| // SPDX-License-Identifier: GPL-2.0 |
| // |
| // Driver for the SPI-NAND mode of Mediatek NAND Flash Interface |
| // |
| // Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com> |
| // |
| // This driver is based on the SPI-NAND mtd driver from Mediatek SDK: |
| // |
| // Copyright (C) 2020 MediaTek Inc. |
| // Author: Weijie Gao <weijie.gao@mediatek.com> |
| // |
| // This controller organize the page data as several interleaved sectors |
| // like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size) |
| // +---------+------+------+---------+------+------+-----+ |
| // | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... | |
| // +---------+------+------+---------+------+------+-----+ |
| // With auto-format turned on, DMA only returns this part: |
| // +---------+---------+-----+ |
| // | Sector1 | Sector2 | ... | |
| // +---------+---------+-----+ |
| // The FDM data will be filled to the registers, and ECC parity data isn't |
| // accessible. |
| // With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA |
| // in it's original order shown in the first table. ECC can't be turned on when |
| // auto-format is off. |
| // |
| // However, Linux SPI-NAND driver expects the data returned as: |
| // +------+-----+ |
| // | Page | OOB | |
| // +------+-----+ |
| // where the page data is continuously stored instead of interleaved. |
| // So we assume all instructions matching the page_op template between ECC |
| // prepare_io_req and finish_io_req are for page cache r/w. |
| // Here's how this spi-mem driver operates when reading: |
| // 1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off). |
| // 2. Perform page ops and let the controller fill the DMA bounce buffer with |
| // de-interleaved sector data and set FDM registers. |
| // 3. Return the data as: |
| // +---------+---------+-----+------+------+-----+ |
| // | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... | |
| // +---------+---------+-----+------+------+-----+ |
| // 4. For other matching spi_mem ops outside a prepare/finish_io_req pair, |
| // read the data with auto-format off into the bounce buffer and copy |
| // needed data to the buffer specified in the request. |
| // |
| // Write requests operates in a similar manner. |
| // As a limitation of this strategy, we won't be able to access any ECC parity |
| // data at all in Linux. |
| // |
| // Here's the bad block mark situation on MTK chips: |
| // In older chips like mt7622, MTK uses the first FDM byte in the first sector |
| // as the bad block mark. After de-interleaving, this byte appears at [pagesize] |
| // in the returned data, which is the BBM position expected by kernel. However, |
| // the conventional bad block mark is the first byte of the OOB, which is part |
| // of the last sector data in the interleaved layout. Instead of fixing their |
| // hardware, MTK decided to address this inconsistency in software. On these |
| // later chips, the BootROM expects the following: |
| // 1. The [pagesize] byte on a nand page is used as BBM, which will appear at |
| // (page_size - (nsectors - 1) * spare_size) in the DMA buffer. |
| // 2. The original byte stored at that position in the DMA buffer will be stored |
| // as the first byte of the FDM section in the last sector. |
| // We can't disagree with the BootROM, so after de-interleaving, we need to |
| // perform the following swaps in read: |
| // 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size], |
| // which is the expected BBM position by kernel. |
| // 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to |
| // [page_size - (nsectors - 1) * spare_size] |
| // Similarly, when writing, we need to perform swaps in the other direction. |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/device.h> |
| #include <linux/mutex.h> |
| #include <linux/clk.h> |
| #include <linux/interrupt.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/iopoll.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/mtd/nand-ecc-mtk.h> |
| #include <linux/spi/spi.h> |
| #include <linux/spi/spi-mem.h> |
| #include <linux/mtd/nand.h> |
| |
| // NFI registers |
| #define NFI_CNFG 0x000 |
| #define CNFG_OP_MODE_S 12 |
| #define CNFG_OP_MODE_CUST 6 |
| #define CNFG_OP_MODE_PROGRAM 3 |
| #define CNFG_AUTO_FMT_EN BIT(9) |
| #define CNFG_HW_ECC_EN BIT(8) |
| #define CNFG_DMA_BURST_EN BIT(2) |
| #define CNFG_READ_MODE BIT(1) |
| #define CNFG_DMA_MODE BIT(0) |
| |
| #define NFI_PAGEFMT 0x0004 |
| #define NFI_SPARE_SIZE_LS_S 16 |
| #define NFI_FDM_ECC_NUM_S 12 |
| #define NFI_FDM_NUM_S 8 |
| #define NFI_SPARE_SIZE_S 4 |
| #define NFI_SEC_SEL_512 BIT(2) |
| #define NFI_PAGE_SIZE_S 0 |
| #define NFI_PAGE_SIZE_512_2K 0 |
| #define NFI_PAGE_SIZE_2K_4K 1 |
| #define NFI_PAGE_SIZE_4K_8K 2 |
| #define NFI_PAGE_SIZE_8K_16K 3 |
| |
| #define NFI_CON 0x008 |
| #define CON_SEC_NUM_S 12 |
| #define CON_BWR BIT(9) |
| #define CON_BRD BIT(8) |
| #define CON_NFI_RST BIT(1) |
| #define CON_FIFO_FLUSH BIT(0) |
| |
| #define NFI_INTR_EN 0x010 |
| #define NFI_INTR_STA 0x014 |
| #define NFI_IRQ_INTR_EN BIT(31) |
| #define NFI_IRQ_CUS_READ BIT(8) |
| #define NFI_IRQ_CUS_PG BIT(7) |
| |
| #define NFI_CMD 0x020 |
| #define NFI_CMD_DUMMY_READ 0x00 |
| #define NFI_CMD_DUMMY_WRITE 0x80 |
| |
| #define NFI_STRDATA 0x040 |
| #define STR_DATA BIT(0) |
| |
| #define NFI_STA 0x060 |
| #define NFI_NAND_FSM_7622 GENMASK(28, 24) |
| #define NFI_NAND_FSM_7986 GENMASK(29, 23) |
| #define NFI_FSM GENMASK(19, 16) |
| #define READ_EMPTY BIT(12) |
| |
| #define NFI_FIFOSTA 0x064 |
| #define FIFO_WR_REMAIN_S 8 |
