blob: 70960e3ba878085e3536b005511d484b62351298 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* comedi/drivers/mite.c
* Hardware driver for NI Mite PCI interface chip
*
* COMEDI - Linux Control and Measurement Device Interface
* Copyright (C) 1997-2002 David A. Schleef <ds@schleef.org>
*/
/*
* The PCI-MIO E series driver was originally written by
* Tomasz Motylewski <...>, and ported to comedi by ds.
*
* References for specifications:
*
* 321747b.pdf Register Level Programmer Manual (obsolete)
* 321747c.pdf Register Level Programmer Manual (new)
* DAQ-STC reference manual
*
* Other possibly relevant info:
*
* 320517c.pdf User manual (obsolete)
* 320517f.pdf User manual (new)
* 320889a.pdf delete
* 320906c.pdf maximum signal ratings
* 321066a.pdf about 16x
* 321791a.pdf discontinuation of at-mio-16e-10 rev. c
* 321808a.pdf about at-mio-16e-10 rev P
* 321837a.pdf discontinuation of at-mio-16de-10 rev d
* 321838a.pdf about at-mio-16de-10 rev N
*
* ISSUES:
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/log2.h>
#include "../comedi_pci.h"
#include "mite.h"
/*
* Mite registers
*/
#define MITE_UNKNOWN_DMA_BURST_REG 0x28
#define UNKNOWN_DMA_BURST_ENABLE_BITS 0x600
#define MITE_PCI_CONFIG_OFFSET 0x300
#define MITE_CSIGR 0x460 /* chip signature */
#define CSIGR_TO_IOWINS(x) (((x) >> 29) & 0x7)
#define CSIGR_TO_WINS(x) (((x) >> 24) & 0x1f)
#define CSIGR_TO_WPDEP(x) (((x) >> 20) & 0x7)
#define CSIGR_TO_DMAC(x) (((x) >> 16) & 0xf)
#define CSIGR_TO_IMODE(x) (((x) >> 12) & 0x3) /* pci=0x3 */
#define CSIGR_TO_MMODE(x) (((x) >> 8) & 0x3) /* minimite=1 */
#define CSIGR_TO_TYPE(x) (((x) >> 4) & 0xf) /* mite=0, minimite=1 */
#define CSIGR_TO_VER(x) (((x) >> 0) & 0xf)
#define MITE_CHAN(x) (0x500 + 0x100 * (x))
#define MITE_CHOR(x) (0x00 + MITE_CHAN(x)) /* channel operation */
#define CHOR_DMARESET BIT(31)
#define CHOR_SET_SEND_TC BIT(11)
#define CHOR_CLR_SEND_TC BIT(10)
#define CHOR_SET_LPAUSE BIT(9)
#define CHOR_CLR_LPAUSE BIT(8)
#define CHOR_CLRDONE BIT(7)
#define CHOR_CLRRB BIT(6)
#define CHOR_CLRLC BIT(5)
#define CHOR_FRESET BIT(4)
#define CHOR_ABORT BIT(3) /* stop without emptying fifo */
#define CHOR_STOP BIT(2) /* stop after emptying fifo */
#define CHOR_CONT BIT(1)
#define CHOR_START BIT(0)
#define MITE_CHCR(x) (0x04 + MITE_CHAN(x)) /* channel control */
#define CHCR_SET_DMA_IE BIT(31)
#define CHCR_CLR_DMA_IE BIT(30)
#define CHCR_SET_LINKP_IE BIT(29)
#define CHCR_CLR_LINKP_IE BIT(28)
#define CHCR_SET_SAR_IE BIT(27)
#define CHCR_CLR_SAR_IE BIT(26)
#define CHCR_SET_DONE_IE BIT(25)
#define CHCR_CLR_DONE_IE BIT(24)
#define CHCR_SET_MRDY_IE BIT(23)
#define CHCR_CLR_MRDY_IE BIT(22)
#define CHCR_SET_DRDY_IE BIT(21)
#define CHCR_CLR_DRDY_IE BIT(20)
#define CHCR_SET_LC_IE BIT(19)
#define CHCR_CLR_LC_IE BIT(18)
#define CHCR_SET_CONT_RB_IE BIT(17)
#define CHCR_CLR_CONT_RB_IE BIT(16)
#define CHCR_FIFO(x) (((x) & 0x1) << 15)
#define CHCR_FIFODIS CHCR_FIFO(1)
#define CHCR_FIFO_ON CHCR_FIFO(0)
#define CHCR_BURST(x) (((x) & 0x1) << 14)
#define CHCR_BURSTEN CHCR_BURST(1)
#define CHCR_NO_BURSTEN CHCR_BURST(0)
#define CHCR_BYTE_SWAP_DEVICE BIT(6)
#define CHCR_BYTE_SWAP_MEMORY BIT(4)
