| // SPDX-License-Identifier: GPL-2.0-or-later |
| /******************************************************************************* |
| * Filename: target_core_transport.c |
| * |
| * This file contains the Generic Target Engine Core. |
| * |
| * (c) Copyright 2002-2013 Datera, Inc. |
| * |
| * Nicholas A. Bellinger <nab@kernel.org> |
| * |
| ******************************************************************************/ |
| |
| #include <linux/net.h> |
| #include <linux/delay.h> |
| #include <linux/string.h> |
| #include <linux/timer.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/kthread.h> |
| #include <linux/in.h> |
| #include <linux/cdrom.h> |
| #include <linux/module.h> |
| #include <linux/ratelimit.h> |
| #include <linux/vmalloc.h> |
| #include <asm/unaligned.h> |
| #include <net/sock.h> |
| #include <net/tcp.h> |
| #include <scsi/scsi_proto.h> |
| #include <scsi/scsi_common.h> |
| |
| #include <target/target_core_base.h> |
| #include <target/target_core_backend.h> |
| #include <target/target_core_fabric.h> |
| |
| #include "target_core_internal.h" |
| #include "target_core_alua.h" |
| #include "target_core_pr.h" |
| #include "target_core_ua.h" |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/target.h> |
| |
| static struct workqueue_struct *target_completion_wq; |
| static struct workqueue_struct *target_submission_wq; |
| static struct kmem_cache *se_sess_cache; |
| struct kmem_cache *se_ua_cache; |
| struct kmem_cache *t10_pr_reg_cache; |
| struct kmem_cache *t10_alua_lu_gp_cache; |
| struct kmem_cache *t10_alua_lu_gp_mem_cache; |
| struct kmem_cache *t10_alua_tg_pt_gp_cache; |
| struct kmem_cache *t10_alua_lba_map_cache; |
| struct kmem_cache *t10_alua_lba_map_mem_cache; |
| |
| static void transport_complete_task_attr(struct se_cmd *cmd); |
| static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason); |
| static void transport_handle_queue_full(struct se_cmd *cmd, |
| struct se_device *dev, int err, bool write_pending); |
| static void target_complete_ok_work(struct work_struct *work); |
| |
| int init_se_kmem_caches(void) |
| { |
| se_sess_cache = kmem_cache_create("se_sess_cache", |
| sizeof(struct se_session), __alignof__(struct se_session), |
| 0, NULL); |
| if (!se_sess_cache) { |
| pr_err("kmem_cache_create() for struct se_session" |
| " failed\n"); |
| goto out; |
| } |
| se_ua_cache = kmem_cache_create("se_ua_cache", |
| sizeof(struct se_ua), __alignof__(struct se_ua), |
| 0, NULL); |
| if (!se_ua_cache) { |
| pr_err("kmem_cache_create() for struct se_ua failed\n"); |
| goto out_free_sess_cache; |
| } |
| t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", |
| sizeof(struct t10_pr_registration), |
| __alignof__(struct t10_pr_registration), 0, NULL); |
| if (!t10_pr_reg_cache) { |
| pr_err("kmem_cache_create() for struct t10_pr_registration" |
| " failed\n"); |
| goto out_free_ua_cache; |
| } |
| t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", |
| sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), |
| 0, NULL); |
| if (!t10_alua_lu_gp_cache) { |
| pr_err("kmem_cache_create() for t10_alua_lu_gp_cache" |
| " failed\n"); |
| goto out_free_pr_reg_cache; |
| } |
| t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", |
| sizeof(struct t10_alua_lu_gp_member), |
| __alignof__(struct t10_alua_lu_gp_member), 0, NULL); |
| if (!t10_alua_lu_gp_mem_cache) { |
| pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_" |
| "cache failed\n"); |
| goto out_free_lu_gp_cache; |
| } |
| t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", |
| sizeof(struct t10_alua_tg_pt_gp), |
| __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); |
| if (!t10_alua_tg_pt_gp_cache) { |
| pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_" |
| "cache failed\n"); |
| goto out_free_lu_gp_mem_cache; |
| } |
| t10_alua_lba_map_cache = kmem_cache_create( |
| "t10_alua_lba_map_cache", |
| sizeof(struct t10_alua_lba_map), |
| __alignof__(struct t10_alua_lba_map), 0, NULL); |
| if (!t10_alua_lba_map_cache) { |
| pr_err("kmem_cache_create() for t10_alua_lba_map_" |
| "cache failed\n"); |
| goto out_free_tg_pt_gp_cache; |
| } |
| t10_alua_lba_map_mem_cache = kmem_cache_create( |
| "t10_alua_lba_map_mem_cache", |
| sizeof(struct t10_alua_lba_map_member), |
| __alignof__(struct t10_alua_lba_map_member), 0, NULL); |
| if (!t10_alua_lba_map_mem_cache) { |
| pr_err("kmem_cache_create() for t10_alua_lba_map_mem_" |
| "cache failed\n"); |
| goto out_free_lba_map_cache; |
| } |
| |
| target_completion_wq = alloc_workqueue("target_completion", |
| WQ_MEM_RECLAIM, 0); |
| if (!target_completion_wq) |
| goto out_free_lba_map_mem_cache; |
| |
| target_submission_wq = alloc_workqueue("target_submission", |
| WQ_MEM_RECLAIM, 0); |
| if (!target_submission_wq) |
| goto out_free_completion_wq; |
| |
| return 0; |
| |
| out_free_completion_wq: |
| destroy_workqueue(target_completion_wq); |
| out_free_lba_map_mem_cache: |
| kmem_cache_destroy(t10_alua_lba_map_mem_cache); |
| out_free_lba_map_cache: |
| kmem_cache_destroy(t10_alua_lba_map_cache); |
| out_free_tg_pt_gp_cache: |
| kmem_cache_destroy(t10_alua_tg_pt_gp_cache); |
| out_free_lu_gp_mem_cache: |
| kmem_cache_destroy(t10_alua_lu_gp_mem_cache); |
| out_free_lu_gp_cache: |
| kmem_cache_destroy(t10_alua_lu_gp_cache); |
| out_free_pr_reg_cache: |
| kmem_cache_destroy(t10_pr_reg_cache); |
| out_free_ua_cache: |
| kmem_cache_destroy(se_ua_cache); |
| out_free_sess_cache: |
| kmem_cache_destroy(se_sess_cache); |
| out: |
| return -ENOMEM; |
| } |
| |
| void release_se_kmem_caches(void) |
| { |
| destroy_workqueue(target_submission_wq); |
| destroy_workqueue(target_completion_wq); |
| kmem_cache_destroy(se_sess_cache); |
| kmem_cache_destroy(se_ua_cache); |
| kmem_cache_destroy(t10_pr_reg_cache); |
| kmem_cache_destroy(t10_alua_lu_gp_cache); |
| kmem_cache_destroy(t10_alua_lu_gp_mem_cache); |
| kmem_cache_destroy(t10_alua_tg_pt_gp_cache); |
| kmem_cache_destroy(t10_alua_lba_map_cache); |
| kmem_cache_destroy(t10_alua_lba_map_mem_cache); |
| } |
| |
| /* This code ensures unique mib indexes are handed out. */ |
| static DEFINE_SPINLOCK(scsi_mib_index_lock); |
| static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX]; |
| |
| /* |
| * Allocate a new row index for the entry type specified |
| */ |
| u32 scsi_get_new_index(scsi_index_t type) |
| { |
| u32 new_index; |
| |
| BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)); |
| |
| spin_lock(&scsi_mib_index_lock); |
| new_index = ++scsi_mib_index[type]; |
| spin_unlock(&scsi_mib_index_lock); |
| |
| return new_index; |
| } |
| |
| void transport_subsystem_check_init(void) |
| { |
| int ret; |
| static int sub_api_initialized; |
| |
| if (sub_api_initialized) |
| return; |
| |
| ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock"); |
| if (ret != 0) |
| pr_err("Unable to load target_core_iblock\n"); |
| |
| ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file"); |
| if (ret != 0) |
| pr_err("Unable to load target_core_file\n"); |
| |
| ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi"); |
| if (ret != 0) |
| pr_err("Unable to load target_core_pscsi\n"); |
| |
| ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user"); |
| if (ret != 0) |
| pr_err("Unable to load target_core_user\n"); |
| |
| sub_api_initialized = 1; |
| } |
| |
| static void target_release_sess_cmd_refcnt(struct percpu_ref *ref) |
| { |
| struct se_session *sess = container_of(ref, typeof(*sess), cmd_count); |
| |
| wake_up(&sess->cmd_count_wq); |
| } |
| |
| /** |
| * transport_init_session - initialize a session object |
| * @se_sess: Session object pointer. |
| * |
| * The caller must have zero-initialized @se_sess before calling this function. |
| */ |
| int transport_init_session(struct se_session *se_sess) |
| { |
| INIT_LIST_HEAD(&se_sess->sess_list); |
| INIT_LIST_HEAD(&se_sess->sess_acl_list); |
| spin_lock_init(&se_sess->sess_cmd_lock); |
| init_waitqueue_head(&se_sess->cmd_count_wq); |
| init_completion(&se_sess->stop_done); |
| atomic_set(&se_sess->stopped, 0); |
| return percpu_ref_init(&se_sess->cmd_count, |
| target_release_sess_cmd_refcnt, 0, GFP_KERNEL); |
| } |
| EXPORT_SYMBOL(transport_init_session); |
| |
| void transport_uninit_session(struct se_session *se_sess) |
| { |
| /* |
| * Drivers like iscsi and loop do not call target_stop_session |
| * during session shutdown so we have to drop the ref taken at init |
| * time here. |
| */ |
| if (!atomic_read(&se_sess->stopped)) |
| percpu_ref_put(&se_sess->cmd_count); |
| |
| percpu_ref_exit(&se_sess->cmd_count); |
| } |
| |
| /** |
| * transport_alloc_session - allocate a session object and initialize it |
| * @sup_prot_ops: bitmask that defines which T10-PI modes are supported. |
| */ |
| struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops) |
| { |
| struct se_session *se_sess; |
| int ret; |
| |
| se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); |
| if (!se_sess) { |
| pr_err("Unable to allocate struct se_session from" |
| " se_sess_cache\n"); |
| return ERR_PTR(-ENOMEM); |
| } |
| ret = transport_init_session(se_sess); |
| if (ret < 0) { |
| kmem_cache_free(se_sess_cache, se_sess); |
| return ERR_PTR(ret); |
| } |
| se_sess->sup_prot_ops = sup_prot_ops; |
| |
| return se_sess; |
| } |
| EXPORT_SYMBOL(transport_alloc_session); |
| |
| /** |
| * transport_alloc_session_tags - allocate target driver private data |
| * @se_sess: Session pointer. |
| * @tag_num: Maximum number of in-flight commands between initiator and target. |
| * @tag_size: Size in bytes of the private data a target driver associates with |
| * each command. |
| */ |
| int transport_alloc_session_tags(struct se_session *se_sess, |
| unsigned int tag_num, unsigned int tag_size) |
| { |
| int rc; |
| |
| se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num, |
| GFP_KERNEL | __GFP_RETRY_MAYFAIL); |
| if (!se_sess->sess_cmd_map) { |
| pr_err("Unable to allocate se_sess->sess_cmd_map\n"); |
| return -ENOMEM; |
| } |
| |
| rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1, |
| false, GFP_KERNEL, NUMA_NO_NODE); |
| if (rc < 0) { |
| pr_err("Unable to init se_sess->sess_tag_pool," |
| " tag_num: %u\n", tag_num); |
| kvfree(se_sess->sess_cmd_map); |
| se_sess->sess_cmd_map = NULL; |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(transport_alloc_session_tags); |
| |
| /** |
| * transport_init_session_tags - allocate a session and target driver private data |
| * @tag_num: Maximum number of in-flight commands between initiator and target. |
| * @tag_size: Size in bytes of the private data a target driver associates with |
| * each command. |
| * @sup_prot_ops: bitmask that defines which T10-PI modes are supported. |
| */ |
| static struct se_session * |
| transport_init_session_tags(unsigned int tag_num, unsigned int tag_size, |
| enum target_prot_op sup_prot_ops) |
| { |
| struct se_session *se_sess; |
| int rc; |
| |
| if (tag_num != 0 && !tag_size) { |
| pr_err("init_session_tags called with percpu-ida tag_num:" |
| " %u, but zero tag_size\n", tag_num); |
| return ERR_PTR(-EINVAL); |
| } |
| if (!tag_num && tag_size) { |
| pr_err("init_session_tags called with percpu-ida tag_size:" |
| " %u, but zero tag_num\n", tag_size); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| se_sess = transport_alloc_session(sup_prot_ops); |
| if (IS_ERR(se_sess)) |
| return se_sess; |
| |
| rc = transport_alloc_session_tags(se_sess, tag_num, tag_size); |
| if (rc < 0) { |
| transport_free_session(se_sess); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| return se_sess; |
| } |
| |
| /* |
| * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called. |
| */ |
| void __transport_register_session( |
| struct se_portal_group *se_tpg, |
| struct se_node_acl *se_nacl, |
| struct se_session *se_sess, |
| void *fabric_sess_ptr) |
| { |
| const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo; |
| unsigned char buf[PR_REG_ISID_LEN]; |
| unsigned long flags; |
| |
| se_sess->se_tpg = se_tpg; |
| se_sess->fabric_sess_ptr = fabric_sess_ptr; |
| /* |
| * Used by struct se_node_acl's under ConfigFS to locate active se_session-t |
| * |
