| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * The ARCv2 backend of Just-In-Time compiler for eBPF bytecode. |
| * |
| * Copyright (c) 2024 Synopsys Inc. |
| * Author: Shahab Vahedi <shahab@synopsys.com> |
| */ |
| #include <linux/bug.h> |
| #include "bpf_jit.h" |
| |
| /* ARC core registers. */ |
| enum { |
| ARC_R_0, ARC_R_1, ARC_R_2, ARC_R_3, ARC_R_4, ARC_R_5, |
| ARC_R_6, ARC_R_7, ARC_R_8, ARC_R_9, ARC_R_10, ARC_R_11, |
| ARC_R_12, ARC_R_13, ARC_R_14, ARC_R_15, ARC_R_16, ARC_R_17, |
| ARC_R_18, ARC_R_19, ARC_R_20, ARC_R_21, ARC_R_22, ARC_R_23, |
| ARC_R_24, ARC_R_25, ARC_R_26, ARC_R_FP, ARC_R_SP, ARC_R_ILINK, |
| ARC_R_30, ARC_R_BLINK, |
| /* |
| * Having ARC_R_IMM encoded as source register means there is an |
| * immediate that must be interpreted from the next 4 bytes. If |
| * encoded as the destination register though, it implies that the |
| * output of the operation is not assigned to any register. The |
| * latter is helpful if we only care about updating the CPU status |
| * flags. |
| */ |
| ARC_R_IMM = 62 |
| }; |
| |
| /* |
| * Remarks about the rationale behind the chosen mapping: |
| * |
| * - BPF_REG_{1,2,3,4} are the argument registers and must be mapped to |
| * argument registers in ARCv2 ABI: r0-r7. The r7 registers is the last |
| * argument register in the ABI. Therefore BPF_REG_5, as the fifth |
| * argument, must be pushed onto the stack. This is a must for calling |
| * in-kernel functions. |
| * |
| * - In ARCv2 ABI, the return value is in r0 for 32-bit results and (r1,r0) |
| * for 64-bit results. However, because they're already used for BPF_REG_1, |
| * the next available scratch registers, r8 and r9, are the best candidates |
| * for BPF_REG_0. After a "call" to a(n) (in-kernel) function, the result |
| * is "mov"ed to these registers. At a BPF_EXIT, their value is "mov"ed to |
| * (r1,r0). |
| * It is worth mentioning that scratch registers are the best choice for |
| * BPF_REG_0, because it is very popular in BPF instruction encoding. |
| * |
| * - JIT_REG_TMP is an artifact needed to translate some BPF instructions. |
| * Its life span is one single BPF instruction. Since during the |
| * analyze_reg_usage(), it is not known if temporary registers are used, |
| * it is mapped to ARC's scratch registers: r10 and r11. Therefore, they |
| * don't matter in analysing phase and don't need saving. This temporary |
| * register is added as yet another index in the bpf2arc array, so it will |
| * unfold like the rest of registers during the code generation process. |
| * |
| * - Mapping of callee-saved BPF registers, BPF_REG_{6,7,8,9}, starts from |
| * (r15,r14) register pair. The (r13,r12) is not a good choice, because |
| * in ARCv2 ABI, r12 is not a callee-saved register and this can cause |
| * problem when calling an in-kernel function. Theoretically, the mapping |
| * could start from (r14,r13), but it is not a conventional ARCv2 register |
| * pair. To have a future proof design, I opted for this arrangement. |
| * If/when we decide to add ARCv2 instructions that do use register pairs, |
| * the mapping, hopefully, doesn't need to be revisited. |
| */ |
| static const u8 bpf2arc[][2] = { |
| /* Return value from in-kernel function, and exit value from eBPF */ |
| [BPF_REG_0] = {ARC_R_8, ARC_R_9}, |
| /* Arguments from eBPF program to in-kernel function */ |
| [BPF_REG_1] = {ARC_R_0, ARC_R_1}, |
| [BPF_REG_2] = {ARC_R_2, ARC_R_3}, |
| [BPF_REG_3] = {ARC_R_4, ARC_R_5}, |
| [BPF_REG_4] = {ARC_R_6, ARC_R_7}, |
| /* Remaining arguments, to be passed on the stack per 32-bit ABI */ |
| [BPF_REG_5] = {ARC_R_22, ARC_R_23}, |
| /* Callee-saved registers that in-kernel function will preserve */ |
| [BPF_REG_6] = {ARC_R_14, ARC_R_15}, |
| [BPF_REG_7] = {ARC_R_16, ARC_R_17}, |
| [BPF_REG_8] = {ARC_R_18, ARC_R_19}, |
| [BPF_REG_9] = {ARC_R_20, ARC_R_21}, |
| /* Read-only frame pointer to access the eBPF stack. 32-bit only. */ |
| [BPF_REG_FP] = {ARC_R_FP, }, |
| /* Register for blinding constants */ |
| [BPF_REG_AX] = {ARC_R_24, ARC_R_25}, |
| /* Temporary registers for internal use */ |
| [JIT_REG_TMP] = {ARC_R_10, ARC_R_11} |
| }; |
| |
| #define ARC_CALLEE_SAVED_REG_FIRST ARC_R_13 |
| #define ARC_CALLEE_SAVED_REG_LAST ARC_R_25 |
| |
| #define REG_LO(r) (bpf2arc[(r)][0]) |
| #define REG_HI(r) (bpf2arc[(r)][1]) |
| |
| /* |
| * To comply with ARCv2 ABI, BPF's arg5 must be put on stack. After which, |
| * the stack needs to be restored by ARG5_SIZE. |
| */ |
| #define ARG5_SIZE 8 |
| |
| /* Instruction lengths in bytes. */ |
| enum { |
| INSN_len_normal = 4, /* Normal instructions length. */ |
| INSN_len_imm = 4 /* Length of an extra 32-bit immediate. */ |
| }; |
| |
| /* ZZ defines the size of operation in encodings that it is used. */ |
| enum { |
| ZZ_1_byte = 1, |
| ZZ_2_byte = 2, |
| ZZ_4_byte = 0, |
| ZZ_8_byte = 3 |
| }; |
| |
| /* |
| * AA is mostly about address write back mode. It determines if the |
| * address in question should be updated before usage or after: |
| * addr += offset; data = *addr; |
| * data = *addr; addr += offset; |
| * |
| * In "scaling" mode, the effective address will become the sum |
| * of "address" + "index"*"size". The "size" is specified by the |
| * "ZZ" field. There is no write back when AA is set for scaling: |
| * data = *(addr + offset<<zz) |
| */ |
| enum { |
| AA_none = 0, |
| AA_pre = 1, /* in assembly known as "a/aw". */ |
| AA_post = 2, /* in assembly known as "ab". */ |
| AA_scale = 3 /* in assembly known as "as". */ |
| }; |
| |
| /* X flag determines the mode of extension. */ |
| enum { |
| X_zero = 0, |
| X_sign = 1 |
| }; |
| |
| /* Condition codes. */ |
| enum { |
| CC_always = 0, /* condition is true all the time */ |
| CC_equal = 1, /* if status32.z flag is set */ |
| CC_unequal = 2, /* if status32.z flag is clear */ |
| CC_positive = 3, /* if status32.n flag is clear */ |
| CC_negative = 4, /* if status32.n flag is set */ |
| CC_less_u = 5, /* less than (unsigned) */ |
| CC_less_eq_u = 14, /* less than or equal (unsigned) */ |
| CC_great_eq_u = 6, /* greater than or equal (unsigned) */ |
| CC_great_u = 13, /* greater than (unsigned) */ |
| CC_less_s = 11, /* less than (signed) */ |
| CC_less_eq_s = 12, /* less than or equal (signed) */ |
| CC_great_eq_s = 10, /* greater than or equal (signed) */ |
| CC_great_s = 9 /* greater than (signed) */ |
| }; |
| |
| #define IN_U6_RANGE(x) ((x) <= (0x40 - 1) && (x) >= 0) |
| #define IN_S9_RANGE(x) ((x) <= (0x100 - 1) && (x) >= -0x100) |
| #define IN_S12_RANGE(x) ((x) <= (0x800 - 1) && (x) >= -0x800) |
| #define IN_S21_RANGE(x) ((x) <= (0x100000 - 1) && (x) >= -0x100000) |
| #define IN_S25_RANGE(x) ((x) <= (0x1000000 - 1) && (x) >= -0x1000000) |
| |
| /* Operands in most of the encodings. */ |
| #define OP_A(x) ((x) & 0x03f) |
| #define OP_B(x) ((((x) & 0x07) << 24) | (((x) & 0x38) << 9)) |
| #define OP_C(x) (((x) & 0x03f) << 6) |
| #define OP_IMM (OP_C(ARC_R_IMM)) |
| #define COND(x) (OP_A((x) & 31)) |
| #define FLAG(x) (((x) & 1) << 15) |
| |
| /* |
| * The 4-byte encoding of "mov b,c": |
| * |
| * 0010_0bbb 0000_1010 0BBB_cccc cc00_0000 |
| * |
| * b: BBBbbb destination register |
| * c: cccccc source register |
| */ |
| #define OPC_MOV 0x200a0000 |
| |
| /* |
| * The 4-byte encoding of "mov b,s12" (used for moving small immediates): |
| * |
| * 0010_0bbb 1000_1010 0BBB_ssss ssSS_SSSS |
| * |
| * b: BBBbbb destination register |
| * s: SSSSSSssssss source immediate (signed) |
| */ |
| #define OPC_MOVI 0x208a0000 |
| #define MOVI_S12(x) ((((x) & 0xfc0) >> 6) | (((x) & 0x3f) << 6)) |
| |
| /* |
| * The 4-byte encoding of "mov[.qq] b,u6", used for conditional |
| * moving of even smaller immediates: |
| * |
| * 0010_0bbb 1100_1010 0BBB_cccc cciq_qqqq |
| * |
| * qq: qqqqq condition code |
| * i: If set, c is considered a 6-bit immediate, else a reg. |
| * |
| * b: BBBbbb destination register |
| * c: cccccc source |
| */ |
| #define OPC_MOV_CC 0x20ca0000 |
| #define MOV_CC_I BIT(5) |
| #define OPC_MOVU_CC (OPC_MOV_CC | MOV_CC_I) |
| |
| /* |
| * The 4-byte encoding of "sexb b,c" (8-bit sign extension): |
| * |
| * 0010_0bbb 0010_1111 0BBB_cccc cc00_0101 |
| * |
| * b: BBBbbb destination register |
| * c: cccccc source register |
| */ |
| #define OPC_SEXB 0x202f0005 |
| |
| /* |
| * The 4-byte encoding of "sexh b,c" (16-bit sign extension): |
| * |
| * 0010_0bbb 0010_1111 0BBB_cccc cc00_0110 |
| * |
| * b: BBBbbb destination register |
| * c: cccccc source register |
| */ |
| #define OPC_SEXH 0x202f0006 |
| |
| /* |
| * The 4-byte encoding of "ld[zz][.x][.aa] c,[b,s9]": |
| * |
| * 0001_0bbb ssss_ssss SBBB_0aaz zxcc_cccc |
| * |
| * zz: size mode |
| * aa: address write back mode |
| * x: extension mode |
| * |
| * s9: S_ssss_ssss 9-bit signed number |
| * b: BBBbbb source reg for address |
| * c: cccccc destination register |
| */ |
| #define OPC_LOAD 0x10000000 |
| #define LOAD_X(x) ((x) << 6) |
| #define LOAD_ZZ(x) ((x) << 7) |
| #define LOAD_AA(x) ((x) << 9) |
| #define LOAD_S9(x) ((((x) & 0x0ff) << 16) | (((x) & 0x100) << 7)) |
| #define LOAD_C(x) ((x) & 0x03f) |
| /* Unsigned and signed loads. */ |
| #define OPC_LDU (OPC_LOAD | LOAD_X(X_zero)) |
| #define OPC_LDS (OPC_LOAD | LOAD_X(X_sign)) |
| /* 32-bit load. */ |
| #define OPC_LD32 (OPC_LDU | LOAD_ZZ(ZZ_4_byte)) |
| /* "pop reg" is merely a "ld.ab reg,[sp,4]". */ |
| #define OPC_POP \ |
| (OPC_LD32 | LOAD_AA(AA_post) | LOAD_S9(4) | OP_B(ARC_R_SP)) |
| |
| /* |
| * The 4-byte encoding of "st[zz][.aa] c,[b,s9]": |
| * |
| * 0001_1bbb ssss_ssss SBBB_cccc cc0a_azz0 |
| * |
| * zz: zz size mode |
| * aa: aa address write back mode |
| * |
| * s9: S_ssss_ssss 9-bit signed number |
| * b: BBBbbb source reg for address |
| * c: cccccc source reg to be stored |
| */ |
| #define OPC_STORE 0x18000000 |
| #define STORE_ZZ(x) ((x) << 1) |
| #define STORE_AA(x) ((x) << 3) |
| #define STORE_S9(x) ((((x) & 0x0ff) << 16) | (((x) & 0x100) << 7)) |
| /* 32-bit store. */ |
| #define OPC_ST32 (OPC_STORE | STORE_ZZ(ZZ_4_byte)) |
| /* "push reg" is merely a "st.aw reg,[sp,-4]". */ |
