| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * comedi/drivers/s626.c |
| * Sensoray s626 Comedi driver |
| * |
| * COMEDI - Linux Control and Measurement Device Interface |
| * Copyright (C) 2000 David A. Schleef <ds@schleef.org> |
| * |
| * Based on Sensoray Model 626 Linux driver Version 0.2 |
| * Copyright (C) 2002-2004 Sensoray Co., Inc. |
| */ |
| |
| /* |
| * Driver: s626 |
| * Description: Sensoray 626 driver |
| * Devices: [Sensoray] 626 (s626) |
| * Authors: Gianluca Palli <gpalli@deis.unibo.it>, |
| * Updated: Fri, 15 Feb 2008 10:28:42 +0000 |
| * Status: experimental |
| |
| * Configuration options: not applicable, uses PCI auto config |
| |
| * INSN_CONFIG instructions: |
| * analog input: |
| * none |
| * |
| * analog output: |
| * none |
| * |
| * digital channel: |
| * s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels |
| * supported configuration options: |
| * INSN_CONFIG_DIO_QUERY |
| * COMEDI_INPUT |
| * COMEDI_OUTPUT |
| * |
| * encoder: |
| * Every channel must be configured before reading. |
| * |
| * Example code |
| * |
| * insn.insn=INSN_CONFIG; //configuration instruction |
| * insn.n=1; //number of operation (must be 1) |
| * insn.data=&initialvalue; //initial value loaded into encoder |
| * //during configuration |
| * insn.subdev=5; //encoder subdevice |
| * insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel |
| * //to configure |
| * |
| * comedi_do_insn(cf,&insn); //executing configuration |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| |
| #include "../comedi_pci.h" |
| |
| #include "s626.h" |
| |
| struct s626_buffer_dma { |
| dma_addr_t physical_base; |
| void *logical_base; |
| }; |
| |
| /** |
| * struct s626_private - Working data for s626 driver. |
| * @ai_cmd_running: non-zero if ai_cmd is running. |
| * @ai_sample_timer: time between samples in units of the timer. |
| * @ai_convert_count: conversion counter. |
| * @ai_convert_timer: time between conversion in units of the timer. |
| * @counter_int_enabs: counter interrupt enable mask for MISC2 register. |
| * @adc_items: number of items in ADC poll list. |
| * @rps_buf: DMA buffer used to hold ADC (RPS1) program. |
| * @ana_buf: DMA buffer used to receive ADC data and hold DAC data. |
| * @dac_wbuf: pointer to logical adrs of DMA buffer used to hold DAC data. |
| * @dacpol: image of DAC polarity register. |
| * @trim_setpoint: images of TrimDAC setpoints. |
| * @i2c_adrs: I2C device address for onboard EEPROM (board rev dependent) |
| */ |
| struct s626_private { |
| u8 ai_cmd_running; |
| unsigned int ai_sample_timer; |
| int ai_convert_count; |
| unsigned int ai_convert_timer; |
| u16 counter_int_enabs; |
| u8 adc_items; |
| struct s626_buffer_dma rps_buf; |
| struct s626_buffer_dma ana_buf; |
| u32 *dac_wbuf; |
| u16 dacpol; |
| u8 trim_setpoint[12]; |
| u32 i2c_adrs; |
| }; |
| |
| /* Counter overflow/index event flag masks for RDMISC2. */ |
| #define S626_INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4))) |
| #define S626_OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10))) |
| |
| /* |
| * Enable/disable a function or test status bit(s) that are accessed |
| * through Main Control Registers 1 or 2. |
| */ |
| static void s626_mc_enable(struct comedi_device *dev, |
| unsigned int cmd, unsigned int reg) |
| { |
| unsigned int val = (cmd << 16) | cmd; |
| |
| writel(val, dev->mmio + reg); |
| } |
| |
| static void s626_mc_disable(struct comedi_device *dev, |
| unsigned int cmd, unsigned int reg) |
| { |
| writel(cmd << 16, dev->mmio + reg); |
| } |
| |
| static bool s626_mc_test(struct comedi_device *dev, |
| unsigned int cmd, unsigned int reg) |
| { |
| unsigned int val; |
| |
| val = readl(dev->mmio + reg); |
| |
| return (val & cmd) ? true : false; |
| } |
| |
| #define S626_BUGFIX_STREG(REGADRS) ((REGADRS) - 4) |
| |
| /* Write a time slot control record to TSL2. */ |
| #define S626_VECTPORT(VECTNUM) (S626_P_TSL2 + ((VECTNUM) << 2)) |
| |
| static const struct comedi_lrange s626_range_table = { |
| 2, { |
| BIP_RANGE(5), |
| BIP_RANGE(10) |
| } |
| }; |
| |
| /* |
| * Execute a DEBI transfer. This must be called from within a critical section. |
| */ |
| static void s626_debi_transfer(struct comedi_device *dev) |
| { |
| static const int timeout = 10000; |
| int i; |
| |
| /* Initiate upload of shadow RAM to DEBI control register */ |
| s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2); |
| |
| /* |
| * Wait for completion of upload from shadow RAM to |
| * DEBI control register. |
| */ |
| for (i = 0; i < timeout; i++) { |
| if (s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2)) |
| break; |
| udelay(1); |
| } |
| if (i == timeout) |
| dev_err(dev->class_dev, |
| "Timeout while uploading to DEBI control register\n"); |
| |
| /* Wait until DEBI transfer is done */ |
| for (i = 0; i < timeout; i++) { |
| if (!(readl(dev->mmio + S626_P_PSR) & S626_PSR_DEBI_S)) |
| break; |
| udelay(1); |
| } |
| if (i == timeout) |
| dev_err(dev->class_dev, "DEBI transfer timeout\n"); |
| } |
| |
| /* |
| * Read a value from a gate array register. |
| */ |
| static u16 s626_debi_read(struct comedi_device *dev, u16 addr) |
| { |
| /* Set up DEBI control register value in shadow RAM */ |
| writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD); |
| |
| /* Execute the DEBI transfer. */ |
| s626_debi_transfer(dev); |
| |
| return readl(dev->mmio + S626_P_DEBIAD); |
| } |
| |
| /* |
| * Write a value to a gate array register. |
| */ |
| static void s626_debi_write(struct comedi_device *dev, u16 addr, |
| u16 wdata) |
| { |
| /* Set up DEBI control register value in shadow RAM */ |
| writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD); |
| writel(wdata, dev->mmio + S626_P_DEBIAD); |
| |
| /* Execute the DEBI transfer. */ |
| s626_debi_transfer(dev); |
| } |
| |
| /* |
| * Replace the specified bits in a gate array register. Imports: mask |
| * specifies bits that are to be preserved, wdata is new value to be |
| * or'd with the masked original. |
| */ |
| static void s626_debi_replace(struct comedi_device *dev, unsigned int addr, |
| unsigned int mask, unsigned int wdata) |
| { |
| unsigned int val; |
| |
| addr &= 0xffff; |
| writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD); |
| s626_debi_transfer(dev); |
| |
| writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD); |
| val = readl(dev->mmio + S626_P_DEBIAD); |
| val &= mask; |
| val |= wdata; |
| writel(val & 0xffff, dev->mmio + S626_P_DEBIAD); |
| s626_debi_transfer(dev); |
| } |
| |
| /* ************** EEPROM ACCESS FUNCTIONS ************** */ |
| |
| static int s626_i2c_handshake_eoc(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, |
| unsigned long context) |
| { |
| bool status; |
| |
| status = s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2); |
| if (status) |
| return 0; |
| return -EBUSY; |
| } |
| |
| static int s626_i2c_handshake(struct comedi_device *dev, u32 val) |
| { |
| unsigned int ctrl; |
| int ret; |
| |
| /* Write I2C command to I2C Transfer Control shadow register */ |
| writel(val, dev->mmio + S626_P_I2CCTRL); |
| |
| /* |
| * Upload I2C shadow registers into working registers and |
| * wait for upload confirmation. |
| */ |
| s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2); |
| ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0); |
| if (ret) |
| return ret; |
| |
| /* Wait until I2C bus transfer is finished or an error occurs */ |
| do { |
| ctrl = readl(dev->mmio + S626_P_I2CCTRL); |
| } while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY); |
| |
| /* Return non-zero if I2C error occurred */ |
| return ctrl & S626_I2C_ERR; |
| } |
| |
| /* Read u8 from EEPROM. */ |
| static u8 s626_i2c_read(struct comedi_device *dev, u8 addr) |
| { |
| struct s626_private *devpriv = dev->private; |
| |
| /* |
| * Send EEPROM target address: |
| * Byte2 = I2C command: write to I2C EEPROM device. |
| * Byte1 = EEPROM internal target address. |
| * Byte0 = Not sent. |
| */ |
| if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART, |
| devpriv->i2c_adrs) | |
| S626_I2C_B1(S626_I2C_ATTRSTOP, addr) | |
| S626_I2C_B0(S626_I2C_ATTRNOP, 0))) |
| /* Abort function and declare error if handshake failed. */ |
| return 0; |
| |
| /* |
| * Execute EEPROM read: |
| * Byte2 = I2C command: read from I2C EEPROM device. |
| * Byte1 receives uint8_t from EEPROM. |
| * Byte0 = Not sent. |
| */ |
| if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART, |
| (devpriv->i2c_adrs | 1)) | |
| S626_I2C_B1(S626_I2C_ATTRSTOP, 0) | |
| S626_I2C_B0(S626_I2C_ATTRNOP, 0))) |
| /* Abort function and declare error if handshake failed. */ |
| return 0; |
| |
| return (readl(dev->mmio + S626_P_I2CCTRL) >> 16) & 0xff; |
| } |
| |
| /* *********** DAC FUNCTIONS *********** */ |
| |
| /* TrimDac LogicalChan-to-PhysicalChan mapping table. */ |
| static const u8 s626_trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 }; |
| |
| /* TrimDac LogicalChan-to-EepromAdrs mapping table. */ |
| static const u8 s626_trimadrs[] = { |
| 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 |
| }; |
| |
| enum { |
| s626_send_dac_wait_not_mc1_a2out, |
| s626_send_dac_wait_ssr_af2_out, |
| s626_send_dac_wait_fb_buffer2_msb_00, |
| s626_send_dac_wait_fb_buffer2_msb_ff |
| }; |
| |
| static int s626_send_dac_eoc(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, |
| unsigned long context) |
| { |
| unsigned int status; |
| |
| switch (context) { |
| case s626_send_dac_wait_not_mc1_a2out: |
| status = readl(dev->mmio + S626_P_MC1); |
| if (!(status & S626_MC1_A2OUT)) |
| return 0; |
| break; |
| case s626_send_dac_wait_ssr_af2_out: |
| status = readl(dev->mmio + S626_P_SSR); |
| if (status & S626_SSR_AF2_OUT) |
| return 0; |
| break; |
| case s626_send_dac_wait_fb_buffer2_msb_00: |
| status = readl(dev->mmio + S626_P_FB_BUFFER2); |
| if (!(status & 0xff000000)) |
| return 0; |
| break; |
| case s626_send_dac_wait_fb_buffer2_msb_ff: |
| status = readl(dev->mmio + S626_P_FB_BUFFER2); |
| if (status & 0xff000000) |
| return 0; |
| break; |
| default: |
| return -EINVAL; |
| } |
| return -EBUSY; |
| } |
| |
| /* |
| * Private helper function: Transmit serial data to DAC via Audio |
| * channel 2. Assumes: (1) TSL2 slot records initialized, and (2) |
| * dacpol contains valid target image. |
| */ |