| * Only set for struct se_session's that will actually be moving I/O. |
| * eg: *NOT* discovery sessions. |
| */ |
| if (se_nacl) { |
| /* |
| * |
| * Determine if fabric allows for T10-PI feature bits exposed to |
| * initiators for device backends with !dev->dev_attrib.pi_prot_type. |
| * |
| * If so, then always save prot_type on a per se_node_acl node |
| * basis and re-instate the previous sess_prot_type to avoid |
| * disabling PI from below any previously initiator side |
| * registered LUNs. |
| */ |
| if (se_nacl->saved_prot_type) |
| se_sess->sess_prot_type = se_nacl->saved_prot_type; |
| else if (tfo->tpg_check_prot_fabric_only) |
| se_sess->sess_prot_type = se_nacl->saved_prot_type = |
| tfo->tpg_check_prot_fabric_only(se_tpg); |
| /* |
| * If the fabric module supports an ISID based TransportID, |
| * save this value in binary from the fabric I_T Nexus now. |
| */ |
| if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) { |
| memset(&buf[0], 0, PR_REG_ISID_LEN); |
| se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess, |
| &buf[0], PR_REG_ISID_LEN); |
| se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); |
| } |
| |
| spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); |
| /* |
| * The se_nacl->nacl_sess pointer will be set to the |
| * last active I_T Nexus for each struct se_node_acl. |
| */ |
| se_nacl->nacl_sess = se_sess; |
| |
| list_add_tail(&se_sess->sess_acl_list, |
| &se_nacl->acl_sess_list); |
| spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); |
| } |
| list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); |
| |
| pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", |
| se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr); |
| } |
| EXPORT_SYMBOL(__transport_register_session); |
| |
| void transport_register_session( |
| struct se_portal_group *se_tpg, |
| struct se_node_acl *se_nacl, |
| struct se_session *se_sess, |
| void *fabric_sess_ptr) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&se_tpg->session_lock, flags); |
| __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); |
| spin_unlock_irqrestore(&se_tpg->session_lock, flags); |
| } |
| EXPORT_SYMBOL(transport_register_session); |
| |
| struct se_session * |
| target_setup_session(struct se_portal_group *tpg, |
| unsigned int tag_num, unsigned int tag_size, |
| enum target_prot_op prot_op, |
| const char *initiatorname, void *private, |
| int (*callback)(struct se_portal_group *, |
| struct se_session *, void *)) |
| { |
| struct se_session *sess; |
| |
| /* |
| * If the fabric driver is using percpu-ida based pre allocation |
| * of I/O descriptor tags, go ahead and perform that setup now.. |
| */ |
| if (tag_num != 0) |
| sess = transport_init_session_tags(tag_num, tag_size, prot_op); |
| else |
| sess = transport_alloc_session(prot_op); |
| |
| if (IS_ERR(sess)) |
| return sess; |
| |
| sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg, |
| (unsigned char *)initiatorname); |
| if (!sess->se_node_acl) { |
| transport_free_session(sess); |
| return ERR_PTR(-EACCES); |
| } |
| /* |
| * Go ahead and perform any remaining fabric setup that is |
| * required before transport_register_session(). |
| */ |
| if (callback != NULL) { |
| int rc = callback(tpg, sess, private); |
| if (rc) { |
| transport_free_session(sess); |
| return ERR_PTR(rc); |
| } |
| } |
| |
| transport_register_session(tpg, sess->se_node_acl, sess, private); |
| return sess; |
| } |
| EXPORT_SYMBOL(target_setup_session); |
| |
| ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page) |
| { |
| struct se_session *se_sess; |
| ssize_t len = 0; |
| |
| spin_lock_bh(&se_tpg->session_lock); |
| list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) { |
| if (!se_sess->se_node_acl) |
| continue; |
| if (!se_sess->se_node_acl->dynamic_node_acl) |
| continue; |
| if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE) |
| break; |
| |
| len += snprintf(page + len, PAGE_SIZE - len, "%s\n", |
| se_sess->se_node_acl->initiatorname); |
| len += 1; /* Include NULL terminator */ |
| } |
| spin_unlock_bh(&se_tpg->session_lock); |
| |
| return len; |
| } |
| EXPORT_SYMBOL(target_show_dynamic_sessions); |
| |
| static void target_complete_nacl(struct kref *kref) |
| { |
| struct se_node_acl *nacl = container_of(kref, |
| struct se_node_acl, acl_kref); |
| struct se_portal_group *se_tpg = nacl->se_tpg; |
| |
| if (!nacl->dynamic_stop) { |
| complete(&nacl->acl_free_comp); |
| return; |
| } |
| |
| mutex_lock(&se_tpg->acl_node_mutex); |
| list_del_init(&nacl->acl_list); |
| mutex_unlock(&se_tpg->acl_node_mutex); |
| |
| core_tpg_wait_for_nacl_pr_ref(nacl); |
| core_free_device_list_for_node(nacl, se_tpg); |
| kfree(nacl); |
| } |
| |
| void target_put_nacl(struct se_node_acl *nacl) |
| { |
| kref_put(&nacl->acl_kref, target_complete_nacl); |
| } |
| EXPORT_SYMBOL(target_put_nacl); |
| |
| void transport_deregister_session_configfs(struct se_session *se_sess) |
| { |
| struct se_node_acl *se_nacl; |
| unsigned long flags; |
| /* |
| * Used by struct se_node_acl's under ConfigFS to locate active struct se_session |
| */ |
| se_nacl = se_sess->se_node_acl; |
| if (se_nacl) { |
| spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); |
| if (!list_empty(&se_sess->sess_acl_list)) |
| list_del_init(&se_sess->sess_acl_list); |
| /* |
| * If the session list is empty, then clear the pointer. |
| * Otherwise, set the struct se_session pointer from the tail |
| * element of the per struct se_node_acl active session list. |
| */ |
| if (list_empty(&se_nacl->acl_sess_list)) |
| se_nacl->nacl_sess = NULL; |
| else { |
| se_nacl->nacl_sess = container_of( |
| se_nacl->acl_sess_list.prev, |
| struct se_session, sess_acl_list); |
| } |
| spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); |
| } |
| } |
| EXPORT_SYMBOL(transport_deregister_session_configfs); |
| |
| void transport_free_session(struct se_session *se_sess) |
| { |
| struct se_node_acl *se_nacl = se_sess->se_node_acl; |
| |
| /* |
| * Drop the se_node_acl->nacl_kref obtained from within |
| * core_tpg_get_initiator_node_acl(). |
| */ |
| if (se_nacl) { |
| struct se_portal_group *se_tpg = se_nacl->se_tpg; |
| const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo; |
| unsigned long flags; |
| |
| se_sess->se_node_acl = NULL; |
| |
| /* |
| * Also determine if we need to drop the extra ->cmd_kref if |
| * it had been previously dynamically generated, and |
| * the endpoint is not caching dynamic ACLs. |
| */ |
| mutex_lock(&se_tpg->acl_node_mutex); |
| if (se_nacl->dynamic_node_acl && |
| !se_tfo->tpg_check_demo_mode_cache(se_tpg)) { |
| spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags); |
| if (list_empty(&se_nacl->acl_sess_list)) |
| se_nacl->dynamic_stop = true; |
| spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags); |
| |
| if (se_nacl->dynamic_stop) |
| list_del_init(&se_nacl->acl_list); |
| } |
| mutex_unlock(&se_tpg->acl_node_mutex); |
| |
| if (se_nacl->dynamic_stop) |
| target_put_nacl(se_nacl); |
| |
| target_put_nacl(se_nacl); |
| } |
| if (se_sess->sess_cmd_map) { |
| sbitmap_queue_free(&se_sess->sess_tag_pool); |
| kvfree(se_sess->sess_cmd_map); |
| } |
| transport_uninit_session(se_sess); |
| kmem_cache_free(se_sess_cache, se_sess); |
| } |
| EXPORT_SYMBOL(transport_free_session); |
| |
| static int target_release_res(struct se_device *dev, void *data) |
| { |
| struct se_session *sess = data; |
| |
| if (dev->reservation_holder == sess) |
| target_release_reservation(dev); |
| return 0; |
| } |
| |
| void transport_deregister_session(struct se_session *se_sess) |
| { |
| struct se_portal_group *se_tpg = se_sess->se_tpg; |
| unsigned long flags; |
| |
| if (!se_tpg) { |
| transport_free_session(se_sess); |
| return; |
| } |
| |
| spin_lock_irqsave(&se_tpg->session_lock, flags); |
| list_del(&se_sess->sess_list); |
| se_sess->se_tpg = NULL; |
| se_sess->fabric_sess_ptr = NULL; |
| spin_unlock_irqrestore(&se_tpg->session_lock, flags); |
| |
| /* |
| * Since the session is being removed, release SPC-2 |
| * reservations held by the session that is disappearing. |
| */ |
| target_for_each_device(target_release_res, se_sess); |
| |
| pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n", |
| se_tpg->se_tpg_tfo->fabric_name); |
| /* |
| * If last kref is dropping now for an explicit NodeACL, awake sleeping |
| * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group |
| * removal context from within transport_free_session() code. |
| * |
| * For dynamic ACL, target_put_nacl() uses target_complete_nacl() |
| * to release all remaining generate_node_acl=1 created ACL resources. |
| */ |
| |
| transport_free_session(se_sess); |
| } |
| EXPORT_SYMBOL(transport_deregister_session); |
| |
| void target_remove_session(struct se_session *se_sess) |
| { |
| transport_deregister_session_configfs(se_sess); |
| transport_deregister_session(se_sess); |
| } |
| EXPORT_SYMBOL(target_remove_session); |
| |
| static void target_remove_from_state_list(struct se_cmd *cmd) |
| { |
| struct se_device *dev = cmd->se_dev; |
| unsigned long flags; |
| |
| if (!dev) |
| return; |
| |
| spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags); |
| if (cmd->state_active) { |
| list_del(&cmd->state_list); |
| cmd->state_active = false; |
| } |
| spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags); |
| } |
| |
| static void target_remove_from_tmr_list(struct se_cmd *cmd) |
| { |
| struct se_device *dev = NULL; |
| unsigned long flags; |
| |
| if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) |
| dev = cmd->se_tmr_req->tmr_dev; |
| |
| if (dev) { |
| spin_lock_irqsave(&dev->se_tmr_lock, flags); |
| if (cmd->se_tmr_req->tmr_dev) |
| list_del_init(&cmd->se_tmr_req->tmr_list); |
| spin_unlock_irqrestore(&dev->se_tmr_lock, flags); |
| } |
| } |
| /* |
| * This function is called by the target core after the target core has |
| * finished processing a SCSI command or SCSI TMF. Both the regular command |
| * processing code and the code for aborting commands can call this |
| * function. CMD_T_STOP is set if and only if another thread is waiting |
| * inside transport_wait_for_tasks() for t_transport_stop_comp. |
| */ |
| static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&cmd->t_state_lock, flags); |
| /* |
| * Determine if frontend context caller is requesting the stopping of |
| * this command for frontend exceptions. |
| */ |
| if (cmd->transport_state & CMD_T_STOP) { |
| pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", |
| __func__, __LINE__, cmd->tag); |
| |
| spin_unlock_irqrestore(&cmd->t_state_lock, flags); |
| |
| complete_all(&cmd->t_transport_stop_comp); |
| return 1; |
| } |
| cmd->transport_state &= ~CMD_T_ACTIVE; |
| spin_unlock_irqrestore(&cmd->t_state_lock, flags); |
| |
| /* |
| * Some fabric modules like tcm_loop can release their internally |
| * allocated I/O reference and struct se_cmd now. |
| * |
| * Fabric modules are expected to return '1' here if the se_cmd being |
| * passed is released at this point, or zero if not being released. |
| */ |
| return cmd->se_tfo->check_stop_free(cmd); |
| } |
| |
| static void transport_lun_remove_cmd(struct se_cmd *cmd) |
| { |
| struct se_lun *lun = cmd->se_lun; |
| |
| if (!lun) |
| return; |
| |
| target_remove_from_state_list(cmd); |
| target_remove_from_tmr_list(cmd); |
| |
| if (cmpxchg(&cmd->lun_ref_active, true, false)) |
| percpu_ref_put(&lun->lun_ref); |
| |
| /* |
| * Clear struct se_cmd->se_lun before the handoff to FE. |
| */ |
| cmd->se_lun = NULL; |
| } |
| |
| static void target_complete_failure_work(struct work_struct *work) |
| { |
| struct se_cmd *cmd = container_of(work, struct se_cmd, work); |
| |
| transport_generic_request_failure(cmd, cmd->sense_reason); |
| } |
| |
| /* |
| * Used when asking transport to copy Sense Data from the underlying |
| * Linux/SCSI struct scsi_cmnd |
| */ |
| static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd) |
| { |
| struct se_device *dev = cmd->se_dev; |
| |
| WARN_ON(!cmd->se_lun); |
| |
| if (!dev) |
| return NULL; |
| |
| if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) |