#define CHCR_DIR(x) (((x) & 0x1) << 3)
#define CHCR_DEV_TO_MEM CHCR_DIR(1)
#define CHCR_MEM_TO_DEV CHCR_DIR(0)
#define CHCR_MODE(x) (((x) & 0x7) << 0)
#define CHCR_NORMAL CHCR_MODE(0)
#define CHCR_CONTINUE CHCR_MODE(1)
#define CHCR_RINGBUFF CHCR_MODE(2)
#define CHCR_LINKSHORT CHCR_MODE(4)
#define CHCR_LINKLONG CHCR_MODE(5)
#define MITE_TCR(x) (0x08 + MITE_CHAN(x)) /* transfer count */
#define MITE_MCR(x) (0x0c + MITE_CHAN(x)) /* memory config */
#define MITE_MAR(x) (0x10 + MITE_CHAN(x)) /* memory address */
#define MITE_DCR(x) (0x14 + MITE_CHAN(x)) /* device config */
#define DCR_NORMAL BIT(29)
#define MITE_DAR(x) (0x18 + MITE_CHAN(x)) /* device address */
#define MITE_LKCR(x) (0x1c + MITE_CHAN(x)) /* link config */
#define MITE_LKAR(x) (0x20 + MITE_CHAN(x)) /* link address */
#define MITE_LLKAR(x) (0x24 + MITE_CHAN(x)) /* see tnt5002 manual */
#define MITE_BAR(x) (0x28 + MITE_CHAN(x)) /* base address */
#define MITE_BCR(x) (0x2c + MITE_CHAN(x)) /* base count */
#define MITE_SAR(x) (0x30 + MITE_CHAN(x)) /* ? address */
#define MITE_WSCR(x) (0x34 + MITE_CHAN(x)) /* ? */
#define MITE_WSER(x) (0x38 + MITE_CHAN(x)) /* ? */
#define MITE_CHSR(x) (0x3c + MITE_CHAN(x)) /* channel status */
#define CHSR_INT BIT(31)
#define CHSR_LPAUSES BIT(29)
#define CHSR_SARS BIT(27)
#define CHSR_DONE BIT(25)
#define CHSR_MRDY BIT(23)
#define CHSR_DRDY BIT(21)
#define CHSR_LINKC BIT(19)
#define CHSR_CONTS_RB BIT(17)
#define CHSR_ERROR BIT(15)
#define CHSR_SABORT BIT(14)
#define CHSR_HABORT BIT(13)
#define CHSR_STOPS BIT(12)
#define CHSR_OPERR(x) (((x) & 0x3) << 10)
#define CHSR_OPERR_MASK CHSR_OPERR(3)
#define CHSR_OPERR_NOERROR CHSR_OPERR(0)
#define CHSR_OPERR_FIFOERROR CHSR_OPERR(1)
#define CHSR_OPERR_LINKERROR CHSR_OPERR(1) /* ??? */
#define CHSR_XFERR BIT(9)
#define CHSR_END BIT(8)
#define CHSR_DRQ1 BIT(7)
#define CHSR_DRQ0 BIT(6)
#define CHSR_LERR(x) (((x) & 0x3) << 4)
#define CHSR_LERR_MASK CHSR_LERR(3)
#define CHSR_LBERR CHSR_LERR(1)
#define CHSR_LRERR CHSR_LERR(2)
#define CHSR_LOERR CHSR_LERR(3)
#define CHSR_MERR(x) (((x) & 0x3) << 2)
#define CHSR_MERR_MASK CHSR_MERR(3)
#define CHSR_MBERR CHSR_MERR(1)
#define CHSR_MRERR CHSR_MERR(2)
#define CHSR_MOERR CHSR_MERR(3)
#define CHSR_DERR(x) (((x) & 0x3) << 0)
#define CHSR_DERR_MASK CHSR_DERR(3)
#define CHSR_DBERR CHSR_DERR(1)
#define CHSR_DRERR CHSR_DERR(2)
#define CHSR_DOERR CHSR_DERR(3)
#define MITE_FCR(x) (0x40 + MITE_CHAN(x)) /* fifo count */
/* common bits for the memory/device/link config registers */
#define CR_RL(x) (((x) & 0x7) << 21)
#define CR_REQS(x) (((x) & 0x7) << 16)
#define CR_REQS_MASK CR_REQS(7)
#define CR_ASEQ(x) (((x) & 0x3) << 10)
#define CR_ASEQDONT CR_ASEQ(0)
#define CR_ASEQUP CR_ASEQ(1)
#define CR_ASEQDOWN CR_ASEQ(2)
#define CR_ASEQ_MASK CR_ASEQ(3)
#define CR_PSIZE(x) (((x) & 0x3) << 8)
#define CR_PSIZE8 CR_PSIZE(1)
#define CR_PSIZE16 CR_PSIZE(2)
#define CR_PSIZE32 CR_PSIZE(3)
#define CR_PORT(x) (((x) & 0x3) << 6)
#define CR_PORTCPU CR_PORT(0)
#define CR_PORTIO CR_PORT(1)
#define CR_PORTVXI CR_PORT(2)
#define CR_PORTMXI CR_PORT(3)
#define CR_AMDEVICE BIT(0)
static unsigned int MITE_IODWBSR_1_WSIZE_bits(unsigned int size)