| #define OPC_PUSH \ |
| (OPC_ST32 | STORE_AA(AA_pre) | STORE_S9(-4) | OP_B(ARC_R_SP)) |
| |
| /* |
| * The 4-byte encoding of "add a,b,c": |
| * |
| * 0010_0bbb 0i00_0000 fBBB_cccc ccaa_aaaa |
| * |
| * f: indicates if flags (carry, etc.) should be updated |
| * i: If set, c is considered a 6-bit immediate, else a reg. |
| * |
| * a: aaaaaa result |
| * b: BBBbbb the 1st input operand |
| * c: cccccc the 2nd input operand |
| */ |
| #define OPC_ADD 0x20000000 |
| /* Addition with updating the pertinent flags in "status32" register. */ |
| #define OPC_ADDF (OPC_ADD | FLAG(1)) |
| #define ADDI BIT(22) |
| #define ADDI_U6(x) OP_C(x) |
| #define OPC_ADDI (OPC_ADD | ADDI) |
| #define OPC_ADDIF (OPC_ADDI | FLAG(1)) |
| #define OPC_ADD_I (OPC_ADD | OP_IMM) |
| |
| /* |
| * The 4-byte encoding of "adc a,b,c" (addition with carry): |
| * |
| * 0010_0bbb 0i00_0001 0BBB_cccc ccaa_aaaa |
| * |
| * i: if set, c is considered a 6-bit immediate, else a reg. |
| * |
| * a: aaaaaa result |
| * b: BBBbbb the 1st input operand |
| * c: cccccc the 2nd input operand |
| */ |
| #define OPC_ADC 0x20010000 |
| #define ADCI BIT(22) |
| #define ADCI_U6(x) OP_C(x) |
| #define OPC_ADCI (OPC_ADC | ADCI) |
| |
| /* |
| * The 4-byte encoding of "sub a,b,c": |
| * |
| * 0010_0bbb 0i00_0010 fBBB_cccc ccaa_aaaa |
| * |
| * f: indicates if flags (carry, etc.) should be updated |
| * i: if set, c is considered a 6-bit immediate, else a reg. |
| * |
| * a: aaaaaa result |
| * b: BBBbbb the 1st input operand |
| * c: cccccc the 2nd input operand |
| */ |
| #define OPC_SUB 0x20020000 |
| /* Subtraction with updating the pertinent flags in "status32" register. */ |
| #define OPC_SUBF (OPC_SUB | FLAG(1)) |
| #define SUBI BIT(22) |
| #define SUBI_U6(x) OP_C(x) |
| #define OPC_SUBI (OPC_SUB | SUBI) |
| #define OPC_SUB_I (OPC_SUB | OP_IMM) |
| |
| /* |
| * The 4-byte encoding of "sbc a,b,c" (subtraction with carry): |
| * |
| * 0010_0bbb 0000_0011 fBBB_cccc ccaa_aaaa |
| * |
| * f: indicates if flags (carry, etc.) should be updated |
| * |
| * a: aaaaaa result |
| * b: BBBbbb the 1st input operand |
| * c: cccccc the 2nd input operand |
| */ |
| #define OPC_SBC 0x20030000 |
| |
| /* |
| * The 4-byte encoding of "cmp[.qq] b,c": |
| * |
| * 0010_0bbb 1100_1100 1BBB_cccc cc0q_qqqq |
| * |
| * qq: qqqqq condition code |
| * |
| * b: BBBbbb the 1st operand |
| * c: cccccc the 2nd operand |
| */ |
| #define OPC_CMP 0x20cc8000 |
| |
| /* |
| * The 4-byte encoding of "neg a,b": |
| * |
| * 0010_0bbb 0100_1110 0BBB_0000 00aa_aaaa |
| * |
| * a: aaaaaa result |
| * b: BBBbbb input |
| */ |
| #define OPC_NEG 0x204e0000 |
| |
| /* |
| * The 4-byte encoding of "mpy a,b,c". |
| * mpy is the signed 32-bit multiplication with the lower 32-bit |
| * of the product as the result. |
| * |
| * 0010_0bbb 0001_1010 0BBB_cccc ccaa_aaaa |
| * |
| * a: aaaaaa result |
| * b: BBBbbb the 1st input operand |
| * c: cccccc the 2nd input operand |
| */ |
| #define OPC_MPY 0x201a0000 |
| #define OPC_MPYI (OPC_MPY | OP_IMM) |
| |
| /* |
| * The 4-byte encoding of "mpydu a,b,c". |
| * mpydu is the unsigned 32-bit multiplication with the lower 32-bit of |
| * the product in register "a" and the higher 32-bit in register "a+1". |
| * |
| * 0010_1bbb 0001_1001 0BBB_cccc ccaa_aaaa |
| * |
| * a: aaaaaa 64-bit result in registers (R_a+1,R_a) |
| * b: BBBbbb the 1st input operand |
| * c: cccccc the 2nd input operand |
| */ |
| #define OPC_MPYDU 0x28190000 |
| #define OPC_MPYDUI (OPC_MPYDU | OP_IMM) |
| |
| /* |
| * The 4-byte encoding of "divu a,b,c" (unsigned division): |
| * |
| * 0010_1bbb 0000_0101 0BBB_cccc ccaa_aaaa |
| * |
| * a: aaaaaa result (quotient) |
| * b: BBBbbb the 1st input operand |
| * c: cccccc the 2nd input operand (divisor) |
| */ |
| #define OPC_DIVU 0x28050000 |
| #define OPC_DIVUI (OPC_DIVU | OP_IMM) |
| |
| /* |
| * The 4-byte encoding of "div a,b,c" (signed division): |
| * |
| * 0010_1bbb 0000_0100 0BBB_cccc ccaa_aaaa |
| * |
| * a: aaaaaa result (quotient) |
| * b: BBBbbb the 1st input operand |
| * c: cccccc the 2nd input operand (divisor) |
| */ |
| #define OPC_DIVS 0x28040000 |
| #define OPC_DIVSI (OPC_DIVS | OP_IMM) |
| |
| /* |
| * The 4-byte encoding of "remu a,b,c" (unsigned remainder): |
| * |
| * 0010_1bbb 0000_1001 0BBB_cccc ccaa_aaaa |
| * |
| * a: aaaaaa result (remainder) |
| * b: BBBbbb the 1st input operand |
| * c: cccccc the 2nd input operand (divisor) |
| */ |
| #define OPC_REMU 0x28090000 |
| #define OPC_REMUI (OPC_REMU | OP_IMM) |
| |
| /* |
| * The 4-byte encoding of "rem a,b,c" (signed remainder): |
| * |
| * 0010_1bbb 0000_1000 0BBB_cccc ccaa_aaaa |
| * |
| * a: aaaaaa result (remainder) |
| * b: BBBbbb the 1st input operand |
| * c: cccccc the 2nd input operand (divisor) |
| */ |
| #define OPC_REMS 0x28080000 |
| #define OPC_REMSI (OPC_REMS | OP_IMM) |
| |
| /* |
| * The 4-byte encoding of "and a,b,c": |
| * |
| * 0010_0bbb 0000_0100 fBBB_cccc ccaa_aaaa |
| * |
| * f: indicates if zero and negative flags should be updated |
| * |
| * a: aaaaaa result |
| * b: BBBbbb the 1st input operand |
| * c: cccccc the 2nd input operand |
| */ |
| #define OPC_AND 0x20040000 |
| #define OPC_ANDI (OPC_AND | OP_IMM) |
| |
| /* |
| * The 4-byte encoding of "tst[.qq] b,c". |
| * Checks if the two input operands have any bit set at the same |
| * position. |
| * |
| * 0010_0bbb 1100_1011 1BBB_cccc cc0q_qqqq |
| * |
| * qq: qqqqq condition code |
| * |
| * b: BBBbbb the 1st input operand |
| * c: cccccc the 2nd input operand |
| */ |
| #define OPC_TST 0x20cb8000 |
| |
| /* |
| * The 4-byte encoding of "or a,b,c": |
| * |
| * 0010_0bbb 0000_0101 0BBB_cccc ccaa_aaaa |
| * |
| * a: aaaaaa result |
| * b: BBBbbb the 1st input operand |
| * c: cccccc the 2nd input operand |
| */ |
| #define OPC_OR 0x20050000 |
| #define OPC_ORI (OPC_OR | OP_IMM) |
| |
| /* |
| * The 4-byte encoding of "xor a,b,c": |
| * |
| * 0010_0bbb 0000_0111 0BBB_cccc ccaa_aaaa |
| * |
| * a: aaaaaa result |
| * b: BBBbbb the 1st input operand |
| * c: cccccc the 2nd input operand |
| */ |
| #define OPC_XOR 0x20070000 |
| #define OPC_XORI (OPC_XOR | OP_IMM) |
| |
| /* |
| * The 4-byte encoding of "not b,c": |
| * |
| * 0010_0bbb 0010_1111 0BBB_cccc cc00_1010 |
| * |
| * b: BBBbbb result |
| * c: cccccc input |
| */ |
| #define OPC_NOT 0x202f000a |
| |
| /* |
| * The 4-byte encoding of "btst b,u6": |
| * |
| * 0010_0bbb 0101_0001 1BBB_uuuu uu00_0000 |
| * |
| * b: BBBbbb input number to check |
| * u6: uuuuuu 6-bit unsigned number specifying bit position to check |
| */ |
| #define OPC_BTSTU6 0x20518000 |
| #define BTST_U6(x) (OP_C((x) & 63)) |
| |
| /* |
| * The 4-byte encoding of "asl[.qq] b,b,c" (arithmetic shift left): |
| * |
| * 0010_1bbb 0i00_0000 0BBB_cccc ccaa_aaaa |
| * |
| * i: if set, c is considered a 5-bit immediate, else a reg. |
| * |
| * b: BBBbbb result and the first operand (number to be shifted) |
| * c: cccccc amount to be shifted |
| */ |
| #define OPC_ASL 0x28000000 |
| #define ASL_I BIT(22) |
| #define ASLI_U6(x) OP_C((x) & 31) |
| #define OPC_ASLI (OPC_ASL | ASL_I) |
| |
| /* |
| * The 4-byte encoding of "asr a,b,c" (arithmetic shift right): |
| * |
| * 0010_1bbb 0i00_0010 0BBB_cccc ccaa_aaaa |
| * |
| * i: if set, c is considered a 6-bit immediate, else a reg. |
| * |
| * a: aaaaaa result |
| * b: BBBbbb first input: number to be shifted |
| * c: cccccc second input: amount to be shifted |
| */ |
| #define OPC_ASR 0x28020000 |
| #define ASR_I ASL_I |
| #define ASRI_U6(x) ASLI_U6(x) |
| #define OPC_ASRI (OPC_ASR | ASR_I) |
| |
| /* |
| * The 4-byte encoding of "lsr a,b,c" (logical shift right): |
| * |
| * 0010_1bbb 0i00_0001 0BBB_cccc ccaa_aaaa |
| * |
| * i: if set, c is considered a 6-bit immediate, else a reg. |
| * |
| * a: aaaaaa result |
| * b: BBBbbb first input: number to be shifted |
| * c: cccccc second input: amount to be shifted |
| */ |
| #define OPC_LSR 0x28010000 |
| #define LSR_I ASL_I |
| #define LSRI_U6(x) ASLI_U6(x) |
| #define OPC_LSRI (OPC_LSR | LSR_I) |
| |
| /* |
| * The 4-byte encoding of "swape b,c": |
| * |
| * 0010_1bbb 0010_1111 0bbb_cccc cc00_1001 |
| * |
| * b: BBBbbb destination register |
| * c: cccccc source register |
| */ |
| #define OPC_SWAPE 0x282f0009 |
| |
| /* |
| * Encoding for jump to an address in register: |
| * j reg_c |
| * |
| * 0010_0000 1110_0000 0000_cccc cc00_0000 |
| * |
| * c: cccccc register holding the destination address |
| */ |
| #define OPC_JMP 0x20e00000 |
| /* Jump to "branch-and-link" register, which effectively is a "return". */ |
| #define OPC_J_BLINK (OPC_JMP | OP_C(ARC_R_BLINK)) |
| |
| /* |
| * Encoding for jump-and-link to an address in register: |
| * jl reg_c |
| * |
| * 0010_0000 0010_0010 0000_cccc cc00_0000 |
| * |
| * c: cccccc register holding the destination address |
| */ |
| #define OPC_JL 0x20220000 |
| |
| /* |
| * Encoding for (conditional) branch to an offset from the current location |
| * that is word aligned: (PC & 0xffff_fffc) + s21 |
| * B[qq] s21 |
| * |
| * 0000_0sss ssss_sss0 SSSS_SSSS SS0q_qqqq |
| * |
| * qq: qqqqq condition code |
| * s21: SSSS SSSS_SSss ssss_ssss The displacement (21-bit signed) |
| * |
| * The displacement is supposed to be 16-bit (2-byte) aligned. Therefore, |
| * it should be a multiple of 2. Hence, there is an implied '0' bit at its |
| * LSB: S_SSSS SSSS_Ssss ssss_sss0 |
| */ |
| #define OPC_BCC 0x00000000 |
| #define BCC_S21(d) ((((d) & 0x7fe) << 16) | (((d) & 0x1ff800) >> 5)) |
| |
| /* |
| * Encoding for unconditional branch to an offset from the current location |
| * that is word aligned: (PC & 0xffff_fffc) + s25 |
| * B s25 |
| * |
| * 0000_0sss ssss_sss1 SSSS_SSSS SS00_TTTT |
| * |
| * s25: TTTT SSSS SSSS_SSss ssss_ssss The displacement (25-bit signed) |
| * |
| * The displacement is supposed to be 16-bit (2-byte) aligned. Therefore, |
| * it should be a multiple of 2. Hence, there is an implied '0' bit at its |
| * LSB: T TTTS_SSSS SSSS_Ssss ssss_sss0 |
| */ |
| #define OPC_B 0x00010000 |
| #define B_S25(d) ((((d) & 0x1e00000) >> 21) | BCC_S21(d)) |