| return NULL; |
| |
| cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER; |
| |
| pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n", |
| dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status); |
| return cmd->sense_buffer; |
| } |
| |
| void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense) |
| { |
| unsigned char *cmd_sense_buf; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&cmd->t_state_lock, flags); |
| cmd_sense_buf = transport_get_sense_buffer(cmd); |
| if (!cmd_sense_buf) { |
| spin_unlock_irqrestore(&cmd->t_state_lock, flags); |
| return; |
| } |
| |
| cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE; |
| memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length); |
| spin_unlock_irqrestore(&cmd->t_state_lock, flags); |
| } |
| EXPORT_SYMBOL(transport_copy_sense_to_cmd); |
| |
| static void target_handle_abort(struct se_cmd *cmd) |
| { |
| bool tas = cmd->transport_state & CMD_T_TAS; |
| bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF; |
| int ret; |
| |
| pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas); |
| |
| if (tas) { |
| if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { |
| cmd->scsi_status = SAM_STAT_TASK_ABORTED; |
| pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n", |
| cmd->t_task_cdb[0], cmd->tag); |
| trace_target_cmd_complete(cmd); |
| ret = cmd->se_tfo->queue_status(cmd); |
| if (ret) { |
| transport_handle_queue_full(cmd, cmd->se_dev, |
| ret, false); |
| return; |
| } |
| } else { |
| cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED; |
| cmd->se_tfo->queue_tm_rsp(cmd); |
| } |
| } else { |
| /* |
| * Allow the fabric driver to unmap any resources before |
| * releasing the descriptor via TFO->release_cmd(). |
| */ |
| cmd->se_tfo->aborted_task(cmd); |
| if (ack_kref) |
| WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0); |
| /* |
| * To do: establish a unit attention condition on the I_T |
| * nexus associated with cmd. See also the paragraph "Aborting |
| * commands" in SAM. |
| */ |
| } |
| |
| WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0); |
| |
| transport_lun_remove_cmd(cmd); |
| |
| transport_cmd_check_stop_to_fabric(cmd); |
| } |
| |
| static void target_abort_work(struct work_struct *work) |
| { |
| struct se_cmd *cmd = container_of(work, struct se_cmd, work); |
| |
| target_handle_abort(cmd); |
| } |
| |
| static bool target_cmd_interrupted(struct se_cmd *cmd) |
| { |
| int post_ret; |
| |
| if (cmd->transport_state & CMD_T_ABORTED) { |
| if (cmd->transport_complete_callback) |
| cmd->transport_complete_callback(cmd, false, &post_ret); |
| INIT_WORK(&cmd->work, target_abort_work); |
| queue_work(target_completion_wq, &cmd->work); |
| return true; |
| } else if (cmd->transport_state & CMD_T_STOP) { |
| if (cmd->transport_complete_callback) |
| cmd->transport_complete_callback(cmd, false, &post_ret); |
| complete_all(&cmd->t_transport_stop_comp); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* May be called from interrupt context so must not sleep. */ |
| void target_complete_cmd_with_sense(struct se_cmd *cmd, u8 scsi_status, |
| sense_reason_t sense_reason) |
| { |
| struct se_wwn *wwn = cmd->se_sess->se_tpg->se_tpg_wwn; |
| int success, cpu; |
| unsigned long flags; |
| |
| if (target_cmd_interrupted(cmd)) |
| return; |
| |
| cmd->scsi_status = scsi_status; |
| cmd->sense_reason = sense_reason; |
| |
| spin_lock_irqsave(&cmd->t_state_lock, flags); |
| switch (cmd->scsi_status) { |
| case SAM_STAT_CHECK_CONDITION: |
| if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) |
| success = 1; |
| else |
| success = 0; |
| break; |
| default: |
| success = 1; |
| break; |
| } |
| |
| cmd->t_state = TRANSPORT_COMPLETE; |
| cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE); |
| spin_unlock_irqrestore(&cmd->t_state_lock, flags); |
| |
| INIT_WORK(&cmd->work, success ? target_complete_ok_work : |
| target_complete_failure_work); |
| |
| if (!wwn || wwn->cmd_compl_affinity == SE_COMPL_AFFINITY_CPUID) |
| cpu = cmd->cpuid; |
| else |
| cpu = wwn->cmd_compl_affinity; |
| |
| queue_work_on(cpu, target_completion_wq, &cmd->work); |
| } |
| EXPORT_SYMBOL(target_complete_cmd_with_sense); |
| |
| void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status) |
| { |
| target_complete_cmd_with_sense(cmd, scsi_status, scsi_status ? |
| TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE : |
| TCM_NO_SENSE); |
| } |
| EXPORT_SYMBOL(target_complete_cmd); |
| |
| void target_set_cmd_data_length(struct se_cmd *cmd, int length) |
| { |
| if (length < cmd->data_length) { |
| if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { |
| cmd->residual_count += cmd->data_length - length; |
| } else { |
| cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; |
| cmd->residual_count = cmd->data_length - length; |
| } |
| |
| cmd->data_length = length; |
| } |
| } |
| EXPORT_SYMBOL(target_set_cmd_data_length); |
| |
| void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length) |
| { |
| if (scsi_status == SAM_STAT_GOOD || |
| cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) { |
| target_set_cmd_data_length(cmd, length); |
| } |
| |
| target_complete_cmd(cmd, scsi_status); |
| } |
| EXPORT_SYMBOL(target_complete_cmd_with_length); |
| |
| static void target_add_to_state_list(struct se_cmd *cmd) |
| { |
| struct se_device *dev = cmd->se_dev; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags); |
| if (!cmd->state_active) { |
| list_add_tail(&cmd->state_list, |
| &dev->queues[cmd->cpuid].state_list); |
| cmd->state_active = true; |
| } |
| spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags); |
| } |
| |
| /* |
| * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status |
| */ |
| static void transport_write_pending_qf(struct se_cmd *cmd); |
| static void transport_complete_qf(struct se_cmd *cmd); |
| |
| void target_qf_do_work(struct work_struct *work) |
| { |
| struct se_device *dev = container_of(work, struct se_device, |
| qf_work_queue); |
| LIST_HEAD(qf_cmd_list); |
| struct se_cmd *cmd, *cmd_tmp; |
| |
| spin_lock_irq(&dev->qf_cmd_lock); |
| list_splice_init(&dev->qf_cmd_list, &qf_cmd_list); |
| spin_unlock_irq(&dev->qf_cmd_lock); |
| |
| list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) { |
| list_del(&cmd->se_qf_node); |
| atomic_dec_mb(&dev->dev_qf_count); |
| |
| pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue" |
| " context: %s\n", cmd->se_tfo->fabric_name, cmd, |
| (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" : |
| (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING" |
| : "UNKNOWN"); |
| |
| if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) |
| transport_write_pending_qf(cmd); |
| else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK || |
| cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) |
| transport_complete_qf(cmd); |
| } |
| } |
| |
| unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) |
| { |
| switch (cmd->data_direction) { |
| case DMA_NONE: |
| return "NONE"; |
| case DMA_FROM_DEVICE: |
| return "READ"; |
| case DMA_TO_DEVICE: |
| return "WRITE"; |
| case DMA_BIDIRECTIONAL: |
| return "BIDI"; |
| default: |
| break; |
| } |
| |
| return "UNKNOWN"; |
| } |
| |
| void transport_dump_dev_state( |
| struct se_device *dev, |
| char *b, |
| int *bl) |
| { |
| *bl += sprintf(b + *bl, "Status: "); |
| if (dev->export_count) |
| *bl += sprintf(b + *bl, "ACTIVATED"); |
| else |
| *bl += sprintf(b + *bl, "DEACTIVATED"); |
| |
| *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth); |
| *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n", |
| dev->dev_attrib.block_size, |
| dev->dev_attrib.hw_max_sectors); |
| *bl += sprintf(b + *bl, " "); |
| } |
| |
| void transport_dump_vpd_proto_id( |
| struct t10_vpd *vpd, |
| unsigned char *p_buf, |
| int p_buf_len) |
| { |
| unsigned char buf[VPD_TMP_BUF_SIZE]; |
| int len; |
| |
| memset(buf, 0, VPD_TMP_BUF_SIZE); |
| len = sprintf(buf, "T10 VPD Protocol Identifier: "); |
| |
| switch (vpd->protocol_identifier) { |
| case 0x00: |
| sprintf(buf+len, "Fibre Channel\n"); |
| break; |
| case 0x10: |
| sprintf(buf+len, "Parallel SCSI\n"); |
| break; |
| case 0x20: |
| sprintf(buf+len, "SSA\n"); |
| break; |
| case 0x30: |
| sprintf(buf+len, "IEEE 1394\n"); |
| break; |
| case 0x40: |
| sprintf(buf+len, "SCSI Remote Direct Memory Access" |
| " Protocol\n"); |
| break; |
| case 0x50: |
| sprintf(buf+len, "Internet SCSI (iSCSI)\n"); |
| break; |
| case 0x60: |
| sprintf(buf+len, "SAS Serial SCSI Protocol\n"); |
| break; |
| case 0x70: |
| sprintf(buf+len, "Automation/Drive Interface Transport" |
| " Protocol\n"); |
| break; |
| case 0x80: |
| sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); |
| break; |
| default: |
| sprintf(buf+len, "Unknown 0x%02x\n", |
| vpd->protocol_identifier); |
| break; |
| } |
| |
| if (p_buf) |
| strncpy(p_buf, buf, p_buf_len); |
| else |
| pr_debug("%s", buf); |
| } |
| |
| void |
| transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) |
| { |
| /* |
| * Check if the Protocol Identifier Valid (PIV) bit is set.. |
| * |
| * from spc3r23.pdf section 7.5.1 |
| */ |
| if (page_83[1] & 0x80) { |
| vpd->protocol_identifier = (page_83[0] & 0xf0); |
| vpd->protocol_identifier_set = 1; |
| transport_dump_vpd_proto_id(vpd, NULL, 0); |
| } |
| } |
| EXPORT_SYMBOL(transport_set_vpd_proto_id); |
| |
| int transport_dump_vpd_assoc( |
| struct t10_vpd *vpd, |
| unsigned char *p_buf, |
| int p_buf_len) |
| { |
| unsigned char buf[VPD_TMP_BUF_SIZE]; |
| int ret = 0; |
| int len; |
| |
| memset(buf, 0, VPD_TMP_BUF_SIZE); |
| len = sprintf(buf, "T10 VPD Identifier Association: "); |
| |
| switch (vpd->association) { |
| case 0x00: |
| sprintf(buf+len, "addressed logical unit\n"); |
| break; |
| case 0x10: |
| sprintf(buf+len, "target port\n"); |
| break; |
| case 0x20: |
| sprintf(buf+len, "SCSI target device\n"); |
| break; |
| default: |
| sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); |
| ret = -EINVAL; |
| break; |
| } |
| |
| if (p_buf) |
| strncpy(p_buf, buf, p_buf_len); |
| else |
| pr_debug("%s", buf); |
| |
| return ret; |
| } |
| |
| int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) |
| { |
| /* |
| * The VPD identification association.. |
| * |
| * from spc3r23.pdf Section 7.6.3.1 Table 297 |
| */ |
| vpd->association = (page_83[1] & 0x30); |
| return transport_dump_vpd_assoc(vpd, NULL, 0); |
| } |
| EXPORT_SYMBOL(transport_set_vpd_assoc); |
| |
| int transport_dump_vpd_ident_type( |
| struct t10_vpd *vpd, |
| unsigned char *p_buf, |
| int p_buf_len) |
| { |
| unsigned char buf[VPD_TMP_BUF_SIZE]; |
| int ret = 0; |
| int len; |
| |
| memset(buf, 0, VPD_TMP_BUF_SIZE); |
| len = sprintf(buf, "T10 VPD Identifier Type: "); |
| |
| switch (vpd->device_identifier_type) { |
| case 0x00: |
| sprintf(buf+len, "Vendor specific\n"); |
| break; |
| case 0x01: |
| sprintf(buf+len, "T10 Vendor ID based\n"); |
| break; |
| case 0x02: |
| sprintf(buf+len, "EUI-64 based\n"); |
| break; |
| case 0x03: |
| sprintf(buf+len, "NAA\n"); |
| break; |
| case 0x04: |
| sprintf(buf+len, "Relative target port identifier\n"); |
| break; |
| case 0x08: |
| sprintf(buf+len, "SCSI name string\n"); |
| break; |
| default: |
| sprintf(buf+len, "Unsupported: 0x%02x\n", |
| vpd->device_identifier_type); |
| ret = -EINVAL; |
| break; |
| } |
| |
| if (p_buf) { |
| if (p_buf_len < strlen(buf)+1) |
| return -EINVAL; |
| strncpy(p_buf, buf, p_buf_len); |
| } else { |
| pr_debug("%s", buf); |
| } |
| |
| return ret; |
| } |
| |
| int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) |
| { |
| /* |
| * The VPD identifier type.. |
| * |
| * from spc3r23.pdf Section 7.6.3.1 Table 298 |
| */ |
| vpd->device_identifier_type = (page_83[1] & 0x0f); |
| return transport_dump_vpd_ident_type(vpd, NULL, 0); |
| } |
| EXPORT_SYMBOL(transport_set_vpd_ident_type); |
| |
| int transport_dump_vpd_ident( |
| struct t10_vpd *vpd, |
| unsigned char *p_buf, |
| int p_buf_len) |
| { |
| unsigned char buf[VPD_TMP_BUF_SIZE]; |
| int ret = 0; |
| |
| memset(buf, 0, VPD_TMP_BUF_SIZE); |
| |
| switch (vpd->device_identifier_code_set) { |