{
return (ilog2(size) - 1) & 0x1f;
}
static unsigned int mite_retry_limit(unsigned int retry_limit)
{
unsigned int value = 0;
if (retry_limit)
value = 1 + ilog2(retry_limit);
if (value > 0x7)
value = 0x7;
return CR_RL(value);
}
static unsigned int mite_drq_reqs(unsigned int drq_line)
{
/* This also works on m-series when using channels (drq_line) 4 or 5. */
return CR_REQS((drq_line & 0x3) | 0x4);
}
static unsigned int mite_fifo_size(struct mite *mite, unsigned int channel)
{
unsigned int fcr_bits = readl(mite->mmio + MITE_FCR(channel));
unsigned int empty_count = (fcr_bits >> 16) & 0xff;
unsigned int full_count = fcr_bits & 0xff;
return empty_count + full_count;
}
static u32 mite_device_bytes_transferred(struct mite_channel *mite_chan)
{
struct mite *mite = mite_chan->mite;
return readl(mite->mmio + MITE_DAR(mite_chan->channel));
}
/**
* mite_bytes_in_transit() - Returns the number of unread bytes in the fifo.
* @mite_chan: MITE dma channel.
*/
u32 mite_bytes_in_transit(struct mite_channel *mite_chan)
{
struct mite *mite = mite_chan->mite;
return readl(mite->mmio + MITE_FCR(mite_chan->channel)) & 0xff;
}
EXPORT_SYMBOL_GPL(mite_bytes_in_transit);
/* returns lower bound for number of bytes transferred from device to memory */
static u32 mite_bytes_written_to_memory_lb(struct mite_channel *mite_chan)
{
u32 device_byte_count;
device_byte_count = mite_device_bytes_transferred(mite_chan);
return device_byte_count - mite_bytes_in_transit(mite_chan);
}
/* returns upper bound for number of bytes transferred from device to memory */
static u32 mite_bytes_written_to_memory_ub(struct mite_channel *mite_chan)
{
u32 in_transit_count;
in_transit_count = mite_bytes_in_transit(mite_chan);
return mite_device_bytes_transferred(mite_chan) - in_transit_count;
}
/* returns lower bound for number of bytes read from memory to device */
static u32 mite_bytes_read_from_memory_lb(struct mite_channel *mite_chan)
{
u32 device_byte_count;
device_byte_count = mite_device_bytes_transferred(mite_chan);
return device_byte_count + mite_bytes_in_transit(mite_chan);
}
/* returns upper bound for number of bytes read from memory to device */
static u32 mite_bytes_read_from_memory_ub(struct mite_channel *mite_chan)
{
u32 in_transit_count;
in_transit_count = mite_bytes_in_transit(mite_chan);
return mite_device_bytes_transferred(mite_chan) + in_transit_count;
}
static void mite_sync_input_dma(struct mite_channel *mite_chan,
struct comedi_subdevice *s)
{
struct comedi_async *async = s->async;
int count;
unsigned int nbytes, old_alloc_count;
old_alloc_count = async->buf_write_alloc_count;
/* write alloc as much as we can */
comedi_buf_write_alloc(s, async->prealloc_bufsz);
nbytes = mite_bytes_written_to_memory_lb(mite_chan);
if ((int)(mite_bytes_written_to_memory_ub(mite_chan) -
old_alloc_count) > 0) {
dev_warn(s->device->class_dev,
"mite: DMA overwrite of free area\n");
async->events |= COMEDI_CB_OVERFLOW;
return;
}
count = nbytes - async->buf_write_count;
/*
* it's possible count will be negative due to conservative value
* returned by mite_bytes_written_to_memory_lb
*/
if (count > 0) {