| |
| static inline void emit_2_bytes(u8 *buf, u16 bytes) |
| { |
| *((u16 *)buf) = bytes; |
| } |
| |
| static inline void emit_4_bytes(u8 *buf, u32 bytes) |
| { |
| emit_2_bytes(buf, bytes >> 16); |
| emit_2_bytes(buf + 2, bytes & 0xffff); |
| } |
| |
| static inline u8 bpf_to_arc_size(u8 size) |
| { |
| switch (size) { |
| case BPF_B: |
| return ZZ_1_byte; |
| case BPF_H: |
| return ZZ_2_byte; |
| case BPF_W: |
| return ZZ_4_byte; |
| case BPF_DW: |
| return ZZ_8_byte; |
| default: |
| return ZZ_4_byte; |
| } |
| } |
| |
| /************** Encoders (Deal with ARC regs) ************/ |
| |
| /* Move an immediate to register with a 4-byte instruction. */ |
| static u8 arc_movi_r(u8 *buf, u8 reg, s16 imm) |
| { |
| const u32 insn = OPC_MOVI | OP_B(reg) | MOVI_S12(imm); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* rd <- rs */ |
| static u8 arc_mov_r(u8 *buf, u8 rd, u8 rs) |
| { |
| const u32 insn = OPC_MOV | OP_B(rd) | OP_C(rs); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* The emitted code may have different sizes based on "imm". */ |
| static u8 arc_mov_i(u8 *buf, u8 rd, s32 imm) |
| { |
| const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM; |
| |
| if (IN_S12_RANGE(imm)) |
| return arc_movi_r(buf, rd, imm); |
| |
| if (buf) { |
| emit_4_bytes(buf, insn); |
| emit_4_bytes(buf + INSN_len_normal, imm); |
| } |
| return INSN_len_normal + INSN_len_imm; |
| } |
| |
| /* The emitted code will always have the same size (8). */ |
| static u8 arc_mov_i_fixed(u8 *buf, u8 rd, s32 imm) |
| { |
| const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM; |
| |
| if (buf) { |
| emit_4_bytes(buf, insn); |
| emit_4_bytes(buf + INSN_len_normal, imm); |
| } |
| return INSN_len_normal + INSN_len_imm; |
| } |
| |
| /* Conditional move. */ |
| static u8 arc_mov_cc_r(u8 *buf, u8 cc, u8 rd, u8 rs) |
| { |
| const u32 insn = OPC_MOV_CC | OP_B(rd) | OP_C(rs) | COND(cc); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* Conditional move of a small immediate to rd. */ |
| static u8 arc_movu_cc_r(u8 *buf, u8 cc, u8 rd, u8 imm) |
| { |
| const u32 insn = OPC_MOVU_CC | OP_B(rd) | OP_C(imm) | COND(cc); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* Sign extension from a byte. */ |
| static u8 arc_sexb_r(u8 *buf, u8 rd, u8 rs) |
| { |
| const u32 insn = OPC_SEXB | OP_B(rd) | OP_C(rs); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* Sign extension from two bytes. */ |
| static u8 arc_sexh_r(u8 *buf, u8 rd, u8 rs) |
| { |
| const u32 insn = OPC_SEXH | OP_B(rd) | OP_C(rs); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* st reg, [reg_mem, off] */ |
| static u8 arc_st_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz) |
| { |
| const u32 insn = OPC_STORE | STORE_ZZ(zz) | OP_C(reg) | |
| OP_B(reg_mem) | STORE_S9(off); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* st.aw reg, [sp, -4] */ |
| static u8 arc_push_r(u8 *buf, u8 reg) |
| { |
| const u32 insn = OPC_PUSH | OP_C(reg); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* ld reg, [reg_mem, off] (unsigned) */ |
| static u8 arc_ld_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz) |
| { |
| const u32 insn = OPC_LDU | LOAD_ZZ(zz) | LOAD_C(reg) | |
| OP_B(reg_mem) | LOAD_S9(off); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* ld.x reg, [reg_mem, off] (sign extend) */ |
| static u8 arc_ldx_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz) |
| { |
| const u32 insn = OPC_LDS | LOAD_ZZ(zz) | LOAD_C(reg) | |
| OP_B(reg_mem) | LOAD_S9(off); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* ld.ab reg,[sp,4] */ |
| static u8 arc_pop_r(u8 *buf, u8 reg) |
| { |
| const u32 insn = OPC_POP | LOAD_C(reg); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* add Ra,Ra,Rc */ |
| static u8 arc_add_r(u8 *buf, u8 ra, u8 rc) |
| { |
| const u32 insn = OPC_ADD | OP_A(ra) | OP_B(ra) | OP_C(rc); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* add.f Ra,Ra,Rc */ |
| static u8 arc_addf_r(u8 *buf, u8 ra, u8 rc) |
| { |
| const u32 insn = OPC_ADDF | OP_A(ra) | OP_B(ra) | OP_C(rc); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* add.f Ra,Ra,u6 */ |
| static u8 arc_addif_r(u8 *buf, u8 ra, u8 u6) |
| { |
| const u32 insn = OPC_ADDIF | OP_A(ra) | OP_B(ra) | ADDI_U6(u6); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* add Ra,Ra,u6 */ |
| static u8 arc_addi_r(u8 *buf, u8 ra, u8 u6) |
| { |
| const u32 insn = OPC_ADDI | OP_A(ra) | OP_B(ra) | ADDI_U6(u6); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* add Ra,Rb,imm */ |
| static u8 arc_add_i(u8 *buf, u8 ra, u8 rb, s32 imm) |
| { |
| const u32 insn = OPC_ADD_I | OP_A(ra) | OP_B(rb); |
| |
| if (buf) { |
| emit_4_bytes(buf, insn); |
| emit_4_bytes(buf + INSN_len_normal, imm); |
| } |
| return INSN_len_normal + INSN_len_imm; |
| } |
| |
| /* adc Ra,Ra,Rc */ |
| static u8 arc_adc_r(u8 *buf, u8 ra, u8 rc) |
| { |
| const u32 insn = OPC_ADC | OP_A(ra) | OP_B(ra) | OP_C(rc); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* adc Ra,Ra,u6 */ |
| static u8 arc_adci_r(u8 *buf, u8 ra, u8 u6) |
| { |
| const u32 insn = OPC_ADCI | OP_A(ra) | OP_B(ra) | ADCI_U6(u6); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* sub Ra,Ra,Rc */ |
| static u8 arc_sub_r(u8 *buf, u8 ra, u8 rc) |
| { |
| const u32 insn = OPC_SUB | OP_A(ra) | OP_B(ra) | OP_C(rc); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* sub.f Ra,Ra,Rc */ |
| static u8 arc_subf_r(u8 *buf, u8 ra, u8 rc) |
| { |
| const u32 insn = OPC_SUBF | OP_A(ra) | OP_B(ra) | OP_C(rc); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* sub Ra,Ra,u6 */ |
| static u8 arc_subi_r(u8 *buf, u8 ra, u8 u6) |
| { |
| const u32 insn = OPC_SUBI | OP_A(ra) | OP_B(ra) | SUBI_U6(u6); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* sub Ra,Ra,imm */ |
| static u8 arc_sub_i(u8 *buf, u8 ra, s32 imm) |
| { |
| const u32 insn = OPC_SUB_I | OP_A(ra) | OP_B(ra); |
| |
| if (buf) { |
| emit_4_bytes(buf, insn); |
| emit_4_bytes(buf + INSN_len_normal, imm); |
| } |
| return INSN_len_normal + INSN_len_imm; |
| } |
| |
| /* sbc Ra,Ra,Rc */ |
| static u8 arc_sbc_r(u8 *buf, u8 ra, u8 rc) |
| { |
| const u32 insn = OPC_SBC | OP_A(ra) | OP_B(ra) | OP_C(rc); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* cmp Rb,Rc */ |
| static u8 arc_cmp_r(u8 *buf, u8 rb, u8 rc) |
| { |
| const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* |
| * cmp.z Rb,Rc |
| * |
| * This "cmp.z" variant of compare instruction is used on lower |
| * 32-bits of register pairs after "cmp"ing their upper parts. If the |
| * upper parts are equal (z), then this one will proceed to check the |
| * rest. |
| */ |
| static u8 arc_cmpz_r(u8 *buf, u8 rb, u8 rc) |
| { |
| const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc) | CC_equal; |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* neg Ra,Rb */ |
| static u8 arc_neg_r(u8 *buf, u8 ra, u8 rb) |
| { |
| const u32 insn = OPC_NEG | OP_A(ra) | OP_B(rb); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* mpy Ra,Rb,Rc */ |
| static u8 arc_mpy_r(u8 *buf, u8 ra, u8 rb, u8 rc) |
| { |
| const u32 insn = OPC_MPY | OP_A(ra) | OP_B(rb) | OP_C(rc); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* mpy Ra,Rb,imm */ |
| static u8 arc_mpy_i(u8 *buf, u8 ra, u8 rb, s32 imm) |
| { |
| const u32 insn = OPC_MPYI | OP_A(ra) | OP_B(rb); |
| |
| if (buf) { |
| emit_4_bytes(buf, insn); |
| emit_4_bytes(buf + INSN_len_normal, imm); |
| } |
| return INSN_len_normal + INSN_len_imm; |
| } |
| |
| /* mpydu Ra,Ra,Rc */ |
| static u8 arc_mpydu_r(u8 *buf, u8 ra, u8 rc) |
| { |
| const u32 insn = OPC_MPYDU | OP_A(ra) | OP_B(ra) | OP_C(rc); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* mpydu Ra,Ra,imm */ |
| static u8 arc_mpydu_i(u8 *buf, u8 ra, s32 imm) |
| { |
| const u32 insn = OPC_MPYDUI | OP_A(ra) | OP_B(ra); |
| |
| if (buf) { |
| emit_4_bytes(buf, insn); |
| emit_4_bytes(buf + INSN_len_normal, imm); |
| } |
| return INSN_len_normal + INSN_len_imm; |
| } |
| |
| /* divu Rd,Rd,Rs */ |
| static u8 arc_divu_r(u8 *buf, u8 rd, u8 rs) |
| { |
| const u32 insn = OPC_DIVU | OP_A(rd) | OP_B(rd) | OP_C(rs); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* divu Rd,Rd,imm */ |
| static u8 arc_divu_i(u8 *buf, u8 rd, s32 imm) |
| { |
| const u32 insn = OPC_DIVUI | OP_A(rd) | OP_B(rd); |
| |
| if (buf) { |
| emit_4_bytes(buf, insn); |
| emit_4_bytes(buf + INSN_len_normal, imm); |
| } |
| return INSN_len_normal + INSN_len_imm; |
| } |
| |
| /* div Rd,Rd,Rs */ |
| static u8 arc_divs_r(u8 *buf, u8 rd, u8 rs) |
| { |
| const u32 insn = OPC_DIVS | OP_A(rd) | OP_B(rd) | OP_C(rs); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* div Rd,Rd,imm */ |
| static u8 arc_divs_i(u8 *buf, u8 rd, s32 imm) |
| { |
| const u32 insn = OPC_DIVSI | OP_A(rd) | OP_B(rd); |
| |
| if (buf) { |
| emit_4_bytes(buf, insn); |
| emit_4_bytes(buf + INSN_len_normal, imm); |
| } |
| return INSN_len_normal + INSN_len_imm; |
| } |
| |
| /* remu Rd,Rd,Rs */ |
| static u8 arc_remu_r(u8 *buf, u8 rd, u8 rs) |
| { |
| const u32 insn = OPC_REMU | OP_A(rd) | OP_B(rd) | OP_C(rs); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* remu Rd,Rd,imm */ |
| static u8 arc_remu_i(u8 *buf, u8 rd, s32 imm) |
| { |
| const u32 insn = OPC_REMUI | OP_A(rd) | OP_B(rd); |
| |
| if (buf) { |
| emit_4_bytes(buf, insn); |
| emit_4_bytes(buf + INSN_len_normal, imm); |
| } |
| return INSN_len_normal + INSN_len_imm; |
| } |
| |
| /* rem Rd,Rd,Rs */ |
| static u8 arc_rems_r(u8 *buf, u8 rd, u8 rs) |
| { |
| const u32 insn = OPC_REMS | OP_A(rd) | OP_B(rd) | OP_C(rs); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* rem Rd,Rd,imm */ |
| static u8 arc_rems_i(u8 *buf, u8 rd, s32 imm) |
| { |
| const u32 insn = OPC_REMSI | OP_A(rd) | OP_B(rd); |
| |
| if (buf) { |
| emit_4_bytes(buf, insn); |
| emit_4_bytes(buf + INSN_len_normal, imm); |
| } |
| return INSN_len_normal + INSN_len_imm; |
| } |
| |
| /* and Rd,Rd,Rs */ |
| static u8 arc_and_r(u8 *buf, u8 rd, u8 rs) |
| { |
| const u32 insn = OPC_AND | OP_A(rd) | OP_B(rd) | OP_C(rs); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* and Rd,Rd,limm */ |
