blob: 4458e409ca0a84dacfaee10423ad54eaa2752fa0 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* The ARCv2 backend of Just-In-Time compiler for eBPF bytecode.
*
* Copyright (c) 2024 Synopsys Inc.
* Author: Shahab Vahedi <shahab@synopsys.com>
*/
#include <linux/bug.h>
#include "bpf_jit.h"
/* ARC core registers. */
enum {
ARC_R_0, ARC_R_1, ARC_R_2, ARC_R_3, ARC_R_4, ARC_R_5,
ARC_R_6, ARC_R_7, ARC_R_8, ARC_R_9, ARC_R_10, ARC_R_11,
ARC_R_12, ARC_R_13, ARC_R_14, ARC_R_15, ARC_R_16, ARC_R_17,
ARC_R_18, ARC_R_19, ARC_R_20, ARC_R_21, ARC_R_22, ARC_R_23,
ARC_R_24, ARC_R_25, ARC_R_26, ARC_R_FP, ARC_R_SP, ARC_R_ILINK,
ARC_R_30, ARC_R_BLINK,
/*
* Having ARC_R_IMM encoded as source register means there is an
* immediate that must be interpreted from the next 4 bytes. If
* encoded as the destination register though, it implies that the
* output of the operation is not assigned to any register. The
* latter is helpful if we only care about updating the CPU status
* flags.
*/
ARC_R_IMM = 62
};
/*
* Remarks about the rationale behind the chosen mapping:
*
* - BPF_REG_{1,2,3,4} are the argument registers and must be mapped to
* argument registers in ARCv2 ABI: r0-r7. The r7 registers is the last
* argument register in the ABI. Therefore BPF_REG_5, as the fifth
* argument, must be pushed onto the stack. This is a must for calling
* in-kernel functions.
*
* - In ARCv2 ABI, the return value is in r0 for 32-bit results and (r1,r0)
* for 64-bit results. However, because they're already used for BPF_REG_1,
* the next available scratch registers, r8 and r9, are the best candidates
* for BPF_REG_0. After a "call" to a(n) (in-kernel) function, the result
* is "mov"ed to these registers. At a BPF_EXIT, their value is "mov"ed to
* (r1,r0).
* It is worth mentioning that scratch registers are the best choice for
* BPF_REG_0, because it is very popular in BPF instruction encoding.
*
* - JIT_REG_TMP is an artifact needed to translate some BPF instructions.
* Its life span is one single BPF instruction. Since during the
* analyze_reg_usage(), it is not known if temporary registers are used,
* it is mapped to ARC's scratch registers: r10 and r11. Therefore, they
* don't matter in analysing phase and don't need saving. This temporary
* register is added as yet another index in the bpf2arc array, so it will
* unfold like the rest of registers during the code generation process.
*
* - Mapping of callee-saved BPF registers, BPF_REG_{6,7,8,9}, starts from
* (r15,r14) register pair. The (r13,r12) is not a good choice, because
* in ARCv2 ABI, r12 is not a callee-saved register and this can cause
* problem when calling an in-kernel function. Theoretically, the mapping
* could start from (r14,r13), but it is not a conventional ARCv2 register
* pair. To have a future proof design, I opted for this arrangement.
* If/when we decide to add ARCv2 instructions that do use register pairs,
* the mapping, hopefully, doesn't need to be revisited.
*/
static const u8 bpf2arc[][2] = {
/* Return value from in-kernel function, and exit value from eBPF */
[BPF_REG_0] = {ARC_R_8, ARC_R_9},
/* Arguments from eBPF program to in-kernel function */
[BPF_REG_1] = {ARC_R_0, ARC_R_1},
[BPF_REG_2] = {ARC_R_2, ARC_R_3},
[BPF_REG_3] = {ARC_R_4, ARC_R_5},
[BPF_REG_4] = {ARC_R_6, ARC_R_7},
/* Remaining arguments, to be passed on the stack per 32-bit ABI */
[BPF_REG_5] = {ARC_R_22, ARC_R_23},
/* Callee-saved registers that in-kernel function will preserve */
[BPF_REG_6] = {ARC_R_14, ARC_R_15},
[BPF_REG_7] = {ARC_R_16, ARC_R_17},
[BPF_REG_8] = {ARC_R_18, ARC_R_19},
[BPF_REG_9] = {ARC_R_20, ARC_R_21},
/* Read-only frame pointer to access the eBPF stack. 32-bit only. */
[BPF_REG_FP] = {ARC_R_FP, },
/* Register for blinding constants */
[BPF_REG_AX] = {ARC_R_24, ARC_R_25},
/* Temporary registers for internal use */
[JIT_REG_TMP] = {ARC_R_10, ARC_R_11}
};
#define ARC_CALLEE_SAVED_REG_FIRST ARC_R_13
#define ARC_CALLEE_SAVED_REG_LAST ARC_R_25
#define REG_LO(r) (bpf2arc[(r)][0])
#define REG_HI(r) (bpf2arc[(r)][1])
/*
* To comply with ARCv2 ABI, BPF's arg5 must be put on stack. After which,
* the stack needs to be restored by ARG5_SIZE.
*/
#define ARG5_SIZE 8
/* Instruction lengths in bytes. */
enum {
INSN_len_normal = 4, /* Normal instructions length. */
INSN_len_imm = 4 /* Length of an extra 32-bit immediate. */
};
/* ZZ defines the size of operation in encodings that it is used. */
enum {
ZZ_1_byte = 1,
ZZ_2_byte = 2,
ZZ_4_byte = 0,
ZZ_8_byte = 3
};
/*
* AA is mostly about address write back mode. It determines if the
* address in question should be updated before usage or after:
* addr += offset; data = *addr;
* data = *addr; addr += offset;
*
* In "scaling" mode, the effective address will become the sum
* of "address" + "index"*"size". The "size" is specified by the
* "ZZ" field. There is no write back when AA is set for scaling:
* data = *(addr + offset<<zz)
*/
enum {
AA_none = 0,
AA_pre = 1, /* in assembly known as "a/aw". */
AA_post = 2, /* in assembly known as "ab". */
AA_scale = 3 /* in assembly known as "as". */
};
/* X flag determines the mode of extension. */
enum {
X_zero = 0,
X_sign = 1
};
/* Condition codes. */
enum {
CC_always = 0, /* condition is true all the time */
CC_equal = 1, /* if status32.z flag is set */
CC_unequal = 2, /* if status32.z flag is clear */
CC_positive = 3, /* if status32.n flag is clear */
CC_negative = 4, /* if status32.n flag is set */
CC_less_u = 5, /* less than (unsigned) */
CC_less_eq_u = 14, /* less than or equal (unsigned) */
CC_great_eq_u = 6, /* greater than or equal (unsigned) */
CC_great_u = 13, /* greater than (unsigned) */
CC_less_s = 11, /* less than (signed) */
CC_less_eq_s = 12, /* less than or equal (signed) */
CC_great_eq_s = 10, /* greater than or equal (signed) */
CC_great_s = 9 /* greater than (signed) */
};
#define IN_U6_RANGE(x) ((x) <= (0x40 - 1) && (x) >= 0)
#define IN_S9_RANGE(x) ((x) <= (0x100 - 1) && (x) >= -0x100)
#define IN_S12_RANGE(x) ((x) <= (0x800 - 1) && (x) >= -0x800)
#define IN_S21_RANGE(x) ((x) <= (0x100000 - 1) && (x) >= -0x100000)
#define IN_S25_RANGE(x) ((x) <= (0x1000000 - 1) && (x) >= -0x1000000)
/* Operands in most of the encodings. */
#define OP_A(x) ((x) & 0x03f)
#define OP_B(x) ((((x) & 0x07) << 24) | (((x) & 0x38) << 9))
#define OP_C(x) (((x) & 0x03f) << 6)
#define OP_IMM (OP_C(ARC_R_IMM))
#define COND(x) (OP_A((x) & 31))
#define FLAG(x) (((x) & 1) << 15)
/*
* The 4-byte encoding of "mov b,c":
*
* 0010_0bbb 0000_1010 0BBB_cccc cc00_0000
*
* b: BBBbbb destination register
* c: cccccc source register
*/
#define OPC_MOV 0x200a0000
/*
* The 4-byte encoding of "mov b,s12" (used for moving small immediates):
*
* 0010_0bbb 1000_1010 0BBB_ssss ssSS_SSSS
*
* b: BBBbbb destination register
* s: SSSSSSssssss source immediate (signed)
*/
#define OPC_MOVI 0x208a0000
#define MOVI_S12(x) ((((x) & 0xfc0) >> 6) | (((x) & 0x3f) << 6))
/*
* The 4-byte encoding of "mov[.qq] b,u6", used for conditional
* moving of even smaller immediates:
*
* 0010_0bbb 1100_1010 0BBB_cccc cciq_qqqq
*
* qq: qqqqq condition code
* i: If set, c is considered a 6-bit immediate, else a reg.
*
* b: BBBbbb destination register
* c: cccccc source
*/
#define OPC_MOV_CC 0x20ca0000
#define MOV_CC_I BIT(5)
#define OPC_MOVU_CC (OPC_MOV_CC | MOV_CC_I)
/*
* The 4-byte encoding of "sexb b,c" (8-bit sign extension):
*
* 0010_0bbb 0010_1111 0BBB_cccc cc00_0101
*
* b: BBBbbb destination register
* c: cccccc source register
*/
#define OPC_SEXB 0x202f0005
/*
* The 4-byte encoding of "sexh b,c" (16-bit sign extension):
*
* 0010_0bbb 0010_1111 0BBB_cccc cc00_0110
*
* b: BBBbbb destination register
* c: cccccc source register
*/
#define OPC_SEXH 0x202f0006
/*
* The 4-byte encoding of "ld[zz][.x][.aa] c,[b,s9]":
*
* 0001_0bbb ssss_ssss SBBB_0aaz zxcc_cccc
*
* zz: size mode
* aa: address write back mode
* x: extension mode
*
* s9: S_ssss_ssss 9-bit signed number
* b: BBBbbb source reg for address
* c: cccccc destination register
*/
#define OPC_LOAD 0x10000000
#define LOAD_X(x) ((x) << 6)
#define LOAD_ZZ(x) ((x) << 7)
#define LOAD_AA(x) ((x) << 9)
#define LOAD_S9(x) ((((x) & 0x0ff) << 16) | (((x) & 0x100) << 7))
#define LOAD_C(x) ((x) & 0x03f)
/* Unsigned and signed loads. */
#define OPC_LDU (OPC_LOAD | LOAD_X(X_zero))
#define OPC_LDS (OPC_LOAD | LOAD_X(X_sign))
/* 32-bit load. */
#define OPC_LD32 (OPC_LDU | LOAD_ZZ(ZZ_4_byte))
/* "pop reg" is merely a "ld.ab reg,[sp,4]". */
#define OPC_POP \
(OPC_LD32 | LOAD_AA(AA_post) | LOAD_S9(4) | OP_B(ARC_R_SP))
/*
* The 4-byte encoding of "st[zz][.aa] c,[b,s9]":
*
* 0001_1bbb ssss_ssss SBBB_cccc cc0a_azz0
*
* zz: zz size mode
* aa: aa address write back mode
*
* s9: S_ssss_ssss 9-bit signed number
* b: BBBbbb source reg for address
* c: cccccc source reg to be stored
*/
#define OPC_STORE 0x18000000
#define STORE_ZZ(x) ((x) << 1)
#define STORE_AA(x) ((x) << 3)
#define STORE_S9(x) ((((x) & 0x0ff) << 16) | (((x) & 0x100) << 7))
/* 32-bit store. */
#define OPC_ST32 (OPC_STORE | STORE_ZZ(ZZ_4_byte))
/* "push reg" is merely a "st.aw reg,[sp,-4]". */
#define OPC_PUSH \
(OPC_ST32 | STORE_AA(AA_pre) | STORE_S9(-4) | OP_B(ARC_R_SP))
/*
* The 4-byte encoding of "add a,b,c":
*
* 0010_0bbb 0i00_0000 fBBB_cccc ccaa_aaaa
*
* f: indicates if flags (carry, etc.) should be updated
* i: If set, c is considered a 6-bit immediate, else a reg.