| #define FIFO_RD_REMAIN_S 0 |
| |
| #define NFI_ADDRCNTR 0x070 |
| #define SEC_CNTR GENMASK(16, 12) |
| #define SEC_CNTR_S 12 |
| #define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S) |
| |
| #define NFI_STRADDR 0x080 |
| |
| #define NFI_BYTELEN 0x084 |
| #define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S) |
| |
| #define NFI_FDM0L 0x0a0 |
| #define NFI_FDM0M 0x0a4 |
| #define NFI_FDML(n) (NFI_FDM0L + (n)*8) |
| #define NFI_FDMM(n) (NFI_FDM0M + (n)*8) |
| |
| #define NFI_DEBUG_CON1 0x220 |
| #define WBUF_EN BIT(2) |
| |
| #define NFI_MASTERSTA 0x224 |
| #define MAS_ADDR GENMASK(11, 9) |
| #define MAS_RD GENMASK(8, 6) |
| #define MAS_WR GENMASK(5, 3) |
| #define MAS_RDDLY GENMASK(2, 0) |
| #define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY) |
| #define NFI_MASTERSTA_MASK_7986 3 |
| |
| // SNFI registers |
| #define SNF_MAC_CTL 0x500 |
| #define MAC_XIO_SEL BIT(4) |
| #define SF_MAC_EN BIT(3) |
| #define SF_TRIG BIT(2) |
| #define WIP_READY BIT(1) |
| #define WIP BIT(0) |
| |
| #define SNF_MAC_OUTL 0x504 |
| #define SNF_MAC_INL 0x508 |
| |
| #define SNF_RD_CTL2 0x510 |
| #define DATA_READ_DUMMY_S 8 |
| #define DATA_READ_MAX_DUMMY 0xf |
| #define DATA_READ_CMD_S 0 |
| |
| #define SNF_RD_CTL3 0x514 |
| |
| #define SNF_PG_CTL1 0x524 |
| #define PG_LOAD_CMD_S 8 |
| |
| #define SNF_PG_CTL2 0x528 |
| |
| #define SNF_MISC_CTL 0x538 |
| #define SW_RST BIT(28) |
| #define FIFO_RD_LTC_S 25 |
| #define PG_LOAD_X4_EN BIT(20) |
| #define DATA_READ_MODE_S 16 |
| #define DATA_READ_MODE GENMASK(18, 16) |
| #define DATA_READ_MODE_X1 0 |
| #define DATA_READ_MODE_X2 1 |
| #define DATA_READ_MODE_X4 2 |
| #define DATA_READ_MODE_DUAL 5 |
| #define DATA_READ_MODE_QUAD 6 |
| #define DATA_READ_LATCH_LAT GENMASK(9, 8) |
| #define DATA_READ_LATCH_LAT_S 8 |
| #define PG_LOAD_CUSTOM_EN BIT(7) |
| #define DATARD_CUSTOM_EN BIT(6) |
| #define CS_DESELECT_CYC_S 0 |
| |
| #define SNF_MISC_CTL2 0x53c |
| #define PROGRAM_LOAD_BYTE_NUM_S 16 |
| #define READ_DATA_BYTE_NUM_S 11 |
| |
| #define SNF_DLY_CTL3 0x548 |
| #define SFCK_SAM_DLY_S 0 |
| #define SFCK_SAM_DLY GENMASK(5, 0) |
| #define SFCK_SAM_DLY_TOTAL 9 |
| #define SFCK_SAM_DLY_RANGE 47 |
| |
| #define SNF_STA_CTL1 0x550 |
| #define CUS_PG_DONE BIT(28) |
| #define CUS_READ_DONE BIT(27) |
| #define SPI_STATE_S 0 |
| #define SPI_STATE GENMASK(3, 0) |
| |
| #define SNF_CFG 0x55c |
| #define SPI_MODE BIT(0) |
| |
| #define SNF_GPRAM 0x800 |
| #define SNF_GPRAM_SIZE 0xa0 |
| |
| #define SNFI_POLL_INTERVAL 1000000 |
| |
| static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 }; |
| |
| static const u8 mt7986_spare_sizes[] = { |
| 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67, |
| 74 |
| }; |
| |
| struct mtk_snand_caps { |
| u16 sector_size; |
| u16 max_sectors; |
| u16 fdm_size; |
| u16 fdm_ecc_size; |
| u16 fifo_size; |
| |
| bool bbm_swap; |
| bool empty_page_check; |
| u32 mastersta_mask; |
| u32 nandfsm_mask; |
| |
| const u8 *spare_sizes; |
| u32 num_spare_size; |
| }; |
| |
| static const struct mtk_snand_caps mt7622_snand_caps = { |
| .sector_size = 512, |
| .max_sectors = 8, |
| .fdm_size = 8, |
| .fdm_ecc_size = 1, |
| .fifo_size = 32, |
| .bbm_swap = false, |
| .empty_page_check = false, |
| .mastersta_mask = NFI_MASTERSTA_MASK_7622, |
| .nandfsm_mask = NFI_NAND_FSM_7622, |
| .spare_sizes = mt7622_spare_sizes, |
| .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes) |
| }; |
| |
| static const struct mtk_snand_caps mt7629_snand_caps = { |
| .sector_size = 512, |
| .max_sectors = 8, |
| .fdm_size = 8, |
| .fdm_ecc_size = 1, |
| .fifo_size = 32, |
| .bbm_swap = true, |
| .empty_page_check = false, |
| .mastersta_mask = NFI_MASTERSTA_MASK_7622, |
| .nandfsm_mask = NFI_NAND_FSM_7622, |
| .spare_sizes = mt7622_spare_sizes, |
| .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes) |
| }; |
| |
| static const struct mtk_snand_caps mt7986_snand_caps = { |
| .sector_size = 1024, |
| .max_sectors = 8, |
| .fdm_size = 8, |
| .fdm_ecc_size = 1, |
| .fifo_size = 64, |
| .bbm_swap = true, |
| .empty_page_check = true, |
| .mastersta_mask = NFI_MASTERSTA_MASK_7986, |
| .nandfsm_mask = NFI_NAND_FSM_7986, |
| .spare_sizes = mt7986_spare_sizes, |
| .num_spare_size = ARRAY_SIZE(mt7986_spare_sizes) |
| }; |
| |
| struct mtk_snand_conf { |
| size_t page_size; |
| size_t oob_size; |
| u8 nsectors; |
| u8 spare_size; |
| }; |
| |
| struct mtk_snand { |
| struct spi_controller *ctlr; |
| struct device *dev; |
| struct clk *nfi_clk; |
| struct clk *pad_clk; |
| struct clk *nfi_hclk; |
| void __iomem *nfi_base; |
| int irq; |
| struct completion op_done; |
| const struct mtk_snand_caps *caps; |
| struct mtk_ecc_config *ecc_cfg; |
| struct mtk_ecc *ecc; |
| struct mtk_snand_conf nfi_cfg; |
| struct mtk_ecc_stats ecc_stats; |
| struct nand_ecc_engine ecc_eng; |
| bool autofmt; |
| u8 *buf; |
| size_t buf_len; |
| }; |
| |
| static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand) |
| { |
| struct nand_ecc_engine *eng = nand->ecc.engine; |
| |
| return container_of(eng, struct mtk_snand, ecc_eng); |
| } |
| |
| static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size) |
| { |
| if (snf->buf_len >= size) |
| return 0; |
| kfree(snf->buf); |
| snf->buf = kmalloc(size, GFP_KERNEL); |
| if (!snf->buf) |
| return -ENOMEM; |
| snf->buf_len = size; |
| memset(snf->buf, 0xff, snf->buf_len); |
| return 0; |
| } |
| |
| static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg) |
| { |
| return readl(snf->nfi_base + reg); |
| } |
| |
| static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val) |