comedi_buf_write_free(s, count);
comedi_inc_scan_progress(s, count);
async->events |= COMEDI_CB_BLOCK;
}
}
static void mite_sync_output_dma(struct mite_channel *mite_chan,
struct comedi_subdevice *s)
{
struct comedi_async *async = s->async;
struct comedi_cmd *cmd = &async->cmd;
u32 stop_count = cmd->stop_arg * comedi_bytes_per_scan(s);
unsigned int old_alloc_count = async->buf_read_alloc_count;
u32 nbytes_ub, nbytes_lb;
int count;
bool finite_regen = (cmd->stop_src == TRIG_NONE && stop_count != 0);
/* read alloc as much as we can */
comedi_buf_read_alloc(s, async->prealloc_bufsz);
nbytes_lb = mite_bytes_read_from_memory_lb(mite_chan);
if (cmd->stop_src == TRIG_COUNT && (int)(nbytes_lb - stop_count) > 0)
nbytes_lb = stop_count;
nbytes_ub = mite_bytes_read_from_memory_ub(mite_chan);
if (cmd->stop_src == TRIG_COUNT && (int)(nbytes_ub - stop_count) > 0)
nbytes_ub = stop_count;
if ((!finite_regen || stop_count > old_alloc_count) &&
((int)(nbytes_ub - old_alloc_count) > 0)) {
dev_warn(s->device->class_dev, "mite: DMA underrun\n");
async->events |= COMEDI_CB_OVERFLOW;
return;
}
if (finite_regen) {
/*
* This is a special case where we continuously output a finite
* buffer. In this case, we do not free any of the memory,
* hence we expect that old_alloc_count will reach a maximum of
* stop_count bytes.
*/
return;
}
count = nbytes_lb - async->buf_read_count;
if (count > 0) {
comedi_buf_read_free(s, count);
async->events |= COMEDI_CB_BLOCK;
}
}
/**
* mite_sync_dma() - Sync the MITE dma with the COMEDI async buffer.
* @mite_chan: MITE dma channel.
* @s: COMEDI subdevice.
*/
void mite_sync_dma(struct mite_channel *mite_chan, struct comedi_subdevice *s)
{
if (mite_chan->dir == COMEDI_INPUT)
mite_sync_input_dma(mite_chan, s);
else
mite_sync_output_dma(mite_chan, s);
}
EXPORT_SYMBOL_GPL(mite_sync_dma);
static unsigned int mite_get_status(struct mite_channel *mite_chan)
{
struct mite *mite = mite_chan->mite;
unsigned int status;
unsigned long flags;
spin_lock_irqsave(&mite->lock, flags);
status = readl(mite->mmio + MITE_CHSR(mite_chan->channel));
if (status & CHSR_DONE) {
mite_chan->done = 1;
writel(CHOR_CLRDONE,
mite->mmio + MITE_CHOR(mite_chan->channel));
}
spin_unlock_irqrestore(&mite->lock, flags);
return status;
}
/**
* mite_ack_linkc() - Check and ack the LINKC interrupt,
* @mite_chan: MITE dma channel.
* @s: COMEDI subdevice.
* @sync: flag to force a mite_sync_dma().
*
* This will also ack the DONE interrupt if active.
*/
void mite_ack_linkc(struct mite_channel *mite_chan,
struct comedi_subdevice *s,
bool sync)
{
struct mite *mite = mite_chan->mite;
unsigned int status;
status = mite_get_status(mite_chan);
if (status & CHSR_LINKC) {
writel(CHOR_CLRLC, mite->mmio + MITE_CHOR(mite_chan->channel));
sync = true;
}
if (sync)
mite_sync_dma(mite_chan, s);
if (status & CHSR_XFERR) {
dev_err(s->device->class_dev,
"mite: transfer error %08x\n", status);
s->async->events |= COMEDI_CB_ERROR;
}
}
EXPORT_SYMBOL_GPL(mite_ack_linkc);
/**
* mite_done() - Check is a MITE dma transfer is complete.
* @mite_chan: MITE dma channel.
*
* This will also ack the DONE interrupt if active.
