area_free() if vma needs locking. |
| */ |
| static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) |
| { |
| memset(vma, 0, sizeof(*vma)); |
| vma->vm_mm = mm; |
| vma->vm_ops = &vma_dummy_vm_ops; |
| INIT_LIST_HEAD(&vma->anon_vma_chain); |
| vma_mark_detached(vma, false); |
| vma_numab_state_init(vma); |
| } |
| |
| /* Use when VMA is not part of the VMA tree and needs no locking */ |
| static inline void vm_flags_init(struct vm_area_struct *vma, |
| vm_flags_t flags) |
| { |
| ACCESS_PRIVATE(vma, __vm_flags) = flags; |
| } |
| |
| /* |
| * Use when VMA is part of the VMA tree and modifications need coordination |
| * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and |
| * it should be locked explicitly beforehand. |
| */ |
| static inline void vm_flags_reset(struct vm_area_struct *vma, |
| vm_flags_t flags) |
| { |
| vma_assert_write_locked(vma); |
| vm_flags_init(vma, flags); |
| } |
| |
| static inline void vm_flags_reset_once(struct vm_area_struct *vma, |
| vm_flags_t flags) |
| { |
| vma_assert_write_locked(vma); |
| WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); |
| } |
| |
| static inline void vm_flags_set(struct vm_area_struct *vma, |
| vm_flags_t flags) |
| { |
| vma_start_write(vma); |
| ACCESS_PRIVATE(vma, __vm_flags) |= flags; |
| } |
| |
| static inline void vm_flags_clear(struct vm_area_struct *vma, |
| vm_flags_t flags) |
| { |
| vma_start_write(vma); |
| ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; |
| } |
| |
| /* |
| * Use only if VMA is not part of the VMA tree or has no other users and |
| * therefore needs no locking. |
| */ |
| static inline void __vm_flags_mod(struct vm_area_struct *vma, |
| vm_flags_t set, vm_flags_t clear) |
| { |
| vm_flags_init(vma, (vma->vm_flags | set) & ~clear); |
| } |
| |
| /* |
| * Use only when the order of set/clear operations is unimportant, otherwise |
| * use vm_flags_{set|clear} explicitly. |
| */ |
| static inline void vm_flags_mod(struct vm_area_struct *vma, |
| vm_flags_t set, vm_flags_t clear) |
| { |
| vma_start_write(vma); |
| __vm_flags_mod(vma, set, clear); |
| } |
| |
| static inline void vma_set_anonymous(struct vm_area_struct *vma) |
| { |
| vma->vm_ops = NULL; |
| } |
| |
| static inline bool vma_is_anonymous(struct vm_area_struct *vma) |
| { |
| return !vma->vm_ops; |
| } |
| |
| /* |
| * Indicate if the VMA is a heap for the given task; for |
| * /proc/PID/maps that is the heap of the main task. |
| */ |
| static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) |
| { |
| return vma->vm_start < vma->vm_mm->brk && |
| vma->vm_end > vma->vm_mm->start_brk; |
| } |
| |
| /* |
| * Indicate if the VMA is a stack for the given task; for |
| * /proc/PID/maps that is the stack of the main task. |
| */ |
| static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) |
| { |
| /* |
| * We make no effort to guess what a given thread considers to be |
| * its "stack". It's not even well-defined for programs written |
| * languages like Go. |
| */ |
| return vma->vm_start <= vma->vm_mm->start_stack && |
| vma->vm_end >= vma->vm_mm->start_stack; |
| } |
| |
| static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) |
| { |
| int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); |
| |
| if (!maybe_stack) |
| return false; |
| |
| if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == |
| VM_STACK_INCOMPLETE_SETUP) |
| return true; |
| |
| return false; |
| } |
| |
| static inline bool vma_is_foreign(struct vm_area_struct *vma) |
| { |
| if (!current->mm) |
| return true; |
| |
| if (current->mm != vma->vm_mm) |
| return true; |
| |
| return false; |
| } |
| |
| static inline bool vma_is_accessible(struct vm_area_struct *vma) |
| { |
| return vma->vm_flags & VM_ACCESS_FLAGS; |
| } |
| |
| static inline bool is_shared_maywrite(vm_flags_t vm_flags) |
| { |
| return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == |
| (VM_SHARED | VM_MAYWRITE); |
| } |
| |
| static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) |
| { |
| return is_shared_maywrite(vma->vm_flags); |
| } |
| |
| static inline |
| struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) |
| { |
| return mas_find(&vmi->mas, max - 1); |
| } |
| |
| static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) |
| { |
| /* |
| * Uses mas_find() to get the first VMA when the iterator starts. |
| * Calling mas_next() could skip the first entry. |
| */ |
| return mas_find(&vmi->mas, ULONG_MAX); |
| } |
| |
| static inline |
| struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) |
| { |
| return mas_next_range(&vmi->mas, ULONG_MAX); |
| } |
| |
| |
| static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) |
| { |
| return mas_prev(&vmi->mas, 0); |
| } |
| |
| static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, |
| unsigned long start, unsigned long end, gfp_t gfp) |
| { |
| __mas_set_range(&vmi->mas, start, end - 1); |
| mas_store_gfp(&vmi->mas, NULL, gfp); |
| if (unlikely(mas_is_err(&vmi->mas))) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| /* Free any unused preallocations */ |
| static inline void vma_iter_free(struct vma_iterator *vmi) |
| { |
| mas_destroy(&vmi->mas); |
| } |
| |
| static inline int vma_iter_bulk_store(struct vma_iterator *vmi, |
| struct vm_area_struct *vma) |
| { |
| vmi->mas.index = vma->vm_start; |
| vmi->mas.last = vma->vm_end - 1; |
| mas_store(&vmi->mas, vma); |
| if (unlikely(mas_is_err(&vmi->mas))) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static inline void vma_iter_invalidate(struct vma_iterator *vmi) |
| { |
| mas_pause(&vmi->mas); |
| } |
| |
| static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) |
| { |
| mas_set(&vmi->mas, addr); |
| } |
| |
| #define for_each_vma(__vmi, __vma) \ |
| while (((__vma) = vma_next(&(__vmi))) != NULL) |
| |
| /* The MM code likes to work with exclusive end addresses */ |
| #define for_each_vma_range(__vmi, __vma, __end) \ |
| while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) |
| |
| #ifdef CONFIG_SHMEM |
| /* |
| * The vma_is_shmem is not inline because it is used only by slow |
| * paths in userfault. |
| */ |
| bool vma_is_shmem(struct vm_area_struct *vma); |
| bool vma_is_anon_shmem(struct vm_area_struct *vma); |
| #else |
| static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } |
| static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } |
| #endif |
| |
| int vma_is_stack_for_current(struct vm_area_struct *vma); |
| |
| /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ |
| #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } |
| |
| struct mmu_gather; |
| struct inode; |
| |
| /* |
| * compound_order() can be called without holding a reference, which means |
| * that niceties like page_folio() don't work. These callers should be |
| * prepared to handle wild return values. For example, PG_head may be |
| * set before the order is initialised, or this may be a tail page. |
| * See compaction.c for some good examples. |
| */ |
| static inline unsigned int compound_order(struct page *page) |
| { |
| struct folio *folio = (struct folio *)page; |
| |
| if (!test_bit(PG_head, &folio->flags)) |
| return 0; |
| return folio->_flags_1 & 0xff; |
| } |
| |
| /** |
| * folio_order - The allocation order of a folio. |
| * @folio: The folio. |
| * |
| * A folio is composed of 2^order pages. See get_order() for the definition |
| * of order. |
| * |
| * Return: The order of the folio. |
| */ |
| static inline unsigned int folio_order(const struct folio *folio) |
| { |
| if (!folio_test_large(folio)) |
| return 0; |
| return folio->_flags_1 & 0xff; |
| } |
| |
| #include <linux/huge_mm.h> |
| |
| /* |
| * Methods to modify the page usage count. |
| * |
| * What counts for a page usage: |
| * - cache mapping (page->mapping) |
| * - private data (page->private) |
| * - page mapped in a task's page tables, each mapping |
| * is counted separately |
| * |
| * Also, many kernel routines increase the page count before a critical |
| * routine so they can be sure the page doesn't go away from under them. |
| */ |
| |
| /* |
| * Drop a ref, return true if the refcount fell to zero (the page has no users) |
| */ |
| static inline int put_page_testzero(struct page *page) |
| { |
| VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); |
| return page_ref_dec_and_test(page); |
| } |
| |
| static inline int folio_put_testzero(struct folio *folio) |
| { |
| return put_page_testzero(&folio->page); |
| } |
| |
| /* |
| * Try to grab a ref unless the page has a refcount of zero, return false if |
| * that is the case. |
| * This can be called when MMU is off so it must not access |
| * any of the virtual mappings. |
| */ |
| static inline bool get_page_unless_zero(struct page *page) |
| { |
| return page_ref_add_unless(page, 1, 0); |
| } |
| |
| static inline struct folio *folio_get_nontail_page(struct page *page) |
| { |
| if (unlikely(!get_page_unless_zero(page))) |
| return NULL; |
| return (struct folio *)page; |
| } |
| |
| extern int page_is_ram(unsigned long pfn); |
| |
| enum { |
| REGION_INTERSECTS, |
| REGION_DISJOINT, |
| REGION_MIXED, |
| }; |
| |
| int region_intersects(resource_size_t offset, size_t size, unsigned long flags, |
| unsigned long desc); |
| |
| /* Support for virtually mapped pages */ |
| struct page *vmalloc_to_page(const void *addr); |
| unsigned long vmalloc_to_pfn(const void *addr); |
| |
| /* |
| * Determine if an address is within the vmalloc range |
| * |
| * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there |
| * is no special casing required. |
| */ |
| #ifdef CONFIG_MMU |
| extern bool is_vmalloc_addr(const void *x); |
| extern int is_vmalloc_or_module_addr(const void *x); |
| #else |
| static inline bool is_vmalloc_addr(const void *x) |
| { |
| return false; |
| } |
| static inline int is_vmalloc_or_module_addr(const void *x) |
| { |
| return 0; |
| } |
| #endif |
| |
| /* |
| * How many times the entire folio is mapped as a single unit (eg by a |
| * PMD or PUD entry). This is probably not what you want, except for |
| * debugging purposes or implementation of other core folio_*() primitives. |
| */ |
| static inline int folio_entire_mapcount(const struct folio *folio) |
| { |
| VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); |
| return atomic_read(&folio->_entire_mapcount) + 1; |
| } |
| |
| static inline int folio_large_mapcount(const struct folio *folio) |
| { |
| VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); |
| return atomic_read(&folio->_large_mapcount) + 1; |
| } |
| |
| /** |
| * folio_mapcount() - Number of mappings of this folio. |
| * @folio: The folio. |
| * |
| * The folio mapcount corresponds to the number of present user page table |
| * entries that reference any part of a folio. Each such present user page |
| * table entry must be paired with exactly on folio reference. |
| * |
| * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts |
| * exactly once. |
| * |
| * For hugetlb folios, each abstracted "hugetlb" user page table entry that |
| * references the entire folio counts exactly once, even when such special |
| * page table entries are comprised of multiple ordinary page table entries. |
| * |
| * Will report 0 for pages which cannot be mapped into userspace, such as |
| * slab, page tables and similar. |
| * |
| * Return: The number of times this folio is mapped. |
| */ |
| static inline int folio_mapcount(const struct folio *folio) |
| { |
| int mapcount; |
| |
| if (likely(!folio_test_large(folio))) { |
| mapcount = atomic_read(&folio->_mapcount) + 1; |
| if (page_mapcount_is_type(mapcount)) |
| mapcount = 0; |
| return mapcount; |
| } |
| return folio_large_mapcount(folio); |
| } |
| |
| /** |
| * folio_mapped - Is this folio mapped into userspace? |
| * @folio: The folio. |
| * |
| * Return: True if any page in this folio is referenced by user page tables. |
| */ |
| static inline bool folio_mapped(const struct folio *folio) |
| { |
| return folio_mapcount(folio) >= 1; |
| } |
| |
| /* |
| * Return true if this page is mapped into pagetables. |
| * For compound page it returns true if any sub-page of compound page is mapped, |
| * even if this particular sub-page is not itself mapped by any PTE or PMD. |
| */ |
| static inline bool page_mapped(const struct page *page) |
| { |
| return folio_mapped(page_folio(page)); |
| } |
| |
| static inline struct page *virt_to_head_page(const void *x) |
| { |
| struct page *page = virt_to_page(x); |
| |
| return compound_head(page); |
| } |
| |
| static inline struct folio *virt_to_folio(const void *x) |
| { |
| struct page *page = virt_to_page(x); |
| |
| return page_folio(page); |
| } |
| |
| void __folio_put(struct folio *folio); |
| |
| void put_pages_list(struct list_head *pages); |
| |
| void split_page(struct page *page, unsigned int order); |
| void folio_copy(struct folio *dst, struct folio *src); |
| int folio_mc_copy(struct folio *dst, struct folio *src); |
| |
| unsigned long nr_free_buffer_pages(void); |
| |
| /* Returns the number of bytes in this potentially compound page. */ |
| static inline unsigned long page_size(struct page *page) |
| { |
| return PAGE_SIZE << compound_order(page); |
| } |
| |
| /* Returns the number of bits needed for the number of bytes in a page */ |
| static inline unsigned int page_shift(struct page *page) |
| { |
| return PAGE_SHIFT + compound_order(page); |
| } |
| |
| /** |
| * thp_order - Order of a transparent huge page. |
| * @page: Head page of a transparent huge page. |
| */ |