| static u8 arc_and_i(u8 *buf, u8 rd, s32 imm) |
| { |
| const u32 insn = OPC_ANDI | OP_A(rd) | OP_B(rd); |
| |
| if (buf) { |
| emit_4_bytes(buf, insn); |
| emit_4_bytes(buf + INSN_len_normal, imm); |
| } |
| return INSN_len_normal + INSN_len_imm; |
| } |
| |
| /* tst Rd,Rs */ |
| static u8 arc_tst_r(u8 *buf, u8 rd, u8 rs) |
| { |
| const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* |
| * This particular version, "tst.z ...", is meant to be used after a |
| * "tst" on the low 32-bit of register pairs. If that "tst" is not |
| * zero, then we don't need to test the upper 32-bits lest it sets |
| * the zero flag. |
| */ |
| static u8 arc_tstz_r(u8 *buf, u8 rd, u8 rs) |
| { |
| const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs) | CC_equal; |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| static u8 arc_or_r(u8 *buf, u8 rd, u8 rs1, u8 rs2) |
| { |
| const u32 insn = OPC_OR | OP_A(rd) | OP_B(rs1) | OP_C(rs2); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| static u8 arc_or_i(u8 *buf, u8 rd, s32 imm) |
| { |
| const u32 insn = OPC_ORI | OP_A(rd) | OP_B(rd); |
| |
| if (buf) { |
| emit_4_bytes(buf, insn); |
| emit_4_bytes(buf + INSN_len_normal, imm); |
| } |
| return INSN_len_normal + INSN_len_imm; |
| } |
| |
| static u8 arc_xor_r(u8 *buf, u8 rd, u8 rs) |
| { |
| const u32 insn = OPC_XOR | OP_A(rd) | OP_B(rd) | OP_C(rs); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| static u8 arc_xor_i(u8 *buf, u8 rd, s32 imm) |
| { |
| const u32 insn = OPC_XORI | OP_A(rd) | OP_B(rd); |
| |
| if (buf) { |
| emit_4_bytes(buf, insn); |
| emit_4_bytes(buf + INSN_len_normal, imm); |
| } |
| return INSN_len_normal + INSN_len_imm; |
| } |
| |
| static u8 arc_not_r(u8 *buf, u8 rd, u8 rs) |
| { |
| const u32 insn = OPC_NOT | OP_B(rd) | OP_C(rs); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| static u8 arc_btst_i(u8 *buf, u8 rs, u8 imm) |
| { |
| const u32 insn = OPC_BTSTU6 | OP_B(rs) | BTST_U6(imm); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| static u8 arc_asl_r(u8 *buf, u8 rd, u8 rs1, u8 rs2) |
| { |
| const u32 insn = OPC_ASL | OP_A(rd) | OP_B(rs1) | OP_C(rs2); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| static u8 arc_asli_r(u8 *buf, u8 rd, u8 rs, u8 imm) |
| { |
| const u32 insn = OPC_ASLI | OP_A(rd) | OP_B(rs) | ASLI_U6(imm); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| static u8 arc_asr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2) |
| { |
| const u32 insn = OPC_ASR | OP_A(rd) | OP_B(rs1) | OP_C(rs2); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| static u8 arc_asri_r(u8 *buf, u8 rd, u8 rs, u8 imm) |
| { |
| const u32 insn = OPC_ASRI | OP_A(rd) | OP_B(rs) | ASRI_U6(imm); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| static u8 arc_lsr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2) |
| { |
| const u32 insn = OPC_LSR | OP_A(rd) | OP_B(rs1) | OP_C(rs2); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| static u8 arc_lsri_r(u8 *buf, u8 rd, u8 rs, u8 imm) |
| { |
| const u32 insn = OPC_LSRI | OP_A(rd) | OP_B(rs) | LSRI_U6(imm); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| static u8 arc_swape_r(u8 *buf, u8 r) |
| { |
| const u32 insn = OPC_SWAPE | OP_B(r) | OP_C(r); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| static u8 arc_jmp_return(u8 *buf) |
| { |
| if (buf) |
| emit_4_bytes(buf, OPC_J_BLINK); |
| return INSN_len_normal; |
| } |
| |
| static u8 arc_jl(u8 *buf, u8 reg) |
| { |
| const u32 insn = OPC_JL | OP_C(reg); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* |
| * Conditional jump to an address that is max 21 bits away (signed). |
| * |
| * b<cc> s21 |
| */ |
| static u8 arc_bcc(u8 *buf, u8 cc, int offset) |
| { |
| const u32 insn = OPC_BCC | BCC_S21(offset) | COND(cc); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /* |
| * Unconditional jump to an address that is max 25 bits away (signed). |
| * |
| * b s25 |
| */ |
| static u8 arc_b(u8 *buf, s32 offset) |
| { |
| const u32 insn = OPC_B | B_S25(offset); |
| |
| if (buf) |
| emit_4_bytes(buf, insn); |
| return INSN_len_normal; |
| } |
| |
| /************* Packers (Deal with BPF_REGs) **************/ |
| |
| u8 zext(u8 *buf, u8 rd) |
| { |
| if (rd != BPF_REG_FP) |
| return arc_movi_r(buf, REG_HI(rd), 0); |
| else |
| return 0; |
| } |
| |
| u8 mov_r32(u8 *buf, u8 rd, u8 rs, u8 sign_ext) |
| { |
| u8 len = 0; |
| |
| if (sign_ext) { |
| if (sign_ext == 8) |
| len = arc_sexb_r(buf, REG_LO(rd), REG_LO(rs)); |
| else if (sign_ext == 16) |
| len = arc_sexh_r(buf, REG_LO(rd), REG_LO(rs)); |
| else if (sign_ext == 32 && rd != rs) |
| len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs)); |
| |
| return len; |
| } |
| |
| /* Unsigned move. */ |
| |
| if (rd != rs) |
| len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs)); |
| |
| return len; |
| } |
| |
| u8 mov_r32_i32(u8 *buf, u8 reg, s32 imm) |
| { |
| return arc_mov_i(buf, REG_LO(reg), imm); |
| } |
| |
| u8 mov_r64(u8 *buf, u8 rd, u8 rs, u8 sign_ext) |
| { |
| u8 len = 0; |
| |
| if (sign_ext) { |
| /* First handle the low 32-bit part. */ |
| len = mov_r32(buf, rd, rs, sign_ext); |
| |
| /* Now propagate the sign bit of LO to HI. */ |
| if (sign_ext == 8 || sign_ext == 16 || sign_ext == 32) { |
| len += arc_asri_r(BUF(buf, len), |
| REG_HI(rd), REG_LO(rd), 31); |
| } |
| |
| return len; |
| } |
| |
| /* Unsigned move. */ |
| |
| if (rd == rs) |
| return 0; |
| |
| len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs)); |
| |
| if (rs != BPF_REG_FP) |
| len += arc_mov_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); |
| /* BPF_REG_FP is mapped to 32-bit "fp" register. */ |
| else |
| len += arc_movi_r(BUF(buf, len), REG_HI(rd), 0); |
| |
| return len; |
| } |
| |
| /* Sign extend the 32-bit immediate into 64-bit register pair. */ |
| u8 mov_r64_i32(u8 *buf, u8 reg, s32 imm) |
| { |
| u8 len = 0; |
| |
| len = arc_mov_i(buf, REG_LO(reg), imm); |
| |
| /* BPF_REG_FP is mapped to 32-bit "fp" register. */ |
| if (reg != BPF_REG_FP) { |
| if (imm >= 0) |
| len += arc_movi_r(BUF(buf, len), REG_HI(reg), 0); |
| else |
| len += arc_movi_r(BUF(buf, len), REG_HI(reg), -1); |
| } |
| |
| return len; |
| } |
| |
| /* |
| * This is merely used for translation of "LD R, IMM64" instructions |
| * of the BPF. These sort of instructions are sometimes used for |
| * relocations. If during the normal pass, the relocation value is |
| * not known, the BPF instruction may look something like: |
| * |
| * LD R <- 0x0000_0001_0000_0001 |
| * |
| * Which will nicely translate to two 4-byte ARC instructions: |
| * |
| * mov R_lo, 1 # imm is small enough to be s12 |
| * mov R_hi, 1 # same |
| * |
| * However, during the extra pass, the IMM64 will have changed |
| * to the resolved address and looks something like: |
| * |
| * LD R <- 0x0000_0000_1234_5678 |
| * |
| * Now, the translated code will require 12 bytes: |
| * |
| * mov R_lo, 0x12345678 # this is an 8-byte instruction |
| * mov R_hi, 0 # still 4 bytes |
| * |
| * Which in practice will result in overwriting the following |
| * instruction. To avoid such cases, we will always emit codes |
| * with fixed sizes. |
| */ |
| u8 mov_r64_i64(u8 *buf, u8 reg, u32 lo, u32 hi) |
| { |
| u8 len; |
| |
| len = arc_mov_i_fixed(buf, REG_LO(reg), lo); |
| len += arc_mov_i_fixed(BUF(buf, len), REG_HI(reg), hi); |
| |
| return len; |
| } |
| |
| /* |
| * If the "off"set is too big (doesn't encode as S9) for: |
| * |
| * {ld,st} r, [rm, off] |
| * |
| * Then emit: |
| * |
| * add r10, REG_LO(rm), off |
| * |
| * and make sure that r10 becomes the effective address: |
| * |
| * {ld,st} r, [r10, 0] |
| */ |
| static u8 adjust_mem_access(u8 *buf, s16 *off, u8 size, |
| u8 rm, u8 *arc_reg_mem) |
| { |
| u8 len = 0; |
| *arc_reg_mem = REG_LO(rm); |
| |
| if (!IN_S9_RANGE(*off) || |
| (size == BPF_DW && !IN_S9_RANGE(*off + 4))) { |
| len += arc_add_i(BUF(buf, len), |
| REG_LO(JIT_REG_TMP), REG_LO(rm), (u32)(*off)); |
| *arc_reg_mem = REG_LO(JIT_REG_TMP); |
| *off = 0; |
| } |
| |
| return len; |
| } |
| |
| /* store rs, [rd, off] */ |
| u8 store_r(u8 *buf, u8 rs, u8 rd, s16 off, u8 size) |
| { |
| u8 len, arc_reg_mem; |
| |
| len = adjust_mem_access(buf, &off, size, rd, &arc_reg_mem); |
| |
| if (size == BPF_DW) { |
| len += arc_st_r(BUF(buf, len), REG_LO(rs), arc_reg_mem, |
| off, ZZ_4_byte); |
| len += arc_st_r(BUF(buf, len), REG_HI(rs), arc_reg_mem, |
| off + 4, ZZ_4_byte); |
| } else { |
| u8 zz = bpf_to_arc_size(size); |
| |
| len += arc_st_r(BUF(buf, len), REG_LO(rs), arc_reg_mem, |
| off, zz); |
| } |
| |
| return len; |
| } |
| |
| /* |
| * For {8,16,32}-bit stores: |
| * mov r21, imm |
| * st r21, [...] |
| * For 64-bit stores: |
| * mov r21, imm |
| * st r21, [...] |
| * mov r21, {0,-1} |
| * st r21, [...+4] |
| */ |
| u8 store_i(u8 *buf, s32 imm, u8 rd, s16 off, u8 size) |
| { |
| u8 len, arc_reg_mem; |
| /* REG_LO(JIT_REG_TMP) might be used by "adjust_mem_access()". */ |
| const u8 arc_rs = REG_HI(JIT_REG_TMP); |
| |
| len = adjust_mem_access(buf, &off, size, rd, &arc_reg_mem); |
| |
| if (size == BPF_DW) { |
| len += arc_mov_i(BUF(buf, len), arc_rs, imm); |
| len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem, |
| off, ZZ_4_byte); |
| imm = (imm >= 0 ? 0 : -1); |
| len += arc_mov_i(BUF(buf, len), arc_rs, imm); |
| len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem, |
| off + 4, ZZ_4_byte); |
| } else { |
| u8 zz = bpf_to_arc_size(size); |
| |
| len += arc_mov_i(BUF(buf, len), arc_rs, imm); |
| len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem, off, zz); |
| } |
| |
| return len; |
| } |
| |
| /* |
| * For the calling convention of a little endian machine, the LO part |
| * must be on top of the stack. |
| */ |
| static u8 push_r64(u8 *buf, u8 reg) |
| { |
| u8 len = 0; |
| |
| #ifdef __LITTLE_ENDIAN |
| /* BPF_REG_FP is mapped to 32-bit "fp" register. */ |
| if (reg != BPF_REG_FP) |
| len += arc_push_r(BUF(buf, len), REG_HI(reg)); |
| len += arc_push_r(BUF(buf, len), REG_LO(reg)); |
| #else |
| len += arc_push_r(BUF(buf, len), REG_LO(reg)); |