| static int s626_send_dac(struct comedi_device *dev, u32 val) |
| { |
| struct s626_private *devpriv = dev->private; |
| int ret; |
| |
| /* START THE SERIAL CLOCK RUNNING ------------- */ |
| |
| /* |
| * Assert DAC polarity control and enable gating of DAC serial clock |
| * and audio bit stream signals. At this point in time we must be |
| * assured of being in time slot 0. If we are not in slot 0, the |
| * serial clock and audio stream signals will be disabled; this is |
| * because the following s626_debi_write statement (which enables |
| * signals to be passed through the gate array) would execute before |
| * the trailing edge of WS1/WS3 (which turns off the signals), thus |
| * causing the signals to be inactive during the DAC write. |
| */ |
| s626_debi_write(dev, S626_LP_DACPOL, devpriv->dacpol); |
| |
| /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */ |
| |
| /* Copy DAC setpoint value to DAC's output DMA buffer. */ |
| /* writel(val, dev->mmio + (uint32_t)devpriv->dac_wbuf); */ |
| *devpriv->dac_wbuf = val; |
| |
| /* |
| * Enable the output DMA transfer. This will cause the DMAC to copy |
| * the DAC's data value to A2's output FIFO. The DMA transfer will |
| * then immediately terminate because the protection address is |
| * reached upon transfer of the first DWORD value. |
| */ |
| s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1); |
| |
| /* While the DMA transfer is executing ... */ |
| |
| /* |
| * Reset Audio2 output FIFO's underflow flag (along with any |
| * other FIFO underflow/overflow flags). When set, this flag |
| * will indicate that we have emerged from slot 0. |
| */ |
| writel(S626_ISR_AFOU, dev->mmio + S626_P_ISR); |
| |
| /* |
| * Wait for the DMA transfer to finish so that there will be data |
| * available in the FIFO when time slot 1 tries to transfer a DWORD |
| * from the FIFO to the output buffer register. We test for DMA |
| * Done by polling the DMAC enable flag; this flag is automatically |
| * cleared when the transfer has finished. |
| */ |
| ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc, |
| s626_send_dac_wait_not_mc1_a2out); |
| if (ret) { |
| dev_err(dev->class_dev, "DMA transfer timeout\n"); |
| return ret; |
| } |
| |
| /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */ |
| |
| /* |
| * FIFO data is now available, so we enable execution of time slots |
| * 1 and higher by clearing the EOS flag in slot 0. Note that SD3 |
| * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list |
| * detection. |
| */ |
| writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2, |
| dev->mmio + S626_VECTPORT(0)); |
| |
| /* |
| * Wait for slot 1 to execute to ensure that the Packet will be |
| * transmitted. This is detected by polling the Audio2 output FIFO |
| * underflow flag, which will be set when slot 1 execution has |
| * finished transferring the DAC's data DWORD from the output FIFO |
| * to the output buffer register. |
| */ |
| ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc, |
| s626_send_dac_wait_ssr_af2_out); |
| if (ret) { |
| dev_err(dev->class_dev, |
| "TSL timeout waiting for slot 1 to execute\n"); |
| return ret; |
| } |
| |
| /* |
| * Set up to trap execution at slot 0 when the TSL sequencer cycles |
| * back to slot 0 after executing the EOS in slot 5. Also, |
| * simultaneously shift out and in the 0x00 that is ALWAYS the value |
| * stored in the last byte to be shifted out of the FIFO's DWORD |
| * buffer register. |
| */ |
| writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS, |
| dev->mmio + S626_VECTPORT(0)); |
| |
| /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */ |
| |
| /* |
| * Wait for the TSL to finish executing all time slots before |
| * exiting this function. We must do this so that the next DAC |
| * write doesn't start, thereby enabling clock/chip select signals: |
| * |
| * 1. Before the TSL sequence cycles back to slot 0, which disables |
| * the clock/cs signal gating and traps slot // list execution. |
| * we have not yet finished slot 5 then the clock/cs signals are |
| * still gated and we have not finished transmitting the stream. |
| * |
| * 2. While slots 2-5 are executing due to a late slot 0 trap. In |
| * this case, the slot sequence is currently repeating, but with |
| * clock/cs signals disabled. We must wait for slot 0 to trap |
| * execution before setting up the next DAC setpoint DMA transfer |
| * and enabling the clock/cs signals. To detect the end of slot 5, |
| * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If |
| * the TSL has not yet finished executing slot 5 ... |
| */ |
| if (readl(dev->mmio + S626_P_FB_BUFFER2) & 0xff000000) { |
| /* |
| * The trap was set on time and we are still executing somewhere |
| * in slots 2-5, so we now wait for slot 0 to execute and trap |
| * TSL execution. This is detected when FB_BUFFER2 MSB changes |
| * from 0xFF to 0x00, which slot 0 causes to happen by shifting |
| * out/in on SD2 the 0x00 that is always referenced by slot 5. |
| */ |
| ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc, |
| s626_send_dac_wait_fb_buffer2_msb_00); |
| if (ret) { |
| dev_err(dev->class_dev, |
| "TSL timeout waiting for slot 0 to execute\n"); |
| return ret; |
| } |
| } |
| /* |
| * Either (1) we were too late setting the slot 0 trap; the TSL |
| * sequencer restarted slot 0 before we could set the EOS trap flag, |
| * or (2) we were not late and execution is now trapped at slot 0. |
| * In either case, we must now change slot 0 so that it will store |
| * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes. |
| * In order to do this, we reprogram slot 0 so that it will shift in |
| * SD3, which is driven only by a pull-up resistor. |
| */ |
| writel(S626_RSD3 | S626_SIB_A2 | S626_EOS, |
| dev->mmio + S626_VECTPORT(0)); |
| |
| /* |
| * Wait for slot 0 to execute, at which time the TSL is setup for |
| * the next DAC write. This is detected when FB_BUFFER2 MSB changes |
| * from 0x00 to 0xFF. |
| */ |
| ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc, |
| s626_send_dac_wait_fb_buffer2_msb_ff); |
| if (ret) { |
| dev_err(dev->class_dev, |
| "TSL timeout waiting for slot 0 to execute\n"); |
| return ret; |
| } |
| return 0; |
| } |
| |
| /* |
| * Private helper function: Write setpoint to an application DAC channel. |
| */ |
| static int s626_set_dac(struct comedi_device *dev, |
| u16 chan, int16_t dacdata) |
| { |
| struct s626_private *devpriv = dev->private; |
| u16 signmask; |
| u32 ws_image; |
| u32 val; |
| |
| /* |
| * Adjust DAC data polarity and set up Polarity Control Register image. |
| */ |
| signmask = 1 << chan; |
| if (dacdata < 0) { |
| dacdata = -dacdata; |
| devpriv->dacpol |= signmask; |
| } else { |
| devpriv->dacpol &= ~signmask; |
| } |
| |
| /* Limit DAC setpoint value to valid range. */ |
| if ((u16)dacdata > 0x1FFF) |
| dacdata = 0x1FFF; |
| |
| /* |
| * Set up TSL2 records (aka "vectors") for DAC update. Vectors V2 |
| * and V3 transmit the setpoint to the target DAC. V4 and V5 send |
| * data to a non-existent TrimDac channel just to keep the clock |
| * running after sending data to the target DAC. This is necessary |
| * to eliminate the clock glitch that would otherwise occur at the |
| * end of the target DAC's serial data stream. When the sequence |
| * restarts at V0 (after executing V5), the gate array automatically |
| * disables gating for the DAC clock and all DAC chip selects. |
| */ |
| |
| /* Choose DAC chip select to be asserted */ |
| ws_image = (chan & 2) ? S626_WS1 : S626_WS2; |
| /* Slot 2: Transmit high data byte to target DAC */ |
| writel(S626_XSD2 | S626_XFIFO_1 | ws_image, |
| dev->mmio + S626_VECTPORT(2)); |
| /* Slot 3: Transmit low data byte to target DAC */ |
| writel(S626_XSD2 | S626_XFIFO_0 | ws_image, |
| dev->mmio + S626_VECTPORT(3)); |
| /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */ |
| writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3, |
| dev->mmio + S626_VECTPORT(4)); |
| /* Slot 5: running after writing target DAC's low data byte */ |
| writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS, |
| dev->mmio + S626_VECTPORT(5)); |
| |
| /* |
| * Construct and transmit target DAC's serial packet: |
| * (A10D DDDD), (DDDD DDDD), (0x0F), (0x00) where A is chan<0>, |
| * and D<12:0> is the DAC setpoint. Append a WORD value (that writes |
| * to a non-existent TrimDac channel) that serves to keep the clock |
| * running after the packet has been sent to the target DAC. |
| */ |
| val = 0x0F000000; /* Continue clock after target DAC data |
| * (write to non-existent trimdac). |
| */ |
| val |= 0x00004000; /* Address the two main dual-DAC devices |
| * (TSL's chip select enables target device). |
| */ |
| val |= ((u32)(chan & 1) << 15); /* Address the DAC channel |
| * within the device. |
| */ |
| val |= (u32)dacdata; /* Include DAC setpoint data. */ |
| return s626_send_dac(dev, val); |
| } |
| |
| static int s626_write_trim_dac(struct comedi_device *dev, |
| u8 logical_chan, u8 dac_data) |
| { |
| struct s626_private *devpriv = dev->private; |
| u32 chan; |
| |
| /* |
| * Save the new setpoint in case the application needs to read it back |
| * later. |
| */ |
| devpriv->trim_setpoint[logical_chan] = dac_data; |
| |
| /* Map logical channel number to physical channel number. */ |
| chan = s626_trimchan[logical_chan]; |
| |
| /* |
| * Set up TSL2 records for TrimDac write operation. All slots shift |
| * 0xFF in from pulled-up SD3 so that the end of the slot sequence |
| * can be detected. |
| */ |
| |
| /* Slot 2: Send high uint8_t to target TrimDac */ |
| writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3, |
| dev->mmio + S626_VECTPORT(2)); |
| /* Slot 3: Send low uint8_t to target TrimDac */ |
| writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3, |
| dev->mmio + S626_VECTPORT(3)); |
| /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */ |
| writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1, |
| dev->mmio + S626_VECTPORT(4)); |
| /* Slot 5: Send NOP low uint8_t to DAC0 */ |
| writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS, |
| dev->mmio + S626_VECTPORT(5)); |
| |
| /* |
| * Construct and transmit target DAC's serial packet: |
| * (0000 AAAA), (DDDD DDDD), (0x00), (0x00) where A<3:0> is the |
| * DAC channel's address, and D<7:0> is the DAC setpoint. Append a |