| case 0x01: /* Binary */ |
| snprintf(buf, sizeof(buf), |
| "T10 VPD Binary Device Identifier: %s\n", |
| &vpd->device_identifier[0]); |
| break; |
| case 0x02: /* ASCII */ |
| snprintf(buf, sizeof(buf), |
| "T10 VPD ASCII Device Identifier: %s\n", |
| &vpd->device_identifier[0]); |
| break; |
| case 0x03: /* UTF-8 */ |
| snprintf(buf, sizeof(buf), |
| "T10 VPD UTF-8 Device Identifier: %s\n", |
| &vpd->device_identifier[0]); |
| break; |
| default: |
| sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" |
| " 0x%02x", vpd->device_identifier_code_set); |
| ret = -EINVAL; |
| break; |
| } |
| |
| if (p_buf) |
| strncpy(p_buf, buf, p_buf_len); |
| else |
| pr_debug("%s", buf); |
| |
| return ret; |
| } |
| |
| int |
| transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) |
| { |
| static const char hex_str[] = "0123456789abcdef"; |
| int j = 0, i = 4; /* offset to start of the identifier */ |
| |
| /* |
| * The VPD Code Set (encoding) |
| * |
| * from spc3r23.pdf Section 7.6.3.1 Table 296 |
| */ |
| vpd->device_identifier_code_set = (page_83[0] & 0x0f); |
| switch (vpd->device_identifier_code_set) { |
| case 0x01: /* Binary */ |
| vpd->device_identifier[j++] = |
| hex_str[vpd->device_identifier_type]; |
| while (i < (4 + page_83[3])) { |
| vpd->device_identifier[j++] = |
| hex_str[(page_83[i] & 0xf0) >> 4]; |
| vpd->device_identifier[j++] = |
| hex_str[page_83[i] & 0x0f]; |
| i++; |
| } |
| break; |
| case 0x02: /* ASCII */ |
| case 0x03: /* UTF-8 */ |
| while (i < (4 + page_83[3])) |
| vpd->device_identifier[j++] = page_83[i++]; |
| break; |
| default: |
| break; |
| } |
| |
| return transport_dump_vpd_ident(vpd, NULL, 0); |
| } |
| EXPORT_SYMBOL(transport_set_vpd_ident); |
| |
| static sense_reason_t |
| target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev, |
| unsigned int size) |
| { |
| u32 mtl; |
| |
| if (!cmd->se_tfo->max_data_sg_nents) |
| return TCM_NO_SENSE; |
| /* |
| * Check if fabric enforced maximum SGL entries per I/O descriptor |
| * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT + |
| * residual_count and reduce original cmd->data_length to maximum |
| * length based on single PAGE_SIZE entry scatter-lists. |
| */ |
| mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE); |
| if (cmd->data_length > mtl) { |
| /* |
| * If an existing CDB overflow is present, calculate new residual |
| * based on CDB size minus fabric maximum transfer length. |
| * |
| * If an existing CDB underflow is present, calculate new residual |
| * based on original cmd->data_length minus fabric maximum transfer |
| * length. |
| * |
| * Otherwise, set the underflow residual based on cmd->data_length |
| * minus fabric maximum transfer length. |
| */ |
| if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { |
| cmd->residual_count = (size - mtl); |
| } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { |
| u32 orig_dl = size + cmd->residual_count; |
| cmd->residual_count = (orig_dl - mtl); |
| } else { |
| cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; |
| cmd->residual_count = (cmd->data_length - mtl); |
| } |
| cmd->data_length = mtl; |
| /* |
| * Reset sbc_check_prot() calculated protection payload |
| * length based upon the new smaller MTL. |
| */ |
| if (cmd->prot_length) { |
| u32 sectors = (mtl / dev->dev_attrib.block_size); |
| cmd->prot_length = dev->prot_length * sectors; |
| } |
| } |
| return TCM_NO_SENSE; |
| } |
| |
| /** |
| * target_cmd_size_check - Check whether there will be a residual. |
| * @cmd: SCSI command. |
| * @size: Data buffer size derived from CDB. The data buffer size provided by |
| * the SCSI transport driver is available in @cmd->data_length. |
| * |
| * Compare the data buffer size from the CDB with the data buffer limit from the transport |
| * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary. |
| * |
| * Note: target drivers set @cmd->data_length by calling __target_init_cmd(). |
| * |
| * Return: TCM_NO_SENSE |
| */ |
| sense_reason_t |
| target_cmd_size_check(struct se_cmd *cmd, unsigned int size) |
| { |
| struct se_device *dev = cmd->se_dev; |
| |
| if (cmd->unknown_data_length) { |
| cmd->data_length = size; |
| } else if (size != cmd->data_length) { |
| pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:" |
| " %u does not match SCSI CDB Length: %u for SAM Opcode:" |
| " 0x%02x\n", cmd->se_tfo->fabric_name, |
| cmd->data_length, size, cmd->t_task_cdb[0]); |
| /* |
| * For READ command for the overflow case keep the existing |
| * fabric provided ->data_length. Otherwise for the underflow |
| * case, reset ->data_length to the smaller SCSI expected data |
| * transfer length. |
| */ |
| if (size > cmd->data_length) { |
| cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; |
| cmd->residual_count = (size - cmd->data_length); |
| } else { |
| cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; |
| cmd->residual_count = (cmd->data_length - size); |
| /* |
| * Do not truncate ->data_length for WRITE command to |
| * dump all payload |
| */ |
| if (cmd->data_direction == DMA_FROM_DEVICE) { |
| cmd->data_length = size; |
| } |
| } |
| |
| if (cmd->data_direction == DMA_TO_DEVICE) { |
| if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) { |
| pr_err_ratelimited("Rejecting underflow/overflow" |
| " for WRITE data CDB\n"); |
| return TCM_INVALID_FIELD_IN_COMMAND_IU; |
| } |
| /* |
| * Some fabric drivers like iscsi-target still expect to |
| * always reject overflow writes. Reject this case until |
| * full fabric driver level support for overflow writes |
| * is introduced tree-wide. |
| */ |
| if (size > cmd->data_length) { |
| pr_err_ratelimited("Rejecting overflow for" |
| " WRITE control CDB\n"); |
| return TCM_INVALID_CDB_FIELD; |
| } |
| } |
| } |
| |
| return target_check_max_data_sg_nents(cmd, dev, size); |
| |
| } |
| |
| /* |
| * Used by fabric modules containing a local struct se_cmd within their |
| * fabric dependent per I/O descriptor. |
| * |
| * Preserves the value of @cmd->tag. |
| */ |
| void __target_init_cmd( |
| struct se_cmd *cmd, |
| const struct target_core_fabric_ops *tfo, |
| struct se_session *se_sess, |
| u32 data_length, |
| int data_direction, |
| int task_attr, |
| unsigned char *sense_buffer, u64 unpacked_lun) |
| { |
| INIT_LIST_HEAD(&cmd->se_delayed_node); |
| INIT_LIST_HEAD(&cmd->se_qf_node); |
| INIT_LIST_HEAD(&cmd->state_list); |
| init_completion(&cmd->t_transport_stop_comp); |
| cmd->free_compl = NULL; |
| cmd->abrt_compl = NULL; |
| spin_lock_init(&cmd->t_state_lock); |
| INIT_WORK(&cmd->work, NULL); |
| kref_init(&cmd->cmd_kref); |
| |
| cmd->t_task_cdb = &cmd->__t_task_cdb[0]; |
| cmd->se_tfo = tfo; |
| cmd->se_sess = se_sess; |
| cmd->data_length = data_length; |
| cmd->data_direction = data_direction; |
| cmd->sam_task_attr = task_attr; |
| cmd->sense_buffer = sense_buffer; |
| cmd->orig_fe_lun = unpacked_lun; |
| |
| if (!(cmd->se_cmd_flags & SCF_USE_CPUID)) |
| cmd->cpuid = raw_smp_processor_id(); |
| |
| cmd->state_active = false; |
| } |
| EXPORT_SYMBOL(__target_init_cmd); |
| |
| static sense_reason_t |
| transport_check_alloc_task_attr(struct se_cmd *cmd) |
| { |
| struct se_device *dev = cmd->se_dev; |
| |
| /* |
| * Check if SAM Task Attribute emulation is enabled for this |
| * struct se_device storage object |
| */ |
| if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) |
| return 0; |
| |
| if (cmd->sam_task_attr == TCM_ACA_TAG) { |
| pr_debug("SAM Task Attribute ACA" |
| " emulation is not supported\n"); |
| return TCM_INVALID_CDB_FIELD; |
| } |
| |
| return 0; |
| } |
| |
| sense_reason_t |
| target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb, gfp_t gfp) |
| { |
| sense_reason_t ret; |
| |
| /* |
| * Ensure that the received CDB is less than the max (252 + 8) bytes |
| * for VARIABLE_LENGTH_CMD |
| */ |
| if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { |
| pr_err("Received SCSI CDB with command_size: %d that" |
| " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", |
| scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); |
| ret = TCM_INVALID_CDB_FIELD; |
| goto err; |
| } |
| /* |
| * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, |
| * allocate the additional extended CDB buffer now.. Otherwise |
| * setup the pointer from __t_task_cdb to t_task_cdb. |
| */ |
| if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) { |
| cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), gfp); |
| if (!cmd->t_task_cdb) { |
| pr_err("Unable to allocate cmd->t_task_cdb" |
| " %u > sizeof(cmd->__t_task_cdb): %lu ops\n", |
| scsi_command_size(cdb), |
| (unsigned long)sizeof(cmd->__t_task_cdb)); |
| ret = TCM_OUT_OF_RESOURCES; |
| goto err; |
| } |
| } |
| /* |
| * Copy the original CDB into cmd-> |
| */ |
| memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb)); |
| |
| trace_target_sequencer_start(cmd); |
| return 0; |
| |
| err: |
| /* |
| * Copy the CDB here to allow trace_target_cmd_complete() to |
| * print the cdb to the trace buffers. |
| */ |
| memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb), |
| (unsigned int)TCM_MAX_COMMAND_SIZE)); |
| return ret; |
| } |
| EXPORT_SYMBOL(target_cmd_init_cdb); |
| |
| sense_reason_t |
| target_cmd_parse_cdb(struct se_cmd *cmd) |
| { |
| struct se_device *dev = cmd->se_dev; |
| sense_reason_t ret; |
| |
| ret = dev->transport->parse_cdb(cmd); |
| if (ret == TCM_UNSUPPORTED_SCSI_OPCODE) |
| pr_debug_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n", |
| cmd->se_tfo->fabric_name, |
| cmd->se_sess->se_node_acl->initiatorname, |
| cmd->t_task_cdb[0]); |
| if (ret) |
| return ret; |
| |
| ret = transport_check_alloc_task_attr(cmd); |
| if (ret) |
| return ret; |
| |
| cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; |
| atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus); |
| return 0; |
| } |
| EXPORT_SYMBOL(target_cmd_parse_cdb); |
| |
| /* |
| * Used by fabric module frontends to queue tasks directly. |
| * May only be used from process context. |
| */ |
| int transport_handle_cdb_direct( |
| struct se_cmd *cmd) |
| { |
| sense_reason_t ret; |
| |
| might_sleep(); |
| |
| if (!cmd->se_lun) { |
| dump_stack(); |
| pr_err("cmd->se_lun is NULL\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that |
| * outstanding descriptors are handled correctly during shutdown via |
| * transport_wait_for_tasks() |
| * |
| * Also, we don't take cmd->t_state_lock here as we only expect |
| * this to be called for initial descriptor submission. |
| */ |
| cmd->t_state = TRANSPORT_NEW_CMD; |
| cmd->transport_state |= CMD_T_ACTIVE; |
| |
| /* |
| * transport_generic_new_cmd() is already handling QUEUE_FULL, |
| * so follow TRANSPORT_NEW_CMD processing thread context usage |
| * and call transport_generic_request_failure() if necessary.. |
| */ |
| ret = transport_generic_new_cmd(cmd); |
| if (ret) |
| transport_generic_request_failure(cmd, ret); |
| return 0; |
| } |
| EXPORT_SYMBOL(transport_handle_cdb_direct); |
| |
| sense_reason_t |
| transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl, |
| u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count) |
| { |
| if (!sgl || !sgl_count) |
| return 0; |
| |
| /* |
| * Reject SCSI data overflow with map_mem_to_cmd() as incoming |
| * scatterlists already have been set to follow what the fabric |
| * passes for the original expected data transfer length. |
| */ |
| if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) { |
| pr_warn("Rejecting SCSI DATA overflow for fabric using" |
| " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n"); |
| return TCM_INVALID_CDB_FIELD; |
| } |
| |
| cmd->t_data_sg = sgl; |
| cmd->t_data_nents = sgl_count; |
| cmd->t_bidi_data_sg = sgl_bidi; |
| cmd->t_bidi_data_nents = sgl_bidi_count; |
| |
| cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; |
| return 0; |
| } |
| |
| /** |
| * target_init_cmd - initialize se_cmd |
| * @se_cmd: command descriptor to init |
| * @se_sess: associated se_sess for endpoint |
| * @sense: pointer to SCSI sense buffer |
| * @unpacked_lun: unpacked LUN to reference for struct se_lun |
| * @data_length: fabric expected data transfer length |