| static inline unsigned int thp_order(struct page *page) |
| { |
| VM_BUG_ON_PGFLAGS(PageTail(page), page); |
| return compound_order(page); |
| } |
| |
| /** |
| * thp_size - Size of a transparent huge page. |
| * @page: Head page of a transparent huge page. |
| * |
| * Return: Number of bytes in this page. |
| */ |
| static inline unsigned long thp_size(struct page *page) |
| { |
| return PAGE_SIZE << thp_order(page); |
| } |
| |
| #ifdef CONFIG_MMU |
| /* |
| * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when |
| * servicing faults for write access. In the normal case, do always want |
| * pte_mkwrite. But get_user_pages can cause write faults for mappings |
| * that do not have writing enabled, when used by access_process_vm. |
| */ |
| static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) |
| { |
| if (likely(vma->vm_flags & VM_WRITE)) |
| pte = pte_mkwrite(pte, vma); |
| return pte; |
| } |
| |
| vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); |
| void set_pte_range(struct vm_fault *vmf, struct folio *folio, |
| struct page *page, unsigned int nr, unsigned long addr); |
| |
| vm_fault_t finish_fault(struct vm_fault *vmf); |
| #endif |
| |
| /* |
| * Multiple processes may "see" the same page. E.g. for untouched |
| * mappings of /dev/null, all processes see the same page full of |
| * zeroes, and text pages of executables and shared libraries have |
| * only one copy in memory, at most, normally. |
| * |
| * For the non-reserved pages, page_count(page) denotes a reference count. |
| * page_count() == 0 means the page is free. page->lru is then used for |
| * freelist management in the buddy allocator. |
| * page_count() > 0 means the page has been allocated. |
| * |
| * Pages are allocated by the slab allocator in order to provide memory |
| * to kmalloc and kmem_cache_alloc. In this case, the management of the |
| * page, and the fields in 'struct page' are the responsibility of mm/slab.c |
| * unless a particular usage is carefully commented. (the responsibility of |
| * freeing the kmalloc memory is the caller's, of course). |
| * |
| * A page may be used by anyone else who does a __get_free_page(). |
| * In this case, page_count still tracks the references, and should only |
| * be used through the normal accessor functions. The top bits of page->flags |
| * and page->virtual store page management information, but all other fields |
| * are unused and could be used privately, carefully. The management of this |
| * page is the responsibility of the one who allocated it, and those who have |
| * subsequently been given references to it. |
| * |
| * The other pages (we may call them "pagecache pages") are completely |
| * managed by the Linux memory manager: I/O, buffers, swapping etc. |
| * The following discussion applies only to them. |
| * |
| * A pagecache page contains an opaque `private' member, which belongs to the |
| * page's address_space. Usually, this is the address of a circular list of |
| * the page's disk buffers. PG_private must be set to tell the VM to call |
| * into the filesystem to release these pages. |
| * |
| * A page may belong to an inode's memory mapping. In this case, page->mapping |
| * is the pointer to the inode, and page->index is the file offset of the page, |
| * in units of PAGE_SIZE. |
| * |
| * If pagecache pages are not associated with an inode, they are said to be |
| * anonymous pages. These may become associated with the swapcache, and in that |
| * case PG_swapcache is set, and page->private is an offset into the swapcache. |
| * |
| * In either case (swapcache or inode backed), the pagecache itself holds one |
| * reference to the page. Setting PG_private should also increment the |
| * refcount. The each user mapping also has a reference to the page. |
| * |
| * The pagecache pages are stored in a per-mapping radix tree, which is |
| * rooted at mapping->i_pages, and indexed by offset. |
| * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space |
| * lists, we instead now tag pages as dirty/writeback in the radix tree. |
| * |
| * All pagecache pages may be subject to I/O: |
| * - inode pages may need to be read from disk, |
| * - inode pages which have been modified and are MAP_SHARED may need |
| * to be written back to the inode on disk, |
| * - anonymous pages (including MAP_PRIVATE file mappings) which have been |
| * modified may need to be swapped out to swap space and (later) to be read |
| * back into memory. |
| */ |
| |
| #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) |
| DECLARE_STATIC_KEY_FALSE(devmap_managed_key); |
| |
| bool __put_devmap_managed_folio_refs(struct folio *folio, int refs); |
| static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) |
| { |
| if (!static_branch_unlikely(&devmap_managed_key)) |
| return false; |
| if (!folio_is_zone_device(folio)) |
| return false; |
| return __put_devmap_managed_folio_refs(folio, refs); |
| } |
| #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ |
| static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) |
| { |
| return false; |
| } |
| #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ |
| |
| /* 127: arbitrary random number, small enough to assemble well */ |
| #define folio_ref_zero_or_close_to_overflow(folio) \ |
| ((unsigned int) folio_ref_count(folio) + 127u <= 127u) |
| |
| /** |
| * folio_get - Increment the reference count on a folio. |
| * @folio: The folio. |
| * |
| * Context: May be called in any context, as long as you know that |
| * you have a refcount on the folio. If you do not already have one, |
| * folio_try_get() may be the right interface for you to use. |
| */ |
| static inline void folio_get(struct folio *folio) |
| { |
| VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); |
| folio_ref_inc(folio); |
| } |
| |
| static inline void get_page(struct page *page) |
| { |
| folio_get(page_folio(page)); |
| } |
| |
| static inline __must_check bool try_get_page(struct page *page) |
| { |
| page = compound_head(page); |
| if (WARN_ON_ONCE(page_ref_count(page) <= 0)) |
| return false; |
| page_ref_inc(page); |
| return true; |
| } |
| |
| /** |
| * folio_put - Decrement the reference count on a folio. |
| * @folio: The folio. |
| * |
| * If the folio's reference count reaches zero, the memory will be |
| * released back to the page allocator and may be used by another |
| * allocation immediately. Do not access the memory or the struct folio |
| * after calling folio_put() unless you can be sure that it wasn't the |
| * last reference. |
| * |
| * Context: May be called in process or interrupt context, but not in NMI |
| * context. May be called while holding a spinlock. |
| */ |
| static inline void folio_put(struct folio *folio) |
| { |
| if (folio_put_testzero(folio)) |
| __folio_put(folio); |
| } |
| |
| /** |
| * folio_put_refs - Reduce the reference count on a folio. |
| * @folio: The folio. |
| * @refs: The amount to subtract from the folio's reference count. |
| * |
| * If the folio's reference count reaches zero, the memory will be |
| * released back to the page allocator and may be used by another |
| * allocation immediately. Do not access the memory or the struct folio |
| * after calling folio_put_refs() unless you can be sure that these weren't |
| * the last references. |
| * |
| * Context: May be called in process or interrupt context, but not in NMI |
| * context. May be called while holding a spinlock. |
| */ |
| static inline void folio_put_refs(struct folio *folio, int refs) |
| { |
| if (folio_ref_sub_and_test(folio, refs)) |
| __folio_put(folio); |
| } |
| |
| void folios_put_refs(struct folio_batch *folios, unsigned int *refs); |
| |
| /* |
| * union release_pages_arg - an array of pages or folios |
| * |
| * release_pages() releases a simple array of multiple pages, and |
| * accepts various different forms of said page array: either |
| * a regular old boring array of pages, an array of folios, or |
| * an array of encoded page pointers. |
| * |
| * The transparent union syntax for this kind of "any of these |
| * argument types" is all kinds of ugly, so look away. |
| */ |
| typedef union { |
| struct page **pages; |
| struct folio **folios; |
| struct encoded_page **encoded_pages; |
| } release_pages_arg __attribute__ ((__transparent_union__)); |
| |
| void release_pages(release_pages_arg, int nr); |
| |
| /** |
| * folios_put - Decrement the reference count on an array of folios. |
| * @folios: The folios. |
| * |
| * Like folio_put(), but for a batch of folios. This is more efficient |
| * than writing the loop yourself as it will optimise the locks which need |
| * to be taken if the folios are freed. The folios batch is returned |
| * empty and ready to be reused for another batch; there is no need to |
| * reinitialise it. |
| * |
| * Context: May be called in process or interrupt context, but not in NMI |
| * context. May be called while holding a spinlock. |
| */ |
| static inline void folios_put(struct folio_batch *folios) |
| { |
| folios_put_refs(folios, NULL); |
| } |
| |
| static inline void put_page(struct page *page) |
| { |
| struct folio *folio = page_folio(page); |
| |
| /* |
| * For some devmap managed pages we need to catch refcount transition |
| * from 2 to 1: |
| */ |
| if (put_devmap_managed_folio_refs(folio, 1)) |
| return; |
| folio_put(folio); |
| } |
| |
| /* |
| * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload |
| * the page's refcount so that two separate items are tracked: the original page |
| * reference count, and also a new count of how many pin_user_pages() calls were |
| * made against the page. ("gup-pinned" is another term for the latter). |
| * |
| * With this scheme, pin_user_pages() becomes special: such pages are marked as |
| * distinct from normal pages. As such, the unpin_user_page() call (and its |
| * variants) must be used in order to release gup-pinned pages. |
| * |
| * Choice of value: |
| * |
| * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference |
| * counts with respect to pin_user_pages() and unpin_user_page() becomes |
| * simpler, due to the fact that adding an even power of two to the page |
| * refcount has the effect of using only the upper N bits, for the code that |
| * counts up using the bias value. This means that the lower bits are left for |
| * the exclusive use of the original code that increments and decrements by one |
| * (or at least, by much smaller values than the bias value). |
| * |
| * Of course, once the lower bits overflow into the upper bits (and this is |
| * OK, because subtraction recovers the original values), then visual inspection |
| * no longer suffices to directly view the separate counts. However, for normal |
| * applications that don't have huge page reference counts, this won't be an |
| * issue. |
| * |
| * Locking: the lockless algorithm described in folio_try_get_rcu() |
| * provides safe operation for get_user_pages(), folio_mkclean() and |
| * other calls that race to set up page table entries. |
| */ |
| #define GUP_PIN_COUNTING_BIAS (1U << 10) |
| |
| void unpin_user_page(struct page *page); |
| void unpin_folio(struct folio *folio); |
| void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, |
| bool make_dirty); |
| void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, |
| bool make_dirty); |
| void unpin_user_pages(struct page **pages, unsigned long npages); |
| void unpin_user_folio(struct folio *folio, unsigned long npages); |
| void unpin_folios(struct folio **folios, unsigned long nfolios); |
| |
| static inline bool is_cow_mapping(vm_flags_t flags) |
| { |
| return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; |
| } |
| |
| #ifndef CONFIG_MMU |
| static inline bool is_nommu_shared_mapping(vm_flags_t flags) |
| { |
| /* |
| * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected |
| * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of |
| * a file mapping. R/O MAP_PRIVATE mappings might still modify |
| * underlying memory if ptrace is active, so this is only possible if |
| * ptrace does not apply. Note that there is no mprotect() to upgrade |
| * write permissions later. |
| */ |
| return flags & (VM_MAYSHARE | VM_MAYOVERLAY); |
| } |
| #endif |
| |
| #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) |
| #define SECTION_IN_PAGE_FLAGS |
| #endif |
| |
| /* |
| * The identification function is mainly used by the buddy allocator for |
| * determining if two pages could be buddies. We are not really identifying |
| * the zone since we could be using the section number id if we do not have |
| * node id available in page flags. |
| * We only guarantee that it will return the same value for two combinable |
| * pages in a zone. |
| */ |
| static inline int page_zone_id(struct page *page) |
| { |
| return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; |
| } |
| |
| #ifdef NODE_NOT_IN_PAGE_FLAGS |
| int page_to_nid(const struct page *page); |
| #else |
| static inline int page_to_nid(const struct page *page) |
| { |
| return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; |
| } |
| #endif |
| |
| static inline int folio_nid(const struct folio *folio) |
| { |
| return page_to_nid(&folio->page); |
| } |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| /* page access time bits needs to hold at least 4 seconds */ |
| #define PAGE_ACCESS_TIME_MIN_BITS 12 |
| #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS |
| #define PAGE_ACCESS_TIME_BUCKETS \ |