| * WORD value (that writes a channel 0 NOP command to a non-existent |
| * main DAC channel) that serves to keep the clock running after the |
| * packet has been sent to the target DAC. |
| */ |
| |
| /* |
| * Address the DAC channel within the trimdac device. |
| * Include DAC setpoint data. |
| */ |
| return s626_send_dac(dev, (chan << 8) | dac_data); |
| } |
| |
| static int s626_load_trim_dacs(struct comedi_device *dev) |
| { |
| u8 i; |
| int ret; |
| |
| /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */ |
| for (i = 0; i < ARRAY_SIZE(s626_trimchan); i++) { |
| ret = s626_write_trim_dac(dev, i, |
| s626_i2c_read(dev, s626_trimadrs[i])); |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| /* ****** COUNTER FUNCTIONS ******* */ |
| |
| /* |
| * All counter functions address a specific counter by means of the |
| * "Counter" argument, which is a logical counter number. The Counter |
| * argument may have any of the following legal values: 0=0A, 1=1A, |
| * 2=2A, 3=0B, 4=1B, 5=2B. |
| */ |
| |
| /* |
| * Return/set a counter pair's latch trigger source. 0: On read |
| * access, 1: A index latches A, 2: B index latches B, 3: A overflow |
| * latches B. |
| */ |
| static void s626_set_latch_source(struct comedi_device *dev, |
| unsigned int chan, u16 value) |
| { |
| s626_debi_replace(dev, S626_LP_CRB(chan), |
| ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC), |
| S626_SET_CRB_LATCHSRC(value)); |
| } |
| |
| /* |
| * Write value into counter preload register. |
| */ |
| static void s626_preload(struct comedi_device *dev, |
| unsigned int chan, u32 value) |
| { |
| s626_debi_write(dev, S626_LP_CNTR(chan), value); |
| s626_debi_write(dev, S626_LP_CNTR(chan) + 2, value >> 16); |
| } |
| |
| /* ****** PRIVATE COUNTER FUNCTIONS ****** */ |
| |
| /* |
| * Reset a counter's index and overflow event capture flags. |
| */ |
| static void s626_reset_cap_flags(struct comedi_device *dev, |
| unsigned int chan) |
| { |
| u16 set; |
| |
| set = S626_SET_CRB_INTRESETCMD(1); |
| if (chan < 3) |
| set |= S626_SET_CRB_INTRESET_A(1); |
| else |
| set |= S626_SET_CRB_INTRESET_B(1); |
| |
| s626_debi_replace(dev, S626_LP_CRB(chan), ~S626_CRBMSK_INTCTRL, set); |
| } |
| |
| /* |
| * Set the operating mode for the specified counter. The setup |
| * parameter is treated as a COUNTER_SETUP data type. The following |
| * parameters are programmable (all other parms are ignored): ClkMult, |
| * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc. |
| */ |
| static void s626_set_mode_a(struct comedi_device *dev, |
| unsigned int chan, u16 setup, |
| u16 disable_int_src) |
| { |
| struct s626_private *devpriv = dev->private; |
| u16 cra; |
| u16 crb; |
| unsigned int cntsrc, clkmult, clkpol; |
| |
| /* Initialize CRA and CRB images. */ |
| /* Preload trigger is passed through. */ |
| cra = S626_SET_CRA_LOADSRC_A(S626_GET_STD_LOADSRC(setup)); |
| /* IndexSrc is passed through. */ |
| cra |= S626_SET_CRA_INDXSRC_A(S626_GET_STD_INDXSRC(setup)); |
| |
| /* Reset any pending CounterA event captures. */ |
| crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_A(1); |
| /* Clock enable is passed through. */ |
| crb |= S626_SET_CRB_CLKENAB_A(S626_GET_STD_CLKENAB(setup)); |
| |
| /* Force IntSrc to Disabled if disable_int_src is asserted. */ |
| if (!disable_int_src) |
| cra |= S626_SET_CRA_INTSRC_A(S626_GET_STD_INTSRC(setup)); |
| |
| /* Populate all mode-dependent attributes of CRA & CRB images. */ |
| clkpol = S626_GET_STD_CLKPOL(setup); |
| switch (S626_GET_STD_ENCMODE(setup)) { |
| case S626_ENCMODE_EXTENDER: /* Extender Mode: */ |
| /* Force to Timer mode (Extender valid only for B counters). */ |
| /* Fall through to case S626_ENCMODE_TIMER: */ |
| case S626_ENCMODE_TIMER: /* Timer Mode: */ |
| /* CntSrcA<1> selects system clock */ |
| cntsrc = S626_CNTSRC_SYSCLK; |
| /* Count direction (CntSrcA<0>) obtained from ClkPol. */ |
| cntsrc |= clkpol; |
| /* ClkPolA behaves as always-on clock enable. */ |
| clkpol = 1; |
| /* ClkMult must be 1x. */ |
| clkmult = S626_CLKMULT_1X; |
| break; |
| default: /* Counter Mode: */ |
| /* Select ENC_C and ENC_D as clock/direction inputs. */ |
| cntsrc = S626_CNTSRC_ENCODER; |
| /* Clock polarity is passed through. */ |
| /* Force multiplier to x1 if not legal, else pass through. */ |
| clkmult = S626_GET_STD_CLKMULT(setup); |
| if (clkmult == S626_CLKMULT_SPECIAL) |
| clkmult = S626_CLKMULT_1X; |
| break; |
| } |
| cra |= S626_SET_CRA_CNTSRC_A(cntsrc) | S626_SET_CRA_CLKPOL_A(clkpol) | |
| S626_SET_CRA_CLKMULT_A(clkmult); |
| |
| /* |
| * Force positive index polarity if IndxSrc is software-driven only, |
| * otherwise pass it through. |
| */ |
| if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT) |
| cra |= S626_SET_CRA_INDXPOL_A(S626_GET_STD_INDXPOL(setup)); |
| |
| /* |
| * If IntSrc has been forced to Disabled, update the MISC2 interrupt |
| * enable mask to indicate the counter interrupt is disabled. |
| */ |
| if (disable_int_src) |
| devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) | |
| S626_INDXMASK(chan)); |
| |
| /* |
| * While retaining CounterB and LatchSrc configurations, program the |
| * new counter operating mode. |
| */ |
| s626_debi_replace(dev, S626_LP_CRA(chan), |
| S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B, cra); |
| s626_debi_replace(dev, S626_LP_CRB(chan), |
| ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), crb); |
| } |
| |
| static void s626_set_mode_b(struct comedi_device *dev, |
| unsigned int chan, u16 setup, |
| u16 disable_int_src) |
| { |
| struct s626_private *devpriv = dev->private; |
| u16 cra; |
| u16 crb; |
| unsigned int cntsrc, clkmult, clkpol; |
| |
| /* Initialize CRA and CRB images. */ |
| /* IndexSrc is passed through. */ |
| cra = S626_SET_CRA_INDXSRC_B(S626_GET_STD_INDXSRC(setup)); |
| |
| /* Reset event captures and disable interrupts. */ |
| crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_B(1); |
| /* Clock enable is passed through. */ |
| crb |= S626_SET_CRB_CLKENAB_B(S626_GET_STD_CLKENAB(setup)); |
| /* Preload trigger source is passed through. */ |
| crb |= S626_SET_CRB_LOADSRC_B(S626_GET_STD_LOADSRC(setup)); |
| |
| /* Force IntSrc to Disabled if disable_int_src is asserted. */ |
| if (!disable_int_src) |
| crb |= S626_SET_CRB_INTSRC_B(S626_GET_STD_INTSRC(setup)); |
| |
| /* Populate all mode-dependent attributes of CRA & CRB images. */ |
| clkpol = S626_GET_STD_CLKPOL(setup); |
| switch (S626_GET_STD_ENCMODE(setup)) { |
| case S626_ENCMODE_TIMER: /* Timer Mode: */ |
| /* CntSrcB<1> selects system clock */ |
| cntsrc = S626_CNTSRC_SYSCLK; |
| /* with direction (CntSrcB<0>) obtained from ClkPol. */ |
| cntsrc |= clkpol; |
| /* ClkPolB behaves as always-on clock enable. */ |
| clkpol = 1; |
| /* ClkMultB must be 1x. */ |
| clkmult = S626_CLKMULT_1X; |
| break; |
| case S626_ENCMODE_EXTENDER: /* Extender Mode: */ |
| /* CntSrcB source is OverflowA (same as "timer") */ |
| cntsrc = S626_CNTSRC_SYSCLK; |
| /* with direction obtained from ClkPol. */ |
| cntsrc |= clkpol; |
| /* ClkPolB controls IndexB -- always set to active. */ |
| clkpol = 1; |
| /* ClkMultB selects OverflowA as the clock source. */ |
| clkmult = S626_CLKMULT_SPECIAL; |
| break; |
| default: /* Counter Mode: */ |
| /* Select ENC_C and ENC_D as clock/direction inputs. */ |
| cntsrc = S626_CNTSRC_ENCODER; |
| /* ClkPol is passed through. */ |
| /* Force ClkMult to x1 if not legal, otherwise pass through. */ |
| clkmult = S626_GET_STD_CLKMULT(setup); |
| if (clkmult == S626_CLKMULT_SPECIAL) |
| clkmult = S626_CLKMULT_1X; |
| break; |
| } |
| cra |= S626_SET_CRA_CNTSRC_B(cntsrc); |
| crb |= S626_SET_CRB_CLKPOL_B(clkpol) | S626_SET_CRB_CLKMULT_B(clkmult); |
| |
| /* |
| * Force positive index polarity if IndxSrc is software-driven only, |
| * otherwise pass it through. |
| */ |
| if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT) |
| crb |= S626_SET_CRB_INDXPOL_B(S626_GET_STD_INDXPOL(setup)); |
| |
| /* |
| * If IntSrc has been forced to Disabled, update the MISC2 interrupt |
| * enable mask to indicate the counter interrupt is disabled. |
| */ |
| if (disable_int_src) |
| devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) | |
| S626_INDXMASK(chan)); |
| |
| /* |
| * While retaining CounterA and LatchSrc configurations, program the |
| * new counter operating mode. |
| */ |
| s626_debi_replace(dev, S626_LP_CRA(chan), |
| ~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B), cra); |
| s626_debi_replace(dev, S626_LP_CRB(chan), |
| S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, crb); |
| } |
| |
| static void s626_set_mode(struct comedi_device *dev, |
| unsigned int chan, |
| u16 setup, u16 disable_int_src) |
| { |
| if (chan < 3) |
| s626_set_mode_a(dev, chan, setup, disable_int_src); |
| else |
| s626_set_mode_b(dev, chan, setup, disable_int_src); |
| } |
| |
| /* |
| * Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index. |
| */ |
| static void s626_set_enable(struct comedi_device *dev, |
| unsigned int chan, u16 enab) |
| { |
| unsigned int mask = S626_CRBMSK_INTCTRL; |
| unsigned int set; |
| |
| if (chan < 3) { |
| mask |= S626_CRBMSK_CLKENAB_A; |
| set = S626_SET_CRB_CLKENAB_A(enab); |
| } else { |
| mask |= S626_CRBMSK_CLKENAB_B; |
| set = S626_SET_CRB_CLKENAB_B(enab); |
| } |
| s626_debi_replace(dev, S626_LP_CRB(chan), ~mask, set); |
| } |
| |
| /* |
| * Return/set the event that will trigger transfer of the preload |
| * register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow, |
| * 2=OverflowA (B counters only), 3=disabled. |
| */ |
| static void s626_set_load_trig(struct comedi_device *dev, |
| unsigned int chan, u16 trig) |
| { |
| u16 reg; |
| u16 mask; |
| u16 set; |
| |
| if (chan < 3) { |
| reg = S626_LP_CRA(chan); |
| mask = S626_CRAMSK_LOADSRC_A; |
| set = S626_SET_CRA_LOADSRC_A(trig); |
| } else { |
| reg = S626_LP_CRB(chan); |
| mask = S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL; |
| set = S626_SET_CRB_LOADSRC_B(trig); |
| } |
| s626_debi_replace(dev, reg, ~mask, set); |
| } |
| |
| /* |
| * Return/set counter interrupt source and clear any captured |
| * index/overflow events. int_source: 0=Disabled, 1=OverflowOnly, |
| * 2=IndexOnly, 3=IndexAndOverflow. |
| */ |
| static void s626_set_int_src(struct comedi_device *dev, |
| unsigned int chan, u16 int_source) |
| { |
| struct s626_private *devpriv = dev->private; |