| * @task_attr: SAM task attribute |
| * @data_dir: DMA data direction |
| * @flags: flags for command submission from target_sc_flags_tables |
| * |
| * Task tags are supported if the caller has set @se_cmd->tag. |
| * |
| * Returns: |
| * - less than zero to signal active I/O shutdown failure. |
| * - zero on success. |
| * |
| * If the fabric driver calls target_stop_session, then it must check the |
| * return code and handle failures. This will never fail for other drivers, |
| * and the return code can be ignored. |
| */ |
| int target_init_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, |
| unsigned char *sense, u64 unpacked_lun, |
| u32 data_length, int task_attr, int data_dir, int flags) |
| { |
| struct se_portal_group *se_tpg; |
| |
| se_tpg = se_sess->se_tpg; |
| BUG_ON(!se_tpg); |
| BUG_ON(se_cmd->se_tfo || se_cmd->se_sess); |
| |
| if (flags & TARGET_SCF_USE_CPUID) |
| se_cmd->se_cmd_flags |= SCF_USE_CPUID; |
| /* |
| * Signal bidirectional data payloads to target-core |
| */ |
| if (flags & TARGET_SCF_BIDI_OP) |
| se_cmd->se_cmd_flags |= SCF_BIDI; |
| |
| if (flags & TARGET_SCF_UNKNOWN_SIZE) |
| se_cmd->unknown_data_length = 1; |
| /* |
| * Initialize se_cmd for target operation. From this point |
| * exceptions are handled by sending exception status via |
| * target_core_fabric_ops->queue_status() callback |
| */ |
| __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, data_length, |
| data_dir, task_attr, sense, unpacked_lun); |
| |
| /* |
| * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is |
| * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second |
| * kref_put() to happen during fabric packet acknowledgement. |
| */ |
| return target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); |
| } |
| EXPORT_SYMBOL_GPL(target_init_cmd); |
| |
| /** |
| * target_submit_prep - prepare cmd for submission |
| * @se_cmd: command descriptor to prep |
| * @cdb: pointer to SCSI CDB |
| * @sgl: struct scatterlist memory for unidirectional mapping |
| * @sgl_count: scatterlist count for unidirectional mapping |
| * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping |
| * @sgl_bidi_count: scatterlist count for bidirectional READ mapping |
| * @sgl_prot: struct scatterlist memory protection information |
| * @sgl_prot_count: scatterlist count for protection information |
| * @gfp: gfp allocation type |
| * |
| * Returns: |
| * - less than zero to signal failure. |
| * - zero on success. |
| * |
| * If failure is returned, lio will the callers queue_status to complete |
| * the cmd. |
| */ |
| int target_submit_prep(struct se_cmd *se_cmd, unsigned char *cdb, |
| struct scatterlist *sgl, u32 sgl_count, |
| struct scatterlist *sgl_bidi, u32 sgl_bidi_count, |
| struct scatterlist *sgl_prot, u32 sgl_prot_count, |
| gfp_t gfp) |
| { |
| sense_reason_t rc; |
| |
| rc = target_cmd_init_cdb(se_cmd, cdb, gfp); |
| if (rc) |
| goto send_cc_direct; |
| |
| /* |
| * Locate se_lun pointer and attach it to struct se_cmd |
| */ |
| rc = transport_lookup_cmd_lun(se_cmd); |
| if (rc) |
| goto send_cc_direct; |
| |
| rc = target_cmd_parse_cdb(se_cmd); |
| if (rc != 0) |
| goto generic_fail; |
| |
| /* |
| * Save pointers for SGLs containing protection information, |
| * if present. |
| */ |
| if (sgl_prot_count) { |
| se_cmd->t_prot_sg = sgl_prot; |
| se_cmd->t_prot_nents = sgl_prot_count; |
| se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC; |
| } |
| |
| /* |
| * When a non zero sgl_count has been passed perform SGL passthrough |
| * mapping for pre-allocated fabric memory instead of having target |
| * core perform an internal SGL allocation.. |
| */ |
| if (sgl_count != 0) { |
| BUG_ON(!sgl); |
| |
| rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count, |
| sgl_bidi, sgl_bidi_count); |
| if (rc != 0) |
| goto generic_fail; |
| } |
| |
| return 0; |
| |
| send_cc_direct: |
| transport_send_check_condition_and_sense(se_cmd, rc, 0); |
| target_put_sess_cmd(se_cmd); |
| return -EIO; |
| |
| generic_fail: |
| transport_generic_request_failure(se_cmd, rc); |
| return -EIO; |
| } |
| EXPORT_SYMBOL_GPL(target_submit_prep); |
| |
| /** |
| * target_submit - perform final initialization and submit cmd to LIO core |
| * @se_cmd: command descriptor to submit |
| * |
| * target_submit_prep must have been called on the cmd, and this must be |
| * called from process context. |
| */ |
| void target_submit(struct se_cmd *se_cmd) |
| { |
| struct scatterlist *sgl = se_cmd->t_data_sg; |
| unsigned char *buf = NULL; |
| |
| might_sleep(); |
| |
| if (se_cmd->t_data_nents != 0) { |
| BUG_ON(!sgl); |
| /* |
| * A work-around for tcm_loop as some userspace code via |
| * scsi-generic do not memset their associated read buffers, |
| * so go ahead and do that here for type non-data CDBs. Also |
| * note that this is currently guaranteed to be a single SGL |
| * for this case by target core in target_setup_cmd_from_cdb() |
| * -> transport_generic_cmd_sequencer(). |
| */ |
| if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) && |
| se_cmd->data_direction == DMA_FROM_DEVICE) { |
| if (sgl) |
| buf = kmap(sg_page(sgl)) + sgl->offset; |
| |
| if (buf) { |
| memset(buf, 0, sgl->length); |
| kunmap(sg_page(sgl)); |
| } |
| } |
| |
| } |
| |
| /* |
| * Check if we need to delay processing because of ALUA |
| * Active/NonOptimized primary access state.. |
| */ |
| core_alua_check_nonop_delay(se_cmd); |
| |
| transport_handle_cdb_direct(se_cmd); |
| } |
| EXPORT_SYMBOL_GPL(target_submit); |
| |
| /** |
| * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd |
| * |
| * @se_cmd: command descriptor to submit |
| * @se_sess: associated se_sess for endpoint |
| * @cdb: pointer to SCSI CDB |
| * @sense: pointer to SCSI sense buffer |
| * @unpacked_lun: unpacked LUN to reference for struct se_lun |
| * @data_length: fabric expected data transfer length |
| * @task_attr: SAM task attribute |
| * @data_dir: DMA data direction |
| * @flags: flags for command submission from target_sc_flags_tables |
| * |
| * Task tags are supported if the caller has set @se_cmd->tag. |
| * |
| * This may only be called from process context, and also currently |
| * assumes internal allocation of fabric payload buffer by target-core. |
| * |
| * It also assumes interal target core SGL memory allocation. |
| * |
| * This function must only be used by drivers that do their own |
| * sync during shutdown and does not use target_stop_session. If there |
| * is a failure this function will call into the fabric driver's |
| * queue_status with a CHECK_CONDITION. |
| */ |
| void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess, |
| unsigned char *cdb, unsigned char *sense, u64 unpacked_lun, |
| u32 data_length, int task_attr, int data_dir, int flags) |
| { |
| int rc; |
| |
| rc = target_init_cmd(se_cmd, se_sess, sense, unpacked_lun, data_length, |
| task_attr, data_dir, flags); |
| WARN(rc, "Invalid target_submit_cmd use. Driver must not use target_stop_session or call target_init_cmd directly.\n"); |
| if (rc) |
| return; |
| |
| if (target_submit_prep(se_cmd, cdb, NULL, 0, NULL, 0, NULL, 0, |
| GFP_KERNEL)) |
| return; |
| |
| target_submit(se_cmd); |
| } |
| EXPORT_SYMBOL(target_submit_cmd); |
| |
| |
| static struct se_dev_plug *target_plug_device(struct se_device *se_dev) |
| { |
| struct se_dev_plug *se_plug; |
| |
| if (!se_dev->transport->plug_device) |
| return NULL; |
| |
| se_plug = se_dev->transport->plug_device(se_dev); |
| if (!se_plug) |
| return NULL; |
| |
| se_plug->se_dev = se_dev; |
| /* |
| * We have a ref to the lun at this point, but the cmds could |
| * complete before we unplug, so grab a ref to the se_device so we |
| * can call back into the backend. |
| */ |
| config_group_get(&se_dev->dev_group); |
| return se_plug; |
| } |
| |
| static void target_unplug_device(struct se_dev_plug *se_plug) |
| { |
| struct se_device *se_dev = se_plug->se_dev; |
| |
| se_dev->transport->unplug_device(se_plug); |
| config_group_put(&se_dev->dev_group); |
| } |
| |
| void target_queued_submit_work(struct work_struct *work) |
| { |
| struct se_cmd_queue *sq = container_of(work, struct se_cmd_queue, work); |
| struct se_cmd *se_cmd, *next_cmd; |
| struct se_dev_plug *se_plug = NULL; |
| struct se_device *se_dev = NULL; |
| struct llist_node *cmd_list; |
| |
| cmd_list = llist_del_all(&sq->cmd_list); |
| if (!cmd_list) |
| /* Previous call took what we were queued to submit */ |
| return; |
| |
| cmd_list = llist_reverse_order(cmd_list); |
| llist_for_each_entry_safe(se_cmd, next_cmd, cmd_list, se_cmd_list) { |
| if (!se_dev) { |
| se_dev = se_cmd->se_dev; |
| se_plug = target_plug_device(se_dev); |
| } |
| |
| target_submit(se_cmd); |
| } |
| |
| if (se_plug) |
| target_unplug_device(se_plug); |
| } |
| |
| /** |
| * target_queue_submission - queue the cmd to run on the LIO workqueue |
| * @se_cmd: command descriptor to submit |
| */ |
| void target_queue_submission(struct se_cmd *se_cmd) |
| { |
| struct se_device *se_dev = se_cmd->se_dev; |
| int cpu = se_cmd->cpuid; |
| struct se_cmd_queue *sq; |
| |
| sq = &se_dev->queues[cpu].sq; |
| llist_add(&se_cmd->se_cmd_list, &sq->cmd_list); |
| queue_work_on(cpu, target_submission_wq, &sq->work); |
| } |
| EXPORT_SYMBOL_GPL(target_queue_submission); |
| |
| static void target_complete_tmr_failure(struct work_struct *work) |
| { |
| struct se_cmd *se_cmd = container_of(work, struct se_cmd, work); |
| |
| se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; |
| se_cmd->se_tfo->queue_tm_rsp(se_cmd); |
| |
| transport_lun_remove_cmd(se_cmd); |
| transport_cmd_check_stop_to_fabric(se_cmd); |
| } |
| |
| /** |
| * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd |
| * for TMR CDBs |
| * |
| * @se_cmd: command descriptor to submit |
| * @se_sess: associated se_sess for endpoint |
| * @sense: pointer to SCSI sense buffer |
| * @unpacked_lun: unpacked LUN to reference for struct se_lun |
| * @fabric_tmr_ptr: fabric context for TMR req |
| * @tm_type: Type of TM request |
| * @gfp: gfp type for caller |
| * @tag: referenced task tag for TMR_ABORT_TASK |
| * @flags: submit cmd flags |
| * |
| * Callable from all contexts. |
| **/ |
| |
| int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess, |
| unsigned char *sense, u64 unpacked_lun, |
| void *fabric_tmr_ptr, unsigned char tm_type, |
| gfp_t gfp, u64 tag, int flags) |
| { |
| struct se_portal_group *se_tpg; |
| int ret; |
| |
| se_tpg = se_sess->se_tpg; |
| BUG_ON(!se_tpg); |
| |
| __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, |
| 0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun); |
| /* |
| * FIXME: Currently expect caller to handle se_cmd->se_tmr_req |
| * allocation failure. |
| */ |
| ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp); |
| if (ret < 0) |
| return -ENOMEM; |
| |
| if (tm_type == TMR_ABORT_TASK) |
| se_cmd->se_tmr_req->ref_task_tag = tag; |
| |
| /* See target_submit_cmd for commentary */ |
| ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF); |
| if (ret) { |
| core_tmr_release_req(se_cmd->se_tmr_req); |
| return ret; |
| } |
| |
| ret = transport_lookup_tmr_lun(se_cmd); |
| if (ret) |
| goto failure; |
| |
| transport_generic_handle_tmr(se_cmd); |
| return 0; |
| |
| /* |
| * For callback during failure handling, push this work off |
| * to process context with TMR_LUN_DOES_NOT_EXIST status. |
| */ |
| failure: |
| INIT_WORK(&se_cmd->work, target_complete_tmr_failure); |
| schedule_work(&se_cmd->work); |
| return 0; |
| } |
| EXPORT_SYMBOL(target_submit_tmr); |
| |
| /* |
| * Handle SAM-esque emulation for generic transport request failures. |
| */ |
| void transport_generic_request_failure(struct se_cmd *cmd, |
| sense_reason_t sense_reason) |
| { |
| int ret = 0, post_ret; |
| |
| pr_debug("-----[ Storage Engine Exception; sense_reason %d\n", |
| sense_reason); |
| target_show_cmd("-----[ ", cmd); |
| |
| /* |
| * For SAM Task Attribute emulation for failed struct se_cmd |
| */ |
| transport_complete_task_attr(cmd); |
| |
| if (cmd->transport_complete_callback) |
| cmd->transport_complete_callback(cmd, false, &post_ret); |
| |