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_ADD 0x20000000
/* Addition with updating the pertinent flags in "status32" register. */
#define OPC_ADDF (OPC_ADD | FLAG(1))
#define ADDI BIT(22)
#define ADDI_U6(x) OP_C(x)
#define OPC_ADDI (OPC_ADD | ADDI)
#define OPC_ADDIF (OPC_ADDI | FLAG(1))
#define OPC_ADD_I (OPC_ADD | OP_IMM)
/*
* The 4-byte encoding of "adc a,b,c" (addition with carry):
*
* 0010_0bbb 0i00_0001 0BBB_cccc ccaa_aaaa
*
* i: if set, c is considered a 6-bit immediate, else a reg.
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_ADC 0x20010000
#define ADCI BIT(22)
#define ADCI_U6(x) OP_C(x)
#define OPC_ADCI (OPC_ADC | ADCI)
/*
* The 4-byte encoding of "sub a,b,c":
*
* 0010_0bbb 0i00_0010 fBBB_cccc ccaa_aaaa
*
* f: indicates if flags (carry, etc.) should be updated
* i: if set, c is considered a 6-bit immediate, else a reg.
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_SUB 0x20020000
/* Subtraction with updating the pertinent flags in "status32" register. */
#define OPC_SUBF (OPC_SUB | FLAG(1))
#define SUBI BIT(22)
#define SUBI_U6(x) OP_C(x)
#define OPC_SUBI (OPC_SUB | SUBI)
#define OPC_SUB_I (OPC_SUB | OP_IMM)
/*
* The 4-byte encoding of "sbc a,b,c" (subtraction with carry):
*
* 0010_0bbb 0000_0011 fBBB_cccc ccaa_aaaa
*
* f: indicates if flags (carry, etc.) should be updated
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_SBC 0x20030000
/*
* The 4-byte encoding of "cmp[.qq] b,c":
*
* 0010_0bbb 1100_1100 1BBB_cccc cc0q_qqqq
*
* qq: qqqqq condition code
*
* b: BBBbbb the 1st operand
* c: cccccc the 2nd operand
*/
#define OPC_CMP 0x20cc8000
/*
* The 4-byte encoding of "neg a,b":
*
* 0010_0bbb 0100_1110 0BBB_0000 00aa_aaaa
*
* a: aaaaaa result
* b: BBBbbb input
*/
#define OPC_NEG 0x204e0000
/*
* The 4-byte encoding of "mpy a,b,c".
* mpy is the signed 32-bit multiplication with the lower 32-bit
* of the product as the result.
*
* 0010_0bbb 0001_1010 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_MPY 0x201a0000
#define OPC_MPYI (OPC_MPY | OP_IMM)
/*
* The 4-byte encoding of "mpydu a,b,c".
* mpydu is the unsigned 32-bit multiplication with the lower 32-bit of
* the product in register "a" and the higher 32-bit in register "a+1".
*
* 0010_1bbb 0001_1001 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa 64-bit result in registers (R_a+1,R_a)
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_MPYDU 0x28190000
#define OPC_MPYDUI (OPC_MPYDU | OP_IMM)
/*
* The 4-byte encoding of "divu a,b,c" (unsigned division):
*
* 0010_1bbb 0000_0101 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa result (quotient)
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand (divisor)
*/
#define OPC_DIVU 0x28050000
#define OPC_DIVUI (OPC_DIVU | OP_IMM)
/*
* The 4-byte encoding of "div a,b,c" (signed division):
*
* 0010_1bbb 0000_0100 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa result (quotient)
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand (divisor)
*/
#define OPC_DIVS 0x28040000
#define OPC_DIVSI (OPC_DIVS | OP_IMM)
/*
* The 4-byte encoding of "remu a,b,c" (unsigned remainder):
*
* 0010_1bbb 0000_1001 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa result (remainder)
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand (divisor)
*/
#define OPC_REMU 0x28090000
#define OPC_REMUI (OPC_REMU | OP_IMM)
/*
* The 4-byte encoding of "rem a,b,c" (signed remainder):
*
* 0010_1bbb 0000_1000 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa result (remainder)
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand (divisor)
*/
#define OPC_REMS 0x28080000
#define OPC_REMSI (OPC_REMS | OP_IMM)
/*
* The 4-byte encoding of "and a,b,c":
*
* 0010_0bbb 0000_0100 fBBB_cccc ccaa_aaaa
*
* f: indicates if zero and negative flags should be updated
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_AND 0x20040000
#define OPC_ANDI (OPC_AND | OP_IMM)
/*
* The 4-byte encoding of "tst[.qq] b,c".
* Checks if the two input operands have any bit set at the same
* position.
*
* 0010_0bbb 1100_1011 1BBB_cccc cc0q_qqqq
*
* qq: qqqqq condition code
*
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_TST 0x20cb8000
/*
* The 4-byte encoding of "or a,b,c":
*
* 0010_0bbb 0000_0101 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_OR 0x20050000
#define OPC_ORI (OPC_OR | OP_IMM)
/*
* The 4-byte encoding of "xor a,b,c":
*
* 0010_0bbb 0000_0111 0BBB_cccc ccaa_aaaa
*
* a: aaaaaa result
* b: BBBbbb the 1st input operand
* c: cccccc the 2nd input operand
*/
#define OPC_XOR 0x20070000
#define OPC_XORI (OPC_XOR | OP_IMM)
/*
* The 4-byte encoding of "not b,c":
*
* 0010_0bbb 0010_1111 0BBB_cccc cc00_1010
*
* b: BBBbbb result
* c: cccccc input
*/
#define OPC_NOT 0x202f000a
/*
* The 4-byte encoding of "btst b,u6":
*
* 0010_0bbb 0101_0001 1BBB_uuuu uu00_0000
*
* b: BBBbbb input number to check
* u6: uuuuuu 6-bit unsigned number specifying bit position to check
*/
#define OPC_BTSTU6 0x20518000
#define BTST_U6(x) (OP_C((x) & 63))
/*
* The 4-byte encoding of "asl[.qq] b,b,c" (arithmetic shift left):
*
* 0010_1bbb 0i00_0000 0BBB_cccc ccaa_aaaa
*
* i: if set, c is considered a 5-bit immediate, else a reg.
*
* b: BBBbbb result and the first operand (number to be shifted)
* c: cccccc amount to be shifted
*/
#define OPC_ASL 0x28000000
#define ASL_I BIT(22)
#define ASLI_U6(x) OP_C((x) & 31)
#define OPC_ASLI (OPC_ASL | ASL_I)
/*
* The 4-byte encoding of "asr a,b,c" (arithmetic shift right):
*
* 0010_1bbb 0i00_0010 0BBB_cccc ccaa_aaaa
*
* i: if set, c is considered a 6-bit immediate, else a reg.
*
* a: aaaaaa result
* b: BBBbbb first input: number to be shifted
* c: cccccc second input: amount to be shifted
*/
#define OPC_ASR 0x28020000
#define ASR_I ASL_I
#define ASRI_U6(x) ASLI_U6(x)
#define OPC_ASRI (OPC_ASR | ASR_I)
/*
* The 4-byte encoding of "lsr a,b,c" (logical shift right):
*
* 0010_1bbb 0i00_0001 0BBB_cccc ccaa_aaaa
*
* i: if set, c is considered a 6-bit immediate, else a reg.