| if (reg != BPF_REG_FP) |
| len += arc_push_r(BUF(buf, len), REG_HI(reg)); |
| #endif |
| |
| return len; |
| } |
| |
| /* load rd, [rs, off] */ |
| u8 load_r(u8 *buf, u8 rd, u8 rs, s16 off, u8 size, bool sign_ext) |
| { |
| u8 len, arc_reg_mem; |
| |
| len = adjust_mem_access(buf, &off, size, rs, &arc_reg_mem); |
| |
| if (size == BPF_B || size == BPF_H || size == BPF_W) { |
| const u8 zz = bpf_to_arc_size(size); |
| |
| /* Use LD.X only if the data size is less than 32-bit. */ |
| if (sign_ext && (zz == ZZ_1_byte || zz == ZZ_2_byte)) { |
| len += arc_ldx_r(BUF(buf, len), REG_LO(rd), |
| arc_reg_mem, off, zz); |
| } else { |
| len += arc_ld_r(BUF(buf, len), REG_LO(rd), |
| arc_reg_mem, off, zz); |
| } |
| |
| if (sign_ext) { |
| /* Propagate the sign bit to the higher reg. */ |
| len += arc_asri_r(BUF(buf, len), |
| REG_HI(rd), REG_LO(rd), 31); |
| } else { |
| len += arc_movi_r(BUF(buf, len), REG_HI(rd), 0); |
| } |
| } else if (size == BPF_DW) { |
| /* |
| * We are about to issue 2 consecutive loads: |
| * |
| * ld rx, [rb, off+0] |
| * ld ry, [rb, off+4] |
| * |
| * If "rx" and "rb" are the same registers, then the order |
| * should change to guarantee that "rb" remains intact |
| * during these 2 operations: |
| * |
| * ld ry, [rb, off+4] |
| * ld rx, [rb, off+0] |
| */ |
| if (REG_LO(rd) != arc_reg_mem) { |
| len += arc_ld_r(BUF(buf, len), REG_LO(rd), arc_reg_mem, |
| off, ZZ_4_byte); |
| len += arc_ld_r(BUF(buf, len), REG_HI(rd), arc_reg_mem, |
| off + 4, ZZ_4_byte); |
| } else { |
| len += arc_ld_r(BUF(buf, len), REG_HI(rd), arc_reg_mem, |
| off + 4, ZZ_4_byte); |
| len += arc_ld_r(BUF(buf, len), REG_LO(rd), arc_reg_mem, |
| off, ZZ_4_byte); |
| } |
| } |
| |
| return len; |
| } |
| |
| u8 add_r32(u8 *buf, u8 rd, u8 rs) |
| { |
| return arc_add_r(buf, REG_LO(rd), REG_LO(rs)); |
| } |
| |
| u8 add_r32_i32(u8 *buf, u8 rd, s32 imm) |
| { |
| if (IN_U6_RANGE(imm)) |
| return arc_addi_r(buf, REG_LO(rd), imm); |
| else |
| return arc_add_i(buf, REG_LO(rd), REG_LO(rd), imm); |
| } |
| |
| u8 add_r64(u8 *buf, u8 rd, u8 rs) |
| { |
| u8 len; |
| |
| len = arc_addf_r(buf, REG_LO(rd), REG_LO(rs)); |
| len += arc_adc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); |
| return len; |
| } |
| |
| u8 add_r64_i32(u8 *buf, u8 rd, s32 imm) |
| { |
| u8 len; |
| |
| if (IN_U6_RANGE(imm)) { |
| len = arc_addif_r(buf, REG_LO(rd), imm); |
| len += arc_adci_r(BUF(buf, len), REG_HI(rd), 0); |
| } else { |
| len = mov_r64_i32(buf, JIT_REG_TMP, imm); |
| len += add_r64(BUF(buf, len), rd, JIT_REG_TMP); |
| } |
| return len; |
| } |
| |
| u8 sub_r32(u8 *buf, u8 rd, u8 rs) |
| { |
| return arc_sub_r(buf, REG_LO(rd), REG_LO(rs)); |
| } |
| |
| u8 sub_r32_i32(u8 *buf, u8 rd, s32 imm) |
| { |
| if (IN_U6_RANGE(imm)) |
| return arc_subi_r(buf, REG_LO(rd), imm); |
| else |
| return arc_sub_i(buf, REG_LO(rd), imm); |
| } |
| |
| u8 sub_r64(u8 *buf, u8 rd, u8 rs) |
| { |
| u8 len; |
| |
| len = arc_subf_r(buf, REG_LO(rd), REG_LO(rs)); |
| len += arc_sbc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); |
| return len; |
| } |
| |
| u8 sub_r64_i32(u8 *buf, u8 rd, s32 imm) |
| { |
| u8 len; |
| |
| len = mov_r64_i32(buf, JIT_REG_TMP, imm); |
| len += sub_r64(BUF(buf, len), rd, JIT_REG_TMP); |
| return len; |
| } |
| |
| static u8 cmp_r32(u8 *buf, u8 rd, u8 rs) |
| { |
| return arc_cmp_r(buf, REG_LO(rd), REG_LO(rs)); |
| } |
| |
| u8 neg_r32(u8 *buf, u8 r) |
| { |
| return arc_neg_r(buf, REG_LO(r), REG_LO(r)); |
| } |
| |
| /* In a two's complement system, -r is (~r + 1). */ |
| u8 neg_r64(u8 *buf, u8 r) |
| { |
| u8 len; |
| |
| len = arc_not_r(buf, REG_LO(r), REG_LO(r)); |
| len += arc_not_r(BUF(buf, len), REG_HI(r), REG_HI(r)); |
| len += add_r64_i32(BUF(buf, len), r, 1); |
| return len; |
| } |
| |
| u8 mul_r32(u8 *buf, u8 rd, u8 rs) |
| { |
| return arc_mpy_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); |
| } |
| |
| u8 mul_r32_i32(u8 *buf, u8 rd, s32 imm) |
| { |
| return arc_mpy_i(buf, REG_LO(rd), REG_LO(rd), imm); |
| } |
| |
| /* |
| * MUL B, C |
| * -------- |
| * mpy t0, B_hi, C_lo |
| * mpy t1, B_lo, C_hi |
| * mpydu B_lo, B_lo, C_lo |
| * add B_hi, B_hi, t0 |
| * add B_hi, B_hi, t1 |
| */ |
| u8 mul_r64(u8 *buf, u8 rd, u8 rs) |
| { |
| const u8 t0 = REG_LO(JIT_REG_TMP); |
| const u8 t1 = REG_HI(JIT_REG_TMP); |
| const u8 C_lo = REG_LO(rs); |
| const u8 C_hi = REG_HI(rs); |
| const u8 B_lo = REG_LO(rd); |
| const u8 B_hi = REG_HI(rd); |
| u8 len; |
| |
| len = arc_mpy_r(buf, t0, B_hi, C_lo); |
| len += arc_mpy_r(BUF(buf, len), t1, B_lo, C_hi); |
| len += arc_mpydu_r(BUF(buf, len), B_lo, C_lo); |
| len += arc_add_r(BUF(buf, len), B_hi, t0); |
| len += arc_add_r(BUF(buf, len), B_hi, t1); |
| |
| return len; |
| } |
| |
| /* |
| * MUL B, imm |
| * ---------- |
| * |
| * To get a 64-bit result from a signed 64x32 multiplication: |
| * |
| * B_hi B_lo * |
| * sign imm |
| * ----------------------------- |
| * HI(B_lo*imm) LO(B_lo*imm) + |
| * B_hi*imm + |
| * B_lo*sign |
| * ----------------------------- |
| * res_hi res_lo |
| * |
| * mpy t1, B_lo, sign(imm) |
| * mpy t0, B_hi, imm |
| * mpydu B_lo, B_lo, imm |
| * add B_hi, B_hi, t0 |
| * add B_hi, B_hi, t1 |
| * |
| * Note: We can't use signed double multiplication, "mpyd", instead of an |
| * unsigned version, "mpydu", and then get rid of the sign adjustments |
| * calculated in "t1". The signed multiplication, "mpyd", will consider |
| * both operands, "B_lo" and "imm", as signed inputs. However, for this |
| * 64x32 multiplication, "B_lo" must be treated as an unsigned number. |
| */ |
| u8 mul_r64_i32(u8 *buf, u8 rd, s32 imm) |
| { |
| const u8 t0 = REG_LO(JIT_REG_TMP); |
| const u8 t1 = REG_HI(JIT_REG_TMP); |
| const u8 B_lo = REG_LO(rd); |
| const u8 B_hi = REG_HI(rd); |
| u8 len = 0; |
| |
| if (imm == 1) |
| return 0; |
| |
| /* Is the sign-extension of the immediate "-1"? */ |
| if (imm < 0) |
| len += arc_neg_r(BUF(buf, len), t1, B_lo); |
| |
| len += arc_mpy_i(BUF(buf, len), t0, B_hi, imm); |
| len += arc_mpydu_i(BUF(buf, len), B_lo, imm); |
| len += arc_add_r(BUF(buf, len), B_hi, t0); |
| |
| /* Add the "sign*B_lo" part, if necessary. */ |
| if (imm < 0) |
| len += arc_add_r(BUF(buf, len), B_hi, t1); |
| |
| return len; |
| } |
| |
| u8 div_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext) |
| { |
| if (sign_ext) |
| return arc_divs_r(buf, REG_LO(rd), REG_LO(rs)); |
| else |
| return arc_divu_r(buf, REG_LO(rd), REG_LO(rs)); |
| } |
| |
| u8 div_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext) |
| { |
| if (imm == 0) |
| return 0; |
| |
| if (sign_ext) |
| return arc_divs_i(buf, REG_LO(rd), imm); |
| else |
| return arc_divu_i(buf, REG_LO(rd), imm); |
| } |
| |
| u8 mod_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext) |
| { |
| if (sign_ext) |
| return arc_rems_r(buf, REG_LO(rd), REG_LO(rs)); |
| else |
| return arc_remu_r(buf, REG_LO(rd), REG_LO(rs)); |
| } |
| |
| u8 mod_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext) |
| { |
| if (imm == 0) |
| return 0; |
| |
| if (sign_ext) |
| return arc_rems_i(buf, REG_LO(rd), imm); |
| else |
| return arc_remu_i(buf, REG_LO(rd), imm); |
| } |
| |
| u8 and_r32(u8 *buf, u8 rd, u8 rs) |
| { |
| return arc_and_r(buf, REG_LO(rd), REG_LO(rs)); |
| } |
| |
| u8 and_r32_i32(u8 *buf, u8 rd, s32 imm) |
| { |
| return arc_and_i(buf, REG_LO(rd), imm); |
| } |
| |
| u8 and_r64(u8 *buf, u8 rd, u8 rs) |
| { |
| u8 len; |
| |
| len = arc_and_r(buf, REG_LO(rd), REG_LO(rs)); |
| len += arc_and_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); |
| return len; |
| } |
| |
| u8 and_r64_i32(u8 *buf, u8 rd, s32 imm) |
| { |
| u8 len; |
| |
| len = mov_r64_i32(buf, JIT_REG_TMP, imm); |
| len += and_r64(BUF(buf, len), rd, JIT_REG_TMP); |
| return len; |
| } |
| |
| static u8 tst_r32(u8 *buf, u8 rd, u8 rs) |
| { |
| return arc_tst_r(buf, REG_LO(rd), REG_LO(rs)); |
| } |
| |
| u8 or_r32(u8 *buf, u8 rd, u8 rs) |
| { |
| return arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); |
| } |
| |
| u8 or_r32_i32(u8 *buf, u8 rd, s32 imm) |
| { |
| return arc_or_i(buf, REG_LO(rd), imm); |
| } |
| |
| u8 or_r64(u8 *buf, u8 rd, u8 rs) |
| { |
| u8 len; |
| |
| len = arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); |
| len += arc_or_r(BUF(buf, len), REG_HI(rd), REG_HI(rd), REG_HI(rs)); |
| return len; |
| } |
| |
| u8 or_r64_i32(u8 *buf, u8 rd, s32 imm) |
| { |
| u8 len; |
| |
| len = mov_r64_i32(buf, JIT_REG_TMP, imm); |
| len += or_r64(BUF(buf, len), rd, JIT_REG_TMP); |
| return len; |
| } |
| |
| u8 xor_r32(u8 *buf, u8 rd, u8 rs) |
| { |
| return arc_xor_r(buf, REG_LO(rd), REG_LO(rs)); |
| } |
| |
| u8 xor_r32_i32(u8 *buf, u8 rd, s32 imm) |
| { |
| return arc_xor_i(buf, REG_LO(rd), imm); |
| } |
| |
| u8 xor_r64(u8 *buf, u8 rd, u8 rs) |
| { |
| u8 len; |
| |
| len = arc_xor_r(buf, REG_LO(rd), REG_LO(rs)); |
| len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); |
| return len; |
| } |
| |
| u8 xor_r64_i32(u8 *buf, u8 rd, s32 imm) |
| { |
| u8 len; |
| |
| len = mov_r64_i32(buf, JIT_REG_TMP, imm); |
| len += xor_r64(BUF(buf, len), rd, JIT_REG_TMP); |
| return len; |
| } |
| |
| /* "asl a,b,c" --> "a = (b << (c & 31))". */ |
| u8 lsh_r32(u8 *buf, u8 rd, u8 rs) |
| { |
| return arc_asl_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); |
| } |
| |
| u8 lsh_r32_i32(u8 *buf, u8 rd, u8 imm) |
| { |
| return arc_asli_r(buf, REG_LO(rd), REG_LO(rd), imm); |
| } |
| |
| /* |
| * algorithm |
| * --------- |
| * if (n <= 32) |
| * to_hi = lo >> (32-n) # (32-n) is the negate of "n" in a 5-bit width. |
| * lo <<= n |
| * hi <<= n |
| * hi |= to_hi |
| * else |
| * hi = lo << (n-32) |
| * lo = 0 |
| * |
| * assembly translation for "LSH B, C" |
| * (heavily influenced by ARC gcc) |
| * ----------------------------------- |
| * not t0, C_lo # The first 3 lines are almost the same as: |
| * lsr t1, B_lo, 1 # neg t0, C_lo |
| * lsr t1, t1, t0 # lsr t1, B_lo, t0 --> t1 is "to_hi" |
| * mov t0, C_lo* # with one important difference. In "neg" |
| * asl B_lo, B_lo, t0 # version, when C_lo=0, t1 becomes B_lo while |
