| /* QLogic qed NIC Driver |
| * Copyright (c) 2015-2017 QLogic Corporation |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and /or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/bitops.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/log2.h> |
| #include <linux/pci.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include "qed.h" |
| #include "qed_cxt.h" |
| #include "qed_dev_api.h" |
| #include "qed_hsi.h" |
| #include "qed_hw.h" |
| #include "qed_init_ops.h" |
| #include "qed_rdma.h" |
| #include "qed_reg_addr.h" |
| #include "qed_sriov.h" |
| |
| /* Max number of connection types in HW (DQ/CDU etc.) */ |
| #define MAX_CONN_TYPES PROTOCOLID_COMMON |
| #define NUM_TASK_TYPES 2 |
| #define NUM_TASK_PF_SEGMENTS 4 |
| #define NUM_TASK_VF_SEGMENTS 1 |
| |
| /* QM constants */ |
| #define QM_PQ_ELEMENT_SIZE 4 /* in bytes */ |
| |
| /* Doorbell-Queue constants */ |
| #define DQ_RANGE_SHIFT 4 |
| #define DQ_RANGE_ALIGN BIT(DQ_RANGE_SHIFT) |
| |
| /* Searcher constants */ |
| #define SRC_MIN_NUM_ELEMS 256 |
| |
| /* Timers constants */ |
| #define TM_SHIFT 7 |
| #define TM_ALIGN BIT(TM_SHIFT) |
| #define TM_ELEM_SIZE 4 |
| |
| #define ILT_DEFAULT_HW_P_SIZE 4 |
| |
| #define ILT_PAGE_IN_BYTES(hw_p_size) (1U << ((hw_p_size) + 12)) |
| #define ILT_CFG_REG(cli, reg) PSWRQ2_REG_ ## cli ## _ ## reg ## _RT_OFFSET |
| |
| /* ILT entry structure */ |
| #define ILT_ENTRY_PHY_ADDR_MASK (~0ULL >> 12) |
| #define ILT_ENTRY_PHY_ADDR_SHIFT 0 |
| #define ILT_ENTRY_VALID_MASK 0x1ULL |
| #define ILT_ENTRY_VALID_SHIFT 52 |
| #define ILT_ENTRY_IN_REGS 2 |
| #define ILT_REG_SIZE_IN_BYTES 4 |
| |
| /* connection context union */ |
| union conn_context { |
| struct e4_core_conn_context core_ctx; |
| struct e4_eth_conn_context eth_ctx; |
| struct e4_iscsi_conn_context iscsi_ctx; |
| struct e4_fcoe_conn_context fcoe_ctx; |
| struct e4_roce_conn_context roce_ctx; |
| }; |
| |
| /* TYPE-0 task context - iSCSI, FCOE */ |
| union type0_task_context { |
| struct e4_iscsi_task_context iscsi_ctx; |
| struct e4_fcoe_task_context fcoe_ctx; |
| }; |
| |
| /* TYPE-1 task context - ROCE */ |
| union type1_task_context { |
| struct e4_rdma_task_context roce_ctx; |
| }; |
| |
| struct src_ent { |
| u8 opaque[56]; |
| u64 next; |
| }; |
| |
| #define CDUT_SEG_ALIGNMET 3 /* in 4k chunks */ |
| #define CDUT_SEG_ALIGNMET_IN_BYTES BIT(CDUT_SEG_ALIGNMET + 12) |
| |
| #define CONN_CXT_SIZE(p_hwfn) \ |
| ALIGNED_TYPE_SIZE(union conn_context, p_hwfn) |
| |
| #define SRQ_CXT_SIZE (sizeof(struct rdma_srq_context)) |
| |
| #define TYPE0_TASK_CXT_SIZE(p_hwfn) \ |
| ALIGNED_TYPE_SIZE(union type0_task_context, p_hwfn) |
| |
| /* Alignment is inherent to the type1_task_context structure */ |
| #define TYPE1_TASK_CXT_SIZE(p_hwfn) sizeof(union type1_task_context) |