*/
int mite_done(struct mite_channel *mite_chan)
{
struct mite *mite = mite_chan->mite;
unsigned long flags;
int done;
mite_get_status(mite_chan);
spin_lock_irqsave(&mite->lock, flags);
done = mite_chan->done;
spin_unlock_irqrestore(&mite->lock, flags);
return done;
}
EXPORT_SYMBOL_GPL(mite_done);
static void mite_dma_reset(struct mite_channel *mite_chan)
{
writel(CHOR_DMARESET | CHOR_FRESET,
mite_chan->mite->mmio + MITE_CHOR(mite_chan->channel));
}
/**
* mite_dma_arm() - Start a MITE dma transfer.
* @mite_chan: MITE dma channel.
*/
void mite_dma_arm(struct mite_channel *mite_chan)
{
struct mite *mite = mite_chan->mite;
unsigned long flags;
/*
* memory barrier is intended to insure any twiddling with the buffer
* is done before writing to the mite to arm dma transfer
*/
smp_mb();
spin_lock_irqsave(&mite->lock, flags);
mite_chan->done = 0;
/* arm */
writel(CHOR_START, mite->mmio + MITE_CHOR(mite_chan->channel));
spin_unlock_irqrestore(&mite->lock, flags);
}
EXPORT_SYMBOL_GPL(mite_dma_arm);
/**
* mite_dma_disarm() - Stop a MITE dma transfer.
* @mite_chan: MITE dma channel.
*/
void mite_dma_disarm(struct mite_channel *mite_chan)
{
struct mite *mite = mite_chan->mite;
/* disarm */
writel(CHOR_ABORT, mite->mmio + MITE_CHOR(mite_chan->channel));
}
EXPORT_SYMBOL_GPL(mite_dma_disarm);
/**
* mite_prep_dma() - Prepare a MITE dma channel for transfers.
* @mite_chan: MITE dma channel.
* @num_device_bits: device transfer size (8, 16, or 32-bits).
* @num_memory_bits: memory transfer size (8, 16, or 32-bits).
*/
void mite_prep_dma(struct mite_channel *mite_chan,
unsigned int num_device_bits, unsigned int num_memory_bits)
{
struct mite *mite = mite_chan->mite;
unsigned int chcr, mcr, dcr, lkcr;
mite_dma_reset(mite_chan);
/* short link chaining mode */
chcr = CHCR_SET_DMA_IE | CHCR_LINKSHORT | CHCR_SET_DONE_IE |
CHCR_BURSTEN;
/*
* Link Complete Interrupt: interrupt every time a link
* in MITE_RING is completed. This can generate a lot of
* extra interrupts, but right now we update the values
* of buf_int_ptr and buf_int_count at each interrupt. A
* better method is to poll the MITE before each user
* "read()" to calculate the number of bytes available.
*/
chcr |= CHCR_SET_LC_IE;
if (num_memory_bits == 32 && num_device_bits == 16) {
/*
* Doing a combined 32 and 16 bit byteswap gets the 16 bit
* samples into the fifo in the right order. Tested doing 32 bit
* memory to 16 bit device transfers to the analog out of a
* pxi-6281, which has mite version = 1, type = 4. This also
* works for dma reads from the counters on e-series boards.
*/
chcr |= CHCR_BYTE_SWAP_DEVICE | CHCR_BYTE_SWAP_MEMORY;
}
if (mite_chan->dir == COMEDI_INPUT)
chcr |= CHCR_DEV_TO_MEM;
writel(chcr, mite->mmio + MITE_CHCR(mite_chan->channel));
/* to/from memory */
mcr = mite_retry_limit(64) | CR_ASEQUP;
switch (num_memory_bits) {
case 8:
mcr |= CR_PSIZE8;
break;
case 16:
mcr |= CR_PSIZE16;
break;
case 32:
mcr |= CR_PSIZE32;
break;
default:
pr_warn("bug! invalid mem bit width for dma transfer\n");
break;
}
writel(mcr, mite->mmio + MITE_MCR(mite_chan->channel));
/* from/to device */
dcr = mite_retry_limit(64) | CR_ASEQUP;
dcr |= CR_PORTIO | CR_AMDEVICE | mite_drq_reqs(mite_chan->channel);
switch (num_device_bits) {
case 8:
dcr |= CR_PSIZE8;
break;
case 16:
dcr |= CR_PSIZE16;
break;
case 32:
dcr |= CR_PSIZE32;
break;
default:
pr_warn("bug! invalid dev bit width for dma transfer\n");
break;
}
writel(dcr, mite->mmio + MITE_DCR(mite_chan->channel));
/* reset the DAR */
writel(0, mite->mmio + MITE_DAR(mite_chan->channel));
/* the link is 32bits */
lkcr = mite_retry_limit(64) | CR_ASEQUP | CR_PSIZE32;
writel(lkcr, mite->mmio + MITE_LKCR(mite_chan->channel));
/* starting address for link chaining */
writel(mite_chan->ring->dma_addr,
mite->mmio + MITE_LKAR(mite_chan->channel));
}
EXPORT_SYMBOL_GPL(mite_prep_dma);
/**
* mite_request_channel_in_range() - Request a MITE dma channel.