| if (cmd->transport_state & CMD_T_ABORTED) { |
| INIT_WORK(&cmd->work, target_abort_work); |
| queue_work(target_completion_wq, &cmd->work); |
| return; |
| } |
| |
| switch (sense_reason) { |
| case TCM_NON_EXISTENT_LUN: |
| case TCM_UNSUPPORTED_SCSI_OPCODE: |
| case TCM_INVALID_CDB_FIELD: |
| case TCM_INVALID_PARAMETER_LIST: |
| case TCM_PARAMETER_LIST_LENGTH_ERROR: |
| case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: |
| case TCM_UNKNOWN_MODE_PAGE: |
| case TCM_WRITE_PROTECTED: |
| case TCM_ADDRESS_OUT_OF_RANGE: |
| case TCM_CHECK_CONDITION_ABORT_CMD: |
| case TCM_CHECK_CONDITION_UNIT_ATTENTION: |
| case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED: |
| case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED: |
| case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED: |
| case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE: |
| case TCM_TOO_MANY_TARGET_DESCS: |
| case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE: |
| case TCM_TOO_MANY_SEGMENT_DESCS: |
| case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE: |
| case TCM_INVALID_FIELD_IN_COMMAND_IU: |
| case TCM_ALUA_TG_PT_STANDBY: |
| case TCM_ALUA_TG_PT_UNAVAILABLE: |
| case TCM_ALUA_STATE_TRANSITION: |
| case TCM_ALUA_OFFLINE: |
| break; |
| case TCM_OUT_OF_RESOURCES: |
| cmd->scsi_status = SAM_STAT_TASK_SET_FULL; |
| goto queue_status; |
| case TCM_LUN_BUSY: |
| cmd->scsi_status = SAM_STAT_BUSY; |
| goto queue_status; |
| case TCM_RESERVATION_CONFLICT: |
| /* |
| * No SENSE Data payload for this case, set SCSI Status |
| * and queue the response to $FABRIC_MOD. |
| * |
| * Uses linux/include/scsi/scsi.h SAM status codes defs |
| */ |
| cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; |
| /* |
| * For UA Interlock Code 11b, a RESERVATION CONFLICT will |
| * establish a UNIT ATTENTION with PREVIOUS RESERVATION |
| * CONFLICT STATUS. |
| * |
| * See spc4r17, section 7.4.6 Control Mode Page, Table 349 |
| */ |
| if (cmd->se_sess && |
| cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl |
| == TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) { |
| target_ua_allocate_lun(cmd->se_sess->se_node_acl, |
| cmd->orig_fe_lun, 0x2C, |
| ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); |
| } |
| |
| goto queue_status; |
| default: |
| pr_err("Unknown transport error for CDB 0x%02x: %d\n", |
| cmd->t_task_cdb[0], sense_reason); |
| sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; |
| break; |
| } |
| |
| ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0); |
| if (ret) |
| goto queue_full; |
| |
| check_stop: |
| transport_lun_remove_cmd(cmd); |
| transport_cmd_check_stop_to_fabric(cmd); |
| return; |
| |
| queue_status: |
| trace_target_cmd_complete(cmd); |
| ret = cmd->se_tfo->queue_status(cmd); |
| if (!ret) |
| goto check_stop; |
| queue_full: |
| transport_handle_queue_full(cmd, cmd->se_dev, ret, false); |
| } |
| EXPORT_SYMBOL(transport_generic_request_failure); |
| |
| void __target_execute_cmd(struct se_cmd *cmd, bool do_checks) |
| { |
| sense_reason_t ret; |
| |
| if (!cmd->execute_cmd) { |
| ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; |
| goto err; |
| } |
| if (do_checks) { |
| /* |
| * Check for an existing UNIT ATTENTION condition after |
| * target_handle_task_attr() has done SAM task attr |
| * checking, and possibly have already defered execution |
| * out to target_restart_delayed_cmds() context. |
| */ |
| ret = target_scsi3_ua_check(cmd); |
| if (ret) |
| goto err; |
| |
| ret = target_alua_state_check(cmd); |
| if (ret) |
| goto err; |
| |
| ret = target_check_reservation(cmd); |
| if (ret) { |
| cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; |
| goto err; |
| } |
| } |
| |
| ret = cmd->execute_cmd(cmd); |
| if (!ret) |
| return; |
| err: |
| spin_lock_irq(&cmd->t_state_lock); |
| cmd->transport_state &= ~CMD_T_SENT; |
| spin_unlock_irq(&cmd->t_state_lock); |
| |
| transport_generic_request_failure(cmd, ret); |
| } |
| |
| static int target_write_prot_action(struct se_cmd *cmd) |
| { |
| u32 sectors; |
| /* |
| * Perform WRITE_INSERT of PI using software emulation when backend |
| * device has PI enabled, if the transport has not already generated |
| * PI using hardware WRITE_INSERT offload. |
| */ |
| switch (cmd->prot_op) { |
| case TARGET_PROT_DOUT_INSERT: |
| if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT)) |
| sbc_dif_generate(cmd); |
| break; |
| case TARGET_PROT_DOUT_STRIP: |
| if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP) |
| break; |
| |
| sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size); |
| cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, |
| sectors, 0, cmd->t_prot_sg, 0); |
| if (unlikely(cmd->pi_err)) { |
| spin_lock_irq(&cmd->t_state_lock); |
| cmd->transport_state &= ~CMD_T_SENT; |
| spin_unlock_irq(&cmd->t_state_lock); |
| transport_generic_request_failure(cmd, cmd->pi_err); |
| return -1; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static bool target_handle_task_attr(struct se_cmd *cmd) |
| { |
| struct se_device *dev = cmd->se_dev; |
| |
| if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) |
| return false; |
| |
| cmd->se_cmd_flags |= SCF_TASK_ATTR_SET; |
| |
| /* |
| * Check for the existence of HEAD_OF_QUEUE, and if true return 1 |
| * to allow the passed struct se_cmd list of tasks to the front of the list. |
| */ |
| switch (cmd->sam_task_attr) { |
| case TCM_HEAD_TAG: |
| atomic_inc_mb(&dev->non_ordered); |
| pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n", |
| cmd->t_task_cdb[0]); |
| return false; |
| case TCM_ORDERED_TAG: |
| atomic_inc_mb(&dev->delayed_cmd_count); |
| |
| pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n", |
| cmd->t_task_cdb[0]); |
| break; |
| default: |
| /* |
| * For SIMPLE and UNTAGGED Task Attribute commands |
| */ |
| atomic_inc_mb(&dev->non_ordered); |
| |
| if (atomic_read(&dev->delayed_cmd_count) == 0) |
| return false; |
| break; |
| } |
| |
| if (cmd->sam_task_attr != TCM_ORDERED_TAG) { |
| atomic_inc_mb(&dev->delayed_cmd_count); |
| /* |
| * We will account for this when we dequeue from the delayed |
| * list. |
| */ |
| atomic_dec_mb(&dev->non_ordered); |
| } |
| |
| spin_lock_irq(&cmd->t_state_lock); |
| cmd->transport_state &= ~CMD_T_SENT; |
| spin_unlock_irq(&cmd->t_state_lock); |
| |
| spin_lock(&dev->delayed_cmd_lock); |
| list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list); |
| spin_unlock(&dev->delayed_cmd_lock); |
| |
| pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn", |
| cmd->t_task_cdb[0], cmd->sam_task_attr); |
| /* |
| * We may have no non ordered cmds when this function started or we |
| * could have raced with the last simple/head cmd completing, so kick |
| * the delayed handler here. |
| */ |
| schedule_work(&dev->delayed_cmd_work); |
| return true; |
| } |
| |
| void target_execute_cmd(struct se_cmd *cmd) |
| { |
| /* |
| * Determine if frontend context caller is requesting the stopping of |
| * this command for frontend exceptions. |
| * |
| * If the received CDB has already been aborted stop processing it here. |
| */ |
| if (target_cmd_interrupted(cmd)) |
| return; |
| |
| spin_lock_irq(&cmd->t_state_lock); |
| cmd->t_state = TRANSPORT_PROCESSING; |
| cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT; |
| spin_unlock_irq(&cmd->t_state_lock); |
| |
| if (target_write_prot_action(cmd)) |
| return; |
| |
| if (target_handle_task_attr(cmd)) |
| return; |
| |
| __target_execute_cmd(cmd, true); |
| } |
| EXPORT_SYMBOL(target_execute_cmd); |
| |
| /* |
| * Process all commands up to the last received ORDERED task attribute which |
| * requires another blocking boundary |
| */ |
| void target_do_delayed_work(struct work_struct *work) |
| { |
| struct se_device *dev = container_of(work, struct se_device, |
| delayed_cmd_work); |
| |
| spin_lock(&dev->delayed_cmd_lock); |
| while (!dev->ordered_sync_in_progress) { |
| struct se_cmd *cmd; |
| |
| if (list_empty(&dev->delayed_cmd_list)) |
| break; |
| |
| cmd = list_entry(dev->delayed_cmd_list.next, |
| struct se_cmd, se_delayed_node); |
| |
| if (cmd->sam_task_attr == TCM_ORDERED_TAG) { |
| /* |
| * Check if we started with: |
| * [ordered] [simple] [ordered] |
| * and we are now at the last ordered so we have to wait |
| * for the simple cmd. |
| */ |
| if (atomic_read(&dev->non_ordered) > 0) |
| break; |
| |
| dev->ordered_sync_in_progress = true; |
| } |
| |
| list_del(&cmd->se_delayed_node); |
| atomic_dec_mb(&dev->delayed_cmd_count); |
| spin_unlock(&dev->delayed_cmd_lock); |
| |
| if (cmd->sam_task_attr != TCM_ORDERED_TAG) |
| atomic_inc_mb(&dev->non_ordered); |
| |
| cmd->transport_state |= CMD_T_SENT; |
| |
| __target_execute_cmd(cmd, true); |
| |
| spin_lock(&dev->delayed_cmd_lock); |
| } |
| spin_unlock(&dev->delayed_cmd_lock); |
| } |
| |
| /* |
| * Called from I/O completion to determine which dormant/delayed |
| * and ordered cmds need to have their tasks added to the execution queue. |
| */ |
| static void transport_complete_task_attr(struct se_cmd *cmd) |
| { |
| struct se_device *dev = cmd->se_dev; |
| |
| if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH) |
| return; |
| |
| if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET)) |
| goto restart; |
| |
| if (cmd->sam_task_attr == TCM_SIMPLE_TAG) { |
| atomic_dec_mb(&dev->non_ordered); |
| dev->dev_cur_ordered_id++; |
| } else if (cmd->sam_task_attr == TCM_HEAD_TAG) { |
| atomic_dec_mb(&dev->non_ordered); |
| dev->dev_cur_ordered_id++; |
| pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n", |
| dev->dev_cur_ordered_id); |
| } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) { |
| spin_lock(&dev->delayed_cmd_lock); |
| dev->ordered_sync_in_progress = false; |
| spin_unlock(&dev->delayed_cmd_lock); |
| |
| dev->dev_cur_ordered_id++; |
| pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n", |
| dev->dev_cur_ordered_id); |
| } |
| cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET; |
| |
| restart: |
| if (atomic_read(&dev->delayed_cmd_count) > 0) |
| schedule_work(&dev->delayed_cmd_work); |
| } |
| |
| static void transport_complete_qf(struct se_cmd *cmd) |
| { |
| int ret = 0; |
| |
| transport_complete_task_attr(cmd); |
| /* |
| * If a fabric driver ->write_pending() or ->queue_data_in() callback |
| * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and |
| * the same callbacks should not be retried. Return CHECK_CONDITION |
| * if a scsi_status is not already set. |
| * |
| * If a fabric driver ->queue_status() has returned non zero, always |
| * keep retrying no matter what.. |
| */ |
| if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) { |
| if (cmd->scsi_status) |
| goto queue_status; |
| |
| translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE); |
| goto queue_status; |
| } |
| |
| /* |
| * Check if we need to send a sense buffer from |
| * the struct se_cmd in question. We do NOT want |
| * to take this path of the IO has been marked as |
| * needing to be treated like a "normal read". This |
| * is the case if it's a tape read, and either the |
| * FM, EOM, or ILI bits are set, but there is no |
| * sense data. |
| */ |
| if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) && |
| cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) |
| goto queue_status; |
| |
| switch (cmd->data_direction) { |
| case DMA_FROM_DEVICE: |
| /* queue status if not treating this as a normal read */ |
| if (cmd->scsi_status && |
| !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL)) |
| goto queue_status; |
| |
| trace_target_cmd_complete(cmd); |
| ret = cmd->se_tfo->queue_data_in(cmd); |
| break; |
| case DMA_TO_DEVICE: |
| if (cmd->se_cmd_flags & SCF_BIDI) { |
| ret = cmd->se_tfo->queue_data_in(cmd); |
| break; |
| } |
| fallthrough; |
| case DMA_NONE: |
| queue_status: |
| trace_target_cmd_complete(cmd); |
| ret = cmd->se_tfo->queue_status(cmd); |
| break; |
| default: |
| break; |
| } |
| |
| if (ret < 0) { |
| transport_handle_queue_full(cmd, cmd->se_dev, ret, false); |
| return; |
| } |
| transport_lun_remove_cmd(cmd); |
| transport_cmd_check_stop_to_fabric(cmd); |
| } |
| |