| (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) |
| #else |
| #define PAGE_ACCESS_TIME_BUCKETS 0 |
| #endif |
| |
| #define PAGE_ACCESS_TIME_MASK \ |
| (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) |
| |
| static inline int cpu_pid_to_cpupid(int cpu, int pid) |
| { |
| return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); |
| } |
| |
| static inline int cpupid_to_pid(int cpupid) |
| { |
| return cpupid & LAST__PID_MASK; |
| } |
| |
| static inline int cpupid_to_cpu(int cpupid) |
| { |
| return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; |
| } |
| |
| static inline int cpupid_to_nid(int cpupid) |
| { |
| return cpu_to_node(cpupid_to_cpu(cpupid)); |
| } |
| |
| static inline bool cpupid_pid_unset(int cpupid) |
| { |
| return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); |
| } |
| |
| static inline bool cpupid_cpu_unset(int cpupid) |
| { |
| return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); |
| } |
| |
| static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) |
| { |
| return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); |
| } |
| |
| #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) |
| #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS |
| static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) |
| { |
| return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); |
| } |
| |
| static inline int folio_last_cpupid(struct folio *folio) |
| { |
| return folio->_last_cpupid; |
| } |
| static inline void page_cpupid_reset_last(struct page *page) |
| { |
| page->_last_cpupid = -1 & LAST_CPUPID_MASK; |
| } |
| #else |
| static inline int folio_last_cpupid(struct folio *folio) |
| { |
| return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; |
| } |
| |
| int folio_xchg_last_cpupid(struct folio *folio, int cpupid); |
| |
| static inline void page_cpupid_reset_last(struct page *page) |
| { |
| page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; |
| } |
| #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ |
| |
| static inline int folio_xchg_access_time(struct folio *folio, int time) |
| { |
| int last_time; |
| |
| last_time = folio_xchg_last_cpupid(folio, |
| time >> PAGE_ACCESS_TIME_BUCKETS); |
| return last_time << PAGE_ACCESS_TIME_BUCKETS; |
| } |
| |
| static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) |
| { |
| unsigned int pid_bit; |
| |
| pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); |
| if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { |
| __set_bit(pid_bit, &vma->numab_state->pids_active[1]); |
| } |
| } |
| |
| bool folio_use_access_time(struct folio *folio); |
| #else /* !CONFIG_NUMA_BALANCING */ |
| static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) |
| { |
| return folio_nid(folio); /* XXX */ |
| } |
| |
| static inline int folio_xchg_access_time(struct folio *folio, int time) |
| { |
| return 0; |
| } |
| |
| static inline int folio_last_cpupid(struct folio *folio) |
| { |
| return folio_nid(folio); /* XXX */ |
| } |
| |
| static inline int cpupid_to_nid(int cpupid) |
| { |
| return -1; |
| } |
| |
| static inline int cpupid_to_pid(int cpupid) |
| { |
| return -1; |
| } |
| |
| static inline int cpupid_to_cpu(int cpupid) |
| { |
| return -1; |
| } |
| |
| static inline int cpu_pid_to_cpupid(int nid, int pid) |
| { |
| return -1; |
| } |
| |
| static inline bool cpupid_pid_unset(int cpupid) |
| { |
| return true; |
| } |
| |
| static inline void page_cpupid_reset_last(struct page *page) |
| { |
| } |
| |
| static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) |
| { |
| return false; |
| } |
| |
| static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) |
| { |
| } |
| static inline bool folio_use_access_time(struct folio *folio) |
| { |
| return false; |
| } |
| #endif /* CONFIG_NUMA_BALANCING */ |
| |
| #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) |
| |
| /* |
| * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid |
| * setting tags for all pages to native kernel tag value 0xff, as the default |
| * value 0x00 maps to 0xff. |
| */ |
| |
| static inline u8 page_kasan_tag(const struct page *page) |
| { |
| u8 tag = KASAN_TAG_KERNEL; |
| |
| if (kasan_enabled()) { |
| tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; |
| tag ^= 0xff; |
| } |
| |
| return tag; |
| } |
| |
| static inline void page_kasan_tag_set(struct page *page, u8 tag) |
| { |
| unsigned long old_flags, flags; |
| |
| if (!kasan_enabled()) |
| return; |
| |
| tag ^= 0xff; |
| old_flags = READ_ONCE(page->flags); |
| do { |
| flags = old_flags; |
| flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); |
| flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; |
| } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); |
| } |
| |
| static inline void page_kasan_tag_reset(struct page *page) |
| { |
| if (kasan_enabled()) |
| page_kasan_tag_set(page, KASAN_TAG_KERNEL); |
| } |
| |
| #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ |
| |
| static inline u8 page_kasan_tag(const struct page *page) |
| { |
| return 0xff; |
| } |
| |
| static inline void page_kasan_tag_set(struct page *page, u8 tag) { } |
| static inline void page_kasan_tag_reset(struct page *page) { } |
| |
| #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ |
| |
| static inline struct zone *page_zone(const struct page *page) |
| { |
| return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; |
| } |
| |
| static inline pg_data_t *page_pgdat(const struct page *page) |
| { |
| return NODE_DATA(page_to_nid(page)); |
| } |
| |
| static inline struct zone *folio_zone(const struct folio *folio) |
| { |
| return page_zone(&folio->page); |
| } |
| |
| static inline pg_data_t *folio_pgdat(const struct folio *folio) |
| { |
| return page_pgdat(&folio->page); |
| } |
| |
| #ifdef SECTION_IN_PAGE_FLAGS |
| static inline void set_page_section(struct page *page, unsigned long section) |
| { |
| page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); |
| page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; |
| } |
| |
| static inline unsigned long page_to_section(const struct page *page) |
| { |
| return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; |
| } |
| #endif |
| |
| /** |
| * folio_pfn - Return the Page Frame Number of a folio. |
| * @folio: The folio. |
| * |
| * A folio may contain multiple pages. The pages have consecutive |
| * Page Frame Numbers. |
| * |
| * Return: The Page Frame Number of the first page in the folio. |
| */ |
| static inline unsigned long folio_pfn(struct folio *folio) |
| { |
| return page_to_pfn(&folio->page); |
| } |
| |
| static inline struct folio *pfn_folio(unsigned long pfn) |
| { |
| return page_folio(pfn_to_page(pfn)); |
| } |
| |
| /** |
| * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. |
| * @folio: The folio. |
| * |
| * This function checks if a folio has been pinned via a call to |
| * a function in the pin_user_pages() family. |
| * |
| * For small folios, the return value is partially fuzzy: false is not fuzzy, |
| * because it means "definitely not pinned for DMA", but true means "probably |
| * pinned for DMA, but possibly a false positive due to having at least |
| * GUP_PIN_COUNTING_BIAS worth of normal folio references". |
| * |
| * False positives are OK, because: a) it's unlikely for a folio to |
| * get that many refcounts, and b) all the callers of this routine are |
| * expected to be able to deal gracefully with a false positive. |
| * |
| * For large folios, the result will be exactly correct. That's because |
| * we have more tracking data available: the _pincount field is used |
| * instead of the GUP_PIN_COUNTING_BIAS scheme. |
| * |
| * For more information, please see Documentation/core-api/pin_user_pages.rst. |
| * |
| * Return: True, if it is likely that the folio has been "dma-pinned". |
| * False, if the folio is definitely not dma-pinned. |
| */ |
| static inline bool folio_maybe_dma_pinned(struct folio *folio) |
| { |
| if (folio_test_large(folio)) |
| return atomic_read(&folio->_pincount) > 0; |
| |
| /* |
| * folio_ref_count() is signed. If that refcount overflows, then |
| * folio_ref_count() returns a negative value, and callers will avoid |
| * further incrementing the refcount. |
| * |
| * Here, for that overflow case, use the sign bit to count a little |
| * bit higher via unsigned math, and thus still get an accurate result. |
| */ |
| return ((unsigned int)folio_ref_count(folio)) >= |
| GUP_PIN_COUNTING_BIAS; |
| } |
| |
| /* |
| * This should most likely only be called during fork() to see whether we |
| * should break the cow immediately for an anon page on the src mm. |
| * |
| * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. |
| */ |
| static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, |
| struct folio *folio) |
| { |
| VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); |
| |
| if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) |
| return false; |
| |
| return folio_maybe_dma_pinned(folio); |
| } |
| |
| /** |
| * is_zero_page - Query if a page is a zero page |
| * @page: The page to query |
| * |
| * This returns true if @page is one of the permanent zero pages. |
| */ |
| static inline bool is_zero_page(const struct page *page) |
| { |
| return is_zero_pfn(page_to_pfn(page)); |
| } |
| |
| /** |
| * is_zero_folio - Query if a folio is a zero page |
| * @folio: The folio to query |
| * |
| * This returns true if @folio is one of the permanent zero pages. |
| */ |
| static inline bool is_zero_folio(const struct folio *folio) |
| { |
| return is_zero_page(&folio->page); |
| } |
| |
| /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ |
| #ifdef CONFIG_MIGRATION |
| static inline bool folio_is_longterm_pinnable(struct folio *folio) |
| { |
| #ifdef CONFIG_CMA |
| int mt = folio_migratetype(folio); |
| |
| if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) |
| return false; |
| #endif |
| /* The zero page can be "pinned" but gets special handling. */ |
| if (is_zero_folio(folio)) |
| return true; |
| |
| /* Coherent device memory must always allow eviction. */ |
| if (folio_is_device_coherent(folio)) |
| return false; |
| |
| /* Otherwise, non-movable zone folios can be pinned. */ |
| return !folio_is_zone_movable(folio); |
| |
| } |
| #else |
| static inline bool folio_is_longterm_pinnable(struct folio *folio) |
| { |
| return true; |
| } |
| #endif |
| |
| static inline void set_page_zone(struct page *page, enum zone_type zone) |
| { |
| page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); |
| page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; |
| } |
| |
| static inline void set_page_node(struct page *page, unsigned long node) |
| { |
| page->flags &= ~(NODES_MASK << NODES_PGSHIFT); |
| page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; |
| } |
| |
| static inline void set_page_links(struct page *page, enum zone_type zone, |
| unsigned long node, unsigned long pfn) |
| { |
| set_page_zone(page, zone); |
| set_page_node(page, node); |
| #ifdef SECTION_IN_PAGE_FLAGS |
| set_page_section(page, pfn_to_section_nr(pfn)); |
| #endif |
| } |
| |
| /** |
| * folio_nr_pages - The number of pages in the folio. |
| * @folio: The folio. |
| * |
| * Return: A positive power of two. |
| */ |
| static inline long folio_nr_pages(const struct folio *folio) |
| { |
| if (!folio_test_large(folio)) |
| return 1; |
| #ifdef CONFIG_64BIT |
| return folio->_folio_nr_pages; |
| #else |
| return 1L << (folio->_flags_1 & 0xff); |
| #endif |
| } |
| |
| /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ |
| #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE |
| #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) |
| #else |
| #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES |
| #endif |
| |
| /* |
| * compound_nr() returns the number of pages in this potentially compound |
| * page. compound_nr() can be called on a tail page, and is defined to |
| * return 1 in that case. |
| */ |
| static inline unsigned long compound_nr(struct page *page) |
| { |
| struct folio *folio = (struct folio *)page; |
| |
| if (!test_bit(PG_head, &folio->flags)) |
| return 1; |
| #ifdef CONFIG_64BIT |
| return folio->_folio_nr_pages; |
| #else |
| return 1L << (folio->_flags_1 & 0xff); |
| #endif |
| } |
| |
| /** |
| * thp_nr_pages - The number of regular pages in this huge page. |
| * @page: The head page of a huge page. |
| */ |
| static inline int thp_nr_pages(struct page *page) |
| { |
| return folio_nr_pages((struct folio *)page); |
| } |
| |
| /** |
| * folio_next - Move to the next physical folio. |
| * @folio: The folio we're currently operating on. |
| * |
| * If you have physically contiguous memory which may span more than |
| * one folio (eg a &struct bio_vec), use this function to move from one |
| * folio to the next. Do not use it if the memory is only virtually |
| * contiguous as the folios are almost certainly not adjacent to each |
| * other. This is the folio equivalent to writing ``page++``. |
| * |
| * Context: We assume that the folios are refcounted and/or locked at a |
| * higher level and do not adjust the reference counts. |
| * Return: The next struct folio. |
| */ |
| static inline struct folio *folio_next(struct folio *folio) |
| { |
| return (struct folio *)folio_page(folio, folio_nr_pages(folio)); |
| } |
| |
| /** |
| * folio_shift - The size of the memory described by this folio. |
| * @folio: The folio. |
| * |
| * A folio represents a number of bytes which is a power-of-two in size. |