| u16 cra_reg = S626_LP_CRA(chan); |
| u16 crb_reg = S626_LP_CRB(chan); |
| |
| if (chan < 3) { |
| /* Reset any pending counter overflow or index captures */ |
| s626_debi_replace(dev, crb_reg, ~S626_CRBMSK_INTCTRL, |
| S626_SET_CRB_INTRESETCMD(1) | |
| S626_SET_CRB_INTRESET_A(1)); |
| |
| /* Program counter interrupt source */ |
| s626_debi_replace(dev, cra_reg, ~S626_CRAMSK_INTSRC_A, |
| S626_SET_CRA_INTSRC_A(int_source)); |
| } else { |
| u16 crb; |
| |
| /* Cache writeable CRB register image */ |
| crb = s626_debi_read(dev, crb_reg); |
| crb &= ~S626_CRBMSK_INTCTRL; |
| |
| /* Reset any pending counter overflow or index captures */ |
| s626_debi_write(dev, crb_reg, |
| crb | S626_SET_CRB_INTRESETCMD(1) | |
| S626_SET_CRB_INTRESET_B(1)); |
| |
| /* Program counter interrupt source */ |
| s626_debi_write(dev, crb_reg, |
| (crb & ~S626_CRBMSK_INTSRC_B) | |
| S626_SET_CRB_INTSRC_B(int_source)); |
| } |
| |
| /* Update MISC2 interrupt enable mask. */ |
| devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) | |
| S626_INDXMASK(chan)); |
| switch (int_source) { |
| case 0: |
| default: |
| break; |
| case 1: |
| devpriv->counter_int_enabs |= S626_OVERMASK(chan); |
| break; |
| case 2: |
| devpriv->counter_int_enabs |= S626_INDXMASK(chan); |
| break; |
| case 3: |
| devpriv->counter_int_enabs |= (S626_OVERMASK(chan) | |
| S626_INDXMASK(chan)); |
| break; |
| } |
| } |
| |
| /* |
| * Generate an index pulse. |
| */ |
| static void s626_pulse_index(struct comedi_device *dev, |
| unsigned int chan) |
| { |
| if (chan < 3) { |
| u16 cra; |
| |
| cra = s626_debi_read(dev, S626_LP_CRA(chan)); |
| |
| /* Pulse index */ |
| s626_debi_write(dev, S626_LP_CRA(chan), |
| (cra ^ S626_CRAMSK_INDXPOL_A)); |
| s626_debi_write(dev, S626_LP_CRA(chan), cra); |
| } else { |
| u16 crb; |
| |
| crb = s626_debi_read(dev, S626_LP_CRB(chan)); |
| crb &= ~S626_CRBMSK_INTCTRL; |
| |
| /* Pulse index */ |
| s626_debi_write(dev, S626_LP_CRB(chan), |
| (crb ^ S626_CRBMSK_INDXPOL_B)); |
| s626_debi_write(dev, S626_LP_CRB(chan), crb); |
| } |
| } |
| |
| static unsigned int s626_ai_reg_to_uint(unsigned int data) |
| { |
| return ((data >> 18) & 0x3fff) ^ 0x2000; |
| } |
| |
| static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan) |
| { |
| unsigned int group = chan / 16; |
| unsigned int mask = 1 << (chan - (16 * group)); |
| unsigned int status; |
| |
| /* set channel to capture positive edge */ |
| status = s626_debi_read(dev, S626_LP_RDEDGSEL(group)); |
| s626_debi_write(dev, S626_LP_WREDGSEL(group), mask | status); |
| |
| /* enable interrupt on selected channel */ |
| status = s626_debi_read(dev, S626_LP_RDINTSEL(group)); |
| s626_debi_write(dev, S626_LP_WRINTSEL(group), mask | status); |
| |
| /* enable edge capture write command */ |
| s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP); |
| |
| /* enable edge capture on selected channel */ |
| status = s626_debi_read(dev, S626_LP_RDCAPSEL(group)); |
| s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask | status); |
| |
| return 0; |
| } |
| |
| static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group, |
| unsigned int mask) |
| { |
| /* disable edge capture write command */ |
| s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP); |
| |
| /* enable edge capture on selected channel */ |
| s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask); |
| |
| return 0; |
| } |
| |
| static int s626_dio_clear_irq(struct comedi_device *dev) |
| { |
| unsigned int group; |
| |
| /* disable edge capture write command */ |
| s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP); |
| |
| /* clear all dio pending events and interrupt */ |
| for (group = 0; group < S626_DIO_BANKS; group++) |
| s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff); |
| |
| return 0; |
| } |
| |
| static void s626_handle_dio_interrupt(struct comedi_device *dev, |
| u16 irqbit, u8 group) |
| { |
| struct s626_private *devpriv = dev->private; |
| struct comedi_subdevice *s = dev->read_subdev; |
| struct comedi_cmd *cmd = &s->async->cmd; |
| |
| s626_dio_reset_irq(dev, group, irqbit); |
| |
| if (devpriv->ai_cmd_running) { |
| /* check if interrupt is an ai acquisition start trigger */ |
| if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 && |
| cmd->start_src == TRIG_EXT) { |
| /* Start executing the RPS program */ |
| s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1); |
| |
| if (cmd->scan_begin_src == TRIG_EXT) |
| s626_dio_set_irq(dev, cmd->scan_begin_arg); |
| } |
| if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 && |
| cmd->scan_begin_src == TRIG_EXT) { |
| /* Trigger ADC scan loop start */ |
| s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); |
| |
| if (cmd->convert_src == TRIG_EXT) { |
| devpriv->ai_convert_count = cmd->chanlist_len; |
| |
| s626_dio_set_irq(dev, cmd->convert_arg); |
| } |
| |
| if (cmd->convert_src == TRIG_TIMER) { |
| devpriv->ai_convert_count = cmd->chanlist_len; |
| s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS); |
| } |
| } |
| if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 && |
| cmd->convert_src == TRIG_EXT) { |
| /* Trigger ADC scan loop start */ |
| s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); |
| |
| devpriv->ai_convert_count--; |
| if (devpriv->ai_convert_count > 0) |
| s626_dio_set_irq(dev, cmd->convert_arg); |
| } |
| } |
| } |
| |
| static void s626_check_dio_interrupts(struct comedi_device *dev) |
| { |
| u16 irqbit; |
| u8 group; |
| |
| for (group = 0; group < S626_DIO_BANKS; group++) { |
| /* read interrupt type */ |
| irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group)); |
| |
| /* check if interrupt is generated from dio channels */ |
| if (irqbit) { |
| s626_handle_dio_interrupt(dev, irqbit, group); |
| return; |
| } |
| } |
| } |
| |
| static void s626_check_counter_interrupts(struct comedi_device *dev) |
| { |
| struct s626_private *devpriv = dev->private; |
| struct comedi_subdevice *s = dev->read_subdev; |
| struct comedi_async *async = s->async; |
| struct comedi_cmd *cmd = &async->cmd; |
| u16 irqbit; |
| |
| /* read interrupt type */ |
| irqbit = s626_debi_read(dev, S626_LP_RDMISC2); |
| |
| /* check interrupt on counters */ |
| if (irqbit & S626_IRQ_COINT1A) { |
| /* clear interrupt capture flag */ |
| s626_reset_cap_flags(dev, 0); |
| } |
| if (irqbit & S626_IRQ_COINT2A) { |
| /* clear interrupt capture flag */ |
| s626_reset_cap_flags(dev, 1); |
| } |
| if (irqbit & S626_IRQ_COINT3A) { |
| /* clear interrupt capture flag */ |
| s626_reset_cap_flags(dev, 2); |
| } |
| if (irqbit & S626_IRQ_COINT1B) { |
| /* clear interrupt capture flag */ |
| s626_reset_cap_flags(dev, 3); |
| } |
| if (irqbit & S626_IRQ_COINT2B) { |
| /* clear interrupt capture flag */ |
| s626_reset_cap_flags(dev, 4); |
| |
| if (devpriv->ai_convert_count > 0) { |
| devpriv->ai_convert_count--; |
| if (devpriv->ai_convert_count == 0) |
| s626_set_enable(dev, 4, S626_CLKENAB_INDEX); |
| |
| if (cmd->convert_src == TRIG_TIMER) { |
| /* Trigger ADC scan loop start */ |
| s626_mc_enable(dev, S626_MC2_ADC_RPS, |
| S626_P_MC2); |
| } |
| } |
| } |
| if (irqbit & S626_IRQ_COINT3B) { |
| /* clear interrupt capture flag */ |
| s626_reset_cap_flags(dev, 5); |
| |
| if (cmd->scan_begin_src == TRIG_TIMER) { |
| /* Trigger ADC scan loop start */ |
| s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); |
| } |
| |
| if (cmd->convert_src == TRIG_TIMER) { |
| devpriv->ai_convert_count = cmd->chanlist_len; |
| s626_set_enable(dev, 4, S626_CLKENAB_ALWAYS); |
| } |
| } |
| } |
| |
| static bool s626_handle_eos_interrupt(struct comedi_device *dev) |
| { |
| struct s626_private *devpriv = dev->private; |
| struct comedi_subdevice *s = dev->read_subdev; |
| struct comedi_async *async = s->async; |
| struct comedi_cmd *cmd = &async->cmd; |
| /* |
| * Init ptr to DMA buffer that holds new ADC data. We skip the |
| * first uint16_t in the buffer because it contains junk data |
| * from the final ADC of the previous poll list scan. |
| */ |
| u32 *readaddr = (u32 *)devpriv->ana_buf.logical_base + 1; |
| int i; |
| |
| /* get the data and hand it over to comedi */ |
| for (i = 0; i < cmd->chanlist_len; i++) { |
| unsigned short tempdata; |
| |
| /* |
| * Convert ADC data to 16-bit integer values and copy |
| * to application buffer. |
| */ |
| tempdata = s626_ai_reg_to_uint(*readaddr); |
| readaddr++; |
| |
| comedi_buf_write_samples(s, &tempdata, 1); |
| } |
| |
| if (cmd->stop_src == TRIG_COUNT && async->scans_done >= cmd->stop_arg) |
| async->events |= COMEDI_CB_EOA; |
| |
| if (async->events & COMEDI_CB_CANCEL_MASK) |
| devpriv->ai_cmd_running = 0; |
| |
| if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) |
| s626_dio_set_irq(dev, cmd->scan_begin_arg); |
| |
| comedi_handle_events(dev, s); |
| |
| return !devpriv->ai_cmd_running; |
| } |
| |
| static irqreturn_t s626_irq_handler(int irq, void *d) |
| { |
| struct comedi_device *dev = d; |
| unsigned long flags; |
| u32 irqtype, irqstatus; |
| |
| if (!dev->attached) |
| return IRQ_NONE; |
| /* lock to avoid race with comedi_poll */ |
| spin_lock_irqsave(&dev->spinlock, flags); |
| |
| /* save interrupt enable register state */ |
| irqstatus = readl(dev->mmio + S626_P_IER); |
| |
| /* read interrupt type */ |
| irqtype = readl(dev->mmio + S626_P_ISR); |
| |
| /* disable master interrupt */ |
| writel(0, dev->mmio + S626_P_IER); |
| |
| /* clear interrupt */ |
| writel(irqtype, dev->mmio + S626_P_ISR); |
| |
| switch (irqtype) { |
| case S626_IRQ_RPS1: /* end_of_scan occurs */ |
| if (s626_handle_eos_interrupt(dev)) |
| irqstatus = 0; |
| break; |
| case S626_IRQ_GPIO3: /* check dio and counter interrupt */ |
| /* s626_dio_clear_irq(dev); */ |
| s626_check_dio_interrupts(dev); |
| s626_check_counter_interrupts(dev); |
| break; |
| } |
| |
| /* enable interrupt */ |
| writel(irqstatus, dev->mmio + S626_P_IER); |
| |
| spin_unlock_irqrestore(&dev->spinlock, flags); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * This function builds the RPS program for hardware driven acquisition. |
| */ |
| static void s626_reset_adc(struct comedi_device *dev, u8 *ppl) |
| { |
| struct s626_private *devpriv = dev->private; |
| struct comedi_subdevice *s = dev->read_subdev; |
| struct comedi_cmd *cmd = &s->async->cmd; |
| u32 *rps; |
| u32 jmp_adrs; |
| u16 i; |
| u16 n; |