| { |
| writel(val, snf->nfi_base + reg); |
| } |
| |
| static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val) |
| { |
| writew(val, snf->nfi_base + reg); |
| } |
| |
| static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set) |
| { |
| u32 val; |
| |
| val = readl(snf->nfi_base + reg); |
| val &= ~clr; |
| val |= set; |
| writel(val, snf->nfi_base + reg); |
| } |
| |
| static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len) |
| { |
| u32 i, val = 0, es = sizeof(u32); |
| |
| for (i = reg; i < reg + len; i++) { |
| if (i == reg || i % es == 0) |
| val = nfi_read32(snf, i & ~(es - 1)); |
| |
| *data++ = (u8)(val >> (8 * (i % es))); |
| } |
| } |
| |
| static int mtk_nfi_reset(struct mtk_snand *snf) |
| { |
| u32 val, fifo_mask; |
| int ret; |
| |
| nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST); |
| |
| ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val, |
| !(val & snf->caps->mastersta_mask), 0, |
| SNFI_POLL_INTERVAL); |
| if (ret) { |
| dev_err(snf->dev, "NFI master is still busy after reset\n"); |
| return ret; |
| } |
| |
| ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val, |
| !(val & (NFI_FSM | snf->caps->nandfsm_mask)), 0, |
| SNFI_POLL_INTERVAL); |
| if (ret) { |
| dev_err(snf->dev, "Failed to reset NFI\n"); |
| return ret; |
| } |
| |
| fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) | |
| ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S); |
| ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val, |
| !(val & fifo_mask), 0, SNFI_POLL_INTERVAL); |
| if (ret) { |
| dev_err(snf->dev, "NFI FIFOs are not empty\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int mtk_snand_mac_reset(struct mtk_snand *snf) |
| { |
| int ret; |
| u32 val; |
| |
| nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST); |
| |
| ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val, |
| !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL); |
| if (ret) |
| dev_err(snf->dev, "Failed to reset SNFI MAC\n"); |
| |
| nfi_write32(snf, SNF_MISC_CTL, |
| (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S)); |
| |
| return ret; |
| } |
| |
| static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen) |
| { |
| int ret; |
| u32 val; |
| |
| nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN); |
| nfi_write32(snf, SNF_MAC_OUTL, outlen); |
| nfi_write32(snf, SNF_MAC_INL, inlen); |
| |
| nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG); |
| |
| ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, |
| val & WIP_READY, 0, SNFI_POLL_INTERVAL); |
| if (ret) { |
| dev_err(snf->dev, "Timed out waiting for WIP_READY\n"); |
| goto cleanup; |
| } |
| |
| ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP), |
| 0, SNFI_POLL_INTERVAL); |
| if (ret) |
| dev_err(snf->dev, "Timed out waiting for WIP cleared\n"); |
| |
| cleanup: |
| nfi_write32(snf, SNF_MAC_CTL, 0); |
| |
| return ret; |
| } |
| |
| static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op) |
| { |
| u32 rx_len = 0; |
| u32 reg_offs = 0; |
| u32 val = 0; |
| const u8 *tx_buf = NULL; |
| u8 *rx_buf = NULL; |
| int i, ret; |
| u8 b; |
| |
| if (op->data.dir == SPI_MEM_DATA_IN) { |
| rx_len = op->data.nbytes; |
| rx_buf = op->data.buf.in; |
| } else { |
| tx_buf = op->data.buf.out; |
| } |
| |
| mtk_snand_mac_reset(snf); |
| |
| for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) { |
| b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff; |
| val |= b << (8 * (reg_offs % 4)); |
| if (reg_offs % 4 == 3) { |
| nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); |
| val = 0; |
| } |
| } |
| |
| for (i = 0; i < op->addr.nbytes; i++, reg_offs++) { |
| b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff; |
| val |= b << (8 * (reg_offs % 4)); |
| if (reg_offs % 4 == 3) { |
| nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); |
| val = 0; |
| } |
| } |
| |
| for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) { |
| if (reg_offs % 4 == 3) { |
| nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); |
| val = 0; |
| } |
| } |
| |
| if (op->data.dir == SPI_MEM_DATA_OUT) { |
| for (i = 0; i < op->data.nbytes; i++, reg_offs++) { |
| val |= tx_buf[i] << (8 * (reg_offs % 4)); |
| if (reg_offs % 4 == 3) { |
| nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); |
| val = 0; |
| } |
| } |
| } |
| |
| if (reg_offs % 4) |
| nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val); |
| |
| for (i = 0; i < reg_offs; i += 4) |
| dev_dbg(snf->dev, "%d: %08X", i, |
| nfi_read32(snf, SNF_GPRAM + i)); |
| |
| dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len); |
| |
| ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len); |
| if (ret) |
| return ret; |
| |
| if (!rx_len) |
| return 0; |
| |
| nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len); |
| return 0; |
| } |
| |
| static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size, |
| u32 oob_size) |
| { |
| int spare_idx = -1; |
| u32 spare_size, spare_size_shift, pagesize_idx; |
| u32 sector_size_512; |
| u8 nsectors; |
| int i; |
| |
| // skip if it's already configured as required. |
| if (snf->nfi_cfg.page_size == page_size && |
| snf->nfi_cfg.oob_size == oob_size) |
| return 0; |
| |
| nsectors = page_size / snf->caps->sector_size; |
| if (nsectors > snf->caps->max_sectors) { |
| dev_err(snf->dev, "too many sectors required.\n"); |
| goto err; |
| } |
| |
| if (snf->caps->sector_size == 512) { |
| sector_size_512 = NFI_SEC_SEL_512; |
| spare_size_shift = NFI_SPARE_SIZE_S; |
| } else { |
| sector_size_512 = 0; |
| spare_size_shift = NFI_SPARE_SIZE_LS_S; |