* @mite: MITE device.
* @ring: MITE dma ring.
* @min_channel: minimum channel index to use.
* @max_channel: maximum channel index to use.
*/
struct mite_channel *mite_request_channel_in_range(struct mite *mite,
struct mite_ring *ring,
unsigned int min_channel,
unsigned int max_channel)
{
struct mite_channel *mite_chan = NULL;
unsigned long flags;
int i;
/*
* spin lock so mite_release_channel can be called safely
* from interrupts
*/
spin_lock_irqsave(&mite->lock, flags);
for (i = min_channel; i <= max_channel; ++i) {
mite_chan = &mite->channels[i];
if (!mite_chan->ring) {
mite_chan->ring = ring;
break;
}
mite_chan = NULL;
}
spin_unlock_irqrestore(&mite->lock, flags);
return mite_chan;
}
EXPORT_SYMBOL_GPL(mite_request_channel_in_range);
/**
* mite_request_channel() - Request a MITE dma channel.
* @mite: MITE device.
* @ring: MITE dma ring.
*/
struct mite_channel *mite_request_channel(struct mite *mite,
struct mite_ring *ring)
{
return mite_request_channel_in_range(mite, ring, 0,
mite->num_channels - 1);
}
EXPORT_SYMBOL_GPL(mite_request_channel);
/**
* mite_release_channel() - Release a MITE dma channel.
* @mite_chan: MITE dma channel.
*/
void mite_release_channel(struct mite_channel *mite_chan)
{
struct mite *mite = mite_chan->mite;
unsigned long flags;
/* spin lock to prevent races with mite_request_channel */
spin_lock_irqsave(&mite->lock, flags);
if (mite_chan->ring) {
mite_dma_disarm(mite_chan);
mite_dma_reset(mite_chan);
/*
* disable all channel's interrupts (do it after disarm/reset so
* MITE_CHCR reg isn't changed while dma is still active!)
*/
writel(CHCR_CLR_DMA_IE | CHCR_CLR_LINKP_IE |
CHCR_CLR_SAR_IE | CHCR_CLR_DONE_IE |
CHCR_CLR_MRDY_IE | CHCR_CLR_DRDY_IE |
CHCR_CLR_LC_IE | CHCR_CLR_CONT_RB_IE,
mite->mmio + MITE_CHCR(mite_chan->channel));
mite_chan->ring = NULL;
}
spin_unlock_irqrestore(&mite->lock, flags);
}
EXPORT_SYMBOL_GPL(mite_release_channel);
/**
* mite_init_ring_descriptors() - Initialize a MITE dma ring descriptors.
* @ring: MITE dma ring.
* @s: COMEDI subdevice.
* @nbytes: the size of the dma ring (in bytes).
*
* Initializes the ring buffer descriptors to provide correct DMA transfer
* links to the exact amount of memory required. When the ring buffer is
* allocated by mite_buf_change(), the default is to initialize the ring
* to refer to the entire DMA data buffer. A command may call this function
* later to re-initialize and shorten the amount of memory that will be
* transferred.
*/
int mite_init_ring_descriptors(struct mite_ring *ring,
struct comedi_subdevice *s,
unsigned int nbytes)
{
struct comedi_async *async = s->async;
struct mite_dma_desc *desc = NULL;
unsigned int n_full_links = nbytes >> PAGE_SHIFT;
unsigned int remainder = nbytes % PAGE_SIZE;
int i;
dev_dbg(s->device->class_dev,
"mite: init ring buffer to %u bytes\n", nbytes);
if ((n_full_links + (remainder > 0 ? 1 : 0)) > ring->n_links) {
dev_err(s->device->class_dev,
"mite: ring buffer too small for requested init\n");
return -ENOMEM;
}
/* We set the descriptors for all full links. */
for (i = 0; i < n_full_links; ++i) {
desc = &ring->descs[i];
desc->count = cpu_to_le32(PAGE_SIZE);
desc->addr = cpu_to_le32(async->buf_map->page_list[i].dma_addr);
desc->next = cpu_to_le32(ring->dma_addr +
(i + 1) * sizeof(*desc));
}
/* the last link is either a remainder or was a full link. */
if (remainder > 0) {
desc = &ring->descs[i];
/* set the lesser count for the remainder link */
desc->count = cpu_to_le32(remainder);
desc->addr = cpu_to_le32(async->buf_map->page_list[i].dma_addr);
}
/* Assign the last link->next to point back to the head of the list. */
desc->next = cpu_to_le32(ring->dma_addr);
/*
* barrier is meant to insure that all the writes to the dma descriptors
* have completed before the dma controller is commanded to read them
*/
smp_wmb();
return 0;
}
EXPORT_SYMBOL_GPL(mite_init_ring_descriptors);
static void mite_free_dma_descs(struct mite_ring *ring)
{
struct mite_dma_desc *descs = ring->descs;
if (descs) {
dma_free_coherent(ring->hw_dev,
ring->n_links * sizeof(*descs),
descs, ring->dma_addr);
ring->descs = NULL;
ring->dma_addr = 0;
ring->n_links = 0;
}
}
/**
* mite_buf_change() - COMEDI subdevice (*buf_change) for a MITE dma ring.