*
* a: aaaaaa result
* b: BBBbbb first input: number to be shifted
* c: cccccc second input: amount to be shifted
*/
#define OPC_LSR 0x28010000
#define LSR_I ASL_I
#define LSRI_U6(x) ASLI_U6(x)
#define OPC_LSRI (OPC_LSR | LSR_I)
/*
* The 4-byte encoding of "swape b,c":
*
* 0010_1bbb 0010_1111 0bbb_cccc cc00_1001
*
* b: BBBbbb destination register
* c: cccccc source register
*/
#define OPC_SWAPE 0x282f0009
/*
* Encoding for jump to an address in register:
* j reg_c
*
* 0010_0000 1110_0000 0000_cccc cc00_0000
*
* c: cccccc register holding the destination address
*/
#define OPC_JMP 0x20e00000
/* Jump to "branch-and-link" register, which effectively is a "return". */
#define OPC_J_BLINK (OPC_JMP | OP_C(ARC_R_BLINK))
/*
* Encoding for jump-and-link to an address in register:
* jl reg_c
*
* 0010_0000 0010_0010 0000_cccc cc00_0000
*
* c: cccccc register holding the destination address
*/
#define OPC_JL 0x20220000
/*
* Encoding for (conditional) branch to an offset from the current location
* that is word aligned: (PC & 0xffff_fffc) + s21
* B[qq] s21
*
* 0000_0sss ssss_sss0 SSSS_SSSS SS0q_qqqq
*
* qq: qqqqq condition code
* s21: SSSS SSSS_SSss ssss_ssss The displacement (21-bit signed)
*
* The displacement is supposed to be 16-bit (2-byte) aligned. Therefore,
* it should be a multiple of 2. Hence, there is an implied '0' bit at its
* LSB: S_SSSS SSSS_Ssss ssss_sss0
*/
#define OPC_BCC 0x00000000
#define BCC_S21(d) ((((d) & 0x7fe) << 16) | (((d) & 0x1ff800) >> 5))
/*
* Encoding for unconditional branch to an offset from the current location
* that is word aligned: (PC & 0xffff_fffc) + s25
* B s25
*
* 0000_0sss ssss_sss1 SSSS_SSSS SS00_TTTT
*
* s25: TTTT SSSS SSSS_SSss ssss_ssss The displacement (25-bit signed)
*
* The displacement is supposed to be 16-bit (2-byte) aligned. Therefore,
* it should be a multiple of 2. Hence, there is an implied '0' bit at its
* LSB: T TTTS_SSSS SSSS_Ssss ssss_sss0
*/
#define OPC_B 0x00010000
#define B_S25(d) ((((d) & 0x1e00000) >> 21) | BCC_S21(d))
static inline void emit_2_bytes(u8 *buf, u16 bytes)
{
*((u16 *)buf) = bytes;
}
static inline void emit_4_bytes(u8 *buf, u32 bytes)
{
emit_2_bytes(buf, bytes >> 16);
emit_2_bytes(buf + 2, bytes & 0xffff);
}
static inline u8 bpf_to_arc_size(u8 size)
{
switch (size) {
case BPF_B:
return ZZ_1_byte;
case BPF_H:
return ZZ_2_byte;
case BPF_W:
return ZZ_4_byte;
case BPF_DW:
return ZZ_8_byte;
default:
return ZZ_4_byte;
}
}
/************** Encoders (Deal with ARC regs) ************/
/* Move an immediate to register with a 4-byte instruction. */
static u8 arc_movi_r(u8 *buf, u8 reg, s16 imm)
{
const u32 insn = OPC_MOVI | OP_B(reg) | MOVI_S12(imm);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* rd <- rs */
static u8 arc_mov_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_MOV | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* The emitted code may have different sizes based on "imm". */
static u8 arc_mov_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM;
if (IN_S12_RANGE(imm))
return arc_movi_r(buf, rd, imm);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* The emitted code will always have the same size (8). */
static u8 arc_mov_i_fixed(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM;
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* Conditional move. */
static u8 arc_mov_cc_r(u8 *buf, u8 cc, u8 rd, u8 rs)
{
const u32 insn = OPC_MOV_CC | OP_B(rd) | OP_C(rs) | COND(cc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* Conditional move of a small immediate to rd. */
static u8 arc_movu_cc_r(u8 *buf, u8 cc, u8 rd, u8 imm)
{
const u32 insn = OPC_MOVU_CC | OP_B(rd) | OP_C(imm) | COND(cc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* Sign extension from a byte. */
static u8 arc_sexb_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_SEXB | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* Sign extension from two bytes. */
static u8 arc_sexh_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_SEXH | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* st reg, [reg_mem, off] */
static u8 arc_st_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
{
const u32 insn = OPC_STORE | STORE_ZZ(zz) | OP_C(reg) |
OP_B(reg_mem) | STORE_S9(off);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* st.aw reg, [sp, -4] */
static u8 arc_push_r(u8 *buf, u8 reg)
{
const u32 insn = OPC_PUSH | OP_C(reg);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* ld reg, [reg_mem, off] (unsigned) */
static u8 arc_ld_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
{
const u32 insn = OPC_LDU | LOAD_ZZ(zz) | LOAD_C(reg) |
OP_B(reg_mem) | LOAD_S9(off);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* ld.x reg, [reg_mem, off] (sign extend) */
static u8 arc_ldx_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
{
const u32 insn = OPC_LDS | LOAD_ZZ(zz) | LOAD_C(reg) |
OP_B(reg_mem) | LOAD_S9(off);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* ld.ab reg,[sp,4] */
static u8 arc_pop_r(u8 *buf, u8 reg)
{
const u32 insn = OPC_POP | LOAD_C(reg);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* add Ra,Ra,Rc */
static u8 arc_add_r(u8 *buf, u8 ra, u8 rc)
{
const u32 insn = OPC_ADD | OP_A(ra) | OP_B(ra) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* add.f Ra,Ra,Rc */
static u8 arc_addf_r(u8 *buf, u8 ra, u8 rc)
{
const u32 insn = OPC_ADDF | OP_A(ra) | OP_B(ra) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* add.f Ra,Ra,u6 */
static u8 arc_addif_r(u8 *buf, u8 ra, u8 u6)
{
const u32 insn = OPC_ADDIF | OP_A(ra) | OP_B(ra) | ADDI_U6(u6);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* add Ra,Ra,u6 */
static u8 arc_addi_r(u8 *buf, u8 ra, u8 u6)
{
const u32 insn = OPC_ADDI | OP_A(ra) | OP_B(ra) | ADDI_U6(u6);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* add Ra,Rb,imm */
static u8 arc_add_i(u8 *buf, u8 ra, u8 rb, s32 imm)
{
const u32 insn = OPC_ADD_I | OP_A(ra) | OP_B(rb);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* adc Ra,Ra,Rc */
static u8 arc_adc_r(u8 *buf, u8 ra, u8 rc)
{
const u32 insn = OPC_ADC | OP_A(ra) | OP_B(ra) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* adc Ra,Ra,u6 */
static u8 arc_adci_r(u8 *buf, u8 ra, u8 u6)
{
const u32 insn = OPC_ADCI | OP_A(ra) | OP_B(ra) | ADCI_U6(u6);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* sub Ra,Ra,Rc */
static u8 arc_sub_r(u8 *buf, u8 ra, u8 rc)
{
const u32 insn = OPC_SUB | OP_A(ra) | OP_B(ra) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* sub.f Ra,Ra,Rc */
static u8 arc_subf_r(u8 *buf, u8 ra, u8 rc)
{
const u32 insn = OPC_SUBF | OP_A(ra) | OP_B(ra) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* sub Ra,Ra,u6 */
static u8 arc_subi_r(u8 *buf, u8 ra, u8 u6)
{
const u32 insn = OPC_SUBI | OP_A(ra) | OP_B(ra) | SUBI_U6(u6);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* sub Ra,Ra,imm */
static u8 arc_sub_i(u8 *buf, u8 ra, s32 imm)
{
const u32 insn = OPC_SUB_I | OP_A(ra) | OP_B(ra);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* sbc Ra,Ra,Rc */
static u8 arc_sbc_r(u8 *buf, u8 ra, u8 rc)
{
const u32 insn = OPC_SBC | OP_A(ra) | OP_B(ra) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* cmp Rb,Rc */
static u8 arc_cmp_r(u8 *buf, u8 rb, u8 rc)
{
const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/*
* cmp.z Rb,Rc
*
* This "cmp.z" variant of compare instruction is used on lower
* 32-bits of register pairs after "cmp"ing their upper parts. If the
* upper parts are equal (z), then this one will proceed to check the
* rest.
*/
static u8 arc_cmpz_r(u8 *buf, u8 rb, u8 rc)
{
const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc) | CC_equal;
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* neg Ra,Rb */
static u8 arc_neg_r(u8 *buf, u8 ra, u8 rb)
{
const u32 insn = OPC_NEG | OP_A(ra) | OP_B(rb);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* mpy Ra,Rb,Rc */
static u8 arc_mpy_r(u8 *buf, u8 ra, u8 rb, u8 rc)
{
const u32 insn = OPC_MPY | OP_A(ra) | OP_B(rb) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* mpy Ra,Rb,imm */
static u8 arc_mpy_i(u8 *buf, u8 ra, u8 rb, s32 imm)
{
const u32 insn = OPC_MPYI | OP_A(ra) | OP_B(rb);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* mpydu Ra,Ra,Rc */
static u8 arc_mpydu_r(u8 *buf, u8 ra, u8 rc)
{
const u32 insn = OPC_MPYDU | OP_A(ra) | OP_B(ra) | OP_C(rc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* mpydu Ra,Ra,imm */
static u8 arc_mpydu_i(u8 *buf, u8 ra, s32 imm)
{
const u32 insn = OPC_MPYDUI | OP_A(ra) | OP_B(ra);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* divu Rd,Rd,Rs */
static u8 arc_divu_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_DIVU | OP_A(rd) | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* divu Rd,Rd,imm */
static u8 arc_divu_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_DIVUI | OP_A(rd) | OP_B(rd);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* div Rd,Rd,Rs */
static u8 arc_divs_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_DIVS | OP_A(rd) | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* div Rd,Rd,imm */
static u8 arc_divs_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_DIVSI | OP_A(rd) | OP_B(rd);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* remu Rd,Rd,Rs */
static u8 arc_remu_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_REMU | OP_A(rd) | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* remu Rd,Rd,imm */
static u8 arc_remu_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_REMUI | OP_A(rd) | OP_B(rd);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* rem Rd,Rd,Rs */
static u8 arc_rems_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_REMS | OP_A(rd) | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* rem Rd,Rd,imm */
static u8 arc_rems_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_REMSI | OP_A(rd) | OP_B(rd);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* and Rd,Rd,Rs */
static u8 arc_and_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_AND | OP_A(rd) | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/* and Rd,Rd,limm */
static u8 arc_and_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_ANDI | OP_A(rd) | OP_B(rd);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
/* tst Rd,Rs */
static u8 arc_tst_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/*
* This particular version, "tst.z ...", is meant to be used after a
* "tst" on the low 32-bit of register pairs. If that "tst" is not
* zero, then we don't need to test the upper 32-bits lest it sets
* the zero flag.
*/
static u8 arc_tstz_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs) | CC_equal;
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_or_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
{
const u32 insn = OPC_OR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_or_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_ORI | OP_A(rd) | OP_B(rd);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
static u8 arc_xor_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_XOR | OP_A(rd) | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_xor_i(u8 *buf, u8 rd, s32 imm)
{
const u32 insn = OPC_XORI | OP_A(rd) | OP_B(rd);
if (buf) {
emit_4_bytes(buf, insn);
emit_4_bytes(buf + INSN_len_normal, imm);
}
return INSN_len_normal + INSN_len_imm;
}
static u8 arc_not_r(u8 *buf, u8 rd, u8 rs)
{
const u32 insn = OPC_NOT | OP_B(rd) | OP_C(rs);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_btst_i(u8 *buf, u8 rs, u8 imm)
{
const u32 insn = OPC_BTSTU6 | OP_B(rs) | BTST_U6(imm);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_asl_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
{
const u32 insn = OPC_ASL | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_asli_r(u8 *buf, u8 rd, u8 rs, u8 imm)
{
const u32 insn = OPC_ASLI | OP_A(rd) | OP_B(rs) | ASLI_U6(imm);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_asr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
{
const u32 insn = OPC_ASR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_asri_r(u8 *buf, u8 rd, u8 rs, u8 imm)
{
const u32 insn = OPC_ASRI | OP_A(rd) | OP_B(rs) | ASRI_U6(imm);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_lsr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
{
const u32 insn = OPC_LSR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_lsri_r(u8 *buf, u8 rd, u8 rs, u8 imm)
{
const u32 insn = OPC_LSRI | OP_A(rd) | OP_B(rs) | LSRI_U6(imm);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_swape_r(u8 *buf, u8 r)
{
const u32 insn = OPC_SWAPE | OP_B(r) | OP_C(r);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
static u8 arc_jmp_return(u8 *buf)
{
if (buf)
emit_4_bytes(buf, OPC_J_BLINK);
return INSN_len_normal;
}
static u8 arc_jl(u8 *buf, u8 reg)
{
const u32 insn = OPC_JL | OP_C(reg);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/*
* Conditional jump to an address that is max 21 bits away (signed).