| } |
| |
| switch (page_size) { |
| case SZ_512: |
| pagesize_idx = NFI_PAGE_SIZE_512_2K; |
| break; |
| case SZ_2K: |
| if (snf->caps->sector_size == 512) |
| pagesize_idx = NFI_PAGE_SIZE_2K_4K; |
| else |
| pagesize_idx = NFI_PAGE_SIZE_512_2K; |
| break; |
| case SZ_4K: |
| if (snf->caps->sector_size == 512) |
| pagesize_idx = NFI_PAGE_SIZE_4K_8K; |
| else |
| pagesize_idx = NFI_PAGE_SIZE_2K_4K; |
| break; |
| case SZ_8K: |
| if (snf->caps->sector_size == 512) |
| pagesize_idx = NFI_PAGE_SIZE_8K_16K; |
| else |
| pagesize_idx = NFI_PAGE_SIZE_4K_8K; |
| break; |
| case SZ_16K: |
| pagesize_idx = NFI_PAGE_SIZE_8K_16K; |
| break; |
| default: |
| dev_err(snf->dev, "unsupported page size.\n"); |
| goto err; |
| } |
| |
| spare_size = oob_size / nsectors; |
| // If we're using the 1KB sector size, HW will automatically double the |
| // spare size. We should only use half of the value in this case. |
| if (snf->caps->sector_size == 1024) |
| spare_size /= 2; |
| |
| for (i = snf->caps->num_spare_size - 1; i >= 0; i--) { |
| if (snf->caps->spare_sizes[i] <= spare_size) { |
| spare_size = snf->caps->spare_sizes[i]; |
| if (snf->caps->sector_size == 1024) |
| spare_size *= 2; |
| spare_idx = i; |
| break; |
| } |
| } |
| |
| if (spare_idx < 0) { |
| dev_err(snf->dev, "unsupported spare size: %u\n", spare_size); |
| goto err; |
| } |
| |
| nfi_write32(snf, NFI_PAGEFMT, |
| (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) | |
| (snf->caps->fdm_size << NFI_FDM_NUM_S) | |
| (spare_idx << spare_size_shift) | |
| (pagesize_idx << NFI_PAGE_SIZE_S) | |
| sector_size_512); |
| |
| snf->nfi_cfg.page_size = page_size; |
| snf->nfi_cfg.oob_size = oob_size; |
| snf->nfi_cfg.nsectors = nsectors; |
| snf->nfi_cfg.spare_size = spare_size; |
| |
| dev_dbg(snf->dev, "page format: (%u + %u) * %u\n", |
| snf->caps->sector_size, spare_size, nsectors); |
| return snand_prepare_bouncebuf(snf, page_size + oob_size); |
| err: |
| dev_err(snf->dev, "page size %u + %u is not supported\n", page_size, |
| oob_size); |
| return -EOPNOTSUPP; |
| } |
| |
| static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobecc) |
| { |
| // ECC area is not accessible |
| return -ERANGE; |
| } |
| |
| static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobfree) |
| { |
| struct nand_device *nand = mtd_to_nanddev(mtd); |
| struct mtk_snand *ms = nand_to_mtk_snand(nand); |
| |
| if (section >= ms->nfi_cfg.nsectors) |
| return -ERANGE; |
| |
| oobfree->length = ms->caps->fdm_size - 1; |
| oobfree->offset = section * ms->caps->fdm_size + 1; |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops mtk_snand_ooblayout = { |
| .ecc = mtk_snand_ooblayout_ecc, |
| .free = mtk_snand_ooblayout_free, |
| }; |
| |
| static int mtk_snand_ecc_init_ctx(struct nand_device *nand) |
| { |
| struct mtk_snand *snf = nand_to_mtk_snand(nand); |
| struct nand_ecc_props *conf = &nand->ecc.ctx.conf; |
| struct nand_ecc_props *reqs = &nand->ecc.requirements; |
| struct nand_ecc_props *user = &nand->ecc.user_conf; |
| struct mtd_info *mtd = nanddev_to_mtd(nand); |
| int step_size = 0, strength = 0, desired_correction = 0, steps; |
| bool ecc_user = false; |
| int ret; |
| u32 parity_bits, max_ecc_bytes; |
| struct mtk_ecc_config *ecc_cfg; |
| |
| ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize, |
| nand->memorg.oobsize); |
| if (ret) |
| return ret; |
| |
| ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL); |
| if (!ecc_cfg) |
| return -ENOMEM; |
| |
| nand->ecc.ctx.priv = ecc_cfg; |
| |
| if (user->step_size && user->strength) { |
| step_size = user->step_size; |
| strength = user->strength; |
| ecc_user = true; |
| } else if (reqs->step_size && reqs->strength) { |
| step_size = reqs->step_size; |
| strength = reqs->strength; |
| } |
| |
| if (step_size && strength) { |
| steps = mtd->writesize / step_size; |
| desired_correction = steps * strength; |
| strength = desired_correction / snf->nfi_cfg.nsectors; |
| } |
| |
| ecc_cfg->mode = ECC_NFI_MODE; |
| ecc_cfg->sectors = snf->nfi_cfg.nsectors; |
| ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size; |
| |
| // calculate the max possible strength under current page format |
| parity_bits = mtk_ecc_get_parity_bits(snf->ecc); |
| max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size; |
| ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits; |
| mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength); |
| |
| // if there's a user requested strength, find the minimum strength that |
| // meets the requirement. Otherwise use the maximum strength which is |
| // expected by BootROM. |
| if (ecc_user && strength) { |
| u32 s_next = ecc_cfg->strength - 1; |
| |
| while (1) { |
| mtk_ecc_adjust_strength(snf->ecc, &s_next); |
| if (s_next >= ecc_cfg->strength) |
| break; |
| if (s_next < strength) |
| break; |
| s_next = ecc_cfg->strength - 1; |
| } |
| } |
| |
| mtd_set_ooblayout(mtd, &mtk_snand_ooblayout); |
| |
| conf->step_size = snf->caps->sector_size; |
| conf->strength = ecc_cfg->strength; |
| |
| if (ecc_cfg->strength < strength) |
| dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n", |
| strength); |
| dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n", |
| ecc_cfg->strength, snf->caps->sector_size); |
| |
| return 0; |
| } |
| |
| static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand) |
| { |
| struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand); |
| |
| kfree(ecc_cfg); |
| } |
| |
| static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand, |
| struct nand_page_io_req *req) |