| u32 local_ppl; |
| |
| /* Stop RPS program in case it is currently running */ |
| s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1); |
| |
| /* Set starting logical address to write RPS commands. */ |
| rps = (u32 *)devpriv->rps_buf.logical_base; |
| |
| /* Initialize RPS instruction pointer */ |
| writel((u32)devpriv->rps_buf.physical_base, |
| dev->mmio + S626_P_RPSADDR1); |
| |
| /* Construct RPS program in rps_buf DMA buffer */ |
| if (cmd->scan_begin_src != TRIG_FOLLOW) { |
| /* Wait for Start trigger. */ |
| *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC; |
| *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; |
| } |
| |
| /* |
| * SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary |
| * because the first RPS DEBI Write following a non-RPS DEBI write |
| * seems to always fail. If we don't do this dummy write, the ADC |
| * gain might not be set to the value required for the first slot in |
| * the poll list; the ADC gain would instead remain unchanged from |
| * the previously programmed value. |
| */ |
| /* Write DEBI Write command and address to shadow RAM. */ |
| *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2); |
| *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL; |
| *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2); |
| /* Write DEBI immediate data to shadow RAM: */ |
| *rps++ = S626_GSEL_BIPOLAR5V; /* arbitrary immediate data value. */ |
| *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI; |
| /* Reset "shadow RAM uploaded" flag. */ |
| /* Invoke shadow RAM upload. */ |
| *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI; |
| /* Wait for shadow upload to finish. */ |
| *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI; |
| |
| /* |
| * Digitize all slots in the poll list. This is implemented as a |
| * for loop to limit the slot count to 16 in case the application |
| * forgot to set the S626_EOPL flag in the final slot. |
| */ |
| for (devpriv->adc_items = 0; devpriv->adc_items < 16; |
| devpriv->adc_items++) { |
| /* |
| * Convert application's poll list item to private board class |
| * format. Each app poll list item is an uint8_t with form |
| * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 = |
| * +-10V, 1 = +-5V, and EOPL = End of Poll List marker. |
| */ |
| local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V : |
| S626_GSEL_BIPOLAR10V); |
| |
| /* Switch ADC analog gain. */ |
| /* Write DEBI command and address to shadow RAM. */ |
| *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2); |
| *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL; |
| /* Write DEBI immediate data to shadow RAM. */ |
| *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2); |
| *rps++ = local_ppl; |
| /* Reset "shadow RAM uploaded" flag. */ |
| *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI; |
| /* Invoke shadow RAM upload. */ |
| *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI; |
| /* Wait for shadow upload to finish. */ |
| *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI; |
| /* Select ADC analog input channel. */ |
| *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2); |
| /* Write DEBI command and address to shadow RAM. */ |
| *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL; |
| *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2); |
| /* Write DEBI immediate data to shadow RAM. */ |
| *rps++ = local_ppl; |
| /* Reset "shadow RAM uploaded" flag. */ |
| *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI; |
| /* Invoke shadow RAM upload. */ |
| *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI; |
| /* Wait for shadow upload to finish. */ |
| *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI; |
| |
| /* |
| * Delay at least 10 microseconds for analog input settling. |
| * Instead of padding with NOPs, we use S626_RPS_JUMP |
| * instructions here; this allows us to produce a longer delay |
| * than is possible with NOPs because each S626_RPS_JUMP |
| * flushes the RPS' instruction prefetch pipeline. |
| */ |
| jmp_adrs = |
| (u32)devpriv->rps_buf.physical_base + |
| (u32)((unsigned long)rps - |
| (unsigned long)devpriv->rps_buf.logical_base); |
| for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) { |
| jmp_adrs += 8; /* Repeat to implement time delay: */ |
| /* Jump to next RPS instruction. */ |
| *rps++ = S626_RPS_JUMP; |
| *rps++ = jmp_adrs; |
| } |
| |
| if (cmd->convert_src != TRIG_NOW) { |
| /* Wait for Start trigger. */ |
| *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC; |
| *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; |
| } |
| /* Start ADC by pulsing GPIO1. */ |
| /* Begin ADC Start pulse. */ |
| *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); |
| *rps++ = S626_GPIO_BASE | S626_GPIO1_LO; |
| *rps++ = S626_RPS_NOP; |
| /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */ |
| /* End ADC Start pulse. */ |
| *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); |
| *rps++ = S626_GPIO_BASE | S626_GPIO1_HI; |
| /* |
| * Wait for ADC to complete (GPIO2 is asserted high when ADC not |
| * busy) and for data from previous conversion to shift into FB |
| * BUFFER 1 register. |
| */ |
| /* Wait for ADC done. */ |
| *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2; |
| |
| /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */ |
| *rps++ = S626_RPS_STREG | |
| (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2); |
| *rps++ = (u32)devpriv->ana_buf.physical_base + |
| (devpriv->adc_items << 2); |
| |
| /* |
| * If this slot's EndOfPollList flag is set, all channels have |
| * now been processed. |
| */ |
| if (*ppl++ & S626_EOPL) { |
| devpriv->adc_items++; /* Adjust poll list item count. */ |
| break; /* Exit poll list processing loop. */ |
| } |
| } |
| |
| /* |
| * VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the |
| * ADC to stabilize for 2 microseconds before starting the final |
| * (dummy) conversion. This delay is necessary to allow sufficient |
| * time between last conversion finished and the start of the dummy |
| * conversion. Without this delay, the last conversion's data value |
| * is sometimes set to the previous conversion's data value. |
| */ |
| for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++) |
| *rps++ = S626_RPS_NOP; |
| |
| /* |
| * Start a dummy conversion to cause the data from the last |
| * conversion of interest to be shifted in. |
| */ |
| /* Begin ADC Start pulse. */ |
| *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); |
| *rps++ = S626_GPIO_BASE | S626_GPIO1_LO; |
| *rps++ = S626_RPS_NOP; |
| /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */ |
| *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */ |
| *rps++ = S626_GPIO_BASE | S626_GPIO1_HI; |
| |
| /* |
| * Wait for the data from the last conversion of interest to arrive |
| * in FB BUFFER 1 register. |
| */ |
| *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2; /* Wait for ADC done. */ |
| |
| /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */ |
| *rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2); |
| *rps++ = (u32)devpriv->ana_buf.physical_base + |
| (devpriv->adc_items << 2); |
| |
| /* Indicate ADC scan loop is finished. */ |
| /* Signal ReadADC() that scan is done. */ |
| /* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */ |
| |
| /* invoke interrupt */ |
| if (devpriv->ai_cmd_running == 1) |
| *rps++ = S626_RPS_IRQ; |
| |
| /* Restart RPS program at its beginning. */ |
| *rps++ = S626_RPS_JUMP; /* Branch to start of RPS program. */ |
| *rps++ = (u32)devpriv->rps_buf.physical_base; |
| |
| /* End of RPS program build */ |
| } |
| |
| static int s626_ai_eoc(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, |
| unsigned long context) |
| { |
| unsigned int status; |
| |
| status = readl(dev->mmio + S626_P_PSR); |
| if (status & S626_PSR_GPIO2) |
| return 0; |
| return -EBUSY; |
| } |
| |
| static int s626_ai_insn_read(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, |
| unsigned int *data) |
| { |
| u16 chan = CR_CHAN(insn->chanspec); |
| u16 range = CR_RANGE(insn->chanspec); |
| u16 adc_spec = 0; |
| u32 gpio_image; |
| u32 tmp; |
| int ret; |
| int n; |
| |
| /* |
| * Convert application's ADC specification into form |
| * appropriate for register programming. |
| */ |
| if (range == 0) |
| adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V); |
| else |
| adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V); |
| |
| /* Switch ADC analog gain. */ |
| s626_debi_write(dev, S626_LP_GSEL, adc_spec); /* Set gain. */ |
| |
| /* Select ADC analog input channel. */ |
| s626_debi_write(dev, S626_LP_ISEL, adc_spec); /* Select channel. */ |
| |
| for (n = 0; n < insn->n; n++) { |
| /* Delay 10 microseconds for analog input settling. */ |
| usleep_range(10, 20); |
| |
| /* Start ADC by pulsing GPIO1 low */ |
| gpio_image = readl(dev->mmio + S626_P_GPIO); |
| /* Assert ADC Start command */ |
| writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO); |
| /* and stretch it out */ |
| writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO); |
| writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO); |
| /* Negate ADC Start command */ |
| writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO); |
| |
| /* |
| * Wait for ADC to complete (GPIO2 is asserted high when |
| * ADC not busy) and for data from previous conversion to |
| * shift into FB BUFFER 1 register. |
| */ |
| |
| /* Wait for ADC done */ |
| ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0); |
| if (ret) |
| return ret; |
| |
| /* Fetch ADC data */ |
| if (n != 0) { |
| tmp = readl(dev->mmio + S626_P_FB_BUFFER1); |
| data[n - 1] = s626_ai_reg_to_uint(tmp); |
| } |
| |
| /* |
| * Allow the ADC to stabilize for 4 microseconds before |
| * starting the next (final) conversion. This delay is |
| * necessary to allow sufficient time between last |
| * conversion finished and the start of the next |
| * conversion. Without this delay, the last conversion's |
| * data value is sometimes set to the previous |
| * conversion's data value. |
| */ |
| udelay(4); |
| } |
| |
| /* |
| * Start a dummy conversion to cause the data from the |
| * previous conversion to be shifted in. |
| */ |
| gpio_image = readl(dev->mmio + S626_P_GPIO); |
| /* Assert ADC Start command */ |
| writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO); |