*
* b<cc> s21
*/
static u8 arc_bcc(u8 *buf, u8 cc, int offset)
{
const u32 insn = OPC_BCC | BCC_S21(offset) | COND(cc);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/*
* Unconditional jump to an address that is max 25 bits away (signed).
*
* b s25
*/
static u8 arc_b(u8 *buf, s32 offset)
{
const u32 insn = OPC_B | B_S25(offset);
if (buf)
emit_4_bytes(buf, insn);
return INSN_len_normal;
}
/************* Packers (Deal with BPF_REGs) **************/
u8 zext(u8 *buf, u8 rd)
{
if (rd != BPF_REG_FP)
return arc_movi_r(buf, REG_HI(rd), 0);
else
return 0;
}
u8 mov_r32(u8 *buf, u8 rd, u8 rs, u8 sign_ext)
{
u8 len = 0;
if (sign_ext) {
if (sign_ext == 8)
len = arc_sexb_r(buf, REG_LO(rd), REG_LO(rs));
else if (sign_ext == 16)
len = arc_sexh_r(buf, REG_LO(rd), REG_LO(rs));
else if (sign_ext == 32 && rd != rs)
len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
return len;
}
/* Unsigned move. */
if (rd != rs)
len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
return len;
}
u8 mov_r32_i32(u8 *buf, u8 reg, s32 imm)
{
return arc_mov_i(buf, REG_LO(reg), imm);
}
u8 mov_r64(u8 *buf, u8 rd, u8 rs, u8 sign_ext)
{
u8 len = 0;
if (sign_ext) {
/* First handle the low 32-bit part. */
len = mov_r32(buf, rd, rs, sign_ext);
/* Now propagate the sign bit of LO to HI. */
if (sign_ext == 8 || sign_ext == 16 || sign_ext == 32) {
len += arc_asri_r(BUF(buf, len),
REG_HI(rd), REG_LO(rd), 31);
}
return len;
}
/* Unsigned move. */
if (rd == rs)
return 0;
len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
if (rs != BPF_REG_FP)
len += arc_mov_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
/* BPF_REG_FP is mapped to 32-bit "fp" register. */
else
len += arc_movi_r(BUF(buf, len), REG_HI(rd), 0);
return len;
}
/* Sign extend the 32-bit immediate into 64-bit register pair. */
u8 mov_r64_i32(u8 *buf, u8 reg, s32 imm)
{
u8 len = 0;
len = arc_mov_i(buf, REG_LO(reg), imm);
/* BPF_REG_FP is mapped to 32-bit "fp" register. */
if (reg != BPF_REG_FP) {
if (imm >= 0)
len += arc_movi_r(BUF(buf, len), REG_HI(reg), 0);
else
len += arc_movi_r(BUF(buf, len), REG_HI(reg), -1);
}
return len;
}
/*
* This is merely used for translation of "LD R, IMM64" instructions
* of the BPF. These sort of instructions are sometimes used for
* relocations. If during the normal pass, the relocation value is
* not known, the BPF instruction may look something like:
*
* LD R <- 0x0000_0001_0000_0001
*
* Which will nicely translate to two 4-byte ARC instructions:
*
* mov R_lo, 1 # imm is small enough to be s12
* mov R_hi, 1 # same
*
* However, during the extra pass, the IMM64 will have changed
* to the resolved address and looks something like:
*
* LD R <- 0x0000_0000_1234_5678
*
* Now, the translated code will require 12 bytes:
*
* mov R_lo, 0x12345678 # this is an 8-byte instruction
* mov R_hi, 0 # still 4 bytes
*
* Which in practice will result in overwriting the following
* instruction. To avoid such cases, we will always emit codes
* with fixed sizes.
*/
u8 mov_r64_i64(u8 *buf, u8 reg, u32 lo, u32 hi)
{
u8 len;
len = arc_mov_i_fixed(buf, REG_LO(reg), lo);
len += arc_mov_i_fixed(BUF(buf, len), REG_HI(reg), hi);
return len;
}
/*
* If the "off"set is too big (doesn't encode as S9) for:
*
* {ld,st} r, [rm, off]
*
* Then emit:
*
* add r10, REG_LO(rm), off
*
* and make sure that r10 becomes the effective address:
*
* {ld,st} r, [r10, 0]
*/
static u8 adjust_mem_access(u8 *buf, s16 *off, u8 size,
u8 rm, u8 *arc_reg_mem)
{
u8 len = 0;
*arc_reg_mem = REG_LO(rm);
if (!IN_S9_RANGE(*off) ||
(size == BPF_DW && !IN_S9_RANGE(*off + 4))) {
len += arc_add_i(BUF(buf, len),
REG_LO(JIT_REG_TMP), REG_LO(rm), (u32)(*off));
*arc_reg_mem = REG_LO(JIT_REG_TMP);
*off = 0;
}
return len;
}
/* store rs, [rd, off] */
u8 store_r(u8 *buf, u8 rs, u8 rd, s16 off, u8 size)
{
u8 len, arc_reg_mem;
len = adjust_mem_access(buf, &off, size, rd, &arc_reg_mem);
if (size == BPF_DW) {
len += arc_st_r(BUF(buf, len), REG_LO(rs), arc_reg_mem,
off, ZZ_4_byte);
len += arc_st_r(BUF(buf, len), REG_HI(rs), arc_reg_mem,
off + 4, ZZ_4_byte);
} else {
u8 zz = bpf_to_arc_size(size);
len += arc_st_r(BUF(buf, len), REG_LO(rs), arc_reg_mem,
off, zz);
}
return len;
}
/*
* For {8,16,32}-bit stores:
* mov r21, imm
* st r21, [...]
* For 64-bit stores:
* mov r21, imm
* st r21, [...]
* mov r21, {0,-1}
* st r21, [...+4]
*/
u8 store_i(u8 *buf, s32 imm, u8 rd, s16 off, u8 size)
{
u8 len, arc_reg_mem;
/* REG_LO(JIT_REG_TMP) might be used by "adjust_mem_access()". */
const u8 arc_rs = REG_HI(JIT_REG_TMP);
len = adjust_mem_access(buf, &off, size, rd, &arc_reg_mem);
if (size == BPF_DW) {
len += arc_mov_i(BUF(buf, len), arc_rs, imm);
len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem,
off, ZZ_4_byte);
imm = (imm >= 0 ? 0 : -1);
len += arc_mov_i(BUF(buf, len), arc_rs, imm);
len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem,
off + 4, ZZ_4_byte);
} else {
u8 zz = bpf_to_arc_size(size);
len += arc_mov_i(BUF(buf, len), arc_rs, imm);
len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem, off, zz);
}
return len;
}
/*
* For the calling convention of a little endian machine, the LO part
* must be on top of the stack.