| * This function tells you which power-of-two the folio is. See also |
| * folio_size() and folio_order(). |
| * |
| * Context: The caller should have a reference on the folio to prevent |
| * it from being split. It is not necessary for the folio to be locked. |
| * Return: The base-2 logarithm of the size of this folio. |
| */ |
| static inline unsigned int folio_shift(const struct folio *folio) |
| { |
| return PAGE_SHIFT + folio_order(folio); |
| } |
| |
| /** |
| * folio_size - The number of bytes in a folio. |
| * @folio: The folio. |
| * |
| * Context: The caller should have a reference on the folio to prevent |
| * it from being split. It is not necessary for the folio to be locked. |
| * Return: The number of bytes in this folio. |
| */ |
| static inline size_t folio_size(const struct folio *folio) |
| { |
| return PAGE_SIZE << folio_order(folio); |
| } |
| |
| /** |
| * folio_likely_mapped_shared - Estimate if the folio is mapped into the page |
| * tables of more than one MM |
| * @folio: The folio. |
| * |
| * This function checks if the folio is currently mapped into more than one |
| * MM ("mapped shared"), or if the folio is only mapped into a single MM |
| * ("mapped exclusively"). |
| * |
| * For KSM folios, this function also returns "mapped shared" when a folio is |
| * mapped multiple times into the same MM, because the individual page mappings |
| * are independent. |
| * |
| * As precise information is not easily available for all folios, this function |
| * estimates the number of MMs ("sharers") that are currently mapping a folio |
| * using the number of times the first page of the folio is currently mapped |
| * into page tables. |
| * |
| * For small anonymous folios and anonymous hugetlb folios, the return |
| * value will be exactly correct: non-KSM folios can only be mapped at most once |
| * into an MM, and they cannot be partially mapped. KSM folios are |
| * considered shared even if mapped multiple times into the same MM. |
| * |
| * For other folios, the result can be fuzzy: |
| * #. For partially-mappable large folios (THP), the return value can wrongly |
| * indicate "mapped exclusively" (false negative) when the folio is |
| * only partially mapped into at least one MM. |
| * #. For pagecache folios (including hugetlb), the return value can wrongly |
| * indicate "mapped shared" (false positive) when two VMAs in the same MM |
| * cover the same file range. |
| * |
| * Further, this function only considers current page table mappings that |
| * are tracked using the folio mapcount(s). |
| * |
| * This function does not consider: |
| * #. If the folio might get mapped in the (near) future (e.g., swapcache, |
| * pagecache, temporary unmapping for migration). |
| * #. If the folio is mapped differently (VM_PFNMAP). |
| * #. If hugetlb page table sharing applies. Callers might want to check |
| * hugetlb_pmd_shared(). |
| * |
| * Return: Whether the folio is estimated to be mapped into more than one MM. |
| */ |
| static inline bool folio_likely_mapped_shared(struct folio *folio) |
| { |
| int mapcount = folio_mapcount(folio); |
| |
| /* Only partially-mappable folios require more care. */ |
| if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) |
| return mapcount > 1; |
| |
| /* A single mapping implies "mapped exclusively". */ |
| if (mapcount <= 1) |
| return false; |
| |
| /* If any page is mapped more than once we treat it "mapped shared". */ |
| if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio)) |
| return true; |
| |
| /* Let's guess based on the first subpage. */ |
| return atomic_read(&folio->_mapcount) > 0; |
| } |
| |
| #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE |
| static inline int arch_make_folio_accessible(struct folio *folio) |
| { |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Some inline functions in vmstat.h depend on page_zone() |
| */ |
| #include <linux/vmstat.h> |
| |
| #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) |
| #define HASHED_PAGE_VIRTUAL |
| #endif |
| |
| #if defined(WANT_PAGE_VIRTUAL) |
| static inline void *page_address(const struct page *page) |
| { |
| return page->virtual; |
| } |
| static inline void set_page_address(struct page *page, void *address) |
| { |
| page->virtual = address; |
| } |
| #define page_address_init() do { } while(0) |
| #endif |
| |
| #if defined(HASHED_PAGE_VIRTUAL) |
| void *page_address(const struct page *page); |
| void set_page_address(struct page *page, void *virtual); |
| void page_address_init(void); |
| #endif |
| |
| static __always_inline void *lowmem_page_address(const struct page *page) |
| { |
| return page_to_virt(page); |
| } |
| |
| #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) |
| #define page_address(page) lowmem_page_address(page) |
| #define set_page_address(page, address) do { } while(0) |
| #define page_address_init() do { } while(0) |
| #endif |
| |
| static inline void *folio_address(const struct folio *folio) |
| { |
| return page_address(&folio->page); |
| } |
| |
| /* |
| * Return true only if the page has been allocated with |
| * ALLOC_NO_WATERMARKS and the low watermark was not |
| * met implying that the system is under some pressure. |
| */ |
| static inline bool page_is_pfmemalloc(const struct page *page) |
| { |
| /* |
| * lru.next has bit 1 set if the page is allocated from the |
| * pfmemalloc reserves. Callers may simply overwrite it if |
| * they do not need to preserve that information. |
| */ |
| return (uintptr_t)page->lru.next & BIT(1); |
| } |
| |
| /* |
| * Return true only if the folio has been allocated with |
| * ALLOC_NO_WATERMARKS and the low watermark was not |
| * met implying that the system is under some pressure. |
| */ |
| static inline bool folio_is_pfmemalloc(const struct folio *folio) |
| { |
| /* |
| * lru.next has bit 1 set if the page is allocated from the |
| * pfmemalloc reserves. Callers may simply overwrite it if |
| * they do not need to preserve that information. |
| */ |
| return (uintptr_t)folio->lru.next & BIT(1); |
| } |
| |
| /* |
| * Only to be called by the page allocator on a freshly allocated |
| * page. |
| */ |
| static inline void set_page_pfmemalloc(struct page *page) |
| { |
| page->lru.next = (void *)BIT(1); |
| } |
| |
| static inline void clear_page_pfmemalloc(struct page *page) |
| { |
| page->lru.next = NULL; |
| } |
| |
| /* |
| * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. |
| */ |
| extern void pagefault_out_of_memory(void); |
| |
| #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) |
| #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) |
| #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) |
| |
| /* |
| * Parameter block passed down to zap_pte_range in exceptional cases. |
| */ |
| struct zap_details { |
| struct folio *single_folio; /* Locked folio to be unmapped */ |
| bool even_cows; /* Zap COWed private pages too? */ |
| zap_flags_t zap_flags; /* Extra flags for zapping */ |
| }; |
| |
| /* |
| * Whether to drop the pte markers, for example, the uffd-wp information for |
| * file-backed memory. This should only be specified when we will completely |
| * drop the page in the mm, either by truncation or unmapping of the vma. By |
| * default, the flag is not set. |
| */ |
| #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) |
| /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ |
| #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) |
| |
| #ifdef CONFIG_SCHED_MM_CID |
| void sched_mm_cid_before_execve(struct task_struct *t); |
| void sched_mm_cid_after_execve(struct task_struct *t); |
| void sched_mm_cid_fork(struct task_struct *t); |
| void sched_mm_cid_exit_signals(struct task_struct *t); |
| static inline int task_mm_cid(struct task_struct *t) |
| { |
| return t->mm_cid; |
| } |
| #else |
| static inline void sched_mm_cid_before_execve(struct task_struct *t) { } |
| static inline void sched_mm_cid_after_execve(struct task_struct *t) { } |
| static inline void sched_mm_cid_fork(struct task_struct *t) { } |
| static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } |
| static inline int task_mm_cid(struct task_struct *t) |
| { |
| /* |
| * Use the processor id as a fall-back when the mm cid feature is |
| * disabled. This provides functional per-cpu data structure accesses |
| * in user-space, althrough it won't provide the memory usage benefits. |
| */ |
| return raw_smp_processor_id(); |
| } |
| #endif |
| |
| #ifdef CONFIG_MMU |
| extern bool can_do_mlock(void); |
| #else |
| static inline bool can_do_mlock(void) { return false; } |
| #endif |
| extern int user_shm_lock(size_t, struct ucounts *); |
| extern void user_shm_unlock(size_t, struct ucounts *); |
| |
| struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, |
| pte_t pte); |
| struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, |
| pte_t pte); |
| struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, |
| unsigned long addr, pmd_t pmd); |
| struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, |
| pmd_t pmd); |
| |
| void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, |
| unsigned long size); |
| void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, |
| unsigned long size, struct zap_details *details); |
| static inline void zap_vma_pages(struct vm_area_struct *vma) |
| { |
| zap_page_range_single(vma, vma->vm_start, |
| vma->vm_end - vma->vm_start, NULL); |
| } |
| void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, |
| struct vm_area_struct *start_vma, unsigned long start, |
| unsigned long end, unsigned long tree_end, bool mm_wr_locked); |
| |
| struct mmu_notifier_range; |
| |
| void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, |
| unsigned long end, unsigned long floor, unsigned long ceiling); |
| int |
| copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); |
| int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, |
| void *buf, int len, int write); |
| |
| struct follow_pfnmap_args { |
| /** |
| * Inputs: |
| * @vma: Pointer to @vm_area_struct struct |
| * @address: the virtual address to walk |
| */ |
| struct vm_area_struct *vma; |
| unsigned long address; |
| /** |
| * Internals: |
| * |
| * The caller shouldn't touch any of these. |
| */ |
| spinlock_t *lock; |
| pte_t *ptep; |
| /** |
| * Outputs: |
| * |
| * @pfn: the PFN of the address |
| * @pgprot: the pgprot_t of the mapping |
| * @writable: whether the mapping is writable |
| * @special: whether the mapping is a special mapping (real PFN maps) |
| */ |
| unsigned long pfn; |
| pgprot_t pgprot; |
| bool writable; |
| bool special; |
| }; |
| int follow_pfnmap_start(struct follow_pfnmap_args *args); |
| void follow_pfnmap_end(struct follow_pfnmap_args *args); |
| |
| extern void truncate_pagecache(struct inode *inode, loff_t new); |
| extern void truncate_setsize(struct inode *inode, loff_t newsize); |
| void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); |
| void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); |
| int generic_error_remove_folio(struct address_space *mapping, |
| struct folio *folio); |
| |
| struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, |
| unsigned long address, struct pt_regs *regs); |
| |
| #ifdef CONFIG_MMU |
| extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, |
| unsigned long address, unsigned int flags, |
| struct pt_regs *regs); |
| extern int fixup_user_fault(struct mm_struct *mm, |
| unsigned long address, unsigned int fault_flags, |
| bool *unlocked); |
| void unmap_mapping_pages(struct address_space *mapping, |
| pgoff_t start, pgoff_t nr, bool even_cows); |
| void unmap_mapping_range(struct address_space *mapping, |
| loff_t const holebegin, loff_t const holelen, int even_cows); |
| #else |
| static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, |
| unsigned long address, unsigned int flags, |
| struct pt_regs *regs) |
| { |
| /* should never happen if there's no MMU */ |
| BUG(); |
| return VM_FAULT_SIGBUS; |
| } |
| static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, |
| unsigned int fault_flags, bool *unlocked) |
| { |
| /* should never happen if there's no MMU */ |
| BUG(); |
| return -EFAULT; |
| } |
| static inline void unmap_mapping_pages(struct address_space *mapping, |
| pgoff_t start, pgoff_t nr, bool even_cows) { } |
| static inline void unmap_mapping_range(struct address_space *mapping, |
| loff_t const holebegin, loff_t const holelen, int even_cows) { } |
| #endif |
| |
| static inline void unmap_shared_mapping_range(struct address_space *mapping, |
| loff_t const holebegin, loff_t const holelen) |
| { |
| unmap_mapping_range(mapping, holebegin, holelen, 0); |
| } |
| |
| static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, |
| unsigned long addr); |
| |
| extern int access_process_vm(struct task_struct *tsk, unsigned long addr, |
| void *buf, int len, unsigned int gup_flags); |
| extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, |
| void *buf, int len, unsigned int gup_flags); |
| |
| long get_user_pages_remote(struct mm_struct *mm, |
| unsigned long start, unsigned long nr_pages, |
| unsigned int gup_flags, struct page **pages, |
| int *locked); |
| long pin_user_pages_remote(struct mm_struct *mm, |
| unsigned long start, unsigned long nr_pages, |
| unsigned int gup_flags, struct page **pages, |
| int *locked); |
| |
| /* |
| * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. |
| */ |
| static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, |