* @ring: MITE dma ring.
* @s: COMEDI subdevice.
*/
int mite_buf_change(struct mite_ring *ring, struct comedi_subdevice *s)
{
struct comedi_async *async = s->async;
struct mite_dma_desc *descs;
unsigned int n_links;
mite_free_dma_descs(ring);
if (async->prealloc_bufsz == 0)
return 0;
n_links = async->prealloc_bufsz >> PAGE_SHIFT;
descs = dma_alloc_coherent(ring->hw_dev,
n_links * sizeof(*descs),
&ring->dma_addr, GFP_KERNEL);
if (!descs) {
dev_err(s->device->class_dev,
"mite: ring buffer allocation failed\n");
return -ENOMEM;
}
ring->descs = descs;
ring->n_links = n_links;
return mite_init_ring_descriptors(ring, s, n_links << PAGE_SHIFT);
}
EXPORT_SYMBOL_GPL(mite_buf_change);
/**
* mite_alloc_ring() - Allocate a MITE dma ring.
* @mite: MITE device.
*/
struct mite_ring *mite_alloc_ring(struct mite *mite)
{
struct mite_ring *ring;
ring = kmalloc(sizeof(*ring), GFP_KERNEL);
if (!ring)
return NULL;
ring->hw_dev = get_device(&mite->pcidev->dev);
if (!ring->hw_dev) {
kfree(ring);
return NULL;
}
ring->n_links = 0;
ring->descs = NULL;
ring->dma_addr = 0;
return ring;
}
EXPORT_SYMBOL_GPL(mite_alloc_ring);
/**
* mite_free_ring() - Free a MITE dma ring and its descriptors.
* @ring: MITE dma ring.
*/
void mite_free_ring(struct mite_ring *ring)
{
if (ring) {
mite_free_dma_descs(ring);
put_device(ring->hw_dev);
kfree(ring);
}
}
EXPORT_SYMBOL_GPL(mite_free_ring);
static int mite_setup(struct comedi_device *dev, struct mite *mite,
bool use_win1)
{
resource_size_t daq_phys_addr;
unsigned long length;
int i;
u32 csigr_bits;
unsigned int unknown_dma_burst_bits;
unsigned int wpdep;
pci_set_master(mite->pcidev);
mite->mmio = pci_ioremap_bar(mite->pcidev, 0);
if (!mite->mmio)
return -ENOMEM;
dev->mmio = pci_ioremap_bar(mite->pcidev, 1);
if (!dev->mmio)
return -ENOMEM;
daq_phys_addr = pci_resource_start(mite->pcidev, 1);
length = pci_resource_len(mite->pcidev, 1);
if (use_win1) {
writel(0, mite->mmio + MITE_IODWBSR);
dev_dbg(dev->class_dev,
"mite: using I/O Window Base Size register 1\n");
writel(daq_phys_addr | WENAB |
MITE_IODWBSR_1_WSIZE_bits(length),
mite->mmio + MITE_IODWBSR_1);
writel(0, mite->mmio + MITE_IODWCR_1);
} else {
writel(daq_phys_addr | WENAB, mite->mmio + MITE_IODWBSR);
}
/*
* Make sure dma bursts work. I got this from running a bus analyzer
* on a pxi-6281 and a pxi-6713. 6713 powered up with register value
* of 0x61f and bursts worked. 6281 powered up with register value of
* 0x1f and bursts didn't work. The NI windows driver reads the
* register, then does a bitwise-or of 0x600 with it and writes it back.