| /* and stretch it out */ |
| writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO); |
| writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO); |
| /* Negate ADC Start command */ |
| writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO); |
| |
| /* Wait for the data to arrive in FB BUFFER 1 register. */ |
| |
| /* Wait for ADC done */ |
| ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0); |
| if (ret) |
| return ret; |
| |
| /* Fetch ADC data from audio interface's input shift register. */ |
| |
| /* Fetch ADC data */ |
| if (n != 0) { |
| tmp = readl(dev->mmio + S626_P_FB_BUFFER1); |
| data[n - 1] = s626_ai_reg_to_uint(tmp); |
| } |
| |
| return n; |
| } |
| |
| static int s626_ai_load_polllist(u8 *ppl, struct comedi_cmd *cmd) |
| { |
| int n; |
| |
| for (n = 0; n < cmd->chanlist_len; n++) { |
| if (CR_RANGE(cmd->chanlist[n]) == 0) |
| ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V; |
| else |
| ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V; |
| } |
| if (n != 0) |
| ppl[n - 1] |= S626_EOPL; |
| |
| return n; |
| } |
| |
| static int s626_ai_inttrig(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| unsigned int trig_num) |
| { |
| struct comedi_cmd *cmd = &s->async->cmd; |
| |
| if (trig_num != cmd->start_arg) |
| return -EINVAL; |
| |
| /* Start executing the RPS program */ |
| s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1); |
| |
| s->async->inttrig = NULL; |
| |
| return 1; |
| } |
| |
| /* |
| * This function doesn't require a particular form, this is just what |
| * happens to be used in some of the drivers. It should convert ns |
| * nanoseconds to a counter value suitable for programming the device. |
| * Also, it should adjust ns so that it cooresponds to the actual time |
| * that the device will use. |
| */ |
| static int s626_ns_to_timer(unsigned int *nanosec, unsigned int flags) |
| { |
| int divider, base; |
| |
| base = 500; /* 2MHz internal clock */ |
| |
| switch (flags & CMDF_ROUND_MASK) { |
| case CMDF_ROUND_NEAREST: |
| default: |
| divider = DIV_ROUND_CLOSEST(*nanosec, base); |
| break; |
| case CMDF_ROUND_DOWN: |
| divider = (*nanosec) / base; |
| break; |
| case CMDF_ROUND_UP: |
| divider = DIV_ROUND_UP(*nanosec, base); |
| break; |
| } |
| |
| *nanosec = base * divider; |
| return divider - 1; |
| } |
| |
| static void s626_timer_load(struct comedi_device *dev, |
| unsigned int chan, int tick) |
| { |
| u16 setup = |
| /* Preload upon index. */ |
| S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) | |
| /* Disable hardware index. */ |
| S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) | |
| /* Operating mode is Timer. */ |
| S626_SET_STD_ENCMODE(S626_ENCMODE_TIMER) | |
| /* Count direction is Down. */ |
| S626_SET_STD_CLKPOL(S626_CNTDIR_DOWN) | |
| /* Clock multiplier is 1x. */ |
| S626_SET_STD_CLKMULT(S626_CLKMULT_1X) | |
| /* Enabled by index */ |
| S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX); |
| u16 value_latchsrc = S626_LATCHSRC_A_INDXA; |
| /* uint16_t enab = S626_CLKENAB_ALWAYS; */ |
| |
| s626_set_mode(dev, chan, setup, false); |
| |
| /* Set the preload register */ |
| s626_preload(dev, chan, tick); |
| |
| /* |
| * Software index pulse forces the preload register to load |
| * into the counter |
| */ |
| s626_set_load_trig(dev, chan, 0); |
| s626_pulse_index(dev, chan); |
| |
| /* set reload on counter overflow */ |
| s626_set_load_trig(dev, chan, 1); |
| |
| /* set interrupt on overflow */ |
| s626_set_int_src(dev, chan, S626_INTSRC_OVER); |
| |
| s626_set_latch_source(dev, chan, value_latchsrc); |
| /* s626_set_enable(dev, chan, (uint16_t)(enab != 0)); */ |
| } |
| |
| /* TO COMPLETE */ |
| static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s) |
| { |
| struct s626_private *devpriv = dev->private; |
| u8 ppl[16]; |
| struct comedi_cmd *cmd = &s->async->cmd; |
| int tick; |
| |
| if (devpriv->ai_cmd_running) { |
| dev_err(dev->class_dev, |
| "%s: Another ai_cmd is running\n", __func__); |
| return -EBUSY; |
| } |
| /* disable interrupt */ |
| writel(0, dev->mmio + S626_P_IER); |
| |
| /* clear interrupt request */ |
| writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, dev->mmio + S626_P_ISR); |
| |
| /* clear any pending interrupt */ |
| s626_dio_clear_irq(dev); |
| /* s626_enc_clear_irq(dev); */ |
| |
| /* reset ai_cmd_running flag */ |
| devpriv->ai_cmd_running = 0; |
| |
| s626_ai_load_polllist(ppl, cmd); |
| devpriv->ai_cmd_running = 1; |
| devpriv->ai_convert_count = 0; |
| |
| switch (cmd->scan_begin_src) { |
| case TRIG_FOLLOW: |
| break; |
| case TRIG_TIMER: |
| /* |
| * set a counter to generate adc trigger at scan_begin_arg |
| * interval |
| */ |
| tick = s626_ns_to_timer(&cmd->scan_begin_arg, cmd->flags); |
| |
| /* load timer value and enable interrupt */ |
| s626_timer_load(dev, 5, tick); |
| s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS); |
| break; |
| case TRIG_EXT: |
| /* set the digital line and interrupt for scan trigger */ |
| if (cmd->start_src != TRIG_EXT) |
| s626_dio_set_irq(dev, cmd->scan_begin_arg); |
| break; |
| } |
| |
| switch (cmd->convert_src) { |
| case TRIG_NOW: |
| break; |
| case TRIG_TIMER: |
| /* |
| * set a counter to generate adc trigger at convert_arg |
| * interval |
| */ |
| tick = s626_ns_to_timer(&cmd->convert_arg, cmd->flags); |
| |
| /* load timer value and enable interrupt */ |
| s626_timer_load(dev, 4, tick); |
| s626_set_enable(dev, 4, S626_CLKENAB_INDEX); |
| break; |
| case TRIG_EXT: |
| /* set the digital line and interrupt for convert trigger */ |
| if (cmd->scan_begin_src != TRIG_EXT && |
| cmd->start_src == TRIG_EXT) |
| s626_dio_set_irq(dev, cmd->convert_arg); |
| break; |
| } |
| |
| s626_reset_adc(dev, ppl); |
| |
| switch (cmd->start_src) { |
| case TRIG_NOW: |
| /* Trigger ADC scan loop start */ |
| /* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */ |
| |
| /* Start executing the RPS program */ |
| s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1); |
| s->async->inttrig = NULL; |
| break; |
| case TRIG_EXT: |
| /* configure DIO channel for acquisition trigger */ |
| s626_dio_set_irq(dev, cmd->start_arg); |
| s->async->inttrig = NULL; |
| break; |
| case TRIG_INT: |
| s->async->inttrig = s626_ai_inttrig; |
| break; |
| } |
| |
| /* enable interrupt */ |
| writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, dev->mmio + S626_P_IER); |
| |
| return 0; |
| } |
| |
| static int s626_ai_cmdtest(struct comedi_device *dev, |
| struct comedi_subdevice *s, struct comedi_cmd *cmd) |
| { |
| int err = 0; |
| unsigned int arg; |
| |
| /* Step 1 : check if triggers are trivially valid */ |
| |
| err |= comedi_check_trigger_src(&cmd->start_src, |
| TRIG_NOW | TRIG_INT | TRIG_EXT); |
| err |= comedi_check_trigger_src(&cmd->scan_begin_src, |
| TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW); |
| err |= comedi_check_trigger_src(&cmd->convert_src, |
| TRIG_TIMER | TRIG_EXT | TRIG_NOW); |
| err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT); |
| err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE); |
| |
| if (err) |
| return 1; |
| |
| /* Step 2a : make sure trigger sources are unique */ |
| |
| err |= comedi_check_trigger_is_unique(cmd->start_src); |
| err |= comedi_check_trigger_is_unique(cmd->scan_begin_src); |
| err |= comedi_check_trigger_is_unique(cmd->convert_src); |
| err |= comedi_check_trigger_is_unique(cmd->stop_src); |
| |
| /* Step 2b : and mutually compatible */ |
| |
| if (err) |
| return 2; |
| |
| /* Step 3: check if arguments are trivially valid */ |
| |
| switch (cmd->start_src) { |
| case TRIG_NOW: |
| case TRIG_INT: |
| err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0); |
| break; |
| case TRIG_EXT: |
| err |= comedi_check_trigger_arg_max(&cmd->start_arg, 39); |
| break; |
| } |
| |
| if (cmd->scan_begin_src == TRIG_EXT) |
| err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 39); |
| if (cmd->convert_src == TRIG_EXT) |
| err |= comedi_check_trigger_arg_max(&cmd->convert_arg, 39); |
| |
| #define S626_MAX_SPEED 200000 /* in nanoseconds */ |
| #define S626_MIN_SPEED 2000000000 /* in nanoseconds */ |
| |
| if (cmd->scan_begin_src == TRIG_TIMER) { |
| err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg, |
| S626_MAX_SPEED); |
| err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, |
| S626_MIN_SPEED); |
| } else { |
| /* |
| * external trigger |
| * should be level/edge, hi/lo specification here |
| * should specify multiple external triggers |
| * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9); |
| */ |
| } |
| if (cmd->convert_src == TRIG_TIMER) { |
| err |= comedi_check_trigger_arg_min(&cmd->convert_arg, |
| S626_MAX_SPEED); |
| err |= comedi_check_trigger_arg_max(&cmd->convert_arg, |
| S626_MIN_SPEED); |
| } else { |
| /* |
| * external trigger - see above |
| * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9); |
| */ |
| } |
| |
| err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg, |
| cmd->chanlist_len); |
| |
| if (cmd->stop_src == TRIG_COUNT) |
| err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1); |
| else /* TRIG_NONE */ |
| err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0); |
| |
| if (err) |
| return 3; |
| |
| /* step 4: fix up any arguments */ |
| |
| if (cmd->scan_begin_src == TRIG_TIMER) { |
| arg = cmd->scan_begin_arg; |
| s626_ns_to_timer(&arg, cmd->flags); |
| err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg); |
| } |
| |
| if (cmd->convert_src == TRIG_TIMER) { |
| arg = cmd->convert_arg; |
| s626_ns_to_timer(&arg, cmd->flags); |
| err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg); |
| |
| if (cmd->scan_begin_src == TRIG_TIMER) { |
| arg = cmd->convert_arg * cmd->scan_end_arg; |
| err |= comedi_check_trigger_arg_min( |
| &cmd->scan_begin_arg, arg); |
| } |
| } |
| |
| if (err) |
| return 4; |
| |
| return 0; |
| } |
| |
| static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s) |
| { |
| struct s626_private *devpriv = dev->private; |
| |
| /* Stop RPS program in case it is currently running */ |
| s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1); |
| |
| /* disable master interrupt */ |
| writel(0, dev->mmio + S626_P_IER); |
| |
| devpriv->ai_cmd_running = 0; |
| |
| return 0; |
| } |
| |
| static int s626_ao_insn_write(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, |