| unsigned long addr, |
| int gup_flags, |
| struct vm_area_struct **vmap) |
| { |
| struct page *page; |
| struct vm_area_struct *vma; |
| int got; |
| |
| if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) |
| return ERR_PTR(-EINVAL); |
| |
| got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); |
| |
| if (got < 0) |
| return ERR_PTR(got); |
| |
| vma = vma_lookup(mm, addr); |
| if (WARN_ON_ONCE(!vma)) { |
| put_page(page); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| *vmap = vma; |
| return page; |
| } |
| |
| long get_user_pages(unsigned long start, unsigned long nr_pages, |
| unsigned int gup_flags, struct page **pages); |
| long pin_user_pages(unsigned long start, unsigned long nr_pages, |
| unsigned int gup_flags, struct page **pages); |
| long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
| struct page **pages, unsigned int gup_flags); |
| long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
| struct page **pages, unsigned int gup_flags); |
| long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, |
| struct folio **folios, unsigned int max_folios, |
| pgoff_t *offset); |
| |
| int get_user_pages_fast(unsigned long start, int nr_pages, |
| unsigned int gup_flags, struct page **pages); |
| int pin_user_pages_fast(unsigned long start, int nr_pages, |
| unsigned int gup_flags, struct page **pages); |
| void folio_add_pin(struct folio *folio); |
| |
| int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); |
| int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, |
| struct task_struct *task, bool bypass_rlim); |
| |
| struct kvec; |
| struct page *get_dump_page(unsigned long addr); |
| |
| bool folio_mark_dirty(struct folio *folio); |
| bool set_page_dirty(struct page *page); |
| int set_page_dirty_lock(struct page *page); |
| |
| int get_cmdline(struct task_struct *task, char *buffer, int buflen); |
| |
| /* |
| * Flags used by change_protection(). For now we make it a bitmap so |
| * that we can pass in multiple flags just like parameters. However |
| * for now all the callers are only use one of the flags at the same |
| * time. |
| */ |
| /* |
| * Whether we should manually check if we can map individual PTEs writable, |
| * because something (e.g., COW, uffd-wp) blocks that from happening for all |
| * PTEs automatically in a writable mapping. |
| */ |
| #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) |
| /* Whether this protection change is for NUMA hints */ |
| #define MM_CP_PROT_NUMA (1UL << 1) |
| /* Whether this change is for write protecting */ |
| #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ |
| #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ |
| #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ |
| MM_CP_UFFD_WP_RESOLVE) |
| |
| bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, |
| pte_t pte); |
| extern long change_protection(struct mmu_gather *tlb, |
| struct vm_area_struct *vma, unsigned long start, |
| unsigned long end, unsigned long cp_flags); |
| extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, |
| struct vm_area_struct *vma, struct vm_area_struct **pprev, |
| unsigned long start, unsigned long end, unsigned long newflags); |
| |
| /* |
| * doesn't attempt to fault and will return short. |
| */ |
| int get_user_pages_fast_only(unsigned long start, int nr_pages, |
| unsigned int gup_flags, struct page **pages); |
| |
| static inline bool get_user_page_fast_only(unsigned long addr, |
| unsigned int gup_flags, struct page **pagep) |
| { |
| return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; |
| } |
| /* |
| * per-process(per-mm_struct) statistics. |
| */ |
| static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) |
| { |
| return percpu_counter_read_positive(&mm->rss_stat[member]); |
| } |
| |
| void mm_trace_rss_stat(struct mm_struct *mm, int member); |
| |
| static inline void add_mm_counter(struct mm_struct *mm, int member, long value) |
| { |
| percpu_counter_add(&mm->rss_stat[member], value); |
| |
| mm_trace_rss_stat(mm, member); |
| } |
| |
| static inline void inc_mm_counter(struct mm_struct *mm, int member) |
| { |
| percpu_counter_inc(&mm->rss_stat[member]); |
| |
| mm_trace_rss_stat(mm, member); |
| } |
| |
| static inline void dec_mm_counter(struct mm_struct *mm, int member) |
| { |
| percpu_counter_dec(&mm->rss_stat[member]); |
| |
| mm_trace_rss_stat(mm, member); |
| } |
| |
| /* Optimized variant when folio is already known not to be anon */ |
| static inline int mm_counter_file(struct folio *folio) |
| { |
| if (folio_test_swapbacked(folio)) |
| return MM_SHMEMPAGES; |
| return MM_FILEPAGES; |
| } |
| |
| static inline int mm_counter(struct folio *folio) |
| { |
| if (folio_test_anon(folio)) |
| return MM_ANONPAGES; |
| return mm_counter_file(folio); |
| } |
| |
| static inline unsigned long get_mm_rss(struct mm_struct *mm) |
| { |
| return get_mm_counter(mm, MM_FILEPAGES) + |
| get_mm_counter(mm, MM_ANONPAGES) + |
| get_mm_counter(mm, MM_SHMEMPAGES); |
| } |
| |
| static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) |
| { |
| return max(mm->hiwater_rss, get_mm_rss(mm)); |
| } |
| |
| static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) |
| { |
| return max(mm->hiwater_vm, mm->total_vm); |
| } |
| |
| static inline void update_hiwater_rss(struct mm_struct *mm) |
| { |
| unsigned long _rss = get_mm_rss(mm); |
| |
| if ((mm)->hiwater_rss < _rss) |
| (mm)->hiwater_rss = _rss; |
| } |
| |
| static inline void update_hiwater_vm(struct mm_struct *mm) |
| { |
| if (mm->hiwater_vm < mm->total_vm) |
| mm->hiwater_vm = mm->total_vm; |
| } |
| |
| static inline void reset_mm_hiwater_rss(struct mm_struct *mm) |
| { |
| mm->hiwater_rss = get_mm_rss(mm); |
| } |
| |
| static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, |
| struct mm_struct *mm) |
| { |
| unsigned long hiwater_rss = get_mm_hiwater_rss(mm); |
| |
| if (*maxrss < hiwater_rss) |
| *maxrss = hiwater_rss; |
| } |
| |
| #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL |
| static inline int pte_special(pte_t pte) |
| { |
| return 0; |
| } |
| |
| static inline pte_t pte_mkspecial(pte_t pte) |
| { |
| return pte; |
| } |
| #endif |
| |
| #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP |
| static inline bool pmd_special(pmd_t pmd) |
| { |
| return false; |
| } |
| |
| static inline pmd_t pmd_mkspecial(pmd_t pmd) |
| { |
| return pmd; |
| } |
| #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ |
| |
| #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP |
| static inline bool pud_special(pud_t pud) |
| { |
| return false; |
| } |
| |
| static inline pud_t pud_mkspecial(pud_t pud) |
| { |
| return pud; |
| } |
| #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ |
| |
| #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP |
| static inline int pte_devmap(pte_t pte) |
| { |
| return 0; |
| } |
| #endif |
| |
| extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, |
| spinlock_t **ptl); |
| static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, |
| spinlock_t **ptl) |
| { |
| pte_t *ptep; |
| __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); |
| return ptep; |
| } |
| |
| #ifdef __PAGETABLE_P4D_FOLDED |
| static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, |
| unsigned long address) |
| { |
| return 0; |
| } |
| #else |
| int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); |
| #endif |
| |
| #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) |
| static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, |
| unsigned long address) |
| { |
| return 0; |
| } |
| static inline void mm_inc_nr_puds(struct mm_struct *mm) {} |
| static inline void mm_dec_nr_puds(struct mm_struct *mm) {} |
| |
| #else |
| int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); |
| |
| static inline void mm_inc_nr_puds(struct mm_struct *mm) |
| { |
| if (mm_pud_folded(mm)) |
| return; |
| atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); |
| } |
| |
| static inline void mm_dec_nr_puds(struct mm_struct *mm) |
| { |
| if (mm_pud_folded(mm)) |
| return; |
| atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); |
| } |
| #endif |
| |
| #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) |
| static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, |
| unsigned long address) |
| { |
| return 0; |
| } |
| |
| static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} |
| static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} |
| |
| #else |
| int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); |
| |
| static inline void mm_inc_nr_pmds(struct mm_struct *mm) |
| { |
| if (mm_pmd_folded(mm)) |
| return; |
| atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); |
| } |
| |
| static inline void mm_dec_nr_pmds(struct mm_struct *mm) |
| { |
| if (mm_pmd_folded(mm)) |
| return; |
| atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); |
| } |
| #endif |
| |
| #ifdef CONFIG_MMU |
| static inline void mm_pgtables_bytes_init(struct mm_struct *mm) |
| { |
| atomic_long_set(&mm->pgtables_bytes, 0); |
| } |
| |
| static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) |
| { |
| return atomic_long_read(&mm->pgtables_bytes); |
| } |
| |
| static inline void mm_inc_nr_ptes(struct mm_struct *mm) |
| { |
| atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); |
| } |
| |
| static inline void mm_dec_nr_ptes(struct mm_struct *mm) |
| { |
| atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); |
| } |
| #else |
| |
| static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} |
| static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) |
| { |
| return 0; |
| } |
| |
| static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} |
| static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} |
| #endif |
| |
| int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); |
| int __pte_alloc_kernel(pmd_t *pmd); |
| |
| #if defined(CONFIG_MMU) |
| |
| static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, |
| unsigned long address) |
| { |
| return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? |
| NULL : p4d_offset(pgd, address); |
| } |
| |
| static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, |
| unsigned long address) |
| { |
| return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? |
| NULL : pud_offset(p4d, address); |
| } |
| |
| static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
| { |
| return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? |
| NULL: pmd_offset(pud, address); |
| } |
| #endif /* CONFIG_MMU */ |
| |
| static inline struct ptdesc *virt_to_ptdesc(const void *x) |
| { |
| return page_ptdesc(virt_to_page(x)); |
| } |
| |
| static inline void *ptdesc_to_virt(const struct ptdesc *pt) |
| { |
| return page_to_virt(ptdesc_page(pt)); |
| } |
| |
| static inline void *ptdesc_address(const struct ptdesc *pt) |
| { |
| return folio_address(ptdesc_folio(pt)); |
| } |
| |
| static inline bool pagetable_is_reserved(struct ptdesc *pt) |
| { |
| return folio_test_reserved(ptdesc_folio(pt)); |
| } |
| |
| /** |
| * pagetable_alloc - Allocate pagetables |
| * @gfp: GFP flags |
| * @order: desired pagetable order |
| * |
| * pagetable_alloc allocates memory for page tables as well as a page table |
| * descriptor to describe that memory. |
| * |
| * Return: The ptdesc describing the allocated page tables. |
| */ |
| static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) |
| { |
| struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); |
| |
| return page_ptdesc(page); |
| } |
| #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) |
| |
| /** |
| * pagetable_free - Free pagetables |
| * @pt: The page table descriptor |
| * |
| * pagetable_free frees the memory of all page tables described by a page |
| * table descriptor and the memory for the descriptor itself. |
| */ |
| static inline void pagetable_free(struct ptdesc *pt) |
| { |
| struct page *page = ptdesc_page(pt); |
| |
| __free_pages(page, compound_order(page)); |
| } |
| |
| #if defined(CONFIG_SPLIT_PTE_PTLOCKS) |
| #if ALLOC_SPLIT_PTLOCKS |
| void __init ptlock_cache_init(void); |
| bool ptlock_alloc(struct ptdesc *ptdesc); |
| void ptlock_free(struct ptdesc *ptdesc); |
| |
| static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) |
| { |
| return ptdesc->ptl; |
| } |
| #else /* ALLOC_SPLIT_PTLOCKS */ |
| static inline void ptlock_cache_init(void) |
| { |
| } |
| |
| static inline bool ptlock_alloc(struct ptdesc *ptdesc) |
| { |
| return true; |
| } |
| |
| static inline void ptlock_free(struct ptdesc *ptdesc) |
| { |
| } |
| |
| static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) |
| { |
| return &ptdesc->ptl; |
| } |
| #endif /* ALLOC_SPLIT_PTLOCKS */ |
| |
| static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) |
| { |
| return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); |
| } |
| |
| static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) |
| { |
| BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); |
| BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); |
| return ptlock_ptr(virt_to_ptdesc(pte)); |
| } |
| |
| static inline bool ptlock_init(struct ptdesc *ptdesc) |
| { |
| /* |
| * prep_new_page() initialize page->private (and therefore page->ptl) |
| * with 0. Make sure nobody took it in use in between. |
| * |
| * It can happen if arch try to use slab for page table allocation: |
| * slab code uses page->slab_cache, which share storage with page->ptl. |
| */ |
| VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); |