*/
static u8 push_r64(u8 *buf, u8 reg)
{
u8 len = 0;
#ifdef __LITTLE_ENDIAN
/* BPF_REG_FP is mapped to 32-bit "fp" register. */
if (reg != BPF_REG_FP)
len += arc_push_r(BUF(buf, len), REG_HI(reg));
len += arc_push_r(BUF(buf, len), REG_LO(reg));
#else
len += arc_push_r(BUF(buf, len), REG_LO(reg));
if (reg != BPF_REG_FP)
len += arc_push_r(BUF(buf, len), REG_HI(reg));
#endif
return len;
}
/* load rd, [rs, off] */
u8 load_r(u8 *buf, u8 rd, u8 rs, s16 off, u8 size, bool sign_ext)
{
u8 len, arc_reg_mem;
len = adjust_mem_access(buf, &off, size, rs, &arc_reg_mem);
if (size == BPF_B || size == BPF_H || size == BPF_W) {
const u8 zz = bpf_to_arc_size(size);
/* Use LD.X only if the data size is less than 32-bit. */
if (sign_ext && (zz == ZZ_1_byte || zz == ZZ_2_byte)) {
len += arc_ldx_r(BUF(buf, len), REG_LO(rd),
arc_reg_mem, off, zz);
} else {
len += arc_ld_r(BUF(buf, len), REG_LO(rd),
arc_reg_mem, off, zz);
}
if (sign_ext) {
/* Propagate the sign bit to the higher reg. */
len += arc_asri_r(BUF(buf, len),
REG_HI(rd), REG_LO(rd), 31);
} else {
len += arc_movi_r(BUF(buf, len), REG_HI(rd), 0);
}
} else if (size == BPF_DW) {
/*
* We are about to issue 2 consecutive loads:
*
* ld rx, [rb, off+0]
* ld ry, [rb, off+4]
*
* If "rx" and "rb" are the same registers, then the order
* should change to guarantee that "rb" remains intact
* during these 2 operations:
*
* ld ry, [rb, off+4]
* ld rx, [rb, off+0]
*/
if (REG_LO(rd) != arc_reg_mem) {
len += arc_ld_r(BUF(buf, len), REG_LO(rd), arc_reg_mem,
off, ZZ_4_byte);
len += arc_ld_r(BUF(buf, len), REG_HI(rd), arc_reg_mem,
off + 4, ZZ_4_byte);
} else {
len += arc_ld_r(BUF(buf, len), REG_HI(rd), arc_reg_mem,
off + 4, ZZ_4_byte);
len += arc_ld_r(BUF(buf, len), REG_LO(rd), arc_reg_mem,
off, ZZ_4_byte);
}
}
return len;
}
u8 add_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_add_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 add_r32_i32(u8 *buf, u8 rd, s32 imm)
{
if (IN_U6_RANGE(imm))
return arc_addi_r(buf, REG_LO(rd), imm);
else
return arc_add_i(buf, REG_LO(rd), REG_LO(rd), imm);
}
u8 add_r64(u8 *buf, u8 rd, u8 rs)
{
u8 len;
len = arc_addf_r(buf, REG_LO(rd), REG_LO(rs));
len += arc_adc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
return len;
}
u8 add_r64_i32(u8 *buf, u8 rd, s32 imm)
{
u8 len;
if (IN_U6_RANGE(imm)) {
len = arc_addif_r(buf, REG_LO(rd), imm);
len += arc_adci_r(BUF(buf, len), REG_HI(rd), 0);
} else {
len = mov_r64_i32(buf, JIT_REG_TMP, imm);
len += add_r64(BUF(buf, len), rd, JIT_REG_TMP);
}
return len;
}
u8 sub_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_sub_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 sub_r32_i32(u8 *buf, u8 rd, s32 imm)
{
if (IN_U6_RANGE(imm))
return arc_subi_r(buf, REG_LO(rd), imm);
else
return arc_sub_i(buf, REG_LO(rd), imm);
}
u8 sub_r64(u8 *buf, u8 rd, u8 rs)
{
u8 len;
len = arc_subf_r(buf, REG_LO(rd), REG_LO(rs));
len += arc_sbc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
return len;
}
u8 sub_r64_i32(u8 *buf, u8 rd, s32 imm)
{
u8 len;
len = mov_r64_i32(buf, JIT_REG_TMP, imm);
len += sub_r64(BUF(buf, len), rd, JIT_REG_TMP);
return len;
}
static u8 cmp_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_cmp_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 neg_r32(u8 *buf, u8 r)
{
return arc_neg_r(buf, REG_LO(r), REG_LO(r));
}
/* In a two's complement system, -r is (~r + 1). */
u8 neg_r64(u8 *buf, u8 r)
{
u8 len;
len = arc_not_r(buf, REG_LO(r), REG_LO(r));
len += arc_not_r(BUF(buf, len), REG_HI(r), REG_HI(r));
len += add_r64_i32(BUF(buf, len), r, 1);
return len;
}
u8 mul_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_mpy_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
}
u8 mul_r32_i32(u8 *buf, u8 rd, s32 imm)
{
return arc_mpy_i(buf, REG_LO(rd), REG_LO(rd), imm);
}
/*
* MUL B, C
* --------
* mpy t0, B_hi, C_lo
* mpy t1, B_lo, C_hi
* mpydu B_lo, B_lo, C_lo
* add B_hi, B_hi, t0
* add B_hi, B_hi, t1
*/
u8 mul_r64(u8 *buf, u8 rd, u8 rs)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 t1 = REG_HI(JIT_REG_TMP);
const u8 C_lo = REG_LO(rs);
const u8 C_hi = REG_HI(rs);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
u8 len;
len = arc_mpy_r(buf, t0, B_hi, C_lo);
len += arc_mpy_r(BUF(buf, len), t1, B_lo, C_hi);
len += arc_mpydu_r(BUF(buf, len), B_lo, C_lo);
len += arc_add_r(BUF(buf, len), B_hi, t0);
len += arc_add_r(BUF(buf, len), B_hi, t1);
return len;
}
/*
* MUL B, imm
* ----------
*
* To get a 64-bit result from a signed 64x32 multiplication:
*
* B_hi B_lo *
* sign imm
* -----------------------------
* HI(B_lo*imm) LO(B_lo*imm) +
* B_hi*imm +
* B_lo*sign
* -----------------------------
* res_hi res_lo
*
* mpy t1, B_lo, sign(imm)
* mpy t0, B_hi, imm
* mpydu B_lo, B_lo, imm
* add B_hi, B_hi, t0
* add B_hi, B_hi, t1
*
* Note: We can't use signed double multiplication, "mpyd", instead of an
* unsigned version, "mpydu", and then get rid of the sign adjustments
* calculated in "t1". The signed multiplication, "mpyd", will consider
* both operands, "B_lo" and "imm", as signed inputs. However, for this
* 64x32 multiplication, "B_lo" must be treated as an unsigned number.
*/
u8 mul_r64_i32(u8 *buf, u8 rd, s32 imm)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 t1 = REG_HI(JIT_REG_TMP);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
u8 len = 0;
if (imm == 1)
return 0;
/* Is the sign-extension of the immediate "-1"? */
if (imm < 0)
len += arc_neg_r(BUF(buf, len), t1, B_lo);
len += arc_mpy_i(BUF(buf, len), t0, B_hi, imm);
len += arc_mpydu_i(BUF(buf, len), B_lo, imm);
len += arc_add_r(BUF(buf, len), B_hi, t0);
/* Add the "sign*B_lo" part, if necessary. */
if (imm < 0)
len += arc_add_r(BUF(buf, len), B_hi, t1);
return len;
}
u8 div_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext)
{
if (sign_ext)
return arc_divs_r(buf, REG_LO(rd), REG_LO(rs));
else
return arc_divu_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 div_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext)
{
if (imm == 0)
return 0;
if (sign_ext)
return arc_divs_i(buf, REG_LO(rd), imm);
else
return arc_divu_i(buf, REG_LO(rd), imm);
}
u8 mod_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext)
{
if (sign_ext)
return arc_rems_r(buf, REG_LO(rd), REG_LO(rs));
else
return arc_remu_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 mod_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext)
{
if (imm == 0)
return 0;
if (sign_ext)
return arc_rems_i(buf, REG_LO(rd), imm);
else
return arc_remu_i(buf, REG_LO(rd), imm);
}
u8 and_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_and_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 and_r32_i32(u8 *buf, u8 rd, s32 imm)
{
return arc_and_i(buf, REG_LO(rd), imm);
}
u8 and_r64(u8 *buf, u8 rd, u8 rs)
{
u8 len;
len = arc_and_r(buf, REG_LO(rd), REG_LO(rs));
len += arc_and_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
return len;
}
u8 and_r64_i32(u8 *buf, u8 rd, s32 imm)
{
u8 len;
len = mov_r64_i32(buf, JIT_REG_TMP, imm);
len += and_r64(BUF(buf, len), rd, JIT_REG_TMP);
return len;
}
static u8 tst_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_tst_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 or_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
}
u8 or_r32_i32(u8 *buf, u8 rd, s32 imm)
{
return arc_or_i(buf, REG_LO(rd), imm);
}
u8 or_r64(u8 *buf, u8 rd, u8 rs)
{
u8 len;
len = arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
len += arc_or_r(BUF(buf, len), REG_HI(rd), REG_HI(rd), REG_HI(rs));
return len;
}
u8 or_r64_i32(u8 *buf, u8 rd, s32 imm)
{
u8 len;
len = mov_r64_i32(buf, JIT_REG_TMP, imm);
len += or_r64(BUF(buf, len), rd, JIT_REG_TMP);
return len;
}
u8 xor_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_xor_r(buf, REG_LO(rd), REG_LO(rs));
}
u8 xor_r32_i32(u8 *buf, u8 rd, s32 imm)
{
return arc_xor_i(buf, REG_LO(rd), imm);
}
u8 xor_r64(u8 *buf, u8 rd, u8 rs)
{
u8 len;
len = arc_xor_r(buf, REG_LO(rd), REG_LO(rs));
len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
return len;
}
u8 xor_r64_i32(u8 *buf, u8 rd, s32 imm)
{
u8 len;
len = mov_r64_i32(buf, JIT_REG_TMP, imm);
len += xor_r64(BUF(buf, len), rd, JIT_REG_TMP);
return len;
}
/* "asl a,b,c" --> "a = (b << (c & 31))". */
u8 lsh_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_asl_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
}
u8 lsh_r32_i32(u8 *buf, u8 rd, u8 imm)
{
return arc_asli_r(buf, REG_LO(rd), REG_LO(rd), imm);
}
/*
* algorithm
* ---------
* if (n <= 32)
* to_hi = lo >> (32-n) # (32-n) is the negate of "n" in a 5-bit width.
* lo <<= n
* hi <<= n
* hi |= to_hi
* else
* hi = lo << (n-32)
* lo = 0
*
* assembly translation for "LSH B, C"
* (heavily influenced by ARC gcc)
* -----------------------------------
* not t0, C_lo # The first 3 lines are almost the same as:
* lsr t1, B_lo, 1 # neg t0, C_lo
* lsr t1, t1, t0 # lsr t1, B_lo, t0 --> t1 is "to_hi"
* mov t0, C_lo* # with one important difference. In "neg"
* asl B_lo, B_lo, t0 # version, when C_lo=0, t1 becomes B_lo while
* asl B_hi, B_hi, t0 # it should be 0. The "not" approach instead,
* or B_hi, B_hi, t1 # "shift"s t1 once and 31 times, practically
* btst t0, 5 # setting it to 0 when C_lo=0.
* mov.ne B_hi, B_lo**
* mov.ne B_lo, 0
*
* *The "mov t0, C_lo" is necessary to cover the cases that C is the same
* register as B.
*
* **ARC performs a shift in this manner: B <<= (C & 31)
* For 32<=n<64, "n-32" and "n&31" are the same. Therefore, "B << n" and
* "B << (n-32)" yield the same results. e.g. the results of "B << 35" and
* "B << 3" are the same.
*
* The behaviour is undefined for n >= 64.
*/
u8 lsh_r64(u8 *buf, u8 rd, u8 rs)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 t1 = REG_HI(JIT_REG_TMP);
const u8 C_lo = REG_LO(rs);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
u8 len;
len = arc_not_r(buf, t0, C_lo);
len += arc_lsri_r(BUF(buf, len), t1, B_lo, 1);
len += arc_lsr_r(BUF(buf, len), t1, t1, t0);
len += arc_mov_r(BUF(buf, len), t0, C_lo);
len += arc_asl_r(BUF(buf, len), B_lo, B_lo, t0);
len += arc_asl_r(BUF(buf, len), B_hi, B_hi, t0);
len += arc_or_r(BUF(buf, len), B_hi, B_hi, t1);
len += arc_btst_i(BUF(buf, len), t0, 5);
len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_hi, B_lo);
len += arc_movu_cc_r(BUF(buf, len), CC_unequal, B_lo, 0);
return len;
}
/*
* if (n < 32)
* to_hi = B_lo >> 32-n # extract upper n bits
* lo <<= n
* hi <<=n
* hi |= to_hi
* else if (n < 64)
* hi = lo << n-32
* lo = 0
*/
u8 lsh_r64_i32(u8 *buf, u8 rd, s32 imm)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
const u8 n = (u8)imm;
u8 len = 0;
if (n == 0) {
return 0;
} else if (n <= 31) {
len = arc_lsri_r(buf, t0, B_lo, 32 - n);
len += arc_asli_r(BUF(buf, len), B_lo, B_lo, n);
len += arc_asli_r(BUF(buf, len), B_hi, B_hi, n);
len += arc_or_r(BUF(buf, len), B_hi, B_hi, t0);
} else if (n <= 63) {
len = arc_asli_r(buf, B_hi, B_lo, n - 32);
len += arc_movi_r(BUF(buf, len), B_lo, 0);
}
/* n >= 64 is undefined behaviour. */
return len;
}
/* "lsr a,b,c" --> "a = (b >> (c & 31))". */
u8 rsh_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_lsr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
}
u8 rsh_r32_i32(u8 *buf, u8 rd, u8 imm)
{
return arc_lsri_r(buf, REG_LO(rd), REG_LO(rd), imm);
}
/*
* For better commentary, see lsh_r64().