| |
| /* PF per protocl configuration object */ |
| #define TASK_SEGMENTS (NUM_TASK_PF_SEGMENTS + NUM_TASK_VF_SEGMENTS) |
| #define TASK_SEGMENT_VF (NUM_TASK_PF_SEGMENTS) |
| |
| struct qed_tid_seg { |
| u32 count; |
| u8 type; |
| bool has_fl_mem; |
| }; |
| |
| struct qed_conn_type_cfg { |
| u32 cid_count; |
| u32 cids_per_vf; |
| struct qed_tid_seg tid_seg[TASK_SEGMENTS]; |
| }; |
| |
| /* ILT Client configuration, Per connection type (protocol) resources. */ |
| #define ILT_CLI_PF_BLOCKS (1 + NUM_TASK_PF_SEGMENTS * 2) |
| #define ILT_CLI_VF_BLOCKS (1 + NUM_TASK_VF_SEGMENTS * 2) |
| #define CDUC_BLK (0) |
| #define SRQ_BLK (0) |
| #define CDUT_SEG_BLK(n) (1 + (u8)(n)) |
| #define CDUT_FL_SEG_BLK(n, X) (1 + (n) + NUM_TASK_ ## X ## _SEGMENTS) |
| |
| enum ilt_clients { |
| ILT_CLI_CDUC, |
| ILT_CLI_CDUT, |
| ILT_CLI_QM, |
| ILT_CLI_TM, |
| ILT_CLI_SRC, |
| ILT_CLI_TSDM, |
| ILT_CLI_MAX |
| }; |
| |
| struct ilt_cfg_pair { |
| u32 reg; |
| u32 val; |
| }; |
| |
| struct qed_ilt_cli_blk { |
| u32 total_size; /* 0 means not active */ |
| u32 real_size_in_page; |
| u32 start_line; |
| u32 dynamic_line_cnt; |
| }; |
| |
| struct qed_ilt_client_cfg { |
| bool active; |
| |
| /* ILT boundaries */ |
| struct ilt_cfg_pair first; |
| struct ilt_cfg_pair last; |
| struct ilt_cfg_pair p_size; |
| |
| /* ILT client blocks for PF */ |
| struct qed_ilt_cli_blk pf_blks[ILT_CLI_PF_BLOCKS]; |
| u32 pf_total_lines; |
| |
| /* ILT client blocks for VFs */ |
| struct qed_ilt_cli_blk vf_blks[ILT_CLI_VF_BLOCKS]; |
| u32 vf_total_lines; |
| }; |
| |
| /* Per Path - |
| * ILT shadow table |
| * Protocol acquired CID lists |
| * PF start line in ILT |
| */ |
| struct qed_dma_mem { |
| dma_addr_t p_phys; |
| void *p_virt; |
| size_t size; |
| }; |
| |
| struct qed_cid_acquired_map { |
| u32 start_cid; |
| u32 max_count; |
| unsigned long *cid_map; |
| }; |
| |
| struct qed_cxt_mngr { |
| /* Per protocl configuration */ |
| struct qed_conn_type_cfg conn_cfg[MAX_CONN_TYPES]; |
| |
| /* computed ILT structure */ |
| struct qed_ilt_client_cfg clients[ILT_CLI_MAX]; |
| |
| /* Task type sizes */ |
| u32 task_type_size[NUM_TASK_TYPES]; |
| |
| /* total number of VFs for this hwfn - |
| * ALL VFs are symmetric in terms of HW resources |
| */ |
| u32 vf_count; |
| |
| /* Acquired CIDs */ |
| struct qed_cid_acquired_map acquired[MAX_CONN_TYPES]; |
| |
| struct qed_cid_acquired_map |
| acquired_vf[MAX_CONN_TYPES][MAX_NUM_VFS]; |
| |
| /* ILT shadow table */ |
| struct qed_dma_mem *ilt_shadow; |
| u32 pf_start_line; |
| |
| /* Mutex for a dynamic ILT allocation */ |
| struct mutex mutex; |
| |
| /* SRC T2 */ |
| struct qed_dma_mem *t2; |
| u32 t2_num_pages; |
| u64 first_free; |
| u64 last_free; |
| |
| /* total number of SRQ's for this hwfn */ |