*
* The bits 0x90180700 in MITE_UNKNOWN_DMA_BURST_REG can be
* written and read back. The bits 0x1f always read as 1.
* The rest always read as zero.
*/
unknown_dma_burst_bits = readl(mite->mmio + MITE_UNKNOWN_DMA_BURST_REG);
unknown_dma_burst_bits |= UNKNOWN_DMA_BURST_ENABLE_BITS;
writel(unknown_dma_burst_bits, mite->mmio + MITE_UNKNOWN_DMA_BURST_REG);
csigr_bits = readl(mite->mmio + MITE_CSIGR);
mite->num_channels = CSIGR_TO_DMAC(csigr_bits);
if (mite->num_channels > MAX_MITE_DMA_CHANNELS) {
dev_warn(dev->class_dev,
"mite: bug? chip claims to have %i dma channels. Setting to %i.\n",
mite->num_channels, MAX_MITE_DMA_CHANNELS);
mite->num_channels = MAX_MITE_DMA_CHANNELS;
}
/* get the wpdep bits and convert it to the write port fifo depth */
wpdep = CSIGR_TO_WPDEP(csigr_bits);
if (wpdep)
wpdep = BIT(wpdep);
dev_dbg(dev->class_dev,
"mite: version = %i, type = %i, mite mode = %i, interface mode = %i\n",
CSIGR_TO_VER(csigr_bits), CSIGR_TO_TYPE(csigr_bits),
CSIGR_TO_MMODE(csigr_bits), CSIGR_TO_IMODE(csigr_bits));
dev_dbg(dev->class_dev,
"mite: num channels = %i, write post fifo depth = %i, wins = %i, iowins = %i\n",
CSIGR_TO_DMAC(csigr_bits), wpdep,
CSIGR_TO_WINS(csigr_bits), CSIGR_TO_IOWINS(csigr_bits));
for (i = 0; i < mite->num_channels; i++) {
writel(CHOR_DMARESET, mite->mmio + MITE_CHOR(i));
/* disable interrupts */
writel(CHCR_CLR_DMA_IE | CHCR_CLR_LINKP_IE | CHCR_CLR_SAR_IE |
CHCR_CLR_DONE_IE | CHCR_CLR_MRDY_IE | CHCR_CLR_DRDY_IE |
CHCR_CLR_LC_IE | CHCR_CLR_CONT_RB_IE,
mite->mmio + MITE_CHCR(i));
}
mite->fifo_size = mite_fifo_size(mite, 0);
dev_dbg(dev->class_dev, "mite: fifo size is %i.\n", mite->fifo_size);
return 0;
}
/**
* mite_attach() - Allocate and initialize a MITE device for a comedi driver.
* @dev: COMEDI device.
* @use_win1: flag to use I/O Window 1 instead of I/O Window 0.
*
* Called by a COMEDI drivers (*auto_attach).
*
* Returns a pointer to the MITE device on success, or NULL if the MITE cannot
* be allocated or remapped.
*/
struct mite *mite_attach(struct comedi_device *dev, bool use_win1)
{
struct pci_dev *pcidev = comedi_to_pci_dev(dev);
struct mite *mite;
unsigned int i;
int ret;
mite = kzalloc(sizeof(*mite), GFP_KERNEL);
if (!mite)
return NULL;
spin_lock_init(&mite->lock);
mite->pcidev = pcidev;
for (i = 0; i < MAX_MITE_DMA_CHANNELS; ++i) {
mite->channels[i].mite = mite;
mite->channels[i].channel = i;
mite->channels[i].done = 1;
}
ret = mite_setup(dev, mite, use_win1);
if (ret) {
if (mite->mmio)
iounmap(mite->mmio);
kfree(mite);
return NULL;
}
return mite;
}
EXPORT_SYMBOL_GPL(mite_attach);
/**
* mite_detach() - Unmap and free a MITE device for a comedi driver.
* @mite: MITE device.
*
* Called by a COMEDI drivers (*detach).
*/
void mite_detach(struct mite *mite)
{
if (!mite)
return;
if (mite->mmio)
iounmap(mite->mmio);
kfree(mite);
}
EXPORT_SYMBOL_GPL(mite_detach);
static int __init mite_module_init(void)
{
return 0;
}
module_init(mite_module_init);
static void __exit mite_module_exit(void)
{
}
module_exit(mite_module_exit);
MODULE_AUTHOR("Comedi https://www.comedi.org");
MODULE_DESCRIPTION("Comedi helper for NI Mite PCI interface chip");
MODULE_LICENSE("GPL");