| { |
| struct mtk_snand *snf = nand_to_mtk_snand(nand); |
| struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand); |
| int ret; |
| |
| ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize, |
| nand->memorg.oobsize); |
| if (ret) |
| return ret; |
| snf->autofmt = true; |
| snf->ecc_cfg = ecc_cfg; |
| return 0; |
| } |
| |
| static int mtk_snand_ecc_finish_io_req(struct nand_device *nand, |
| struct nand_page_io_req *req) |
| { |
| struct mtk_snand *snf = nand_to_mtk_snand(nand); |
| struct mtd_info *mtd = nanddev_to_mtd(nand); |
| |
| snf->ecc_cfg = NULL; |
| snf->autofmt = false; |
| if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ)) |
| return 0; |
| |
| if (snf->ecc_stats.failed) |
| mtd->ecc_stats.failed += snf->ecc_stats.failed; |
| mtd->ecc_stats.corrected += snf->ecc_stats.corrected; |
| return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips; |
| } |
| |
| static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = { |
| .init_ctx = mtk_snand_ecc_init_ctx, |
| .cleanup_ctx = mtk_snand_ecc_cleanup_ctx, |
| .prepare_io_req = mtk_snand_ecc_prepare_io_req, |
| .finish_io_req = mtk_snand_ecc_finish_io_req, |
| }; |
| |
| static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf) |
| { |
| u32 vall, valm; |
| u8 *oobptr = buf; |
| int i, j; |
| |
| for (i = 0; i < snf->nfi_cfg.nsectors; i++) { |
| vall = nfi_read32(snf, NFI_FDML(i)); |
| valm = nfi_read32(snf, NFI_FDMM(i)); |
| |
| for (j = 0; j < snf->caps->fdm_size; j++) |
| oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8); |
| |
| oobptr += snf->caps->fdm_size; |
| } |
| } |
| |
| static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf) |
| { |
| u32 fdm_size = snf->caps->fdm_size; |
| const u8 *oobptr = buf; |
| u32 vall, valm; |
| int i, j; |
| |
| for (i = 0; i < snf->nfi_cfg.nsectors; i++) { |
| vall = 0; |
| valm = 0; |
| |
| for (j = 0; j < 8; j++) { |
| if (j < 4) |
| vall |= (j < fdm_size ? oobptr[j] : 0xff) |
| << (j * 8); |
| else |
| valm |= (j < fdm_size ? oobptr[j] : 0xff) |
| << ((j - 4) * 8); |
| } |
| |
| nfi_write32(snf, NFI_FDML(i), vall); |
| nfi_write32(snf, NFI_FDMM(i), valm); |
| |
| oobptr += fdm_size; |
| } |
| } |
| |
| static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf) |
| { |
| u32 buf_bbm_pos, fdm_bbm_pos; |
| |
| if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1) |
| return; |
| |
| // swap [pagesize] byte on nand with the first fdm byte |
| // in the last sector. |
| buf_bbm_pos = snf->nfi_cfg.page_size - |
| (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size; |
| fdm_bbm_pos = snf->nfi_cfg.page_size + |
| (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size; |
| |
| swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]); |
| } |
| |
| static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf) |
| { |
| u32 fdm_bbm_pos1, fdm_bbm_pos2; |
| |
| if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1) |
| return; |
| |
| // swap the first fdm byte in the first and the last sector. |
| fdm_bbm_pos1 = snf->nfi_cfg.page_size; |
| fdm_bbm_pos2 = snf->nfi_cfg.page_size + |
| (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size; |
| swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]); |
| } |
| |
| static int mtk_snand_read_page_cache(struct mtk_snand *snf, |
| const struct spi_mem_op *op) |
| { |
| u8 *buf = snf->buf; |
| u8 *buf_fdm = buf + snf->nfi_cfg.page_size; |
| // the address part to be sent by the controller |
| u32 op_addr = op->addr.val; |
| // where to start copying data from bounce buffer |
| u32 rd_offset = 0; |
| u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth); |
| u32 op_mode = 0; |
| u32 dma_len = snf->buf_len; |
| int ret = 0; |
| u32 rd_mode, rd_bytes, val; |
| dma_addr_t buf_dma; |
| |
| if (snf->autofmt) { |
| u32 last_bit; |
| u32 mask; |
| |
| dma_len = snf->nfi_cfg.page_size; |
| op_mode = CNFG_AUTO_FMT_EN; |
| if (op->data.ecc) |
| op_mode |= CNFG_HW_ECC_EN; |
| // extract the plane bit: |
| // Find the highest bit set in (pagesize+oobsize). |
| // Bits higher than that in op->addr are kept and sent over SPI |
| // Lower bits are used as an offset for copying data from DMA |
| // bounce buffer. |
| last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size); |
| mask = (1 << last_bit) - 1; |
| rd_offset = op_addr & mask; |
| op_addr &= ~mask; |
| |
| // check if we can dma to the caller memory |
| if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size) |
| buf = op->data.buf.in; |
| } |
| mtk_snand_mac_reset(snf); |
| mtk_nfi_reset(snf); |
| |
| // command and dummy cycles |
| nfi_write32(snf, SNF_RD_CTL2, |
| (dummy_clk << DATA_READ_DUMMY_S) | |
| (op->cmd.opcode << DATA_READ_CMD_S)); |
| |
| // read address |
| nfi_write32(snf, SNF_RD_CTL3, op_addr); |
| |
| // Set read op_mode |
| if (op->data.buswidth == 4) |
| rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD : |
| DATA_READ_MODE_X4; |
| else if (op->data.buswidth == 2) |
| rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL : |
| DATA_READ_MODE_X2; |
| else |
| rd_mode = DATA_READ_MODE_X1; |
| rd_mode <<= DATA_READ_MODE_S; |
| nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE, |
| rd_mode | DATARD_CUSTOM_EN); |
| |
| // Set bytes to read |
| rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) * |
| snf->nfi_cfg.nsectors; |
| nfi_write32(snf, SNF_MISC_CTL2, |
| (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes); |
| |
| // NFI read prepare |
| nfi_write16(snf, NFI_CNFG, |
| (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN | |
| CNFG_READ_MODE | CNFG_DMA_MODE | op_mode); |