*
* algorithm
* ---------
* if (n <= 32)
* to_lo = hi << (32-n)
* hi >>= n
* lo >>= n
* lo |= to_lo
* else
* lo = hi >> (n-32)
* hi = 0
*
* RSH B,C
* ----------
* not t0, C_lo
* asl t1, B_hi, 1
* asl t1, t1, t0
* mov t0, C_lo
* lsr B_hi, B_hi, t0
* lsr B_lo, B_lo, t0
* or B_lo, B_lo, t1
* btst t0, 5
* mov.ne B_lo, B_hi
* mov.ne B_hi, 0
*/
u8 rsh_r64(u8 *buf, u8 rd, u8 rs)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 t1 = REG_HI(JIT_REG_TMP);
const u8 C_lo = REG_LO(rs);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
u8 len;
len = arc_not_r(buf, t0, C_lo);
len += arc_asli_r(BUF(buf, len), t1, B_hi, 1);
len += arc_asl_r(BUF(buf, len), t1, t1, t0);
len += arc_mov_r(BUF(buf, len), t0, C_lo);
len += arc_lsr_r(BUF(buf, len), B_hi, B_hi, t0);
len += arc_lsr_r(BUF(buf, len), B_lo, B_lo, t0);
len += arc_or_r(BUF(buf, len), B_lo, B_lo, t1);
len += arc_btst_i(BUF(buf, len), t0, 5);
len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_lo, B_hi);
len += arc_movu_cc_r(BUF(buf, len), CC_unequal, B_hi, 0);
return len;
}
/*
* if (n < 32)
* to_lo = B_lo << 32-n # extract lower n bits, right-padded with 32-n 0s
* lo >>=n
* hi >>=n
* hi |= to_lo
* else if (n < 64)
* lo = hi >> n-32
* hi = 0
*/
u8 rsh_r64_i32(u8 *buf, u8 rd, s32 imm)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
const u8 n = (u8)imm;
u8 len = 0;
if (n == 0) {
return 0;
} else if (n <= 31) {
len = arc_asli_r(buf, t0, B_hi, 32 - n);
len += arc_lsri_r(BUF(buf, len), B_lo, B_lo, n);
len += arc_lsri_r(BUF(buf, len), B_hi, B_hi, n);
len += arc_or_r(BUF(buf, len), B_lo, B_lo, t0);
} else if (n <= 63) {
len = arc_lsri_r(buf, B_lo, B_hi, n - 32);
len += arc_movi_r(BUF(buf, len), B_hi, 0);
}
/* n >= 64 is undefined behaviour. */
return len;
}
/* "asr a,b,c" --> "a = (b s>> (c & 31))". */
u8 arsh_r32(u8 *buf, u8 rd, u8 rs)
{
return arc_asr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
}
u8 arsh_r32_i32(u8 *buf, u8 rd, u8 imm)
{
return arc_asri_r(buf, REG_LO(rd), REG_LO(rd), imm);
}
/*
* For comparison, see rsh_r64().
*
* algorithm
* ---------
* if (n <= 32)
* to_lo = hi << (32-n)
* hi s>>= n
* lo >>= n
* lo |= to_lo
* else
* hi_sign = hi s>>31
* lo = hi s>> (n-32)
* hi = hi_sign
*
* ARSH B,C
* ----------
* not t0, C_lo
* asl t1, B_hi, 1
* asl t1, t1, t0
* mov t0, C_lo
* asr B_hi, B_hi, t0
* lsr B_lo, B_lo, t0
* or B_lo, B_lo, t1
* btst t0, 5
* asr t0, B_hi, 31 # now, t0 = 0 or -1 based on B_hi's sign
* mov.ne B_lo, B_hi
* mov.ne B_hi, t0
*/
u8 arsh_r64(u8 *buf, u8 rd, u8 rs)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 t1 = REG_HI(JIT_REG_TMP);
const u8 C_lo = REG_LO(rs);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
u8 len;
len = arc_not_r(buf, t0, C_lo);
len += arc_asli_r(BUF(buf, len), t1, B_hi, 1);
len += arc_asl_r(BUF(buf, len), t1, t1, t0);
len += arc_mov_r(BUF(buf, len), t0, C_lo);
len += arc_asr_r(BUF(buf, len), B_hi, B_hi, t0);
len += arc_lsr_r(BUF(buf, len), B_lo, B_lo, t0);
len += arc_or_r(BUF(buf, len), B_lo, B_lo, t1);
len += arc_btst_i(BUF(buf, len), t0, 5);
len += arc_asri_r(BUF(buf, len), t0, B_hi, 31);
len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_lo, B_hi);
len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_hi, t0);
return len;
}
/*
* if (n < 32)
* to_lo = lo << 32-n # extract lower n bits, right-padded with 32-n 0s
* lo >>=n
* hi s>>=n
* hi |= to_lo
* else if (n < 64)
* lo = hi s>> n-32
* hi = (lo[msb] ? -1 : 0)
*/
u8 arsh_r64_i32(u8 *buf, u8 rd, s32 imm)
{
const u8 t0 = REG_LO(JIT_REG_TMP);
const u8 B_lo = REG_LO(rd);
const u8 B_hi = REG_HI(rd);
const u8 n = (u8)imm;
u8 len = 0;
if (n == 0) {
return 0;
} else if (n <= 31) {
len = arc_asli_r(buf, t0, B_hi, 32 - n);
len += arc_lsri_r(BUF(buf, len), B_lo, B_lo, n);
len += arc_asri_r(BUF(buf, len), B_hi, B_hi, n);
len += arc_or_r(BUF(buf, len), B_lo, B_lo, t0);
} else if (n <= 63) {
len = arc_asri_r(buf, B_lo, B_hi, n - 32);
len += arc_movi_r(BUF(buf, len), B_hi, -1);
len += arc_btst_i(BUF(buf, len), B_lo, 31);
len += arc_movu_cc_r(BUF(buf, len), CC_equal, B_hi, 0);
}
/* n >= 64 is undefined behaviour. */
return len;
}
u8 gen_swap(u8 *buf, u8 rd, u8 size, u8 endian, bool force, bool do_zext)
{
u8 len = 0;
#ifdef __BIG_ENDIAN
const u8 host_endian = BPF_FROM_BE;
#else
const u8 host_endian = BPF_FROM_LE;
#endif
if (host_endian != endian || force) {
switch (size) {
case 16:
/*
* r = B4B3_B2B1 << 16 --> r = B2B1_0000
* then, swape(r) would become the desired 0000_B1B2
*/
len = arc_asli_r(buf, REG_LO(rd), REG_LO(rd), 16);
fallthrough;
case 32:
len += arc_swape_r(BUF(buf, len), REG_LO(rd));
if (do_zext)
len += zext(BUF(buf, len), rd);
break;
case 64:
/*
* swap "hi" and "lo":
* hi ^= lo;
* lo ^= hi;
* hi ^= lo;
* and then swap the bytes in "hi" and "lo".
*/
len = arc_xor_r(buf, REG_HI(rd), REG_LO(rd));
len += arc_xor_r(BUF(buf, len), REG_LO(rd), REG_HI(rd));
len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_LO(rd));
len += arc_swape_r(BUF(buf, len), REG_LO(rd));
len += arc_swape_r(BUF(buf, len), REG_HI(rd));
break;
default:
/* The caller must have handled this. */
break;
}
} else {
/*
* If the same endianness, there's not much to do other
* than zeroing out the upper bytes based on the "size".
*/
switch (size) {
case 16:
len = arc_and_i(buf, REG_LO(rd), 0xffff);
fallthrough;
case 32:
if (do_zext)
len += zext(BUF(buf, len), rd);
break;
case 64:
break;
default:
/* The caller must have handled this. */
break;
}
}
return len;
}
/*
* To create a frame, all that is needed is:
*
* push fp
* mov fp, sp
* sub sp, <frame_size>
*
* "push fp" is taken care of separately while saving the clobbered registers.
* All that remains is copying SP value to FP and shrinking SP's address space
* for any possible function call to come.
*/
static inline u8 frame_create(u8 *buf, u16 size)
{
u8 len;
len = arc_mov_r(buf, ARC_R_FP, ARC_R_SP);
if (IN_U6_RANGE(size))
len += arc_subi_r(BUF(buf, len), ARC_R_SP, size);
else
len += arc_sub_i(BUF(buf, len), ARC_R_SP, size);
return len;
}
/*
* mov sp, fp
*
* The value of SP upon entering was copied to FP.
*/
static inline u8 frame_restore(u8 *buf)
{
return arc_mov_r(buf, ARC_R_SP, ARC_R_FP);
}
/*
* Going from a JITed code to the native caller:
*
* mov ARC_ABI_RET_lo, BPF_REG_0_lo # r0 <- r8
* mov ARC_ABI_RET_hi, BPF_REG_0_hi # r1 <- r9
*/
static u8 bpf_to_arc_return(u8 *buf)
{
u8 len;
len = arc_mov_r(buf, ARC_R_0, REG_LO(BPF_REG_0));
len += arc_mov_r(BUF(buf, len), ARC_R_1, REG_HI(BPF_REG_0));
return len;
}
/*
* Coming back from an external (in-kernel) function to the JITed code:
*
* mov ARC_ABI_RET_lo, BPF_REG_0_lo # r8 <- r0
* mov ARC_ABI_RET_hi, BPF_REG_0_hi # r9 <- r1
*/
u8 arc_to_bpf_return(u8 *buf)
{
u8 len;
len = arc_mov_r(buf, REG_LO(BPF_REG_0), ARC_R_0);
len += arc_mov_r(BUF(buf, len), REG_HI(BPF_REG_0), ARC_R_1);
return len;
}
/*
* This translation leads to:
*
* mov r10, addr # always an 8-byte instruction
* jl [r10]
*
* The length of the "mov" must be fixed (8), otherwise it may diverge
* during the normal and extra passes:
*
* normal pass extra pass
*
* 180: mov r10,0 | 180: mov r10,0x700578d8
* 184: jl [r10] | 188: jl [r10]
* 188: add.f r16,r16,0x1 | 18c: adc r17,r17,0
* 18c: adc r17,r17,0 |
*
* In the above example, the change from "r10 <- 0" to "r10 <- 0x700578d8"
* has led to an increase in the length of the "mov" instruction.