| * asl B_hi, B_hi, t0 # it should be 0. The "not" approach instead, |
| * or B_hi, B_hi, t1 # "shift"s t1 once and 31 times, practically |
| * btst t0, 5 # setting it to 0 when C_lo=0. |
| * mov.ne B_hi, B_lo** |
| * mov.ne B_lo, 0 |
| * |
| * *The "mov t0, C_lo" is necessary to cover the cases that C is the same |
| * register as B. |
| * |
| * **ARC performs a shift in this manner: B <<= (C & 31) |
| * For 32<=n<64, "n-32" and "n&31" are the same. Therefore, "B << n" and |
| * "B << (n-32)" yield the same results. e.g. the results of "B << 35" and |
| * "B << 3" are the same. |
| * |
| * The behaviour is undefined for n >= 64. |
| */ |
| u8 lsh_r64(u8 *buf, u8 rd, u8 rs) |
| { |
| const u8 t0 = REG_LO(JIT_REG_TMP); |
| const u8 t1 = REG_HI(JIT_REG_TMP); |
| const u8 C_lo = REG_LO(rs); |
| const u8 B_lo = REG_LO(rd); |
| const u8 B_hi = REG_HI(rd); |
| u8 len; |
| |
| len = arc_not_r(buf, t0, C_lo); |
| len += arc_lsri_r(BUF(buf, len), t1, B_lo, 1); |
| len += arc_lsr_r(BUF(buf, len), t1, t1, t0); |
| len += arc_mov_r(BUF(buf, len), t0, C_lo); |
| len += arc_asl_r(BUF(buf, len), B_lo, B_lo, t0); |
| len += arc_asl_r(BUF(buf, len), B_hi, B_hi, t0); |
| len += arc_or_r(BUF(buf, len), B_hi, B_hi, t1); |
| len += arc_btst_i(BUF(buf, len), t0, 5); |
| len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_hi, B_lo); |
| len += arc_movu_cc_r(BUF(buf, len), CC_unequal, B_lo, 0); |
| |
| return len; |
| } |
| |
| /* |
| * if (n < 32) |
| * to_hi = B_lo >> 32-n # extract upper n bits |
| * lo <<= n |
| * hi <<=n |
| * hi |= to_hi |
| * else if (n < 64) |
| * hi = lo << n-32 |
| * lo = 0 |
| */ |
| u8 lsh_r64_i32(u8 *buf, u8 rd, s32 imm) |
| { |
| const u8 t0 = REG_LO(JIT_REG_TMP); |
| const u8 B_lo = REG_LO(rd); |
| const u8 B_hi = REG_HI(rd); |
| const u8 n = (u8)imm; |
| u8 len = 0; |
| |
| if (n == 0) { |
| return 0; |
| } else if (n <= 31) { |
| len = arc_lsri_r(buf, t0, B_lo, 32 - n); |
| len += arc_asli_r(BUF(buf, len), B_lo, B_lo, n); |
| len += arc_asli_r(BUF(buf, len), B_hi, B_hi, n); |
| len += arc_or_r(BUF(buf, len), B_hi, B_hi, t0); |
| } else if (n <= 63) { |
| len = arc_asli_r(buf, B_hi, B_lo, n - 32); |
| len += arc_movi_r(BUF(buf, len), B_lo, 0); |
| } |
| /* n >= 64 is undefined behaviour. */ |
| |
| return len; |
| } |
| |
| /* "lsr a,b,c" --> "a = (b >> (c & 31))". */ |
| u8 rsh_r32(u8 *buf, u8 rd, u8 rs) |
| { |
| return arc_lsr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); |
| } |
| |
| u8 rsh_r32_i32(u8 *buf, u8 rd, u8 imm) |
| { |
| return arc_lsri_r(buf, REG_LO(rd), REG_LO(rd), imm); |
| } |
| |
| /* |
| * For better commentary, see lsh_r64(). |
| * |
| * algorithm |
| * --------- |
| * if (n <= 32) |
| * to_lo = hi << (32-n) |
| * hi >>= n |
| * lo >>= n |
| * lo |= to_lo |
| * else |
| * lo = hi >> (n-32) |
| * hi = 0 |
| * |
| * RSH B,C |
| * ---------- |
| * not t0, C_lo |
| * asl t1, B_hi, 1 |
| * asl t1, t1, t0 |
| * mov t0, C_lo |
| * lsr B_hi, B_hi, t0 |
| * lsr B_lo, B_lo, t0 |
| * or B_lo, B_lo, t1 |
| * btst t0, 5 |
| * mov.ne B_lo, B_hi |
| * mov.ne B_hi, 0 |
| */ |
| u8 rsh_r64(u8 *buf, u8 rd, u8 rs) |
| { |
| const u8 t0 = REG_LO(JIT_REG_TMP); |
| const u8 t1 = REG_HI(JIT_REG_TMP); |
| const u8 C_lo = REG_LO(rs); |
| const u8 B_lo = REG_LO(rd); |
| const u8 B_hi = REG_HI(rd); |
| u8 len; |
| |
| len = arc_not_r(buf, t0, C_lo); |
| len += arc_asli_r(BUF(buf, len), t1, B_hi, 1); |
| len += arc_asl_r(BUF(buf, len), t1, t1, t0); |
| len += arc_mov_r(BUF(buf, len), t0, C_lo); |
| len += arc_lsr_r(BUF(buf, len), B_hi, B_hi, t0); |
| len += arc_lsr_r(BUF(buf, len), B_lo, B_lo, t0); |
| len += arc_or_r(BUF(buf, len), B_lo, B_lo, t1); |
| len += arc_btst_i(BUF(buf, len), t0, 5); |
| len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_lo, B_hi); |
| len += arc_movu_cc_r(BUF(buf, len), CC_unequal, B_hi, 0); |
| |
| return len; |
| } |
| |
| /* |
| * if (n < 32) |
| * to_lo = B_lo << 32-n # extract lower n bits, right-padded with 32-n 0s |
| * lo >>=n |
| * hi >>=n |
| * hi |= to_lo |
| * else if (n < 64) |
| * lo = hi >> n-32 |
| * hi = 0 |
| */ |
| u8 rsh_r64_i32(u8 *buf, u8 rd, s32 imm) |
| { |
| const u8 t0 = REG_LO(JIT_REG_TMP); |
| const u8 B_lo = REG_LO(rd); |
| const u8 B_hi = REG_HI(rd); |
| const u8 n = (u8)imm; |
| u8 len = 0; |
| |
| if (n == 0) { |
| return 0; |
| } else if (n <= 31) { |
| len = arc_asli_r(buf, t0, B_hi, 32 - n); |
| len += arc_lsri_r(BUF(buf, len), B_lo, B_lo, n); |
| len += arc_lsri_r(BUF(buf, len), B_hi, B_hi, n); |
| len += arc_or_r(BUF(buf, len), B_lo, B_lo, t0); |
| } else if (n <= 63) { |
| len = arc_lsri_r(buf, B_lo, B_hi, n - 32); |
| len += arc_movi_r(BUF(buf, len), B_hi, 0); |
| } |
| /* n >= 64 is undefined behaviour. */ |
| |
| return len; |
| } |
| |
| /* "asr a,b,c" --> "a = (b s>> (c & 31))". */ |
| u8 arsh_r32(u8 *buf, u8 rd, u8 rs) |
| { |
| return arc_asr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs)); |
| } |
| |
| u8 arsh_r32_i32(u8 *buf, u8 rd, u8 imm) |
| { |
| return arc_asri_r(buf, REG_LO(rd), REG_LO(rd), imm); |
| } |
| |
| /* |
| * For comparison, see rsh_r64(). |
| * |
| * algorithm |
| * --------- |
| * if (n <= 32) |
| * to_lo = hi << (32-n) |
| * hi s>>= n |
| * lo >>= n |
| * lo |= to_lo |
| * else |
| * hi_sign = hi s>>31 |
| * lo = hi s>> (n-32) |
| * hi = hi_sign |
| * |
| * ARSH B,C |
| * ---------- |
| * not t0, C_lo |
| * asl t1, B_hi, 1 |
| * asl t1, t1, t0 |
| * mov t0, C_lo |
| * asr B_hi, B_hi, t0 |
| * lsr B_lo, B_lo, t0 |
| * or B_lo, B_lo, t1 |
| * btst t0, 5 |
| * asr t0, B_hi, 31 # now, t0 = 0 or -1 based on B_hi's sign |
| * mov.ne B_lo, B_hi |
| * mov.ne B_hi, t0 |
| */ |
| u8 arsh_r64(u8 *buf, u8 rd, u8 rs) |
| { |
| const u8 t0 = REG_LO(JIT_REG_TMP); |
| const u8 t1 = REG_HI(JIT_REG_TMP); |
| const u8 C_lo = REG_LO(rs); |
| const u8 B_lo = REG_LO(rd); |
| const u8 B_hi = REG_HI(rd); |
| u8 len; |
| |
| len = arc_not_r(buf, t0, C_lo); |
| len += arc_asli_r(BUF(buf, len), t1, B_hi, 1); |
| len += arc_asl_r(BUF(buf, len), t1, t1, t0); |
| len += arc_mov_r(BUF(buf, len), t0, C_lo); |
| len += arc_asr_r(BUF(buf, len), B_hi, B_hi, t0); |
| len += arc_lsr_r(BUF(buf, len), B_lo, B_lo, t0); |
| len += arc_or_r(BUF(buf, len), B_lo, B_lo, t1); |
| len += arc_btst_i(BUF(buf, len), t0, 5); |
| len += arc_asri_r(BUF(buf, len), t0, B_hi, 31); |
| len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_lo, B_hi); |
| len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_hi, t0); |
| |
| return len; |
| } |
| |
| /* |
| * if (n < 32) |
| * to_lo = lo << 32-n # extract lower n bits, right-padded with 32-n 0s |
| * lo >>=n |
| * hi s>>=n |
| * hi |= to_lo |
| * else if (n < 64) |
| * lo = hi s>> n-32 |
| * hi = (lo[msb] ? -1 : 0) |
| */ |
| u8 arsh_r64_i32(u8 *buf, u8 rd, s32 imm) |
| { |
| const u8 t0 = REG_LO(JIT_REG_TMP); |
| const u8 B_lo = REG_LO(rd); |
| const u8 B_hi = REG_HI(rd); |
| const u8 n = (u8)imm; |
| u8 len = 0; |
| |
| if (n == 0) { |
| return 0; |
| } else if (n <= 31) { |
| len = arc_asli_r(buf, t0, B_hi, 32 - n); |
| len += arc_lsri_r(BUF(buf, len), B_lo, B_lo, n); |
| len += arc_asri_r(BUF(buf, len), B_hi, B_hi, n); |
| len += arc_or_r(BUF(buf, len), B_lo, B_lo, t0); |
| } else if (n <= 63) { |
| len = arc_asri_r(buf, B_lo, B_hi, n - 32); |
| len += arc_movi_r(BUF(buf, len), B_hi, -1); |
| len += arc_btst_i(BUF(buf, len), B_lo, 31); |
| len += arc_movu_cc_r(BUF(buf, len), CC_equal, B_hi, 0); |
| } |
| /* n >= 64 is undefined behaviour. */ |
| |
| return len; |
| } |
| |
| u8 gen_swap(u8 *buf, u8 rd, u8 size, u8 endian, bool force, bool do_zext) |
| { |
| u8 len = 0; |
| #ifdef __BIG_ENDIAN |
| const u8 host_endian = BPF_FROM_BE; |
| #else |
| const u8 host_endian = BPF_FROM_LE; |
| #endif |
| if (host_endian != endian || force) { |
| switch (size) { |
| case 16: |
| /* |
| * r = B4B3_B2B1 << 16 --> r = B2B1_0000 |
| * then, swape(r) would become the desired 0000_B1B2 |
| */ |
| len = arc_asli_r(buf, REG_LO(rd), REG_LO(rd), 16); |
| fallthrough; |
| case 32: |
| len += arc_swape_r(BUF(buf, len), REG_LO(rd)); |
| if (do_zext) |
| len += zext(BUF(buf, len), rd); |
| break; |
| case 64: |
| /* |
| * swap "hi" and "lo": |
| * hi ^= lo; |
| * lo ^= hi; |
| * hi ^= lo; |
| * and then swap the bytes in "hi" and "lo". |
| */ |
| len = arc_xor_r(buf, REG_HI(rd), REG_LO(rd)); |
| len += arc_xor_r(BUF(buf, len), REG_LO(rd), REG_HI(rd)); |
| len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_LO(rd)); |
| len += arc_swape_r(BUF(buf, len), REG_LO(rd)); |
| len += arc_swape_r(BUF(buf, len), REG_HI(rd)); |
| break; |
| default: |
| /* The caller must have handled this. */ |
| break; |
| } |
| } else { |
| /* |
| * If the same endianness, there's not much to do other |
| * than zeroing out the upper bytes based on the "size". |
| */ |
| switch (size) { |
| case 16: |
| len = arc_and_i(buf, REG_LO(rd), 0xffff); |
| fallthrough; |
| case 32: |
| if (do_zext) |
| len += zext(BUF(buf, len), rd); |
| break; |
| case 64: |
| break; |
| default: |
| /* The caller must have handled this. */ |
| break; |
| } |
| } |
| |
| return len; |
| } |
| |
| /* |
| * To create a frame, all that is needed is: |
| * |
| * push fp |
| * mov fp, sp |
| * sub sp, <frame_size> |
| * |
| * "push fp" is taken care of separately while saving the clobbered registers. |
| * All that remains is copying SP value to FP and shrinking SP's address space |
| * for any possible function call to come. |
| */ |
| static inline u8 frame_create(u8 *buf, u16 size) |
| { |
| u8 len; |
| |
| len = arc_mov_r(buf, ARC_R_FP, ARC_R_SP); |
| if (IN_U6_RANGE(size)) |
| len += arc_subi_r(BUF(buf, len), ARC_R_SP, size); |
| else |
| len += arc_sub_i(BUF(buf, len), ARC_R_SP, size); |
| return len; |
| } |
| |
| /* |
| * mov sp, fp |
| * |
| * The value of SP upon entering was copied to FP. |
| */ |
| static inline u8 frame_restore(u8 *buf) |
| { |
| return arc_mov_r(buf, ARC_R_SP, ARC_R_FP); |
| } |
| |
| /* |
| * Going from a JITed code to the native caller: |
| * |
| * mov ARC_ABI_RET_lo, BPF_REG_0_lo # r0 <- r8 |
| * mov ARC_ABI_RET_hi, BPF_REG_0_hi # r1 <- r9 |