| |
| nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S)); |
| |
| buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE); |
| ret = dma_mapping_error(snf->dev, buf_dma); |
| if (ret) { |
| dev_err(snf->dev, "DMA mapping failed.\n"); |
| goto cleanup; |
| } |
| nfi_write32(snf, NFI_STRADDR, buf_dma); |
| if (op->data.ecc) { |
| snf->ecc_cfg->op = ECC_DECODE; |
| ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg); |
| if (ret) |
| goto cleanup_dma; |
| } |
| // Prepare for custom read interrupt |
| nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ); |
| reinit_completion(&snf->op_done); |
| |
| // Trigger NFI into custom mode |
| nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ); |
| |
| // Start DMA read |
| nfi_rmw32(snf, NFI_CON, 0, CON_BRD); |
| nfi_write16(snf, NFI_STRDATA, STR_DATA); |
| |
| if (!wait_for_completion_timeout( |
| &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) { |
| dev_err(snf->dev, "DMA timed out for reading from cache.\n"); |
| ret = -ETIMEDOUT; |
| goto cleanup; |
| } |
| |
| // Wait for BUS_SEC_CNTR returning expected value |
| ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val, |
| BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0, |
| SNFI_POLL_INTERVAL); |
| if (ret) { |
| dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n"); |
| goto cleanup2; |
| } |
| |
| // Wait for bus becoming idle |
| ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val, |
| !(val & snf->caps->mastersta_mask), 0, |
| SNFI_POLL_INTERVAL); |
| if (ret) { |
| dev_err(snf->dev, "Timed out waiting for bus becoming idle\n"); |
| goto cleanup2; |
| } |
| |
| if (op->data.ecc) { |
| ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE); |
| if (ret) { |
| dev_err(snf->dev, "wait ecc done timeout\n"); |
| goto cleanup2; |
| } |
| // save status before disabling ecc |
| mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats, |
| snf->nfi_cfg.nsectors); |
| } |
| |
| dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE); |
| |
| if (snf->autofmt) { |
| mtk_snand_read_fdm(snf, buf_fdm); |
| if (snf->caps->bbm_swap) { |
| mtk_snand_bm_swap(snf, buf); |
| mtk_snand_fdm_bm_swap(snf); |
| } |
| } |
| |
| // copy data back |
| if (nfi_read32(snf, NFI_STA) & READ_EMPTY) { |
| memset(op->data.buf.in, 0xff, op->data.nbytes); |
| snf->ecc_stats.bitflips = 0; |
| snf->ecc_stats.failed = 0; |
| snf->ecc_stats.corrected = 0; |
| } else { |
| if (buf == op->data.buf.in) { |
| u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size; |
| u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size; |
| |
| if (req_left) |
| memcpy(op->data.buf.in + snf->nfi_cfg.page_size, |
| buf_fdm, |
| cap_len < req_left ? cap_len : req_left); |
| } else if (rd_offset < snf->buf_len) { |
| u32 cap_len = snf->buf_len - rd_offset; |
| |
| if (op->data.nbytes < cap_len) |
| cap_len = op->data.nbytes; |
| memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len); |
| } |
| } |
| cleanup2: |
| if (op->data.ecc) |
| mtk_ecc_disable(snf->ecc); |
| cleanup_dma: |
| // unmap dma only if any error happens. (otherwise it's done before |
| // data copying) |
| if (ret) |
| dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE); |
| cleanup: |
| // Stop read |
| nfi_write32(snf, NFI_CON, 0); |
| nfi_write16(snf, NFI_CNFG, 0); |
| |
| // Clear SNF done flag |
| nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE); |
| nfi_write32(snf, SNF_STA_CTL1, 0); |
| |
| // Disable interrupt |
| nfi_read32(snf, NFI_INTR_STA); |
| nfi_write32(snf, NFI_INTR_EN, 0); |
| |
| nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0); |
| return ret; |
| } |
| |
| static int mtk_snand_write_page_cache(struct mtk_snand *snf, |
| const struct spi_mem_op *op) |
| { |
| // the address part to be sent by the controller |
| u32 op_addr = op->addr.val; |
| // where to start copying data from bounce buffer |
| u32 wr_offset = 0; |
| u32 op_mode = 0; |
| int ret = 0; |
| u32 wr_mode = 0; |
| u32 dma_len = snf->buf_len; |
| u32 wr_bytes, val; |
| size_t cap_len; |
| dma_addr_t buf_dma; |
| |
| if (snf->autofmt) { |
| u32 last_bit; |
| u32 mask; |
| |
| dma_len = snf->nfi_cfg.page_size; |
| op_mode = CNFG_AUTO_FMT_EN; |
| if (op->data.ecc) |
| op_mode |= CNFG_HW_ECC_EN; |
| |
| last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size); |
| mask = (1 << last_bit) - 1; |
| wr_offset = op_addr & mask; |
| op_addr &= ~mask; |
| } |
| mtk_snand_mac_reset(snf); |
| mtk_nfi_reset(snf); |
| |
| if (wr_offset) |
| memset(snf->buf, 0xff, wr_offset); |
| |
| cap_len = snf->buf_len - wr_offset; |
| if (op->data.nbytes < cap_len) |
| cap_len = op->data.nbytes; |
| memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len); |
| if (snf->autofmt) { |
| if (snf->caps->bbm_swap) { |
| mtk_snand_fdm_bm_swap(snf); |
| mtk_snand_bm_swap(snf, snf->buf); |
| } |
| mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size); |
| } |
| |
| // Command |
| nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S)); |
| |
| // write address |
| nfi_write32(snf, SNF_PG_CTL2, op_addr); |
| |
| // Set read op_mode |
| if (op->data.buswidth == 4) |
| wr_mode = PG_LOAD_X4_EN; |
| |
| nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN, |
| wr_mode | PG_LOAD_CUSTOM_EN); |
| |
| // Set bytes to write |
| wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) * |
| snf->nfi_cfg.nsectors; |
| nfi_write32(snf, SNF_MISC_CTL2, |
| (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes); |
| |
| // NFI write prepare |
| nfi_write16(snf, NFI_CNFG, |