| if (!ptlock_alloc(ptdesc)) |
| return false; |
| spin_lock_init(ptlock_ptr(ptdesc)); |
| return true; |
| } |
| |
| #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ |
| /* |
| * We use mm->page_table_lock to guard all pagetable pages of the mm. |
| */ |
| static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) |
| { |
| return &mm->page_table_lock; |
| } |
| static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) |
| { |
| return &mm->page_table_lock; |
| } |
| static inline void ptlock_cache_init(void) {} |
| static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } |
| static inline void ptlock_free(struct ptdesc *ptdesc) {} |
| #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ |
| |
| static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) |
| { |
| struct folio *folio = ptdesc_folio(ptdesc); |
| |
| if (!ptlock_init(ptdesc)) |
| return false; |
| __folio_set_pgtable(folio); |
| lruvec_stat_add_folio(folio, NR_PAGETABLE); |
| return true; |
| } |
| |
| static inline void pagetable_pte_dtor(struct ptdesc *ptdesc) |
| { |
| struct folio *folio = ptdesc_folio(ptdesc); |
| |
| ptlock_free(ptdesc); |
| __folio_clear_pgtable(folio); |
| lruvec_stat_sub_folio(folio, NR_PAGETABLE); |
| } |
| |
| pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); |
| static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) |
| { |
| return __pte_offset_map(pmd, addr, NULL); |
| } |
| |
| pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, |
| unsigned long addr, spinlock_t **ptlp); |
| static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, |
| unsigned long addr, spinlock_t **ptlp) |
| { |
| pte_t *pte; |
| |
| __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); |
| return pte; |
| } |
| |
| pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, |
| unsigned long addr, spinlock_t **ptlp); |
| |
| #define pte_unmap_unlock(pte, ptl) do { \ |
| spin_unlock(ptl); \ |
| pte_unmap(pte); \ |
| } while (0) |
| |
| #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) |
| |
| #define pte_alloc_map(mm, pmd, address) \ |
| (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) |
| |
| #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ |
| (pte_alloc(mm, pmd) ? \ |
| NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) |
| |
| #define pte_alloc_kernel(pmd, address) \ |
| ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ |
| NULL: pte_offset_kernel(pmd, address)) |
| |
| #if defined(CONFIG_SPLIT_PMD_PTLOCKS) |
| |
| static inline struct page *pmd_pgtable_page(pmd_t *pmd) |
| { |
| unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); |
| return virt_to_page((void *)((unsigned long) pmd & mask)); |
| } |
| |
| static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) |
| { |
| return page_ptdesc(pmd_pgtable_page(pmd)); |
| } |
| |
| static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) |
| { |
| return ptlock_ptr(pmd_ptdesc(pmd)); |
| } |
| |
| static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) |
| { |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| ptdesc->pmd_huge_pte = NULL; |
| #endif |
| return ptlock_init(ptdesc); |
| } |
| |
| static inline void pmd_ptlock_free(struct ptdesc *ptdesc) |
| { |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc)); |
| #endif |
| ptlock_free(ptdesc); |
| } |
| |
| #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) |
| |
| #else |
| |
| static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) |
| { |
| return &mm->page_table_lock; |
| } |
| |
| static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } |
| static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {} |
| |
| #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) |
| |
| #endif |
| |
| static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) |
| { |
| spinlock_t *ptl = pmd_lockptr(mm, pmd); |
| spin_lock(ptl); |
| return ptl; |
| } |
| |
| static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) |
| { |
| struct folio *folio = ptdesc_folio(ptdesc); |
| |
| if (!pmd_ptlock_init(ptdesc)) |
| return false; |
| __folio_set_pgtable(folio); |
| lruvec_stat_add_folio(folio, NR_PAGETABLE); |
| return true; |
| } |
| |
| static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc) |
| { |
| struct folio *folio = ptdesc_folio(ptdesc); |
| |
| pmd_ptlock_free(ptdesc); |
| __folio_clear_pgtable(folio); |
| lruvec_stat_sub_folio(folio, NR_PAGETABLE); |
| } |
| |
| /* |
| * No scalability reason to split PUD locks yet, but follow the same pattern |
| * as the PMD locks to make it easier if we decide to. The VM should not be |
| * considered ready to switch to split PUD locks yet; there may be places |
| * which need to be converted from page_table_lock. |
| */ |
| static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) |
| { |
| return &mm->page_table_lock; |
| } |
| |
| static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) |
| { |
| spinlock_t *ptl = pud_lockptr(mm, pud); |
| |
| spin_lock(ptl); |
| return ptl; |
| } |
| |
| static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) |
| { |
| struct folio *folio = ptdesc_folio(ptdesc); |
| |
| __folio_set_pgtable(folio); |
| lruvec_stat_add_folio(folio, NR_PAGETABLE); |
| } |
| |
| static inline void pagetable_pud_dtor(struct ptdesc *ptdesc) |
| { |
| struct folio *folio = ptdesc_folio(ptdesc); |
| |
| __folio_clear_pgtable(folio); |
| lruvec_stat_sub_folio(folio, NR_PAGETABLE); |
| } |
| |
| extern void __init pagecache_init(void); |
| extern void free_initmem(void); |
| |
| /* |
| * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) |
| * into the buddy system. The freed pages will be poisoned with pattern |
| * "poison" if it's within range [0, UCHAR_MAX]. |
| * Return pages freed into the buddy system. |
| */ |
| extern unsigned long free_reserved_area(void *start, void *end, |
| int poison, const char *s); |
| |
| extern void adjust_managed_page_count(struct page *page, long count); |
| |
| extern void reserve_bootmem_region(phys_addr_t start, |
| phys_addr_t end, int nid); |
| |
| /* Free the reserved page into the buddy system, so it gets managed. */ |
| void free_reserved_page(struct page *page); |
| #define free_highmem_page(page) free_reserved_page(page) |
| |
| static inline void mark_page_reserved(struct page *page) |
| { |
| SetPageReserved(page); |
| adjust_managed_page_count(page, -1); |
| } |
| |
| static inline void free_reserved_ptdesc(struct ptdesc *pt) |
| { |
| free_reserved_page(ptdesc_page(pt)); |
| } |
| |
| /* |
| * Default method to free all the __init memory into the buddy system. |
| * The freed pages will be poisoned with pattern "poison" if it's within |
| * range [0, UCHAR_MAX]. |
| * Return pages freed into the buddy system. |
| */ |
| static inline unsigned long free_initmem_default(int poison) |
| { |
| extern char __init_begin[], __init_end[]; |
| |
| return free_reserved_area(&__init_begin, &__init_end, |
| poison, "unused kernel image (initmem)"); |
| } |
| |
| static inline unsigned long get_num_physpages(void) |
| { |
| int nid; |
| unsigned long phys_pages = 0; |
| |
| for_each_online_node(nid) |
| phys_pages += node_present_pages(nid); |
| |
| return phys_pages; |
| } |
| |
| /* |
| * Using memblock node mappings, an architecture may initialise its |
| * zones, allocate the backing mem_map and account for memory holes in an |
| * architecture independent manner. |
| * |
| * An architecture is expected to register range of page frames backed by |
| * physical memory with memblock_add[_node]() before calling |
| * free_area_init() passing in the PFN each zone ends at. At a basic |
| * usage, an architecture is expected to do something like |
| * |
| * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, |
| * max_highmem_pfn}; |
| * for_each_valid_physical_page_range() |
| * memblock_add_node(base, size, nid, MEMBLOCK_NONE) |
| * free_area_init(max_zone_pfns); |
| */ |
| void free_area_init(unsigned long *max_zone_pfn); |
| unsigned long node_map_pfn_alignment(void); |
| extern unsigned long absent_pages_in_range(unsigned long start_pfn, |
| unsigned long end_pfn); |
| extern void get_pfn_range_for_nid(unsigned int nid, |
| unsigned long *start_pfn, unsigned long *end_pfn); |
| |
| #ifndef CONFIG_NUMA |
| static inline int early_pfn_to_nid(unsigned long pfn) |
| { |
| return 0; |
| } |
| #else |
| /* please see mm/page_alloc.c */ |
| extern int __meminit early_pfn_to_nid(unsigned long pfn); |
| #endif |
| |
| extern void mem_init(void); |
| extern void __init mmap_init(void); |
| |
| extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); |
| static inline void show_mem(void) |
| { |
| __show_mem(0, NULL, MAX_NR_ZONES - 1); |
| } |
| extern long si_mem_available(void); |
| extern void si_meminfo(struct sysinfo * val); |
| extern void si_meminfo_node(struct sysinfo *val, int nid); |
| |
| extern __printf(3, 4) |
| void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); |
| |
| extern void setup_per_cpu_pageset(void); |
| |
| /* nommu.c */ |
| extern atomic_long_t mmap_pages_allocated; |
| extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); |
| |
| /* interval_tree.c */ |
| void vma_interval_tree_insert(struct vm_area_struct *node, |
| struct rb_root_cached *root); |
| void vma_interval_tree_insert_after(struct vm_area_struct *node, |
| struct vm_area_struct *prev, |
| struct rb_root_cached *root); |
| void vma_interval_tree_remove(struct vm_area_struct *node, |
| struct rb_root_cached *root); |
| struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, |
| unsigned long start, unsigned long last); |
| struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, |
| unsigned long start, unsigned long last); |
| |
| #define vma_interval_tree_foreach(vma, root, start, last) \ |
| for (vma = vma_interval_tree_iter_first(root, start, last); \ |
| vma; vma = vma_interval_tree_iter_next(vma, start, last)) |
| |
| void anon_vma_interval_tree_insert(struct anon_vma_chain *node, |
| struct rb_root_cached *root); |
| void anon_vma_interval_tree_remove(struct anon_vma_chain *node, |
| struct rb_root_cached *root); |
| struct anon_vma_chain * |
| anon_vma_interval_tree_iter_first(struct rb_root_cached *root, |
| unsigned long start, unsigned long last); |
| struct anon_vma_chain *anon_vma_interval_tree_iter_next( |
| struct anon_vma_chain *node, unsigned long start, unsigned long last); |
| #ifdef CONFIG_DEBUG_VM_RB |
| void anon_vma_interval_tree_verify(struct anon_vma_chain *node); |
| #endif |
| |
| #define anon_vma_interval_tree_foreach(avc, root, start, last) \ |
| for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ |
| avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) |
| |
| /* mmap.c */ |
| extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); |
| extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); |
| extern void exit_mmap(struct mm_struct *); |
| int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift); |
| |
| static inline int check_data_rlimit(unsigned long rlim, |
| unsigned long new, |
| unsigned long start, |
| unsigned long end_data, |
| unsigned long start_data) |
| { |
| if (rlim < RLIM_INFINITY) { |
| if (((new - start) + (end_data - start_data)) > rlim) |
| return -ENOSPC; |
| } |
| |
| return 0; |
| } |
| |
| extern int mm_take_all_locks(struct mm_struct *mm); |
| extern void mm_drop_all_locks(struct mm_struct *mm); |
| |
| extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); |
| extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); |
| extern struct file *get_mm_exe_file(struct mm_struct *mm); |
| extern struct file *get_task_exe_file(struct task_struct *task); |
| |
| extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); |
| extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); |
| |
| extern bool vma_is_special_mapping(const struct vm_area_struct *vma, |
| const struct vm_special_mapping *sm); |
| extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, |
| unsigned long addr, unsigned long len, |
| unsigned long flags, |
| const struct vm_special_mapping *spec); |
| |
| unsigned long randomize_stack_top(unsigned long stack_top); |
| unsigned long randomize_page(unsigned long start, unsigned long range); |
| |
| unsigned long |
| __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, |
| unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); |
| |
| static inline unsigned long |
| get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, |
| unsigned long pgoff, unsigned long flags) |
| { |
| return __get_unmapped_area(file, addr, len, pgoff, flags, 0); |
| } |
| |
| extern unsigned long mmap_region(struct file *file, unsigned long addr, |
| unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, |
| struct list_head *uf); |
| extern unsigned long do_mmap(struct file *file, unsigned long addr, |
| unsigned long len, unsigned long prot, unsigned long flags, |
| vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, |
| struct list_head *uf); |
| extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, |
| unsigned long start, size_t len, struct list_head *uf, |
| bool unlock); |
| int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, |
| struct mm_struct *mm, unsigned long start, |
| unsigned long end, struct list_head *uf, bool unlock); |
| extern int do_munmap(struct mm_struct *, unsigned long, size_t, |
| struct list_head *uf); |
| extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); |
| |
| #ifdef CONFIG_MMU |