| unsigned int *data) |
| { |
| unsigned int chan = CR_CHAN(insn->chanspec); |
| int i; |
| |
| for (i = 0; i < insn->n; i++) { |
| s16 dacdata = (s16)data[i]; |
| int ret; |
| |
| dacdata -= (0x1fff); |
| |
| ret = s626_set_dac(dev, chan, dacdata); |
| if (ret) |
| return ret; |
| |
| s->readback[chan] = data[i]; |
| } |
| |
| return insn->n; |
| } |
| |
| /* *************** DIGITAL I/O FUNCTIONS *************** */ |
| |
| /* |
| * All DIO functions address a group of DIO channels by means of |
| * "group" argument. group may be 0, 1 or 2, which correspond to DIO |
| * ports A, B and C, respectively. |
| */ |
| |
| static void s626_dio_init(struct comedi_device *dev) |
| { |
| u16 group; |
| |
| /* Prepare to treat writes to WRCapSel as capture disables. */ |
| s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP); |
| |
| /* For each group of sixteen channels ... */ |
| for (group = 0; group < S626_DIO_BANKS; group++) { |
| /* Disable all interrupts */ |
| s626_debi_write(dev, S626_LP_WRINTSEL(group), 0); |
| /* Disable all event captures */ |
| s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff); |
| /* Init all DIOs to default edge polarity */ |
| s626_debi_write(dev, S626_LP_WREDGSEL(group), 0); |
| /* Program all outputs to inactive state */ |
| s626_debi_write(dev, S626_LP_WRDOUT(group), 0); |
| } |
| } |
| |
| static int s626_dio_insn_bits(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, |
| unsigned int *data) |
| { |
| unsigned long group = (unsigned long)s->private; |
| |
| if (comedi_dio_update_state(s, data)) |
| s626_debi_write(dev, S626_LP_WRDOUT(group), s->state); |
| |
| data[1] = s626_debi_read(dev, S626_LP_RDDIN(group)); |
| |
| return insn->n; |
| } |
| |
| static int s626_dio_insn_config(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, |
| unsigned int *data) |
| { |
| unsigned long group = (unsigned long)s->private; |
| int ret; |
| |
| ret = comedi_dio_insn_config(dev, s, insn, data, 0); |
| if (ret) |
| return ret; |
| |
| s626_debi_write(dev, S626_LP_WRDOUT(group), s->io_bits); |
| |
| return insn->n; |
| } |
| |
| /* |
| * Now this function initializes the value of the counter (data[0]) |
| * and set the subdevice. To complete with trigger and interrupt |
| * configuration. |
| * |
| * FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating |
| * what is being configured, but this function appears to be using data[0] |
| * as a variable. |
| */ |
| static int s626_enc_insn_config(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, unsigned int *data) |
| { |
| unsigned int chan = CR_CHAN(insn->chanspec); |
| u16 setup = |
| /* Preload upon index. */ |
| S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) | |
| /* Disable hardware index. */ |
| S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) | |
| /* Operating mode is Counter. */ |
| S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) | |
| /* Active high clock. */ |
| S626_SET_STD_CLKPOL(S626_CLKPOL_POS) | |
| /* Clock multiplier is 1x. */ |
| S626_SET_STD_CLKMULT(S626_CLKMULT_1X) | |
| /* Enabled by index */ |
| S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX); |
| /* uint16_t disable_int_src = true; */ |
| /* uint32_t Preloadvalue; //Counter initial value */ |
| u16 value_latchsrc = S626_LATCHSRC_AB_READ; |
| u16 enab = S626_CLKENAB_ALWAYS; |
| |
| /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */ |
| |
| s626_set_mode(dev, chan, setup, true); |
| s626_preload(dev, chan, data[0]); |
| s626_pulse_index(dev, chan); |
| s626_set_latch_source(dev, chan, value_latchsrc); |
| s626_set_enable(dev, chan, (enab != 0)); |
| |
| return insn->n; |
| } |
| |
| static int s626_enc_insn_read(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, |
| unsigned int *data) |
| { |
| unsigned int chan = CR_CHAN(insn->chanspec); |
| u16 cntr_latch_reg = S626_LP_CNTR(chan); |
| int i; |
| |
| for (i = 0; i < insn->n; i++) { |
| unsigned int val; |
| |
| /* |
| * Read the counter's output latch LSW/MSW. |
| * Latches on LSW read. |
| */ |
| val = s626_debi_read(dev, cntr_latch_reg); |
| val |= (s626_debi_read(dev, cntr_latch_reg + 2) << 16); |
| data[i] = val; |
| } |
| |
| return insn->n; |
| } |
| |
| static int s626_enc_insn_write(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, unsigned int *data) |
| { |
| unsigned int chan = CR_CHAN(insn->chanspec); |
| |
| /* Set the preload register */ |
| s626_preload(dev, chan, data[0]); |
| |
| /* |
| * Software index pulse forces the preload register to load |
| * into the counter |
| */ |
| s626_set_load_trig(dev, chan, 0); |
| s626_pulse_index(dev, chan); |
| s626_set_load_trig(dev, chan, 2); |
| |
| return 1; |
| } |
| |
| static void s626_write_misc2(struct comedi_device *dev, u16 new_image) |
| { |
| s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE); |
| s626_debi_write(dev, S626_LP_WRMISC2, new_image); |
| s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE); |
| } |
| |
| static void s626_counters_init(struct comedi_device *dev) |
| { |
| int chan; |
| u16 setup = |
| /* Preload upon index. */ |
| S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) | |
| /* Disable hardware index. */ |
| S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) | |
| /* Operating mode is counter. */ |
| S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) | |
| /* Active high clock. */ |
| S626_SET_STD_CLKPOL(S626_CLKPOL_POS) | |
| /* Clock multiplier is 1x. */ |
| S626_SET_STD_CLKMULT(S626_CLKMULT_1X) | |
| /* Enabled by index */ |
| S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX); |
| |
| /* |
| * Disable all counter interrupts and clear any captured counter events. |
| */ |
| for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) { |
| s626_set_mode(dev, chan, setup, true); |
| s626_set_int_src(dev, chan, 0); |
| s626_reset_cap_flags(dev, chan); |
| s626_set_enable(dev, chan, S626_CLKENAB_ALWAYS); |
| } |
| } |
| |
| static int s626_allocate_dma_buffers(struct comedi_device *dev) |
| { |
| struct pci_dev *pcidev = comedi_to_pci_dev(dev); |
| struct s626_private *devpriv = dev->private; |
| void *addr; |
| dma_addr_t appdma; |
| |
| addr = dma_alloc_coherent(&pcidev->dev, S626_DMABUF_SIZE, &appdma, |
| GFP_KERNEL); |
| if (!addr) |
| return -ENOMEM; |
| devpriv->ana_buf.logical_base = addr; |
| devpriv->ana_buf.physical_base = appdma; |
| |
| addr = dma_alloc_coherent(&pcidev->dev, S626_DMABUF_SIZE, &appdma, |
| GFP_KERNEL); |
| if (!addr) |
| return -ENOMEM; |
| devpriv->rps_buf.logical_base = addr; |
| devpriv->rps_buf.physical_base = appdma; |
| |
| return 0; |
| } |
| |
| static void s626_free_dma_buffers(struct comedi_device *dev) |
| { |
| struct pci_dev *pcidev = comedi_to_pci_dev(dev); |
| struct s626_private *devpriv = dev->private; |
| |
| if (!devpriv) |
| return; |
| |
| if (devpriv->rps_buf.logical_base) |
| dma_free_coherent(&pcidev->dev, S626_DMABUF_SIZE, |
| devpriv->rps_buf.logical_base, |
| devpriv->rps_buf.physical_base); |
| if (devpriv->ana_buf.logical_base) |
| dma_free_coherent(&pcidev->dev, S626_DMABUF_SIZE, |
| devpriv->ana_buf.logical_base, |
| devpriv->ana_buf.physical_base); |
| } |
| |
| static int s626_initialize(struct comedi_device *dev) |
| { |
| struct s626_private *devpriv = dev->private; |
| dma_addr_t phys_buf; |
| u16 chan; |
| int i; |
| int ret; |
| |
| /* Enable DEBI and audio pins, enable I2C interface */ |
| s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C, |
| S626_P_MC1); |
| |
| /* |
| * Configure DEBI operating mode |
| * |
| * Local bus is 16 bits wide |
| * Declare DEBI transfer timeout interval |
| * Set up byte lane steering |
| * Intel-compatible local bus (DEBI never times out) |
| */ |
| writel(S626_DEBI_CFG_SLAVE16 | |
| (S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP | |
| S626_DEBI_CFG_INTEL, dev->mmio + S626_P_DEBICFG); |
| |
| /* Disable MMU paging */ |
| writel(S626_DEBI_PAGE_DISABLE, dev->mmio + S626_P_DEBIPAGE); |
| |
| /* Init GPIO so that ADC Start* is negated */ |
| writel(S626_GPIO_BASE | S626_GPIO1_HI, dev->mmio + S626_P_GPIO); |
| |
| /* I2C device address for onboard eeprom (revb) */ |
| devpriv->i2c_adrs = 0xA0; |
| |
| /* |
| * Issue an I2C ABORT command to halt any I2C |
| * operation in progress and reset BUSY flag. |
| */ |
| writel(S626_I2C_CLKSEL | S626_I2C_ABORT, |
| dev->mmio + S626_P_I2CSTAT); |
| s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2); |
| ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0); |
| if (ret) |
| return ret; |
| |
| /* |
| * Per SAA7146 data sheet, write to STATUS |
| * reg twice to reset all I2C error flags. |
| */ |
| for (i = 0; i < 2; i++) { |
| writel(S626_I2C_CLKSEL, dev->mmio + S626_P_I2CSTAT); |
| s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2); |
| ret = comedi_timeout(dev, NULL, |
| NULL, s626_i2c_handshake_eoc, 0); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * Init audio interface functional attributes: set DAC/ADC |
| * serial clock rates, invert DAC serial clock so that |
| * DAC data setup times are satisfied, enable DAC serial |
| * clock out. |
| */ |
| writel(S626_ACON2_INIT, dev->mmio + S626_P_ACON2); |
| |
| /* |
| * Set up TSL1 slot list, which is used to control the |
| * accumulation of ADC data: S626_RSD1 = shift data in on SD1. |
| * S626_SIB_A1 = store data uint8_t at next available location |
| * in FB BUFFER1 register. |
| */ |
| writel(S626_RSD1 | S626_SIB_A1, dev->mmio + S626_P_TSL1); |
| writel(S626_RSD1 | S626_SIB_A1 | S626_EOS, |
| dev->mmio + S626_P_TSL1 + 4); |
| |
| /* Enable TSL1 slot list so that it executes all the time */ |
| writel(S626_ACON1_ADCSTART, dev->mmio + S626_P_ACON1); |
| |
| /* |
| * Initialize RPS registers used for ADC |
| */ |
| |
| /* Physical start of RPS program */ |
| writel((u32)devpriv->rps_buf.physical_base, |
| dev->mmio + S626_P_RPSADDR1); |
| /* RPS program performs no explicit mem writes */ |
| writel(0, dev->mmio + S626_P_RPSPAGE1); |
| /* Disable RPS timeouts */ |
| writel(0, dev->mmio + S626_P_RPS1_TOUT); |
| |
| #if 0 |
| /* |
| * SAA7146 BUG WORKAROUND |
| * |
| * Initialize SAA7146 ADC interface to a known state by |
| * invoking ADCs until FB BUFFER 1 register shows that it |
| * is correctly receiving ADC data. This is necessary |
| * because the SAA7146 ADC interface does not start up in |
| * a defined state after a PCI reset. |