| static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev, |
| int err, bool write_pending) |
| { |
| /* |
| * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or |
| * ->queue_data_in() callbacks from new process context. |
| * |
| * Otherwise for other errors, transport_complete_qf() will send |
| * CHECK_CONDITION via ->queue_status() instead of attempting to |
| * retry associated fabric driver data-transfer callbacks. |
| */ |
| if (err == -EAGAIN || err == -ENOMEM) { |
| cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP : |
| TRANSPORT_COMPLETE_QF_OK; |
| } else { |
| pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err); |
| cmd->t_state = TRANSPORT_COMPLETE_QF_ERR; |
| } |
| |
| spin_lock_irq(&dev->qf_cmd_lock); |
| list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list); |
| atomic_inc_mb(&dev->dev_qf_count); |
| spin_unlock_irq(&cmd->se_dev->qf_cmd_lock); |
| |
| schedule_work(&cmd->se_dev->qf_work_queue); |
| } |
| |
| static bool target_read_prot_action(struct se_cmd *cmd) |
| { |
| switch (cmd->prot_op) { |
| case TARGET_PROT_DIN_STRIP: |
| if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) { |
| u32 sectors = cmd->data_length >> |
| ilog2(cmd->se_dev->dev_attrib.block_size); |
| |
| cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba, |
| sectors, 0, cmd->t_prot_sg, |
| 0); |
| if (cmd->pi_err) |
| return true; |
| } |
| break; |
| case TARGET_PROT_DIN_INSERT: |
| if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT) |
| break; |
| |
| sbc_dif_generate(cmd); |
| break; |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| static void target_complete_ok_work(struct work_struct *work) |
| { |
| struct se_cmd *cmd = container_of(work, struct se_cmd, work); |
| int ret; |
| |
| /* |
| * Check if we need to move delayed/dormant tasks from cmds on the |
| * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task |
| * Attribute. |
| */ |
| transport_complete_task_attr(cmd); |
| |
| /* |
| * Check to schedule QUEUE_FULL work, or execute an existing |
| * cmd->transport_qf_callback() |
| */ |
| if (atomic_read(&cmd->se_dev->dev_qf_count) != 0) |
| schedule_work(&cmd->se_dev->qf_work_queue); |
| |
| /* |
| * Check if we need to send a sense buffer from |
| * the struct se_cmd in question. We do NOT want |
| * to take this path of the IO has been marked as |
| * needing to be treated like a "normal read". This |
| * is the case if it's a tape read, and either the |
| * FM, EOM, or ILI bits are set, but there is no |
| * sense data. |
| */ |
| if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) && |
| cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { |
| WARN_ON(!cmd->scsi_status); |
| ret = transport_send_check_condition_and_sense( |
| cmd, 0, 1); |
| if (ret) |
| goto queue_full; |
| |
| transport_lun_remove_cmd(cmd); |
| transport_cmd_check_stop_to_fabric(cmd); |
| return; |
| } |
| /* |
| * Check for a callback, used by amongst other things |
| * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation. |
| */ |
| if (cmd->transport_complete_callback) { |
| sense_reason_t rc; |
| bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE); |
| bool zero_dl = !(cmd->data_length); |
| int post_ret = 0; |
| |
| rc = cmd->transport_complete_callback(cmd, true, &post_ret); |
| if (!rc && !post_ret) { |
| if (caw && zero_dl) |
| goto queue_rsp; |
| |
| return; |
| } else if (rc) { |
| ret = transport_send_check_condition_and_sense(cmd, |
| rc, 0); |
| if (ret) |
| goto queue_full; |
| |
| transport_lun_remove_cmd(cmd); |
| transport_cmd_check_stop_to_fabric(cmd); |
| return; |
| } |
| } |
| |
| queue_rsp: |
| switch (cmd->data_direction) { |
| case DMA_FROM_DEVICE: |
| /* |
| * if this is a READ-type IO, but SCSI status |
| * is set, then skip returning data and just |
| * return the status -- unless this IO is marked |
| * as needing to be treated as a normal read, |
| * in which case we want to go ahead and return |
| * the data. This happens, for example, for tape |
| * reads with the FM, EOM, or ILI bits set, with |
| * no sense data. |
| */ |
| if (cmd->scsi_status && |
| !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL)) |
| goto queue_status; |
| |
| atomic_long_add(cmd->data_length, |
| &cmd->se_lun->lun_stats.tx_data_octets); |
| /* |
| * Perform READ_STRIP of PI using software emulation when |
| * backend had PI enabled, if the transport will not be |
| * performing hardware READ_STRIP offload. |
| */ |
| if (target_read_prot_action(cmd)) { |
| ret = transport_send_check_condition_and_sense(cmd, |
| cmd->pi_err, 0); |
| if (ret) |
| goto queue_full; |
| |
| transport_lun_remove_cmd(cmd); |
| transport_cmd_check_stop_to_fabric(cmd); |
| return; |
| } |
| |
| trace_target_cmd_complete(cmd); |
| ret = cmd->se_tfo->queue_data_in(cmd); |
| if (ret) |
| goto queue_full; |
| break; |
| case DMA_TO_DEVICE: |
| atomic_long_add(cmd->data_length, |
| &cmd->se_lun->lun_stats.rx_data_octets); |
| /* |
| * Check if we need to send READ payload for BIDI-COMMAND |
| */ |
| if (cmd->se_cmd_flags & SCF_BIDI) { |
| atomic_long_add(cmd->data_length, |
| &cmd->se_lun->lun_stats.tx_data_octets); |
| ret = cmd->se_tfo->queue_data_in(cmd); |
| if (ret) |
| goto queue_full; |
| break; |
| } |
| fallthrough; |
| case DMA_NONE: |
| queue_status: |
| trace_target_cmd_complete(cmd); |
| ret = cmd->se_tfo->queue_status(cmd); |
| if (ret) |
| goto queue_full; |
| break; |
| default: |
| break; |
| } |
| |
| transport_lun_remove_cmd(cmd); |
| transport_cmd_check_stop_to_fabric(cmd); |
| return; |
| |
| queue_full: |
| pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p," |
| " data_direction: %d\n", cmd, cmd->data_direction); |
| |
| transport_handle_queue_full(cmd, cmd->se_dev, ret, false); |
| } |
| |
| void target_free_sgl(struct scatterlist *sgl, int nents) |
| { |
| sgl_free_n_order(sgl, nents, 0); |
| } |
| EXPORT_SYMBOL(target_free_sgl); |
| |
| static inline void transport_reset_sgl_orig(struct se_cmd *cmd) |
| { |
| /* |
| * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE |
| * emulation, and free + reset pointers if necessary.. |
| */ |
| if (!cmd->t_data_sg_orig) |
| return; |
| |
| kfree(cmd->t_data_sg); |
| cmd->t_data_sg = cmd->t_data_sg_orig; |
| cmd->t_data_sg_orig = NULL; |
| cmd->t_data_nents = cmd->t_data_nents_orig; |
| cmd->t_data_nents_orig = 0; |
| } |
| |
| static inline void transport_free_pages(struct se_cmd *cmd) |
| { |
| if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { |
| target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents); |
| cmd->t_prot_sg = NULL; |
| cmd->t_prot_nents = 0; |
| } |
| |
| if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) { |
| /* |
| * Release special case READ buffer payload required for |
| * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE |
| */ |
| if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) { |
| target_free_sgl(cmd->t_bidi_data_sg, |
| cmd->t_bidi_data_nents); |
| cmd->t_bidi_data_sg = NULL; |
| cmd->t_bidi_data_nents = 0; |
| } |
| transport_reset_sgl_orig(cmd); |
| return; |
| } |
| transport_reset_sgl_orig(cmd); |
| |
| target_free_sgl(cmd->t_data_sg, cmd->t_data_nents); |
| cmd->t_data_sg = NULL; |
| cmd->t_data_nents = 0; |
| |
| target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents); |
| cmd->t_bidi_data_sg = NULL; |
| cmd->t_bidi_data_nents = 0; |
| } |
| |
| void *transport_kmap_data_sg(struct se_cmd *cmd) |
| { |
| struct scatterlist *sg = cmd->t_data_sg; |
| struct page **pages; |
| int i; |
| |
| /* |
| * We need to take into account a possible offset here for fabrics like |
| * tcm_loop who may be using a contig buffer from the SCSI midlayer for |
| * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd() |
| */ |
| if (!cmd->t_data_nents) |
| return NULL; |
| |
| BUG_ON(!sg); |
| if (cmd->t_data_nents == 1) |
| return kmap(sg_page(sg)) + sg->offset; |
| |
| /* >1 page. use vmap */ |
| pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL); |
| if (!pages) |
| return NULL; |
| |
| /* convert sg[] to pages[] */ |
| for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) { |
| pages[i] = sg_page(sg); |
| } |
| |
| cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL); |
| kfree(pages); |
| if (!cmd->t_data_vmap) |
| return NULL; |
| |
| return cmd->t_data_vmap + cmd->t_data_sg[0].offset; |
| } |
| EXPORT_SYMBOL(transport_kmap_data_sg); |
| |
| void transport_kunmap_data_sg(struct se_cmd *cmd) |
| { |
| if (!cmd->t_data_nents) { |
| return; |
| } else if (cmd->t_data_nents == 1) { |
| kunmap(sg_page(cmd->t_data_sg)); |
| return; |
| } |
| |
| vunmap(cmd->t_data_vmap); |
| cmd->t_data_vmap = NULL; |
| } |
| EXPORT_SYMBOL(transport_kunmap_data_sg); |
| |
| int |
| target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length, |
| bool zero_page, bool chainable) |
| { |
| gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0); |
| |
| *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents); |
| return *sgl ? 0 : -ENOMEM; |
| } |
| EXPORT_SYMBOL(target_alloc_sgl); |
| |
| /* |
| * Allocate any required resources to execute the command. For writes we |
| * might not have the payload yet, so notify the fabric via a call to |
| * ->write_pending instead. Otherwise place it on the execution queue. |
| */ |
| sense_reason_t |
| transport_generic_new_cmd(struct se_cmd *cmd) |
| { |
| unsigned long flags; |
| int ret = 0; |
| bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB); |
| |
| if (cmd->prot_op != TARGET_PROT_NORMAL && |
| !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) { |
| ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents, |
| cmd->prot_length, true, false); |
| if (ret < 0) |
| return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; |
| } |
| |
| /* |
| * Determine if the TCM fabric module has already allocated physical |
| * memory, and is directly calling transport_generic_map_mem_to_cmd() |
| * beforehand. |
| */ |
| if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) && |
| cmd->data_length) { |
| |
| if ((cmd->se_cmd_flags & SCF_BIDI) || |
| (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) { |
| u32 bidi_length; |
| |
| if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) |
| bidi_length = cmd->t_task_nolb * |
| cmd->se_dev->dev_attrib.block_size; |
| else |
| bidi_length = cmd->data_length; |
| |
| ret = target_alloc_sgl(&cmd->t_bidi_data_sg, |
| &cmd->t_bidi_data_nents, |
| bidi_length, zero_flag, false); |
| if (ret < 0) |
| return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; |
| } |
| |
| ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents, |
| cmd->data_length, zero_flag, false); |
| if (ret < 0) |
| return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; |
| } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) && |
| cmd->data_length) { |
| /* |
| * Special case for COMPARE_AND_WRITE with fabrics |
| * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC. |
| */ |
| u32 caw_length = cmd->t_task_nolb * |
| cmd->se_dev->dev_attrib.block_size; |
| |
| ret = target_alloc_sgl(&cmd->t_bidi_data_sg, |
| &cmd->t_bidi_data_nents, |
| caw_length, zero_flag, false); |
| if (ret < 0) |
| return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; |
| } |
| /* |
| * If this command is not a write we can execute it right here, |
| * for write buffers we need to notify the fabric driver first |
| * and let it call back once the write buffers are ready. |
| */ |
| target_add_to_state_list(cmd); |
| if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) { |
| target_execute_cmd(cmd); |
| return 0; |
| } |
| |
| spin_lock_irqsave(&cmd->t_state_lock, flags); |
| cmd->t_state = TRANSPORT_WRITE_PENDING; |
| /* |
| * Determine if frontend context caller is requesting the stopping of |
| * this command for frontend exceptions. |
| */ |
| if (cmd->transport_state & CMD_T_STOP && |
| !cmd->se_tfo->write_pending_must_be_called) { |
| pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n", |
| __func__, __LINE__, cmd->tag); |
| |
| spin_unlock_irqrestore(&cmd->t_state_lock, flags); |
| |
| complete_all(&cmd->t_transport_stop_comp); |
| return 0; |
| } |