* Inadvertently, that caused the loss of the "add.f" instruction.
*/
static u8 jump_and_link(u8 *buf, u32 addr)
{
u8 len;
len = arc_mov_i_fixed(buf, REG_LO(JIT_REG_TMP), addr);
len += arc_jl(BUF(buf, len), REG_LO(JIT_REG_TMP));
return len;
}
/*
* This function determines which ARC registers must be saved and restored.
* It does so by looking into:
*
* "bpf_reg": The clobbered (destination) BPF register
* "is_call": Indicator if the current instruction is a call
*
* When a register of interest is clobbered, its corresponding bit position
* in return value, "usage", is set to true.
*/
u32 mask_for_used_regs(u8 bpf_reg, bool is_call)
{
u32 usage = 0;
/* BPF registers that must be saved. */
if (bpf_reg >= BPF_REG_6 && bpf_reg <= BPF_REG_9) {
usage |= BIT(REG_LO(bpf_reg));
usage |= BIT(REG_HI(bpf_reg));
/*
* Using the frame pointer register implies that it should
* be saved and reinitialised with the current frame data.
*/
} else if (bpf_reg == BPF_REG_FP) {
usage |= BIT(REG_LO(BPF_REG_FP));
/* Could there be some ARC registers that must to be saved? */
} else {
if (REG_LO(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST &&
REG_LO(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST)
usage |= BIT(REG_LO(bpf_reg));
if (REG_HI(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST &&
REG_HI(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST)
usage |= BIT(REG_HI(bpf_reg));
}
/* A "call" indicates that ARC's "blink" reg must be saved. */
usage |= is_call ? BIT(ARC_R_BLINK) : 0;
return usage;
}
/*
* push blink # if blink is marked as clobbered
* push r[0-n] # if r[i] is marked as clobbered
* push fp # if fp is marked as clobbered
* mov fp, sp # if frame_size > 0 (clobbers fp)
* sub sp, <frame_size> # same as above
*/
u8 arc_prologue(u8 *buf, u32 usage, u16 frame_size)
{
u8 len = 0;
u32 gp_regs = 0;
/* Deal with blink first. */
if (usage & BIT(ARC_R_BLINK))
len += arc_push_r(BUF(buf, len), ARC_R_BLINK);
gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP));
while (gp_regs) {
u8 reg = __builtin_ffs(gp_regs) - 1;
len += arc_push_r(BUF(buf, len), reg);
gp_regs &= ~BIT(reg);
}
/* Deal with fp last. */
if ((usage & BIT(ARC_R_FP)) || frame_size > 0)
len += arc_push_r(BUF(buf, len), ARC_R_FP);
if (frame_size > 0)
len += frame_create(BUF(buf, len), frame_size);
#ifdef ARC_BPF_JIT_DEBUG
if ((usage & BIT(ARC_R_FP)) && frame_size == 0) {
pr_err("FP is being saved while there is no frame.");
BUG();
}
#endif
return len;
}
/*
* mov sp, fp # if frame_size > 0
* pop fp # if fp is marked as clobbered
* pop r[n-0] # if r[i] is marked as clobbered
* pop blink # if blink is marked as clobbered
* mov r0, r8 # always: ABI_return <- BPF_return
* mov r1, r9 # continuation of above
* j [blink] # always
*
* "fp being marked as clobbered" and "frame_size > 0" are the two sides of
* the same coin.
*/
u8 arc_epilogue(u8 *buf, u32 usage, u16 frame_size)
{
u32 len = 0;
u32 gp_regs = 0;
#ifdef ARC_BPF_JIT_DEBUG
if ((usage & BIT(ARC_R_FP)) && frame_size == 0) {
pr_err("FP is being saved while there is no frame.");
BUG();
}
#endif
if (frame_size > 0)
len += frame_restore(BUF(buf, len));
/* Deal with fp first. */
if ((usage & BIT(ARC_R_FP)) || frame_size > 0)
len += arc_pop_r(BUF(buf, len), ARC_R_FP);
gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP));
while (gp_regs) {
/* "usage" is 32-bit, each bit indicating an ARC register. */
u8 reg = 31 - __builtin_clz(gp_regs);
len += arc_pop_r(BUF(buf, len), reg);
gp_regs &= ~BIT(reg);
}
/* Deal with blink last. */
if (usage & BIT(ARC_R_BLINK))
len += arc_pop_r(BUF(buf, len), ARC_R_BLINK);
/* Wrap up the return value and jump back to the caller. */
len += bpf_to_arc_return(BUF(buf, len));
len += arc_jmp_return(BUF(buf, len));
return len;
}
/*
* For details on the algorithm, see the comments of "gen_jcc_64()".
*
* This data structure is holding information for jump translations.
*
* jit_off: How many bytes into the current JIT address, "b"ranch insn. occurs
* cond: The condition that the ARC branch instruction must use
*
* e.g.:
*
* BPF_JGE R1, R0, @target
* ------------------------
* |
* v
* 0x1000: cmp r3, r1 # 0x1000 is the JIT address for "BPF_JGE ..." insn
* 0x1004: bhi @target # first jump (branch higher)
* 0x1008: blo @end # second jump acting as a skip (end is 0x1014)
* 0x100C: cmp r2, r0 # the lower 32 bits are evaluated
* 0x1010: bhs @target # third jump (branch higher or same)
* 0x1014: ...
*
* The jit_off(set) of the "bhi" is 4 bytes.
* The cond(ition) for the "bhi" is "CC_great_u".
*
* The jit_off(set) is necessary for calculating the exact displacement
* to the "target" address:
*
* jit_address + jit_off(set) - @target
* 0x1000 + 4 - @target
*/
#define JCC64_NR_OF_JMPS 3 /* Number of jumps in jcc64 template. */
#define JCC64_INSNS_TO_END 3 /* Number of insn. inclusive the 2nd jmp to end. */
#define JCC64_SKIP_JMP 1 /* Index of the "skip" jump to "end". */
static const struct {
/*
* "jit_off" is common between all "jmp[]" and is coupled with
* "cond" of each "jmp[]" instance. e.g.:
*
* arcv2_64_jccs.jit_off[1]
* arcv2_64_jccs.jmp[ARC_CC_UGT].cond[1]
*
* Are indicating that the second jump in JITed code of "UGT"
* is at offset "jit_off[1]" while its condition is "cond[1]".
*/
u8 jit_off[JCC64_NR_OF_JMPS];
struct {
u8 cond[JCC64_NR_OF_JMPS];
} jmp[ARC_CC_SLE + 1];
} arcv2_64_jccs = {
.jit_off = {
INSN_len_normal * 1,
INSN_len_normal * 2,
INSN_len_normal * 4
},
/*
* cmp rd_hi, rs_hi
* bhi @target # 1: u>
* blo @end # 2: u<
* cmp rd_lo, rs_lo
* bhi @target # 3: u>
* end:
*/
.jmp[ARC_CC_UGT] = {
.cond = {CC_great_u, CC_less_u, CC_great_u}
},
/*
* cmp rd_hi, rs_hi
* bhi @target # 1: u>
* blo @end # 2: u<
* cmp rd_lo, rs_lo
* bhs @target # 3: u>=
* end:
*/
.jmp[ARC_CC_UGE] = {
.cond = {CC_great_u, CC_less_u, CC_great_eq_u}
},
/*
* cmp rd_hi, rs_hi
* blo @target # 1: u<
* bhi @end # 2: u>
* cmp rd_lo, rs_lo
* blo @target # 3: u<
* end:
*/
.jmp[ARC_CC_ULT] = {
.cond = {CC_less_u, CC_great_u, CC_less_u}
},
/*
* cmp rd_hi, rs_hi
* blo @target # 1: u<
* bhi @end # 2: u>
* cmp rd_lo, rs_lo
* bls @target # 3: u<=
* end:
*/
.jmp[ARC_CC_ULE] = {
.cond = {CC_less_u, CC_great_u, CC_less_eq_u}
},
/*
* cmp rd_hi, rs_hi
* bgt @target # 1: s>
* blt @end # 2: s<
* cmp rd_lo, rs_lo
* bhi @target # 3: u>
* end:
*/
.jmp[ARC_CC_SGT] = {
.cond = {CC_great_s, CC_less_s, CC_great_u}
},
/*
* cmp rd_hi, rs_hi
* bgt @target # 1: s>
* blt @end # 2: s<
* cmp rd_lo, rs_lo
* bhs @target # 3: u>=
* end:
*/
.jmp[ARC_CC_SGE] = {
.cond = {CC_great_s, CC_less_s, CC_great_eq_u}
},
/*
* cmp rd_hi, rs_hi
* blt @target # 1: s<
* bgt @end # 2: s>
* cmp rd_lo, rs_lo
* blo @target # 3: u<
* end:
*/
.jmp[ARC_CC_SLT] = {
.cond = {CC_less_s, CC_great_s, CC_less_u}
},
/*
* cmp rd_hi, rs_hi
* blt @target # 1: s<
* bgt @end # 2: s>
* cmp rd_lo, rs_lo
* bls @target # 3: u<=
* end:
*/
.jmp[ARC_CC_SLE] = {
.cond = {CC_less_s, CC_great_s, CC_less_eq_u}
}
};
/*
* The displacement (offset) for ARC's "b"ranch instruction is the distance
* from the aligned version of _current_ instruction (PCL) to the target
* instruction:
*
* DISP = TARGET - PCL # PCL is the word aligned PC
*/
static inline s32 get_displacement(u32 curr_off, u32 targ_off)
{
return (s32)(targ_off - (curr_off & ~3L));
}
/*
* "disp"lacement should be:
*
* 1. 16-bit aligned.
* 2. fit in S25, because no "condition code" is supposed to be encoded.
*/
static inline bool is_valid_far_disp(s32 disp)
{
return (!(disp & 1) && IN_S25_RANGE(disp));
}
/*
* "disp"lacement should be:
*
* 1. 16-bit aligned.
* 2. fit in S21, because "condition code" is supposed to be encoded too.