| */ |
| { |
| struct comedi_subdevice *s = dev->read_subdev; |
| u8 poll_list; |
| u16 adc_data; |
| u16 start_val; |
| u16 index; |
| unsigned int data[16]; |
| |
| /* Create a simple polling list for analog input channel 0 */ |
| poll_list = S626_EOPL; |
| s626_reset_adc(dev, &poll_list); |
| |
| /* Get initial ADC value */ |
| s626_ai_rinsn(dev, s, NULL, data); |
| start_val = data[0]; |
| |
| /* |
| * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED |
| * EXECUTION. |
| * |
| * Invoke ADCs until the new ADC value differs from the initial |
| * value or a timeout occurs. The timeout protects against the |
| * possibility that the driver is restarting and the ADC data is |
| * a fixed value resulting from the applied ADC analog input |
| * being unusually quiet or at the rail. |
| */ |
| for (index = 0; index < 500; index++) { |
| s626_ai_rinsn(dev, s, NULL, data); |
| adc_data = data[0]; |
| if (adc_data != start_val) |
| break; |
| } |
| } |
| #endif /* SAA7146 BUG WORKAROUND */ |
| |
| /* |
| * Initialize the DAC interface |
| */ |
| |
| /* |
| * Init Audio2's output DMAC attributes: |
| * burst length = 1 DWORD |
| * threshold = 1 DWORD. |
| */ |
| writel(0, dev->mmio + S626_P_PCI_BT_A); |
| |
| /* |
| * Init Audio2's output DMA physical addresses. The protection |
| * address is set to 1 DWORD past the base address so that a |
| * single DWORD will be transferred each time a DMA transfer is |
| * enabled. |
| */ |
| phys_buf = devpriv->ana_buf.physical_base + |
| (S626_DAC_WDMABUF_OS * sizeof(u32)); |
| writel((u32)phys_buf, dev->mmio + S626_P_BASEA2_OUT); |
| writel((u32)(phys_buf + sizeof(u32)), |
| dev->mmio + S626_P_PROTA2_OUT); |
| |
| /* |
| * Cache Audio2's output DMA buffer logical address. This is |
| * where DAC data is buffered for A2 output DMA transfers. |
| */ |
| devpriv->dac_wbuf = (u32 *)devpriv->ana_buf.logical_base + |
| S626_DAC_WDMABUF_OS; |
| |
| /* |
| * Audio2's output channels does not use paging. The |
| * protection violation handling bit is set so that the |
| * DMAC will automatically halt and its PCI address pointer |
| * will be reset when the protection address is reached. |
| */ |
| writel(8, dev->mmio + S626_P_PAGEA2_OUT); |
| |
| /* |
| * Initialize time slot list 2 (TSL2), which is used to control |
| * the clock generation for and serialization of data to be sent |
| * to the DAC devices. Slot 0 is a NOP that is used to trap TSL |
| * execution; this permits other slots to be safely modified |
| * without first turning off the TSL sequencer (which is |
| * apparently impossible to do). Also, SD3 (which is driven by a |
| * pull-up resistor) is shifted in and stored to the MSB of |
| * FB_BUFFER2 to be used as evidence that the slot sequence has |
| * not yet finished executing. |
| */ |
| |
| /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */ |
| writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS, |
| dev->mmio + S626_VECTPORT(0)); |
| |
| /* |
| * Initialize slot 1, which is constant. Slot 1 causes a |
| * DWORD to be transferred from audio channel 2's output FIFO |
| * to the FIFO's output buffer so that it can be serialized |
| * and sent to the DAC during subsequent slots. All remaining |
| * slots are dynamically populated as required by the target |
| * DAC device. |
| */ |
| |
| /* Slot 1: Fetch DWORD from Audio2's output FIFO */ |
| writel(S626_LF_A2, dev->mmio + S626_VECTPORT(1)); |
| |
| /* Start DAC's audio interface (TSL2) running */ |
| writel(S626_ACON1_DACSTART, dev->mmio + S626_P_ACON1); |
| |
| /* |
| * Init Trim DACs to calibrated values. Do it twice because the |
| * SAA7146 audio channel does not always reset properly and |
| * sometimes causes the first few TrimDAC writes to malfunction. |
| */ |
| s626_load_trim_dacs(dev); |
| ret = s626_load_trim_dacs(dev); |
| if (ret) |
| return ret; |
| |
| /* |
| * Manually init all gate array hardware in case this is a soft |
| * reset (we have no way of determining whether this is a warm |
| * or cold start). This is necessary because the gate array will |
| * reset only in response to a PCI hard reset; there is no soft |
| * reset function. |
| */ |
| |
| /* |
| * Init all DAC outputs to 0V and init all DAC setpoint and |
| * polarity images. |
| */ |
| for (chan = 0; chan < S626_DAC_CHANNELS; chan++) { |
| ret = s626_set_dac(dev, chan, 0); |
| if (ret) |
| return ret; |
| } |
| |
| /* Init counters */ |
| s626_counters_init(dev); |
| |
| /* |
| * Without modifying the state of the Battery Backup enab, disable |
| * the watchdog timer, set DIO channels 0-5 to operate in the |
| * standard DIO (vs. counter overflow) mode, disable the battery |
| * charger, and reset the watchdog interval selector to zero. |
| */ |
| s626_write_misc2(dev, (s626_debi_read(dev, S626_LP_RDMISC2) & |
| S626_MISC2_BATT_ENABLE)); |
| |
| /* Initialize the digital I/O subsystem */ |
| s626_dio_init(dev); |
| |
| return 0; |
| } |
| |
| static int s626_auto_attach(struct comedi_device *dev, |
| unsigned long context_unused) |
| { |
| struct pci_dev *pcidev = comedi_to_pci_dev(dev); |
| struct s626_private *devpriv; |
| struct comedi_subdevice *s; |
| int ret; |
| |
| devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv)); |
| if (!devpriv) |
| return -ENOMEM; |
| |
| ret = comedi_pci_enable(dev); |
| if (ret) |
| return ret; |
| |
| dev->mmio = pci_ioremap_bar(pcidev, 0); |
| if (!dev->mmio) |
| return -ENOMEM; |
| |
| /* disable master interrupt */ |
| writel(0, dev->mmio + S626_P_IER); |
| |
| /* soft reset */ |
| writel(S626_MC1_SOFT_RESET, dev->mmio + S626_P_MC1); |
| |
| /* DMA FIXME DMA// */ |
| |
| ret = s626_allocate_dma_buffers(dev); |
| if (ret) |
| return ret; |
| |
| if (pcidev->irq) { |
| ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED, |
| dev->board_name, dev); |
| |
| if (ret == 0) |
| dev->irq = pcidev->irq; |
| } |
| |
| ret = comedi_alloc_subdevices(dev, 6); |
| if (ret) |
| return ret; |
| |
| s = &dev->subdevices[0]; |
| /* analog input subdevice */ |
| s->type = COMEDI_SUBD_AI; |
| s->subdev_flags = SDF_READABLE | SDF_DIFF; |
| s->n_chan = S626_ADC_CHANNELS; |
| s->maxdata = 0x3fff; |
| s->range_table = &s626_range_table; |
| s->len_chanlist = S626_ADC_CHANNELS; |
| s->insn_read = s626_ai_insn_read; |
| if (dev->irq) { |
| dev->read_subdev = s; |
| s->subdev_flags |= SDF_CMD_READ; |
| s->do_cmd = s626_ai_cmd; |
| s->do_cmdtest = s626_ai_cmdtest; |
| s->cancel = s626_ai_cancel; |
| } |
| |
| s = &dev->subdevices[1]; |
| /* analog output subdevice */ |
| s->type = COMEDI_SUBD_AO; |
| s->subdev_flags = SDF_WRITABLE | SDF_READABLE; |
| s->n_chan = S626_DAC_CHANNELS; |
| s->maxdata = 0x3fff; |
| s->range_table = &range_bipolar10; |
| s->insn_write = s626_ao_insn_write; |
| |
| ret = comedi_alloc_subdev_readback(s); |
| if (ret) |
| return ret; |
| |
| s = &dev->subdevices[2]; |
| /* digital I/O subdevice */ |
| s->type = COMEDI_SUBD_DIO; |
| s->subdev_flags = SDF_WRITABLE | SDF_READABLE; |
| s->n_chan = 16; |
| s->maxdata = 1; |
| s->io_bits = 0xffff; |
| s->private = (void *)0; /* DIO group 0 */ |
| s->range_table = &range_digital; |
| s->insn_config = s626_dio_insn_config; |
| s->insn_bits = s626_dio_insn_bits; |
| |
| s = &dev->subdevices[3]; |
| /* digital I/O subdevice */ |
| s->type = COMEDI_SUBD_DIO; |
| s->subdev_flags = SDF_WRITABLE | SDF_READABLE; |
| s->n_chan = 16; |
| s->maxdata = 1; |
| s->io_bits = 0xffff; |
| s->private = (void *)1; /* DIO group 1 */ |
| s->range_table = &range_digital; |
| s->insn_config = s626_dio_insn_config; |
| s->insn_bits = s626_dio_insn_bits; |
| |
| s = &dev->subdevices[4]; |
| /* digital I/O subdevice */ |
| s->type = COMEDI_SUBD_DIO; |
| s->subdev_flags = SDF_WRITABLE | SDF_READABLE; |
| s->n_chan = 16; |
| s->maxdata = 1; |
| s->io_bits = 0xffff; |
| s->private = (void *)2; /* DIO group 2 */ |
| s->range_table = &range_digital; |
| s->insn_config = s626_dio_insn_config; |
| s->insn_bits = s626_dio_insn_bits; |
| |
| s = &dev->subdevices[5]; |
| /* encoder (counter) subdevice */ |
| s->type = COMEDI_SUBD_COUNTER; |
| s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL; |
| s->n_chan = S626_ENCODER_CHANNELS; |
| s->maxdata = 0xffffff; |
| s->range_table = &range_unknown; |
| s->insn_config = s626_enc_insn_config; |
| s->insn_read = s626_enc_insn_read; |
| s->insn_write = s626_enc_insn_write; |
| |
| return s626_initialize(dev); |
| } |
| |
| static void s626_detach(struct comedi_device *dev) |
| { |
| struct s626_private *devpriv = dev->private; |
| |
| if (devpriv) { |
| /* stop ai_command */ |
| devpriv->ai_cmd_running = 0; |
| |
| if (dev->mmio) { |
| /* interrupt mask */ |
| /* Disable master interrupt */ |
| writel(0, dev->mmio + S626_P_IER); |
| /* Clear board's IRQ status flag */ |
| writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, |
| dev->mmio + S626_P_ISR); |
| |
| /* Disable the watchdog timer and battery charger. */ |
| s626_write_misc2(dev, 0); |
| |
| /* Close all interfaces on 7146 device */ |
| writel(S626_MC1_SHUTDOWN, dev->mmio + S626_P_MC1); |
| writel(S626_ACON1_BASE, dev->mmio + S626_P_ACON1); |
| } |
| } |
| comedi_pci_detach(dev); |
| s626_free_dma_buffers(dev); |
| } |
| |
| static struct comedi_driver s626_driver = { |
| .driver_name = "s626", |
| .module = THIS_MODULE, |
| .auto_attach = s626_auto_attach, |
| .detach = s626_detach, |
| }; |
| |
| static int s626_pci_probe(struct pci_dev *dev, |
| const struct pci_device_id *id) |
| { |
| return comedi_pci_auto_config(dev, &s626_driver, id->driver_data); |
| } |
| |
| /* |
| * For devices with vendor:device id == 0x1131:0x7146 you must specify |
| * also subvendor:subdevice ids, because otherwise it will conflict with |
| * Philips SAA7146 media/dvb based cards. |
| */ |
| static const struct pci_device_id s626_pci_table[] = { |
| { PCI_DEVICE_SUB(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA7146, |
| 0x6000, 0x0272) }, |
| { 0 } |
| }; |
| MODULE_DEVICE_TABLE(pci, s626_pci_table); |
| |
| static struct pci_driver s626_pci_driver = { |
| .name = "s626", |
| .id_table = s626_pci_table, |
| .probe = s626_pci_probe, |
| .remove = comedi_pci_auto_unconfig, |
| }; |
| module_comedi_pci_driver(s626_driver, s626_pci_driver); |
| |
| MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>"); |
| MODULE_DESCRIPTION("Sensoray 626 Comedi driver module"); |
| MODULE_LICENSE("GPL"); |