| cmd->transport_state &= ~CMD_T_ACTIVE; |
| spin_unlock_irqrestore(&cmd->t_state_lock, flags); |
| |
| ret = cmd->se_tfo->write_pending(cmd); |
| if (ret) |
| goto queue_full; |
| |
| return 0; |
| |
| queue_full: |
| pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd); |
| transport_handle_queue_full(cmd, cmd->se_dev, ret, true); |
| return 0; |
| } |
| EXPORT_SYMBOL(transport_generic_new_cmd); |
| |
| static void transport_write_pending_qf(struct se_cmd *cmd) |
| { |
| unsigned long flags; |
| int ret; |
| bool stop; |
| |
| spin_lock_irqsave(&cmd->t_state_lock, flags); |
| stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED)); |
| spin_unlock_irqrestore(&cmd->t_state_lock, flags); |
| |
| if (stop) { |
| pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n", |
| __func__, __LINE__, cmd->tag); |
| complete_all(&cmd->t_transport_stop_comp); |
| return; |
| } |
| |
| ret = cmd->se_tfo->write_pending(cmd); |
| if (ret) { |
| pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", |
| cmd); |
| transport_handle_queue_full(cmd, cmd->se_dev, ret, true); |
| } |
| } |
| |
| static bool |
| __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *, |
| unsigned long *flags); |
| |
| static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&cmd->t_state_lock, flags); |
| __transport_wait_for_tasks(cmd, true, aborted, tas, &flags); |
| spin_unlock_irqrestore(&cmd->t_state_lock, flags); |
| } |
| |
| /* |
| * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has |
| * finished. |
| */ |
| void target_put_cmd_and_wait(struct se_cmd *cmd) |
| { |
| DECLARE_COMPLETION_ONSTACK(compl); |
| |
| WARN_ON_ONCE(cmd->abrt_compl); |
| cmd->abrt_compl = &compl; |
| target_put_sess_cmd(cmd); |
| wait_for_completion(&compl); |
| } |
| |
| /* |
| * This function is called by frontend drivers after processing of a command |
| * has finished. |
| * |
| * The protocol for ensuring that either the regular frontend command |
| * processing flow or target_handle_abort() code drops one reference is as |
| * follows: |
| * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause |
| * the frontend driver to call this function synchronously or asynchronously. |
| * That will cause one reference to be dropped. |
| * - During regular command processing the target core sets CMD_T_COMPLETE |
| * before invoking one of the .queue_*() functions. |
| * - The code that aborts commands skips commands and TMFs for which |
| * CMD_T_COMPLETE has been set. |
| * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for |
| * commands that will be aborted. |
| * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set |
| * transport_generic_free_cmd() skips its call to target_put_sess_cmd(). |
| * - For aborted commands for which CMD_T_TAS has been set .queue_status() will |
| * be called and will drop a reference. |
| * - For aborted commands for which CMD_T_TAS has not been set .aborted_task() |
| * will be called. target_handle_abort() will drop the final reference. |
| */ |
| int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks) |
| { |
| DECLARE_COMPLETION_ONSTACK(compl); |
| int ret = 0; |
| bool aborted = false, tas = false; |
| |
| if (wait_for_tasks) |
| target_wait_free_cmd(cmd, &aborted, &tas); |
| |
| if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) { |
| /* |
| * Handle WRITE failure case where transport_generic_new_cmd() |
| * has already added se_cmd to state_list, but fabric has |
| * failed command before I/O submission. |
| */ |
| if (cmd->state_active) |
| target_remove_from_state_list(cmd); |
| |
| if (cmd->se_lun) |
| transport_lun_remove_cmd(cmd); |
| } |
| if (aborted) |
| cmd->free_compl = &compl; |
| ret = target_put_sess_cmd(cmd); |
| if (aborted) { |
| pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag); |
| wait_for_completion(&compl); |
| ret = 1; |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(transport_generic_free_cmd); |
| |
| /** |
| * target_get_sess_cmd - Verify the session is accepting cmds and take ref |
| * @se_cmd: command descriptor to add |
| * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd() |
| */ |
| int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref) |
| { |
| struct se_session *se_sess = se_cmd->se_sess; |
| int ret = 0; |
| |
| /* |
| * Add a second kref if the fabric caller is expecting to handle |
| * fabric acknowledgement that requires two target_put_sess_cmd() |
| * invocations before se_cmd descriptor release. |
| */ |
| if (ack_kref) { |
| kref_get(&se_cmd->cmd_kref); |
| se_cmd->se_cmd_flags |= SCF_ACK_KREF; |
| } |
| |
| if (!percpu_ref_tryget_live(&se_sess->cmd_count)) |
| ret = -ESHUTDOWN; |
| |
| if (ret && ack_kref) |
| target_put_sess_cmd(se_cmd); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(target_get_sess_cmd); |
| |
| static void target_free_cmd_mem(struct se_cmd *cmd) |
| { |
| transport_free_pages(cmd); |
| |
| if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) |
| core_tmr_release_req(cmd->se_tmr_req); |
| if (cmd->t_task_cdb != cmd->__t_task_cdb) |
| kfree(cmd->t_task_cdb); |
| } |
| |
| static void target_release_cmd_kref(struct kref *kref) |
| { |
| struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref); |
| struct se_session *se_sess = se_cmd->se_sess; |
| struct completion *free_compl = se_cmd->free_compl; |
| struct completion *abrt_compl = se_cmd->abrt_compl; |
| |
| target_free_cmd_mem(se_cmd); |
| se_cmd->se_tfo->release_cmd(se_cmd); |
| if (free_compl) |
| complete(free_compl); |
| if (abrt_compl) |
| complete(abrt_compl); |
| |
| percpu_ref_put(&se_sess->cmd_count); |
| } |
| |
| /** |
| * target_put_sess_cmd - decrease the command reference count |
| * @se_cmd: command to drop a reference from |
| * |
| * Returns 1 if and only if this target_put_sess_cmd() call caused the |
| * refcount to drop to zero. Returns zero otherwise. |
| */ |
| int target_put_sess_cmd(struct se_cmd *se_cmd) |
| { |
| return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref); |
| } |
| EXPORT_SYMBOL(target_put_sess_cmd); |
| |
| static const char *data_dir_name(enum dma_data_direction d) |
| { |
| switch (d) { |
| case DMA_BIDIRECTIONAL: return "BIDI"; |
| case DMA_TO_DEVICE: return "WRITE"; |
| case DMA_FROM_DEVICE: return "READ"; |
| case DMA_NONE: return "NONE"; |
| } |
| |
| return "(?)"; |
| } |
| |
| static const char *cmd_state_name(enum transport_state_table t) |
| { |
| switch (t) { |
| case TRANSPORT_NO_STATE: return "NO_STATE"; |
| case TRANSPORT_NEW_CMD: return "NEW_CMD"; |
| case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING"; |
| case TRANSPORT_PROCESSING: return "PROCESSING"; |
| case TRANSPORT_COMPLETE: return "COMPLETE"; |
| case TRANSPORT_ISTATE_PROCESSING: |
| return "ISTATE_PROCESSING"; |
| case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP"; |
| case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK"; |
| case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR"; |
| } |
| |
| return "(?)"; |
| } |
| |
| static void target_append_str(char **str, const char *txt) |
| { |
| char *prev = *str; |
| |
| *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) : |
| kstrdup(txt, GFP_ATOMIC); |
| kfree(prev); |
| } |
| |
| /* |
| * Convert a transport state bitmask into a string. The caller is |
| * responsible for freeing the returned pointer. |
| */ |
| static char *target_ts_to_str(u32 ts) |
| { |
| char *str = NULL; |
| |
| if (ts & CMD_T_ABORTED) |
| target_append_str(&str, "aborted"); |
| if (ts & CMD_T_ACTIVE) |
| target_append_str(&str, "active"); |
| if (ts & CMD_T_COMPLETE) |
| target_append_str(&str, "complete"); |
| if (ts & CMD_T_SENT) |
| target_append_str(&str, "sent"); |
| if (ts & CMD_T_STOP) |
| target_append_str(&str, "stop"); |
| if (ts & CMD_T_FABRIC_STOP) |
| target_append_str(&str, "fabric_stop"); |
| |
| return str; |
| } |
| |
| static const char *target_tmf_name(enum tcm_tmreq_table tmf) |
| { |
| switch (tmf) { |
| case TMR_ABORT_TASK: return "ABORT_TASK"; |
| case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET"; |
| case TMR_CLEAR_ACA: return "CLEAR_ACA"; |
| case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET"; |
| case TMR_LUN_RESET: return "LUN_RESET"; |
| case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET"; |
| case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET"; |
| case TMR_LUN_RESET_PRO: return "LUN_RESET_PRO"; |
| case TMR_UNKNOWN: break; |
| } |
| return "(?)"; |
| } |
| |
| void target_show_cmd(const char *pfx, struct se_cmd *cmd) |
| { |
| char *ts_str = target_ts_to_str(cmd->transport_state); |
| const u8 *cdb = cmd->t_task_cdb; |
| struct se_tmr_req *tmf = cmd->se_tmr_req; |
| |
| if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) { |
| pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n", |
| pfx, cdb[0], cdb[1], cmd->tag, |
| data_dir_name(cmd->data_direction), |
| cmd->se_tfo->get_cmd_state(cmd), |
| cmd_state_name(cmd->t_state), cmd->data_length, |
| kref_read(&cmd->cmd_kref), ts_str); |
| } else { |
| pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n", |
| pfx, target_tmf_name(tmf->function), cmd->tag, |
| tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd), |
| cmd_state_name(cmd->t_state), |
| kref_read(&cmd->cmd_kref), ts_str); |
| } |
| kfree(ts_str); |
| } |
| EXPORT_SYMBOL(target_show_cmd); |
| |
| static void target_stop_session_confirm(struct percpu_ref *ref) |
| { |
| struct se_session *se_sess = container_of(ref, struct se_session, |
| cmd_count); |
| complete_all(&se_sess->stop_done); |
| } |
| |
| /** |
| * target_stop_session - Stop new IO from being queued on the session. |
| * @se_sess: session to stop |
| */ |
| void target_stop_session(struct se_session *se_sess) |
| { |
| pr_debug("Stopping session queue.\n"); |
| if (atomic_cmpxchg(&se_sess->stopped, 0, 1) == 0) |
| percpu_ref_kill_and_confirm(&se_sess->cmd_count, |
| target_stop_session_confirm); |
| } |
| EXPORT_SYMBOL(target_stop_session); |
| |
| /** |
| * target_wait_for_sess_cmds - Wait for outstanding commands |
| * @se_sess: session to wait for active I/O |
| */ |
| void target_wait_for_sess_cmds(struct se_session *se_sess) |
| { |
| int ret; |
| |
| WARN_ON_ONCE(!atomic_read(&se_sess->stopped)); |
| |
| do { |
| pr_debug("Waiting for running cmds to complete.\n"); |
| ret = wait_event_timeout(se_sess->cmd_count_wq, |
| percpu_ref_is_zero(&se_sess->cmd_count), |
| 180 * HZ); |
| } while (ret <= 0); |
| |
| wait_for_completion(&se_sess->stop_done); |
| pr_debug("Waiting for cmds done.\n"); |
| } |
| EXPORT_SYMBOL(target_wait_for_sess_cmds); |
| |
| /* |
| * Prevent that new percpu_ref_tryget_live() calls succeed and wait until |
| * all references to the LUN have been released. Called during LUN shutdown. |
| */ |
| void transport_clear_lun_ref(struct se_lun *lun) |
| { |
| percpu_ref_kill(&lun->lun_ref); |
| wait_for_completion(&lun->lun_shutdown_comp); |
| } |
| |
| static bool |
| __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop, |
| bool *aborted, bool *tas, unsigned long *flags) |
| __releases(&cmd->t_state_lock) |
| __acquires(&cmd->t_state_lock) |
| { |
| lockdep_assert_held(&cmd->t_state_lock); |
| |
| if (fabric_stop) |
| cmd->transport_state |= CMD_T_FABRIC_STOP; |
| |
| if (cmd->transport_state & CMD_T_ABORTED) |
| *aborted = true; |
| |
| if (cmd->transport_state & CMD_T_TAS) |
| *tas = true; |
| |
| if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && |
| !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) |
| return false; |
| |
| if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && |
| !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) |
| return false; |
| |
| if (!(cmd->transport_state & CMD_T_ACTIVE)) |
| return false; |
| |
| if (fabric_stop && *aborted) |
| return false; |
| |
| cmd->transport_state |= CMD_T_STOP; |
| |
| target_show_cmd("wait_for_tasks: Stopping ", cmd); |
| |
| spin_unlock_irqrestore(&cmd->t_state_lock, *flags); |
| |
| while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp, |
| 180 * HZ)) |
| target_show_cmd("wait for tasks: ", cmd); |
| |
| spin_lock_irqsave(&cmd->t_state_lock, *flags); |
| cmd->transport_state &= ~( |