| (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) | |
| CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode); |
| |
| nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S)); |
| buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE); |
| ret = dma_mapping_error(snf->dev, buf_dma); |
| if (ret) { |
| dev_err(snf->dev, "DMA mapping failed.\n"); |
| goto cleanup; |
| } |
| nfi_write32(snf, NFI_STRADDR, buf_dma); |
| if (op->data.ecc) { |
| snf->ecc_cfg->op = ECC_ENCODE; |
| ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg); |
| if (ret) |
| goto cleanup_dma; |
| } |
| // Prepare for custom write interrupt |
| nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG); |
| reinit_completion(&snf->op_done); |
| ; |
| |
| // Trigger NFI into custom mode |
| nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE); |
| |
| // Start DMA write |
| nfi_rmw32(snf, NFI_CON, 0, CON_BWR); |
| nfi_write16(snf, NFI_STRDATA, STR_DATA); |
| |
| if (!wait_for_completion_timeout( |
| &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) { |
| dev_err(snf->dev, "DMA timed out for program load.\n"); |
| ret = -ETIMEDOUT; |
| goto cleanup_ecc; |
| } |
| |
| // Wait for NFI_SEC_CNTR returning expected value |
| ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val, |
| NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0, |
| SNFI_POLL_INTERVAL); |
| if (ret) |
| dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n"); |
| |
| cleanup_ecc: |
| if (op->data.ecc) |
| mtk_ecc_disable(snf->ecc); |
| cleanup_dma: |
| dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE); |
| cleanup: |
| // Stop write |
| nfi_write32(snf, NFI_CON, 0); |
| nfi_write16(snf, NFI_CNFG, 0); |
| |
| // Clear SNF done flag |
| nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE); |
| nfi_write32(snf, SNF_STA_CTL1, 0); |
| |
| // Disable interrupt |
| nfi_read32(snf, NFI_INTR_STA); |
| nfi_write32(snf, NFI_INTR_EN, 0); |
| |
| nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0); |
| |
| return ret; |
| } |
| |
| /** |
| * mtk_snand_is_page_ops() - check if the op is a controller supported page op. |
| * @op: spi-mem op to check |
| * |
| * Check whether op can be executed with read_from_cache or program_load |
| * mode in the controller. |
| * This controller can execute typical Read From Cache and Program Load |
| * instructions found on SPI-NAND with 2-byte address. |
| * DTR and cmd buswidth & nbytes should be checked before calling this. |
| * |
| * Return: true if the op matches the instruction template |
| */ |
| static bool mtk_snand_is_page_ops(const struct spi_mem_op *op) |
| { |
| if (op->addr.nbytes != 2) |
| return false; |
| |
| if (op->addr.buswidth != 1 && op->addr.buswidth != 2 && |
| op->addr.buswidth != 4) |
| return false; |
| |
| // match read from page instructions |
| if (op->data.dir == SPI_MEM_DATA_IN) { |
| // check dummy cycle first |
| if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth > |
| DATA_READ_MAX_DUMMY) |
| return false; |
| // quad io / quad out |
| if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) && |
| op->data.buswidth == 4) |
| return true; |
| |
| // dual io / dual out |
| if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) && |
| op->data.buswidth == 2) |
| return true; |
| |
| // standard spi |
| if (op->addr.buswidth == 1 && op->data.buswidth == 1) |
| return true; |
| } else if (op->data.dir == SPI_MEM_DATA_OUT) { |
| // check dummy cycle first |
| if (op->dummy.nbytes) |
| return false; |
| // program load quad out |
| if (op->addr.buswidth == 1 && op->data.buswidth == 4) |
| return true; |
| // standard spi |
| if (op->addr.buswidth == 1 && op->data.buswidth == 1) |
| return true; |
| } |
| return false; |
| } |
| |
| static bool mtk_snand_supports_op(struct spi_mem *mem, |
| const struct spi_mem_op *op) |
| { |
| if (!spi_mem_default_supports_op(mem, op)) |
| return false; |
| if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1) |
| return false; |
| if (mtk_snand_is_page_ops(op)) |
| return true; |
| return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) && |
| (op->dummy.nbytes == 0 || op->dummy.buswidth == 1) && |
| (op->data.nbytes == 0 || op->data.buswidth == 1)); |
| } |
| |
| static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) |
| { |
| struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->controller); |
| // page ops transfer size must be exactly ((sector_size + spare_size) * |
| // nsectors). Limit the op size if the caller requests more than that. |
| // exec_op will read more than needed and discard the leftover if the |
| // caller requests less data. |
| if (mtk_snand_is_page_ops(op)) { |
| size_t l; |
| // skip adjust_op_size for page ops |
| if (ms->autofmt) |
| return 0; |
| l = ms->caps->sector_size + ms->nfi_cfg.spare_size; |
| l *= ms->nfi_cfg.nsectors; |
| if (op->data.nbytes > l) |
| op->data.nbytes = l; |
| } else { |
| size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; |
| |
| if (hl >= SNF_GPRAM_SIZE) |
| return -EOPNOTSUPP; |
| if (op->data.nbytes > SNF_GPRAM_SIZE - hl) |
| op->data.nbytes = SNF_GPRAM_SIZE - hl; |
| } |
| return 0; |
| } |
| |
| static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) |
| { |
| struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->controller); |
| |
| dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode, |
| op->addr.val, op->addr.buswidth, op->addr.nbytes, |
| op->data.buswidth, op->data.nbytes); |
| if (mtk_snand_is_page_ops(op)) { |
| if (op->data.dir == SPI_MEM_DATA_IN) |
| return mtk_snand_read_page_cache(ms, op); |