| */ |
| static u8 bpf_to_arc_return(u8 *buf) |
| { |
| u8 len; |
| |
| len = arc_mov_r(buf, ARC_R_0, REG_LO(BPF_REG_0)); |
| len += arc_mov_r(BUF(buf, len), ARC_R_1, REG_HI(BPF_REG_0)); |
| return len; |
| } |
| |
| /* |
| * Coming back from an external (in-kernel) function to the JITed code: |
| * |
| * mov ARC_ABI_RET_lo, BPF_REG_0_lo # r8 <- r0 |
| * mov ARC_ABI_RET_hi, BPF_REG_0_hi # r9 <- r1 |
| */ |
| u8 arc_to_bpf_return(u8 *buf) |
| { |
| u8 len; |
| |
| len = arc_mov_r(buf, REG_LO(BPF_REG_0), ARC_R_0); |
| len += arc_mov_r(BUF(buf, len), REG_HI(BPF_REG_0), ARC_R_1); |
| return len; |
| } |
| |
| /* |
| * This translation leads to: |
| * |
| * mov r10, addr # always an 8-byte instruction |
| * jl [r10] |
| * |
| * The length of the "mov" must be fixed (8), otherwise it may diverge |
| * during the normal and extra passes: |
| * |
| * normal pass extra pass |
| * |
| * 180: mov r10,0 | 180: mov r10,0x700578d8 |
| * 184: jl [r10] | 188: jl [r10] |
| * 188: add.f r16,r16,0x1 | 18c: adc r17,r17,0 |
| * 18c: adc r17,r17,0 | |
| * |
| * In the above example, the change from "r10 <- 0" to "r10 <- 0x700578d8" |
| * has led to an increase in the length of the "mov" instruction. |
| * Inadvertently, that caused the loss of the "add.f" instruction. |
| */ |
| static u8 jump_and_link(u8 *buf, u32 addr) |
| { |
| u8 len; |
| |
| len = arc_mov_i_fixed(buf, REG_LO(JIT_REG_TMP), addr); |
| len += arc_jl(BUF(buf, len), REG_LO(JIT_REG_TMP)); |
| return len; |
| } |
| |
| /* |
| * This function determines which ARC registers must be saved and restored. |
| * It does so by looking into: |
| * |
| * "bpf_reg": The clobbered (destination) BPF register |
| * "is_call": Indicator if the current instruction is a call |
| * |
| * When a register of interest is clobbered, its corresponding bit position |
| * in return value, "usage", is set to true. |
| */ |
| u32 mask_for_used_regs(u8 bpf_reg, bool is_call) |
| { |
| u32 usage = 0; |
| |
| /* BPF registers that must be saved. */ |
| if (bpf_reg >= BPF_REG_6 && bpf_reg <= BPF_REG_9) { |
| usage |= BIT(REG_LO(bpf_reg)); |
| usage |= BIT(REG_HI(bpf_reg)); |
| /* |
| * Using the frame pointer register implies that it should |
| * be saved and reinitialised with the current frame data. |
| */ |
| } else if (bpf_reg == BPF_REG_FP) { |
| usage |= BIT(REG_LO(BPF_REG_FP)); |
| /* Could there be some ARC registers that must to be saved? */ |
| } else { |
| if (REG_LO(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST && |
| REG_LO(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST) |
| usage |= BIT(REG_LO(bpf_reg)); |
| |
| if (REG_HI(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST && |
| REG_HI(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST) |
| usage |= BIT(REG_HI(bpf_reg)); |
| } |
| |
| /* A "call" indicates that ARC's "blink" reg must be saved. */ |
| usage |= is_call ? BIT(ARC_R_BLINK) : 0; |
| |
| return usage; |
| } |
| |
| /* |
| * push blink # if blink is marked as clobbered |
| * push r[0-n] # if r[i] is marked as clobbered |
| * push fp # if fp is marked as clobbered |
| * mov fp, sp # if frame_size > 0 (clobbers fp) |
| * sub sp, <frame_size> # same as above |
| */ |
| u8 arc_prologue(u8 *buf, u32 usage, u16 frame_size) |
| { |
| u8 len = 0; |
| u32 gp_regs = 0; |
| |
| /* Deal with blink first. */ |
| if (usage & BIT(ARC_R_BLINK)) |
| len += arc_push_r(BUF(buf, len), ARC_R_BLINK); |
| |
| gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP)); |
| while (gp_regs) { |
| u8 reg = __builtin_ffs(gp_regs) - 1; |
| |
| len += arc_push_r(BUF(buf, len), reg); |
| gp_regs &= ~BIT(reg); |
| } |
| |
| /* Deal with fp last. */ |
| if ((usage & BIT(ARC_R_FP)) || frame_size > 0) |
| len += arc_push_r(BUF(buf, len), ARC_R_FP); |
| |
| if (frame_size > 0) |
| len += frame_create(BUF(buf, len), frame_size); |
| |
| #ifdef ARC_BPF_JIT_DEBUG |
| if ((usage & BIT(ARC_R_FP)) && frame_size == 0) { |
| pr_err("FP is being saved while there is no frame."); |
| BUG(); |
| } |
| #endif |
| |
| return len; |
| } |
| |
| /* |
| * mov sp, fp # if frame_size > 0 |
| * pop fp # if fp is marked as clobbered |
| * pop r[n-0] # if r[i] is marked as clobbered |
| * pop blink # if blink is marked as clobbered |
| * mov r0, r8 # always: ABI_return <- BPF_return |
| * mov r1, r9 # continuation of above |
| * j [blink] # always |
| * |
| * "fp being marked as clobbered" and "frame_size > 0" are the two sides of |
| * the same coin. |
| */ |
| u8 arc_epilogue(u8 *buf, u32 usage, u16 frame_size) |
| { |
| u32 len = 0; |
| u32 gp_regs = 0; |
| |
| #ifdef ARC_BPF_JIT_DEBUG |
| if ((usage & BIT(ARC_R_FP)) && frame_size == 0) { |
| pr_err("FP is being saved while there is no frame."); |
| BUG(); |
| } |
| #endif |
| |
| if (frame_size > 0) |
| len += frame_restore(BUF(buf, len)); |
| |
| /* Deal with fp first. */ |
| if ((usage & BIT(ARC_R_FP)) || frame_size > 0) |
| len += arc_pop_r(BUF(buf, len), ARC_R_FP); |
| |
| gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP)); |
| while (gp_regs) { |
| /* "usage" is 32-bit, each bit indicating an ARC register. */ |
| u8 reg = 31 - __builtin_clz(gp_regs); |
| |
| len += arc_pop_r(BUF(buf, len), reg); |
| gp_regs &= ~BIT(reg); |
| } |
| |
| /* Deal with blink last. */ |
| if (usage & BIT(ARC_R_BLINK)) |
| len += arc_pop_r(BUF(buf, len), ARC_R_BLINK); |
| |
| /* Wrap up the return value and jump back to the caller. */ |
| len += bpf_to_arc_return(BUF(buf, len)); |
| len += arc_jmp_return(BUF(buf, len)); |
| |
| return len; |
| } |
| |
| /* |
| * For details on the algorithm, see the comments of "gen_jcc_64()". |
| * |
| * This data structure is holding information for jump translations. |
| * |
| * jit_off: How many bytes into the current JIT address, "b"ranch insn. occurs |
| * cond: The condition that the ARC branch instruction must use |
| * |
| * e.g.: |
| * |
| * BPF_JGE R1, R0, @target |
| * ------------------------ |
| * | |
| * v |
| * 0x1000: cmp r3, r1 # 0x1000 is the JIT address for "BPF_JGE ..." insn |
| * 0x1004: bhi @target # first jump (branch higher) |
| * 0x1008: blo @end # second jump acting as a skip (end is 0x1014) |
| * 0x100C: cmp r2, r0 # the lower 32 bits are evaluated |
| * 0x1010: bhs @target # third jump (branch higher or same) |
| * 0x1014: ... |
| * |
| * The jit_off(set) of the "bhi" is 4 bytes. |
| * The cond(ition) for the "bhi" is "CC_great_u". |
| * |
| * The jit_off(set) is necessary for calculating the exact displacement |
| * to the "target" address: |
| * |
| * jit_address + jit_off(set) - @target |
| * 0x1000 + 4 - @target |
| */ |
| #define JCC64_NR_OF_JMPS 3 /* Number of jumps in jcc64 template. */ |
| #define JCC64_INSNS_TO_END 3 /* Number of insn. inclusive the 2nd jmp to end. */ |
| #define JCC64_SKIP_JMP 1 /* Index of the "skip" jump to "end". */ |
| static const struct { |
| /* |
| * "jit_off" is common between all "jmp[]" and is coupled with |
| * "cond" of each "jmp[]" instance. e.g.: |
| * |
| * arcv2_64_jccs.jit_off[1] |
| * arcv2_64_jccs.jmp[ARC_CC_UGT].cond[1] |
| * |
| * Are indicating that the second jump in JITed code of "UGT" |
| * is at offset "jit_off[1]" while its condition is "cond[1]". |
| */ |
| u8 jit_off[JCC64_NR_OF_JMPS]; |
| |
| struct { |
| u8 cond[JCC64_NR_OF_JMPS]; |
| } jmp[ARC_CC_SLE + 1]; |
| } arcv2_64_jccs = { |
| .jit_off = { |
| INSN_len_normal * 1, |
| INSN_len_normal * 2, |
| INSN_len_normal * 4 |
| }, |
| /* |
| * cmp rd_hi, rs_hi |
| * bhi @target # 1: u> |
| * blo @end # 2: u< |
| * cmp rd_lo, rs_lo |
| * bhi @target # 3: u> |
| * end: |
| */ |
| .jmp[ARC_CC_UGT] = { |
| .cond = {CC_great_u, CC_less_u, CC_great_u} |
| }, |
| /* |
| * cmp rd_hi, rs_hi |
| * bhi @target # 1: u> |
| * blo @end # 2: u< |
| * cmp rd_lo, rs_lo |
| * bhs @target # 3: u>= |
| * end: |
| */ |
| .jmp[ARC_CC_UGE] = { |
| .cond = {CC_great_u, CC_less_u, CC_great_eq_u} |
| }, |
| /* |
| * cmp rd_hi, rs_hi |
| * blo @target # 1: u< |
| * bhi @end # 2: u> |
| * cmp rd_lo, rs_lo |
| * blo @target # 3: u< |
| * end: |
| */ |
| .jmp[ARC_CC_ULT] = { |
| .cond = {CC_less_u, CC_great_u, CC_less_u} |
| }, |
| /* |
| * cmp rd_hi, rs_hi |
| * blo @target # 1: u< |
| * bhi @end # 2: u> |
| * cmp rd_lo, rs_lo |
| * bls @target # 3: u<= |
| * end: |
| */ |
| .jmp[ARC_CC_ULE] = { |
| .cond = {CC_less_u, CC_great_u, CC_less_eq_u} |
| }, |
| /* |
| * cmp rd_hi, rs_hi |
| * bgt @target # 1: s> |
| * blt @end # 2: s< |
| * cmp rd_lo, rs_lo |
| * bhi @target # 3: u> |
| * end: |
| */ |
| .jmp[ARC_CC_SGT] = { |
| .cond = {CC_great_s, CC_less_s, CC_great_u} |
| }, |
| /* |
| * cmp rd_hi, rs_hi |
| * bgt @target # 1: s> |
| * blt @end # 2: s< |
| * cmp rd_lo, rs_lo |
| * bhs @target # 3: u>= |
| * end: |
| */ |
| .jmp[ARC_CC_SGE] = { |
| .cond = {CC_great_s, CC_less_s, CC_great_eq_u} |
| }, |
| /* |
| * cmp rd_hi, rs_hi |
| * blt @target # 1: s< |
| * bgt @end # 2: s> |
| * cmp rd_lo, rs_lo |
| * blo @target # 3: u< |
| * end: |
| */ |
| .jmp[ARC_CC_SLT] = { |
| .cond = {CC_less_s, CC_great_s, CC_less_u} |
| }, |
| /* |
| * cmp rd_hi, rs_hi |
| * blt @target # 1: s< |
| * bgt @end # 2: s> |
| * cmp rd_lo, rs_lo |
| * bls @target # 3: u<= |
| * end: |
| */ |
| .jmp[ARC_CC_SLE] = { |
| .cond = {CC_less_s, CC_great_s, CC_less_eq_u} |
| } |
| }; |
| |
| /* |
| * The displacement (offset) for ARC's "b"ranch instruction is the distance |
| * from the aligned version of _current_ instruction (PCL) to the target |
| * instruction: |
| * |
| * DISP = TARGET - PCL # PCL is the word aligned PC |
| */ |
| static inline s32 get_displacement(u32 curr_off, u32 targ_off) |
| { |
| return (s32)(targ_off - (curr_off & ~3L)); |
| } |
| |
| /* |
| * "disp"lacement should be: |
| * |
| * 1. 16-bit aligned. |
| * 2. fit in S25, because no "condition code" is supposed to be encoded. |
| */ |
| static inline bool is_valid_far_disp(s32 disp) |
| { |
| return (!(disp & 1) && IN_S25_RANGE(disp)); |
| } |
| |
| /* |
| * "disp"lacement should be: |
| * |
| * 1. 16-bit aligned. |
| * 2. fit in S21, because "condition code" is supposed to be encoded too. |