| extern int __mm_populate(unsigned long addr, unsigned long len, |
| int ignore_errors); |
| static inline void mm_populate(unsigned long addr, unsigned long len) |
| { |
| /* Ignore errors */ |
| (void) __mm_populate(addr, len, 1); |
| } |
| #else |
| static inline void mm_populate(unsigned long addr, unsigned long len) {} |
| #endif |
| |
| /* This takes the mm semaphore itself */ |
| extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); |
| extern int vm_munmap(unsigned long, size_t); |
| extern unsigned long __must_check vm_mmap(struct file *, unsigned long, |
| unsigned long, unsigned long, |
| unsigned long, unsigned long); |
| |
| struct vm_unmapped_area_info { |
| #define VM_UNMAPPED_AREA_TOPDOWN 1 |
| unsigned long flags; |
| unsigned long length; |
| unsigned long low_limit; |
| unsigned long high_limit; |
| unsigned long align_mask; |
| unsigned long align_offset; |
| unsigned long start_gap; |
| }; |
| |
| extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); |
| |
| /* truncate.c */ |
| extern void truncate_inode_pages(struct address_space *, loff_t); |
| extern void truncate_inode_pages_range(struct address_space *, |
| loff_t lstart, loff_t lend); |
| extern void truncate_inode_pages_final(struct address_space *); |
| |
| /* generic vm_area_ops exported for stackable file systems */ |
| extern vm_fault_t filemap_fault(struct vm_fault *vmf); |
| extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, |
| pgoff_t start_pgoff, pgoff_t end_pgoff); |
| extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); |
| |
| extern unsigned long stack_guard_gap; |
| /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ |
| int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); |
| struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); |
| |
| /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ |
| int expand_downwards(struct vm_area_struct *vma, unsigned long address); |
| |
| /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ |
| extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); |
| extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, |
| struct vm_area_struct **pprev); |
| |
| /* |
| * Look up the first VMA which intersects the interval [start_addr, end_addr) |
| * NULL if none. Assume start_addr < end_addr. |
| */ |
| struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, |
| unsigned long start_addr, unsigned long end_addr); |
| |
| /** |
| * vma_lookup() - Find a VMA at a specific address |
| * @mm: The process address space. |
| * @addr: The user address. |
| * |
| * Return: The vm_area_struct at the given address, %NULL otherwise. |
| */ |
| static inline |
| struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) |
| { |
| return mtree_load(&mm->mm_mt, addr); |
| } |
| |
| static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) |
| { |
| if (vma->vm_flags & VM_GROWSDOWN) |
| return stack_guard_gap; |
| |
| /* See reasoning around the VM_SHADOW_STACK definition */ |
| if (vma->vm_flags & VM_SHADOW_STACK) |
| return PAGE_SIZE; |
| |
| return 0; |
| } |
| |
| static inline unsigned long vm_start_gap(struct vm_area_struct *vma) |
| { |
| unsigned long gap = stack_guard_start_gap(vma); |
| unsigned long vm_start = vma->vm_start; |
| |
| vm_start -= gap; |
| if (vm_start > vma->vm_start) |
| vm_start = 0; |
| return vm_start; |
| } |
| |
| static inline unsigned long vm_end_gap(struct vm_area_struct *vma) |
| { |
| unsigned long vm_end = vma->vm_end; |
| |
| if (vma->vm_flags & VM_GROWSUP) { |
| vm_end += stack_guard_gap; |
| if (vm_end < vma->vm_end) |
| vm_end = -PAGE_SIZE; |
| } |
| return vm_end; |
| } |
| |
| static inline unsigned long vma_pages(struct vm_area_struct *vma) |
| { |
| return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; |
| } |
| |
| /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ |
| static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, |
| unsigned long vm_start, unsigned long vm_end) |
| { |
| struct vm_area_struct *vma = vma_lookup(mm, vm_start); |
| |
| if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) |
| vma = NULL; |
| |
| return vma; |
| } |
| |
| static inline bool range_in_vma(struct vm_area_struct *vma, |
| unsigned long start, unsigned long end) |
| { |
| return (vma && vma->vm_start <= start && end <= vma->vm_end); |
| } |
| |
| #ifdef CONFIG_MMU |
| pgprot_t vm_get_page_prot(unsigned long vm_flags); |
| void vma_set_page_prot(struct vm_area_struct *vma); |
| #else |
| static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) |
| { |
| return __pgprot(0); |
| } |
| static inline void vma_set_page_prot(struct vm_area_struct *vma) |
| { |
| vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); |
| } |
| #endif |
| |
| void vma_set_file(struct vm_area_struct *vma, struct file *file); |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| unsigned long change_prot_numa(struct vm_area_struct *vma, |
| unsigned long start, unsigned long end); |
| #endif |
| |
| struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, |
| unsigned long addr); |
| int remap_pfn_range(struct vm_area_struct *, unsigned long addr, |
| unsigned long pfn, unsigned long size, pgprot_t); |
| int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, |
| unsigned long pfn, unsigned long size, pgprot_t prot); |
| int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); |
| int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, |
| struct page **pages, unsigned long *num); |
| int vm_map_pages(struct vm_area_struct *vma, struct page **pages, |
| unsigned long num); |
| int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, |
| unsigned long num); |
| vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
| unsigned long pfn); |
| vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, |
| unsigned long pfn, pgprot_t pgprot); |
| vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, |
| pfn_t pfn); |
| vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, |
| unsigned long addr, pfn_t pfn); |
| int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); |
| |
| static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, |
| unsigned long addr, struct page *page) |
| { |
| int err = vm_insert_page(vma, addr, page); |
| |
| if (err == -ENOMEM) |
| return VM_FAULT_OOM; |
| if (err < 0 && err != -EBUSY) |
| return VM_FAULT_SIGBUS; |
| |
| return VM_FAULT_NOPAGE; |
| } |
| |
| #ifndef io_remap_pfn_range |
| static inline int io_remap_pfn_range(struct vm_area_struct *vma, |
| unsigned long addr, unsigned long pfn, |
| unsigned long size, pgprot_t prot) |
| { |
| return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); |
| } |
| #endif |
| |
| static inline vm_fault_t vmf_error(int err) |
| { |
| if (err == -ENOMEM) |
| return VM_FAULT_OOM; |
| else if (err == -EHWPOISON) |
| return VM_FAULT_HWPOISON; |
| return VM_FAULT_SIGBUS; |
| } |
| |
| /* |
| * Convert errno to return value for ->page_mkwrite() calls. |
| * |
| * This should eventually be merged with vmf_error() above, but will need a |
| * careful audit of all vmf_error() callers. |
| */ |
| static inline vm_fault_t vmf_fs_error(int err) |
| { |
| if (err == 0) |
| return VM_FAULT_LOCKED; |
| if (err == -EFAULT || err == -EAGAIN) |
| return VM_FAULT_NOPAGE; |
| if (err == -ENOMEM) |
| return VM_FAULT_OOM; |
| /* -ENOSPC, -EDQUOT, -EIO ... */ |
| return VM_FAULT_SIGBUS; |
| } |
| |
| static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) |
| { |
| if (vm_fault & VM_FAULT_OOM) |
| return -ENOMEM; |
| if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) |
| return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; |
| if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) |
| return -EFAULT; |
| return 0; |
| } |
| |
| /* |
| * Indicates whether GUP can follow a PROT_NONE mapped page, or whether |
| * a (NUMA hinting) fault is required. |
| */ |
| static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, |
| unsigned int flags) |
| { |
| /* |
| * If callers don't want to honor NUMA hinting faults, no need to |
| * determine if we would actually have to trigger a NUMA hinting fault. |
| */ |
| if (!(flags & FOLL_HONOR_NUMA_FAULT)) |
| return true; |
| |
| /* |
| * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. |
| * |
| * Requiring a fault here even for inaccessible VMAs would mean that |
| * FOLL_FORCE cannot make any progress, because handle_mm_fault() |
| * refuses to process NUMA hinting faults in inaccessible VMAs. |
| */ |
| return !vma_is_accessible(vma); |
| } |
| |
| typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); |
| extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, |
| unsigned long size, pte_fn_t fn, void *data); |
| extern int apply_to_existing_page_range(struct mm_struct *mm, |
| unsigned long address, unsigned long size, |
| pte_fn_t fn, void *data); |
| |
| #ifdef CONFIG_PAGE_POISONING |
| extern void __kernel_poison_pages(struct page *page, int numpages); |
| extern void __kernel_unpoison_pages(struct page *page, int numpages); |
| extern bool _page_poisoning_enabled_early; |
| DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); |
| static inline bool page_poisoning_enabled(void) |
| { |
| return _page_poisoning_enabled_early; |
| } |
| /* |
| * For use in fast paths after init_mem_debugging() has run, or when a |
| * false negative result is not harmful when called too early. |
| */ |
| static inline bool page_poisoning_enabled_static(void) |
| { |
| return static_branch_unlikely(&_page_poisoning_enabled); |
| } |
| static inline void kernel_poison_pages(struct page *page, int numpages) |
| { |
| if (page_poisoning_enabled_static()) |
| __kernel_poison_pages(page, numpages); |
| } |
| static inline void kernel_unpoison_pages(struct page *page, int numpages) |
| { |
| if (page_poisoning_enabled_static()) |
| __kernel_unpoison_pages(page, numpages); |
| } |
| #else |
| static inline bool page_poisoning_enabled(void) { return false; } |
| static inline bool page_poisoning_enabled_static(void) { return false; } |
| static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } |
| static inline void kernel_poison_pages(struct page *page, int numpages) { } |
| static inline void kernel_unpoison_pages(struct page *page, int numpages) { } |
| #endif |
| |
| DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); |
| static inline bool want_init_on_alloc(gfp_t flags) |
| { |
| if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, |
| &init_on_alloc)) |
| return true; |
| return flags & __GFP_ZERO; |
| } |
| |
| DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); |
| static inline bool want_init_on_free(void) |
| { |
| return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, |
| &init_on_free); |
| } |
| |
| extern bool _debug_pagealloc_enabled_early; |
| DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); |
| |
| static inline bool debug_pagealloc_enabled(void) |
| { |
| return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && |
| _debug_pagealloc_enabled_early; |
| } |
| |
| /* |
| * For use in fast paths after mem_debugging_and_hardening_init() has run, |
| * or when a false negative result is not harmful when called too early. |
| */ |
| static inline bool debug_pagealloc_enabled_static(void) |
| { |
| if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) |
| return false; |
| |
| return static_branch_unlikely(&_debug_pagealloc_enabled); |
| } |
| |
| /* |
| * To support DEBUG_PAGEALLOC architecture must ensure that |
| * __kernel_map_pages() never fails |
| */ |
| extern void __kernel_map_pages(struct page *page, int numpages, int enable); |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| static inline void debug_pagealloc_map_pages(struct page *page, int numpages) |
| { |
| if (debug_pagealloc_enabled_static()) |
| __kernel_map_pages(page, numpages, 1); |
| } |
| |
| static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) |
| { |
| if (debug_pagealloc_enabled_static()) |
| __kernel_map_pages(page, numpages, 0); |
| } |
| |
| extern unsigned int _debug_guardpage_minorder; |
| DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); |
| |
| static inline unsigned int debug_guardpage_minorder(void) |
| { |
| return _debug_guardpage_minorder; |
| } |
| |
| static inline bool debug_guardpage_enabled(void) |
| { |
| return static_branch_unlikely(&_debug_guardpage_enabled); |
| } |
| |
| static inline bool page_is_guard(struct page *page) |
| { |
| if (!debug_guardpage_enabled()) |
| return false; |
| |
| return PageGuard(page); |
| } |
| |
| bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); |
| static inline bool set_page_guard(struct zone *zone, struct page *page, |
| unsigned int order) |
| { |
| if (!debug_guardpage_enabled()) |
| return false; |
| return __set_page_guard(zone, page, order); |
| } |
| |
| void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); |
| static inline void clear_page_guard(struct zone *zone, struct page *page, |
| unsigned int order) |
| { |
| if (!debug_guardpage_enabled()) |
| return; |
| __clear_page_guard(zone, page, order); |
| } |
| |
| #else /* CONFIG_DEBUG_PAGEALLOC */ |
| static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} |
| static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} |
| static inline unsigned int debug_guardpage_minorder(void) { return 0; } |
| static inline bool debug_guardpage_enabled(void) { return false; } |
| static inline bool page_is_guard(struct page *page) { return false; } |
| static inline bool set_page_guard(struct zone *zone, struct page *page, |