*/
static inline bool is_valid_near_disp(s32 disp)
{
return (!(disp & 1) && IN_S21_RANGE(disp));
}
/*
* cmp rd_hi, rs_hi
* cmp.z rd_lo, rs_lo
* b{eq,ne} @target
* | |
* | `--> "eq" param is false (JNE)
* `-----> "eq" param is true (JEQ)
*/
static int gen_j_eq_64(u8 *buf, u8 rd, u8 rs, bool eq,
u32 curr_off, u32 targ_off)
{
s32 disp;
u8 len = 0;
len += arc_cmp_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
len += arc_cmpz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
disp = get_displacement(curr_off + len, targ_off);
len += arc_bcc(BUF(buf, len), eq ? CC_equal : CC_unequal, disp);
return len;
}
/*
* tst rd_hi, rs_hi
* tst.z rd_lo, rs_lo
* bne @target
*/
static u8 gen_jset_64(u8 *buf, u8 rd, u8 rs, u32 curr_off, u32 targ_off)
{
u8 len = 0;
s32 disp;
len += arc_tst_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
len += arc_tstz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
disp = get_displacement(curr_off + len, targ_off);
len += arc_bcc(BUF(buf, len), CC_unequal, disp);
return len;
}
/*
* Verify if all the jumps for a JITed jcc64 operation are valid,
* by consulting the data stored at "arcv2_64_jccs".
*/
static bool check_jcc_64(u32 curr_off, u32 targ_off, u8 cond)
{
size_t i;
if (cond >= ARC_CC_LAST)
return false;
for (i = 0; i < JCC64_NR_OF_JMPS; i++) {
u32 from, to;
from = curr_off + arcv2_64_jccs.jit_off[i];
/* for the 2nd jump, we jump to the end of block. */
if (i != JCC64_SKIP_JMP)
to = targ_off;
else
to = from + (JCC64_INSNS_TO_END * INSN_len_normal);
/* There is a "cc" in the instruction, so a "near" jump. */
if (!is_valid_near_disp(get_displacement(from, to)))
return false;
}
return true;
}
/* Can the jump from "curr_off" to "targ_off" actually happen? */
bool check_jmp_64(u32 curr_off, u32 targ_off, u8 cond)
{
s32 disp;
switch (cond) {
case ARC_CC_UGT:
case ARC_CC_UGE:
case ARC_CC_ULT:
case ARC_CC_ULE:
case ARC_CC_SGT:
case ARC_CC_SGE:
case ARC_CC_SLT:
case ARC_CC_SLE:
return check_jcc_64(curr_off, targ_off, cond);
case ARC_CC_EQ:
case ARC_CC_NE:
case ARC_CC_SET:
/*
* The "jump" for the JITed BPF_J{SET,EQ,NE} is actually the
* 3rd instruction. See comments of "gen_j{set,_eq}_64()".
*/
curr_off += 2 * INSN_len_normal;
disp = get_displacement(curr_off, targ_off);
/* There is a "cc" field in the issued instruction. */
return is_valid_near_disp(disp);
case ARC_CC_AL:
disp = get_displacement(curr_off, targ_off);
return is_valid_far_disp(disp);
default:
return false;
}
}
/*
* The template for the 64-bit jumps with the following BPF conditions
*
* u< u<= u> u>= s< s<= s> s>=
*
* Looks like below:
*
* cmp rd_hi, rs_hi
* b<c1> @target
* b<c2> @end
* cmp rd_lo, rs_lo # if execution reaches here, r{d,s}_hi are equal
* b<c3> @target
* end:
*
* "c1" is the condition that JIT is handling minus the equality part.
* For instance if we have to translate an "unsigned greater or equal",
* then "c1" will be "unsigned greater". We won't know about equality
* until all 64-bits of data (higeher and lower registers) are processed.
*
* "c2" is the counter logic of "c1". For instance, if "c1" is originated
* from "s>", then "c2" would be "s<". Notice that equality doesn't play
* a role here either, because the lower 32 bits are not processed yet.
*
* "c3" is the unsigned version of "c1", no matter if the BPF condition
* was signed or unsigned. An unsigned version is necessary, because the
* MSB of the lower 32 bits does not reflect a sign in the whole 64-bit
* scheme. Otherwise, 64-bit comparisons like
* (0x0000_0000,0x8000_0000) s>= (0x0000_0000,0x0000_0000)
* would yield an incorrect result. Finally, if there is an equality
* check in the BPF condition, it will be reflected in "c3".
*
* You can find all the instances of this template where the
* "arcv2_64_jccs" is getting initialised.
*/
static u8 gen_jcc_64(u8 *buf, u8 rd, u8 rs, u8 cond,
u32 curr_off, u32 targ_off)
{
s32 disp;
u32 end_off;
const u8 *cc = arcv2_64_jccs.jmp[cond].cond;
u8 len = 0;
/* cmp rd_hi, rs_hi */
len += arc_cmp_r(buf, REG_HI(rd), REG_HI(rs));
/* b<c1> @target */
disp = get_displacement(curr_off + len, targ_off);
len += arc_bcc(BUF(buf, len), cc[0], disp);
/* b<c2> @end */
end_off = curr_off + len + (JCC64_INSNS_TO_END * INSN_len_normal);
disp = get_displacement(curr_off + len, end_off);
len += arc_bcc(BUF(buf, len), cc[1], disp);
/* cmp rd_lo, rs_lo */
len += arc_cmp_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
/* b<c3> @target */
disp = get_displacement(curr_off + len, targ_off);
len += arc_bcc(BUF(buf, len), cc[2], disp);
return len;
}
/*
* This function only applies the necessary logic to make the proper
* translations. All the sanity checks must have already been done
* by calling the check_jmp_64().
*/
u8 gen_jmp_64(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off)
{
u8 len = 0;
bool eq = false;
s32 disp;
switch (cond) {
case ARC_CC_AL:
disp = get_displacement(curr_off, targ_off);
len = arc_b(buf, disp);
break;
case ARC_CC_UGT:
case ARC_CC_UGE:
case ARC_CC_ULT:
case ARC_CC_ULE:
case ARC_CC_SGT:
case ARC_CC_SGE:
case ARC_CC_SLT:
case ARC_CC_SLE:
len = gen_jcc_64(buf, rd, rs, cond, curr_off, targ_off);
break;
case ARC_CC_EQ:
eq = true;
fallthrough;
case ARC_CC_NE:
len = gen_j_eq_64(buf, rd, rs, eq, curr_off, targ_off);
break;
case ARC_CC_SET:
len = gen_jset_64(buf, rd, rs, curr_off, targ_off);
break;
default:
#ifdef ARC_BPF_JIT_DEBUG
pr_err("64-bit jump condition is not known.");
BUG();
#endif
}
return len;
}
/*
* The condition codes to use when generating JIT instructions
* for 32-bit jumps.
*
* The "ARC_CC_AL" index is not really used by the code, but it
* is here for the sake of completeness.
*
* The "ARC_CC_SET" becomes "CC_unequal" because of the "tst"
* instruction that precedes the conditional branch.
*/
static const u8 arcv2_32_jmps[ARC_CC_LAST] = {
[ARC_CC_UGT] = CC_great_u,
[ARC_CC_UGE] = CC_great_eq_u,
[ARC_CC_ULT] = CC_less_u,
[ARC_CC_ULE] = CC_less_eq_u,
[ARC_CC_SGT] = CC_great_s,
[ARC_CC_SGE] = CC_great_eq_s,
[ARC_CC_SLT] = CC_less_s,
[ARC_CC_SLE] = CC_less_eq_s,
[ARC_CC_AL] = CC_always,
[ARC_CC_EQ] = CC_equal,
[ARC_CC_NE] = CC_unequal,
[ARC_CC_SET] = CC_unequal
};
/* Can the jump from "curr_off" to "targ_off" actually happen? */
bool check_jmp_32(u32 curr_off, u32 targ_off, u8 cond)
{
u8 addendum;
s32 disp;
if (cond >= ARC_CC_LAST)
return false;
/*
* The unconditional jump happens immediately, while the rest
* are either preceded by a "cmp" or "tst" instruction.
*/
addendum = (cond == ARC_CC_AL) ? 0 : INSN_len_normal;
disp = get_displacement(curr_off + addendum, targ_off);
if (ARC_CC_AL)
return is_valid_far_disp(disp);
else
return is_valid_near_disp(disp);
}
/*
* The JITed code for 32-bit (conditional) branches:
*
* ARC_CC_AL @target
* b @jit_targ_addr
*
* ARC_CC_SET rd, rs, @target
* tst rd, rs
* bnz @jit_targ_addr
*
* ARC_CC_xx rd, rs, @target
* cmp rd, rs
* b<cc> @jit_targ_addr # cc = arcv2_32_jmps[xx]
*/
u8 gen_jmp_32(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off)
{
s32 disp;
u8 len = 0;
/*
* Although this must have already been checked by "check_jmp_32()",
* we're not going to risk accessing "arcv2_32_jmps" array without
* the boundary check.
*/
if (cond >= ARC_CC_LAST) {
#ifdef ARC_BPF_JIT_DEBUG
pr_err("32-bit jump condition is not known.");
BUG();
#endif
return 0;
}
/* If there is a "condition", issue the "cmp" or "tst" first. */
if (cond != ARC_CC_AL) {
if (cond == ARC_CC_SET)
len = tst_r32(buf, rd, rs);
else
len = cmp_r32(buf, rd, rs);
/*
* The issued instruction affects the "disp"lacement as
* it alters the "curr_off" by its "len"gth. The "curr_off"
* should always point to the jump instruction.
*/
disp = get_displacement(curr_off + len, targ_off);
len += arc_bcc(BUF(buf, len), arcv2_32_jmps[cond], disp);
} else {
/* The straight forward unconditional jump. */
disp = get_displacement(curr_off, targ_off);
len = arc_b(buf, disp);
}
return len;
}
/*
* Generate code for functions calls. There can be two types of calls:
*
* - Calling another BPF function
* - Calling an in-kernel function which is compiled by ARC gcc
*
* In the later case, we must comply to ARCv2 ABI and handle arguments
* and return values accordingly.
*/
u8 gen_func_call(u8 *buf, ARC_ADDR func_addr, bool external_func)
{
u8 len = 0;
/*
* In case of an in-kernel function call, always push the 5th
* argument onto the stack, because that's where the ABI dictates
* it should be found. If the callee doesn't really use it, no harm
* is done. The stack is readjusted either way after the call.
*/
if (external_func)
len += push_r64(BUF(buf, len), BPF_REG_5);
len += jump_and_link(BUF(buf, len), func_addr);
if (external_func)
len += arc_add_i(BUF(buf, len), ARC_R_SP, ARC_R_SP, ARG5_SIZE);
return len;
}