| */ |
| static inline bool is_valid_near_disp(s32 disp) |
| { |
| return (!(disp & 1) && IN_S21_RANGE(disp)); |
| } |
| |
| /* |
| * cmp rd_hi, rs_hi |
| * cmp.z rd_lo, rs_lo |
| * b{eq,ne} @target |
| * | | |
| * | `--> "eq" param is false (JNE) |
| * `-----> "eq" param is true (JEQ) |
| */ |
| static int gen_j_eq_64(u8 *buf, u8 rd, u8 rs, bool eq, |
| u32 curr_off, u32 targ_off) |
| { |
| s32 disp; |
| u8 len = 0; |
| |
| len += arc_cmp_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); |
| len += arc_cmpz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs)); |
| disp = get_displacement(curr_off + len, targ_off); |
| len += arc_bcc(BUF(buf, len), eq ? CC_equal : CC_unequal, disp); |
| |
| return len; |
| } |
| |
| /* |
| * tst rd_hi, rs_hi |
| * tst.z rd_lo, rs_lo |
| * bne @target |
| */ |
| static u8 gen_jset_64(u8 *buf, u8 rd, u8 rs, u32 curr_off, u32 targ_off) |
| { |
| u8 len = 0; |
| s32 disp; |
| |
| len += arc_tst_r(BUF(buf, len), REG_HI(rd), REG_HI(rs)); |
| len += arc_tstz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs)); |
| disp = get_displacement(curr_off + len, targ_off); |
| len += arc_bcc(BUF(buf, len), CC_unequal, disp); |
| |
| return len; |
| } |
| |
| /* |
| * Verify if all the jumps for a JITed jcc64 operation are valid, |
| * by consulting the data stored at "arcv2_64_jccs". |
| */ |
| static bool check_jcc_64(u32 curr_off, u32 targ_off, u8 cond) |
| { |
| size_t i; |
| |
| if (cond >= ARC_CC_LAST) |
| return false; |
| |
| for (i = 0; i < JCC64_NR_OF_JMPS; i++) { |
| u32 from, to; |
| |
| from = curr_off + arcv2_64_jccs.jit_off[i]; |
| /* for the 2nd jump, we jump to the end of block. */ |
| if (i != JCC64_SKIP_JMP) |
| to = targ_off; |
| else |
| to = from + (JCC64_INSNS_TO_END * INSN_len_normal); |
| /* There is a "cc" in the instruction, so a "near" jump. */ |
| if (!is_valid_near_disp(get_displacement(from, to))) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Can the jump from "curr_off" to "targ_off" actually happen? */ |
| bool check_jmp_64(u32 curr_off, u32 targ_off, u8 cond) |
| { |
| s32 disp; |
| |
| switch (cond) { |
| case ARC_CC_UGT: |
| case ARC_CC_UGE: |
| case ARC_CC_ULT: |
| case ARC_CC_ULE: |
| case ARC_CC_SGT: |
| case ARC_CC_SGE: |
| case ARC_CC_SLT: |
| case ARC_CC_SLE: |
| return check_jcc_64(curr_off, targ_off, cond); |
| case ARC_CC_EQ: |
| case ARC_CC_NE: |
| case ARC_CC_SET: |
| /* |
| * The "jump" for the JITed BPF_J{SET,EQ,NE} is actually the |
| * 3rd instruction. See comments of "gen_j{set,_eq}_64()". |
| */ |
| curr_off += 2 * INSN_len_normal; |
| disp = get_displacement(curr_off, targ_off); |
| /* There is a "cc" field in the issued instruction. */ |
| return is_valid_near_disp(disp); |
| case ARC_CC_AL: |
| disp = get_displacement(curr_off, targ_off); |
| return is_valid_far_disp(disp); |
| default: |
| return false; |
| } |
| } |
| |
| /* |
| * The template for the 64-bit jumps with the following BPF conditions |
| * |
| * u< u<= u> u>= s< s<= s> s>= |
| * |
| * Looks like below: |
| * |
| * cmp rd_hi, rs_hi |
| * b<c1> @target |
| * b<c2> @end |
| * cmp rd_lo, rs_lo # if execution reaches here, r{d,s}_hi are equal |
| * b<c3> @target |
| * end: |
| * |
| * "c1" is the condition that JIT is handling minus the equality part. |
| * For instance if we have to translate an "unsigned greater or equal", |
| * then "c1" will be "unsigned greater". We won't know about equality |
| * until all 64-bits of data (higeher and lower registers) are processed. |
| * |
| * "c2" is the counter logic of "c1". For instance, if "c1" is originated |
| * from "s>", then "c2" would be "s<". Notice that equality doesn't play |
| * a role here either, because the lower 32 bits are not processed yet. |
| * |
| * "c3" is the unsigned version of "c1", no matter if the BPF condition |
| * was signed or unsigned. An unsigned version is necessary, because the |
| * MSB of the lower 32 bits does not reflect a sign in the whole 64-bit |
| * scheme. Otherwise, 64-bit comparisons like |
| * (0x0000_0000,0x8000_0000) s>= (0x0000_0000,0x0000_0000) |
| * would yield an incorrect result. Finally, if there is an equality |
| * check in the BPF condition, it will be reflected in "c3". |
| * |
| * You can find all the instances of this template where the |
| * "arcv2_64_jccs" is getting initialised. |
| */ |
| static u8 gen_jcc_64(u8 *buf, u8 rd, u8 rs, u8 cond, |
| u32 curr_off, u32 targ_off) |
| { |
| s32 disp; |
| u32 end_off; |
| const u8 *cc = arcv2_64_jccs.jmp[cond].cond; |
| u8 len = 0; |
| |
| /* cmp rd_hi, rs_hi */ |
| len += arc_cmp_r(buf, REG_HI(rd), REG_HI(rs)); |
| |
| /* b<c1> @target */ |
| disp = get_displacement(curr_off + len, targ_off); |
| len += arc_bcc(BUF(buf, len), cc[0], disp); |
| |
| /* b<c2> @end */ |
| end_off = curr_off + len + (JCC64_INSNS_TO_END * INSN_len_normal); |
| disp = get_displacement(curr_off + len, end_off); |
| len += arc_bcc(BUF(buf, len), cc[1], disp); |
| |
| /* cmp rd_lo, rs_lo */ |
| len += arc_cmp_r(BUF(buf, len), REG_LO(rd), REG_LO(rs)); |
| |
| /* b<c3> @target */ |
| disp = get_displacement(curr_off + len, targ_off); |
| len += arc_bcc(BUF(buf, len), cc[2], disp); |
| |
| return len; |
| } |
| |
| /* |
| * This function only applies the necessary logic to make the proper |
| * translations. All the sanity checks must have already been done |
| * by calling the check_jmp_64(). |
| */ |
| u8 gen_jmp_64(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off) |
| { |
| u8 len = 0; |
| bool eq = false; |
| s32 disp; |
| |
| switch (cond) { |
| case ARC_CC_AL: |
| disp = get_displacement(curr_off, targ_off); |
| len = arc_b(buf, disp); |
| break; |
| case ARC_CC_UGT: |
| case ARC_CC_UGE: |
| case ARC_CC_ULT: |
| case ARC_CC_ULE: |
| case ARC_CC_SGT: |
| case ARC_CC_SGE: |
| case ARC_CC_SLT: |
| case ARC_CC_SLE: |
| len = gen_jcc_64(buf, rd, rs, cond, curr_off, targ_off); |
| break; |
| case ARC_CC_EQ: |
| eq = true; |
| fallthrough; |
| case ARC_CC_NE: |
| len = gen_j_eq_64(buf, rd, rs, eq, curr_off, targ_off); |
| break; |
| case ARC_CC_SET: |
| len = gen_jset_64(buf, rd, rs, curr_off, targ_off); |
| break; |
| default: |
| #ifdef ARC_BPF_JIT_DEBUG |
| pr_err("64-bit jump condition is not known."); |
| BUG(); |
| #endif |
| } |
| return len; |
| } |
| |
| /* |
| * The condition codes to use when generating JIT instructions |
| * for 32-bit jumps. |
| * |
| * The "ARC_CC_AL" index is not really used by the code, but it |
| * is here for the sake of completeness. |
| * |
| * The "ARC_CC_SET" becomes "CC_unequal" because of the "tst" |
| * instruction that precedes the conditional branch. |
| */ |
| static const u8 arcv2_32_jmps[ARC_CC_LAST] = { |
| [ARC_CC_UGT] = CC_great_u, |
| [ARC_CC_UGE] = CC_great_eq_u, |
| [ARC_CC_ULT] = CC_less_u, |
| [ARC_CC_ULE] = CC_less_eq_u, |
| [ARC_CC_SGT] = CC_great_s, |
| [ARC_CC_SGE] = CC_great_eq_s, |
| [ARC_CC_SLT] = CC_less_s, |
| [ARC_CC_SLE] = CC_less_eq_s, |
| [ARC_CC_AL] = CC_always, |
| [ARC_CC_EQ] = CC_equal, |
| [ARC_CC_NE] = CC_unequal, |
| [ARC_CC_SET] = CC_unequal |
| }; |
| |
| /* Can the jump from "curr_off" to "targ_off" actually happen? */ |
| bool check_jmp_32(u32 curr_off, u32 targ_off, u8 cond) |
| { |
| u8 addendum; |
| s32 disp; |
| |
| if (cond >= ARC_CC_LAST) |
| return false; |
| |
| /* |
| * The unconditional jump happens immediately, while the rest |
| * are either preceded by a "cmp" or "tst" instruction. |
| */ |
| addendum = (cond == ARC_CC_AL) ? 0 : INSN_len_normal; |
| disp = get_displacement(curr_off + addendum, targ_off); |
| |
| if (ARC_CC_AL) |
| return is_valid_far_disp(disp); |
| else |
| return is_valid_near_disp(disp); |
| } |
| |
| /* |
| * The JITed code for 32-bit (conditional) branches: |
| * |
| * ARC_CC_AL @target |
| * b @jit_targ_addr |
| * |
| * ARC_CC_SET rd, rs, @target |
| * tst rd, rs |
| * bnz @jit_targ_addr |
| * |
| * ARC_CC_xx rd, rs, @target |
| * cmp rd, rs |
| * b<cc> @jit_targ_addr # cc = arcv2_32_jmps[xx] |
| */ |
| u8 gen_jmp_32(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off) |
| { |
| s32 disp; |
| u8 len = 0; |
| |
| /* |
| * Although this must have already been checked by "check_jmp_32()", |
| * we're not going to risk accessing "arcv2_32_jmps" array without |
| * the boundary check. |
| */ |
| if (cond >= ARC_CC_LAST) { |
| #ifdef ARC_BPF_JIT_DEBUG |
| pr_err("32-bit jump condition is not known."); |
| BUG(); |
| #endif |
| return 0; |
| } |
| |
| /* If there is a "condition", issue the "cmp" or "tst" first. */ |
| if (cond != ARC_CC_AL) { |
| if (cond == ARC_CC_SET) |
| len = tst_r32(buf, rd, rs); |
| else |
| len = cmp_r32(buf, rd, rs); |
| /* |
| * The issued instruction affects the "disp"lacement as |
| * it alters the "curr_off" by its "len"gth. The "curr_off" |
| * should always point to the jump instruction. |
| */ |
| disp = get_displacement(curr_off + len, targ_off); |
| len += arc_bcc(BUF(buf, len), arcv2_32_jmps[cond], disp); |
| } else { |
| /* The straight forward unconditional jump. */ |
| disp = get_displacement(curr_off, targ_off); |
| len = arc_b(buf, disp); |
| } |
| |
| return len; |
| } |
| |
| /* |
| * Generate code for functions calls. There can be two types of calls: |
| * |
| * - Calling another BPF function |
| * - Calling an in-kernel function which is compiled by ARC gcc |
| * |
| * In the later case, we must comply to ARCv2 ABI and handle arguments |
| * and return values accordingly. |
| */ |
| u8 gen_func_call(u8 *buf, ARC_ADDR func_addr, bool external_func) |
| { |
| u8 len = 0; |
| |
| /* |
| * In case of an in-kernel function call, always push the 5th |
| * argument onto the stack, because that's where the ABI dictates |
| * it should be found. If the callee doesn't really use it, no harm |
| * is done. The stack is readjusted either way after the call. |
| */ |
| if (external_func) |
| len += push_r64(BUF(buf, len), BPF_REG_5); |
| |
| len += jump_and_link(BUF(buf, len), func_addr); |
| |
| if (external_func) |
| len += arc_add_i(BUF(buf, len), ARC_R_SP, ARC_R_SP, ARG5_SIZE); |
| |
| return len; |
| } |