| unsigned int order) { return false; } |
| static inline void clear_page_guard(struct zone *zone, struct page *page, |
| unsigned int order) {} |
| #endif /* CONFIG_DEBUG_PAGEALLOC */ |
| |
| #ifdef __HAVE_ARCH_GATE_AREA |
| extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); |
| extern int in_gate_area_no_mm(unsigned long addr); |
| extern int in_gate_area(struct mm_struct *mm, unsigned long addr); |
| #else |
| static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) |
| { |
| return NULL; |
| } |
| static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } |
| static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) |
| { |
| return 0; |
| } |
| #endif /* __HAVE_ARCH_GATE_AREA */ |
| |
| extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); |
| |
| #ifdef CONFIG_SYSCTL |
| extern int sysctl_drop_caches; |
| int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *, |
| loff_t *); |
| #endif |
| |
| void drop_slab(void); |
| |
| #ifndef CONFIG_MMU |
| #define randomize_va_space 0 |
| #else |
| extern int randomize_va_space; |
| #endif |
| |
| const char * arch_vma_name(struct vm_area_struct *vma); |
| #ifdef CONFIG_MMU |
| void print_vma_addr(char *prefix, unsigned long rip); |
| #else |
| static inline void print_vma_addr(char *prefix, unsigned long rip) |
| { |
| } |
| #endif |
| |
| void *sparse_buffer_alloc(unsigned long size); |
| struct page * __populate_section_memmap(unsigned long pfn, |
| unsigned long nr_pages, int nid, struct vmem_altmap *altmap, |
| struct dev_pagemap *pgmap); |
| void pmd_init(void *addr); |
| void pud_init(void *addr); |
| pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); |
| p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); |
| pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); |
| pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); |
| pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, |
| struct vmem_altmap *altmap, struct page *reuse); |
| void *vmemmap_alloc_block(unsigned long size, int node); |
| struct vmem_altmap; |
| void *vmemmap_alloc_block_buf(unsigned long size, int node, |
| struct vmem_altmap *altmap); |
| void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); |
| void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, |
| unsigned long addr, unsigned long next); |
| int vmemmap_check_pmd(pmd_t *pmd, int node, |
| unsigned long addr, unsigned long next); |
| int vmemmap_populate_basepages(unsigned long start, unsigned long end, |
| int node, struct vmem_altmap *altmap); |
| int vmemmap_populate_hugepages(unsigned long start, unsigned long end, |
| int node, struct vmem_altmap *altmap); |
| int vmemmap_populate(unsigned long start, unsigned long end, int node, |
| struct vmem_altmap *altmap); |
| void vmemmap_populate_print_last(void); |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| void vmemmap_free(unsigned long start, unsigned long end, |
| struct vmem_altmap *altmap); |
| #endif |
| |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) |
| { |
| /* number of pfns from base where pfn_to_page() is valid */ |
| if (altmap) |
| return altmap->reserve + altmap->free; |
| return 0; |
| } |
| |
| static inline void vmem_altmap_free(struct vmem_altmap *altmap, |
| unsigned long nr_pfns) |
| { |
| altmap->alloc -= nr_pfns; |
| } |
| #else |
| static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) |
| { |
| return 0; |
| } |
| |
| static inline void vmem_altmap_free(struct vmem_altmap *altmap, |
| unsigned long nr_pfns) |
| { |
| } |
| #endif |
| |
| #define VMEMMAP_RESERVE_NR 2 |
| #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP |
| static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, |
| struct dev_pagemap *pgmap) |
| { |
| unsigned long nr_pages; |
| unsigned long nr_vmemmap_pages; |
| |
| if (!pgmap || !is_power_of_2(sizeof(struct page))) |
| return false; |
| |
| nr_pages = pgmap_vmemmap_nr(pgmap); |
| nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); |
| /* |
| * For vmemmap optimization with DAX we need minimum 2 vmemmap |
| * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst |
| */ |
| return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); |
| } |
| /* |
| * If we don't have an architecture override, use the generic rule |
| */ |
| #ifndef vmemmap_can_optimize |
| #define vmemmap_can_optimize __vmemmap_can_optimize |
| #endif |
| |
| #else |
| static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, |
| struct dev_pagemap *pgmap) |
| { |
| return false; |
| } |
| #endif |
| |
| void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, |
| unsigned long nr_pages); |
| |
| enum mf_flags { |
| MF_COUNT_INCREASED = 1 << 0, |
| MF_ACTION_REQUIRED = 1 << 1, |
| MF_MUST_KILL = 1 << 2, |
| MF_SOFT_OFFLINE = 1 << 3, |
| MF_UNPOISON = 1 << 4, |
| MF_SW_SIMULATED = 1 << 5, |
| MF_NO_RETRY = 1 << 6, |
| MF_MEM_PRE_REMOVE = 1 << 7, |
| }; |
| int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, |
| unsigned long count, int mf_flags); |
| extern int memory_failure(unsigned long pfn, int flags); |
| extern void memory_failure_queue_kick(int cpu); |
| extern int unpoison_memory(unsigned long pfn); |
| extern atomic_long_t num_poisoned_pages __read_mostly; |
| extern int soft_offline_page(unsigned long pfn, int flags); |
| #ifdef CONFIG_MEMORY_FAILURE |
| /* |
| * Sysfs entries for memory failure handling statistics. |
| */ |
| extern const struct attribute_group memory_failure_attr_group; |
| extern void memory_failure_queue(unsigned long pfn, int flags); |
| extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, |
| bool *migratable_cleared); |
| void num_poisoned_pages_inc(unsigned long pfn); |
| void num_poisoned_pages_sub(unsigned long pfn, long i); |
| #else |
| static inline void memory_failure_queue(unsigned long pfn, int flags) |
| { |
| } |
| |
| static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, |
| bool *migratable_cleared) |
| { |
| return 0; |
| } |
| |
| static inline void num_poisoned_pages_inc(unsigned long pfn) |
| { |
| } |
| |
| static inline void num_poisoned_pages_sub(unsigned long pfn, long i) |
| { |
| } |
| #endif |
| |
| #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) |
| extern void memblk_nr_poison_inc(unsigned long pfn); |
| extern void memblk_nr_poison_sub(unsigned long pfn, long i); |
| #else |
| static inline void memblk_nr_poison_inc(unsigned long pfn) |
| { |
| } |
| |
| static inline void memblk_nr_poison_sub(unsigned long pfn, long i) |
| { |
| } |
| #endif |
| |
| #ifndef arch_memory_failure |
| static inline int arch_memory_failure(unsigned long pfn, int flags) |
| { |
| return -ENXIO; |
| } |
| #endif |
| |
| #ifndef arch_is_platform_page |
| static inline bool arch_is_platform_page(u64 paddr) |
| { |
| return false; |
| } |
| #endif |
| |
| /* |
| * Error handlers for various types of pages. |
| */ |
| enum mf_result { |
| MF_IGNORED, /* Error: cannot be handled */ |
| MF_FAILED, /* Error: handling failed */ |
| MF_DELAYED, /* Will be handled later */ |
| MF_RECOVERED, /* Successfully recovered */ |
| }; |
| |
| enum mf_action_page_type { |
| MF_MSG_KERNEL, |
| MF_MSG_KERNEL_HIGH_ORDER, |
| MF_MSG_DIFFERENT_COMPOUND, |
| MF_MSG_HUGE, |
| MF_MSG_FREE_HUGE, |
| MF_MSG_GET_HWPOISON, |
| MF_MSG_UNMAP_FAILED, |
| MF_MSG_DIRTY_SWAPCACHE, |
| MF_MSG_CLEAN_SWAPCACHE, |
| MF_MSG_DIRTY_MLOCKED_LRU, |
| MF_MSG_CLEAN_MLOCKED_LRU, |
| MF_MSG_DIRTY_UNEVICTABLE_LRU, |
| MF_MSG_CLEAN_UNEVICTABLE_LRU, |
| MF_MSG_DIRTY_LRU, |
| MF_MSG_CLEAN_LRU, |
| MF_MSG_TRUNCATED_LRU, |
| MF_MSG_BUDDY, |
| MF_MSG_DAX, |
| MF_MSG_UNSPLIT_THP, |
| MF_MSG_ALREADY_POISONED, |
| MF_MSG_UNKNOWN, |
| }; |
| |
| #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) |
| void folio_zero_user(struct folio *folio, unsigned long addr_hint); |
| int copy_user_large_folio(struct folio *dst, struct folio *src, |
| unsigned long addr_hint, |
| struct vm_area_struct *vma); |
| long copy_folio_from_user(struct folio *dst_folio, |
| const void __user *usr_src, |
| bool allow_pagefault); |
| |
| /** |
| * vma_is_special_huge - Are transhuge page-table entries considered special? |
| * @vma: Pointer to the struct vm_area_struct to consider |
| * |
| * Whether transhuge page-table entries are considered "special" following |
| * the definition in vm_normal_page(). |
| * |
| * Return: true if transhuge page-table entries should be considered special, |
| * false otherwise. |
| */ |
| static inline bool vma_is_special_huge(const struct vm_area_struct *vma) |
| { |
| return vma_is_dax(vma) || (vma->vm_file && |
| (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); |
| } |
| |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ |
| |
| #if MAX_NUMNODES > 1 |
| void __init setup_nr_node_ids(void); |
| #else |
| static inline void setup_nr_node_ids(void) {} |
| #endif |
| |
| extern int memcmp_pages(struct page *page1, struct page *page2); |
| |
| static inline int pages_identical(struct page *page1, struct page *page2) |
| { |
| return !memcmp_pages(page1, page2); |
| } |
| |
| #ifdef CONFIG_MAPPING_DIRTY_HELPERS |
| unsigned long clean_record_shared_mapping_range(struct address_space *mapping, |
| pgoff_t first_index, pgoff_t nr, |
| pgoff_t bitmap_pgoff, |
| unsigned long *bitmap, |
| pgoff_t *start, |
| pgoff_t *end); |
| |
| unsigned long wp_shared_mapping_range(struct address_space *mapping, |
| pgoff_t first_index, pgoff_t nr); |
| #endif |
| |
| extern int sysctl_nr_trim_pages; |
| |
| #ifdef CONFIG_PRINTK |
| void mem_dump_obj(void *object); |
| #else |
| static inline void mem_dump_obj(void *object) {} |
| #endif |
| |
| /** |
| * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and |
| * handle them. |
| * @seals: the seals to check |
| * @vma: the vma to operate on |
| * |
| * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper |
| * check/handling on the vma flags. Return 0 if check pass, or <0 for errors. |
| */ |
| static inline int seal_check_write(int seals, struct vm_area_struct *vma) |
| { |
| if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { |
| /* |
| * New PROT_WRITE and MAP_SHARED mmaps are not allowed when |
| * write seals are active. |
| */ |
| if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) |
| return -EPERM; |
| |
| /* |
| * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as |
| * MAP_SHARED and read-only, take care to not allow mprotect to |
| * revert protections on such mappings. Do this only for shared |
| * mappings. For private mappings, don't need to mask |
| * VM_MAYWRITE as we still want them to be COW-writable. |
| */ |
| if (vma->vm_flags & VM_SHARED) |
| vm_flags_clear(vma, VM_MAYWRITE); |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_ANON_VMA_NAME |
| int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, |
| unsigned long len_in, |
| struct anon_vma_name *anon_name); |
| #else |
| static inline int |
| madvise_set_anon_name(struct mm_struct *mm, unsigned long start, |
| unsigned long len_in, struct anon_vma_name *anon_name) { |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_UNACCEPTED_MEMORY |
| |
| bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); |
| void accept_memory(phys_addr_t start, unsigned long size); |
| |
| #else |
| |
| static inline bool range_contains_unaccepted_memory(phys_addr_t start, |
| unsigned long size) |
| { |
| return false; |
| } |
| |
| static inline void accept_memory(phys_addr_t start, unsigned long size) |
| { |
| } |
| |
| #endif |
| |
| static inline bool pfn_is_unaccepted_memory(unsigned long pfn) |
| { |
| return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); |
| } |
| |
| void vma_pgtable_walk_begin(struct vm_area_struct *vma); |
| void vma_pgtable_walk_end(struct vm_area_struct *vma); |
| |
| int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); |
| |
| #ifdef CONFIG_64BIT |
| int do_mseal(unsigned long start, size_t len_in, unsigned long flags); |
| #else |
| static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) |
| { |
| /* noop on 32 bit */ |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_MEM_ALLOC_PROFILING |
| static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order) |
| { |
| int i; |
| struct alloc_tag *tag; |
| unsigned int nr_pages = 1 << new_order; |
| |
| if (!mem_alloc_profiling_enabled()) |
| return; |
| |
| tag = pgalloc_tag_get(&folio->page); |
| if (!tag) |
| return; |
| |
| for (i = nr_pages; i < (1 << old_order); i += nr_pages) { |
| union codetag_ref *ref = get_page_tag_ref(folio_page(folio, i)); |
| |
| if (ref) { |
| /* Set new reference to point to the original tag */ |
| alloc_tag_ref_set(ref, tag); |
| put_page_tag_ref(ref); |
| } |
| } |
| } |
| |
| static inline void pgalloc_tag_copy(struct folio *new, struct folio *old) |
| { |
| struct alloc_tag *tag; |
| union codetag_ref *ref; |
| |
| tag = pgalloc_tag_get(&old->page); |
| if (!tag) |
| return; |
| |
| ref = get_page_tag_ref(&new->page); |
| if (!ref) |
| return; |
| |
| /* Clear the old ref to the original allocation tag. */ |
| clear_page_tag_ref(&old->page); |
| /* Decrement the counters of the tag on get_new_folio. */ |
| alloc_tag_sub(ref, folio_nr_pages(new)); |
| |
| __alloc_tag_ref_set(ref, tag); |
| |
| put_page_tag_ref(ref); |
| } |
| #else /* !CONFIG_MEM_ALLOC_PROFILING */ |
| static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order) |
| { |
| } |
| |
| static inline void pgalloc_tag_copy(struct folio *new, struct folio *old) |
| { |
| } |
| #endif /* CONFIG_MEM_ALLOC_PROFILING */ |
| |
| #endif /* _LINUX_MM_H */ |