| else |
| return mtk_snand_write_page_cache(ms, op); |
| } else { |
| return mtk_snand_mac_io(ms, op); |
| } |
| } |
| |
| static const struct spi_controller_mem_ops mtk_snand_mem_ops = { |
| .adjust_op_size = mtk_snand_adjust_op_size, |
| .supports_op = mtk_snand_supports_op, |
| .exec_op = mtk_snand_exec_op, |
| }; |
| |
| static const struct spi_controller_mem_caps mtk_snand_mem_caps = { |
| .ecc = true, |
| }; |
| |
| static irqreturn_t mtk_snand_irq(int irq, void *id) |
| { |
| struct mtk_snand *snf = id; |
| u32 sta, ien; |
| |
| sta = nfi_read32(snf, NFI_INTR_STA); |
| ien = nfi_read32(snf, NFI_INTR_EN); |
| |
| if (!(sta & ien)) |
| return IRQ_NONE; |
| |
| nfi_write32(snf, NFI_INTR_EN, 0); |
| complete(&snf->op_done); |
| return IRQ_HANDLED; |
| } |
| |
| static const struct of_device_id mtk_snand_ids[] = { |
| { .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps }, |
| { .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps }, |
| { .compatible = "mediatek,mt7986-snand", .data = &mt7986_snand_caps }, |
| {}, |
| }; |
| |
| MODULE_DEVICE_TABLE(of, mtk_snand_ids); |
| |
| static int mtk_snand_probe(struct platform_device *pdev) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| const struct of_device_id *dev_id; |
| struct spi_controller *ctlr; |
| struct mtk_snand *ms; |
| unsigned long spi_freq; |
| u32 val = 0; |
| int ret; |
| |
| dev_id = of_match_node(mtk_snand_ids, np); |
| if (!dev_id) |
| return -EINVAL; |
| |
| ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*ms)); |
| if (!ctlr) |
| return -ENOMEM; |
| platform_set_drvdata(pdev, ctlr); |
| |
| ms = spi_controller_get_devdata(ctlr); |
| |
| ms->ctlr = ctlr; |
| ms->caps = dev_id->data; |
| |
| ms->ecc = of_mtk_ecc_get(np); |
| if (IS_ERR(ms->ecc)) |
| return PTR_ERR(ms->ecc); |
| else if (!ms->ecc) |
| return -ENODEV; |
| |
| ms->nfi_base = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(ms->nfi_base)) { |
| ret = PTR_ERR(ms->nfi_base); |
| goto release_ecc; |
| } |
| |
| ms->dev = &pdev->dev; |
| |
| ms->nfi_clk = devm_clk_get_enabled(&pdev->dev, "nfi_clk"); |
| if (IS_ERR(ms->nfi_clk)) { |
| ret = PTR_ERR(ms->nfi_clk); |
| dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret); |
| goto release_ecc; |
| } |
| |
| ms->pad_clk = devm_clk_get_enabled(&pdev->dev, "pad_clk"); |
| if (IS_ERR(ms->pad_clk)) { |
| ret = PTR_ERR(ms->pad_clk); |
| dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret); |
| goto release_ecc; |
| } |
| |
| ms->nfi_hclk = devm_clk_get_optional_enabled(&pdev->dev, "nfi_hclk"); |
| if (IS_ERR(ms->nfi_hclk)) { |
| ret = PTR_ERR(ms->nfi_hclk); |
| dev_err(&pdev->dev, "unable to get nfi_hclk, err = %d\n", ret); |
| goto release_ecc; |
| } |
| |
| init_completion(&ms->op_done); |
| |
| ms->irq = platform_get_irq(pdev, 0); |
| if (ms->irq < 0) { |
| ret = ms->irq; |
| goto release_ecc; |
| } |
| ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0, |
| "mtk-snand", ms); |
| if (ret) { |
| dev_err(ms->dev, "failed to request snfi irq\n"); |
| goto release_ecc; |
| } |
| |
| ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32)); |
| if (ret) { |
| dev_err(ms->dev, "failed to set dma mask\n"); |
| goto release_ecc; |
| } |
| |
| // switch to SNFI mode |
| nfi_write32(ms, SNF_CFG, SPI_MODE); |
| |
| ret = of_property_read_u32(np, "rx-sample-delay-ns", &val); |
| if (!ret) |
| nfi_rmw32(ms, SNF_DLY_CTL3, SFCK_SAM_DLY, |
| val * SFCK_SAM_DLY_RANGE / SFCK_SAM_DLY_TOTAL); |
| |
| ret = of_property_read_u32(np, "mediatek,rx-latch-latency-ns", &val); |
| if (!ret) { |
| spi_freq = clk_get_rate(ms->pad_clk); |
| val = DIV_ROUND_CLOSEST(val, NSEC_PER_SEC / spi_freq); |
| nfi_rmw32(ms, SNF_MISC_CTL, DATA_READ_LATCH_LAT, |
| val << DATA_READ_LATCH_LAT_S); |
| } |
| |
| // setup an initial page format for ops matching page_cache_op template |
| // before ECC is called. |
| ret = mtk_snand_setup_pagefmt(ms, SZ_2K, SZ_64); |
| if (ret) { |
| dev_err(ms->dev, "failed to set initial page format\n"); |
| goto release_ecc; |
| } |
| |
| // setup ECC engine |
| ms->ecc_eng.dev = &pdev->dev; |
| ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED; |
| ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops; |
| ms->ecc_eng.priv = ms; |
| |
| ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng); |
| if (ret) { |
| dev_err(&pdev->dev, "failed to register ecc engine.\n"); |
| goto release_ecc; |
| } |
| |
| ctlr->num_chipselect = 1; |
| ctlr->mem_ops = &mtk_snand_mem_ops; |
| ctlr->mem_caps = &mtk_snand_mem_caps; |
| ctlr->bits_per_word_mask = SPI_BPW_MASK(8); |
| ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD; |
| ctlr->dev.of_node = pdev->dev.of_node; |
| ret = spi_register_controller(ctlr); |
| if (ret) { |
| dev_err(&pdev->dev, "spi_register_controller failed.\n"); |
| goto release_ecc; |
| } |
| |
| return 0; |
| release_ecc: |
| mtk_ecc_release(ms->ecc); |
| return ret; |
| } |
| |
| static void mtk_snand_remove(struct platform_device *pdev) |
| { |
| struct spi_controller *ctlr = platform_get_drvdata(pdev); |
| struct mtk_snand *ms = spi_controller_get_devdata(ctlr); |
| |
| spi_unregister_controller(ctlr); |
| mtk_ecc_release(ms->ecc); |
| kfree(ms->buf); |
| } |
| |
| static struct platform_driver mtk_snand_driver = { |
| .probe = mtk_snand_probe, |
| .remove_new = mtk_snand_remove, |
| .driver = { |
| .name = "mtk-snand", |
| .of_match_table = mtk_snand_ids, |
| }, |
| }; |
| |
| module_platform_driver(mtk_snand_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>"); |
| MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver"); |