| u32 srq_count; |
| |
| /* Maximal number of L2 steering filters */ |
| u32 arfs_count; |
| }; |
| static bool src_proto(enum protocol_type type) |
| { |
| return type == PROTOCOLID_ISCSI || |
| type == PROTOCOLID_FCOE || |
| type == PROTOCOLID_IWARP; |
| } |
| |
| static bool tm_cid_proto(enum protocol_type type) |
| { |
| return type == PROTOCOLID_ISCSI || |
| type == PROTOCOLID_FCOE || |
| type == PROTOCOLID_ROCE || |
| type == PROTOCOLID_IWARP; |
| } |
| |
| static bool tm_tid_proto(enum protocol_type type) |
| { |
| return type == PROTOCOLID_FCOE; |
| } |
| |
| /* counts the iids for the CDU/CDUC ILT client configuration */ |
| struct qed_cdu_iids { |
| u32 pf_cids; |
| u32 per_vf_cids; |
| }; |
| |
| static void qed_cxt_cdu_iids(struct qed_cxt_mngr *p_mngr, |
| struct qed_cdu_iids *iids) |
| { |
| u32 type; |
| |
| for (type = 0; type < MAX_CONN_TYPES; type++) { |
| iids->pf_cids += p_mngr->conn_cfg[type].cid_count; |
| iids->per_vf_cids += p_mngr->conn_cfg[type].cids_per_vf; |
| } |
| } |
| |
| /* counts the iids for the Searcher block configuration */ |
| struct qed_src_iids { |
| u32 pf_cids; |
| u32 per_vf_cids; |
| }; |
| |
| static void qed_cxt_src_iids(struct qed_cxt_mngr *p_mngr, |
| struct qed_src_iids *iids) |
| { |
| u32 i; |
| |
| for (i = 0; i < MAX_CONN_TYPES; i++) { |
| if (!src_proto(i)) |
| continue; |
| |
| iids->pf_cids += p_mngr->conn_cfg[i].cid_count; |
| iids->per_vf_cids += p_mngr->conn_cfg[i].cids_per_vf; |
| } |
| |
| /* Add L2 filtering filters in addition */ |
| iids->pf_cids += p_mngr->arfs_count; |
| } |
| |
| /* counts the iids for the Timers block configuration */ |
| struct qed_tm_iids { |
| u32 pf_cids; |
| u32 pf_tids[NUM_TASK_PF_SEGMENTS]; /* per segment */ |
| u32 pf_tids_total; |
| u32 per_vf_cids; |
| u32 per_vf_tids; |
| }; |
| |
| static void qed_cxt_tm_iids(struct qed_hwfn *p_hwfn, |
| struct qed_cxt_mngr *p_mngr, |
| struct qed_tm_iids *iids) |
| { |
| bool tm_vf_required = false; |
| bool tm_required = false; |
| int i, j; |
| |
| /* Timers is a special case -> we don't count how many cids require |
| * timers but what's the max cid that will be used by the timer block. |
| * therefore we traverse in reverse order, and once we hit a protocol |
| * that requires the timers memory, we'll sum all the protocols up |
| * to that one. |
| */ |
| for (i = MAX_CONN_TYPES - 1; i >= 0; i--) { |
| struct qed_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[i]; |
| |
| if (tm_cid_proto(i) || tm_required) { |
| if (p_cfg->cid_count) |
| tm_required = true; |
| |
| iids->pf_cids += p_cfg->cid_count; |
| } |
| |
| if (tm_cid_proto(i) || tm_vf_required) { |
| if (p_cfg->cids_per_vf) |
| tm_vf_required = true; |
| |
| iids->per_vf_cids += p_cfg->cids_per_vf; |
| } |
| |
| if (tm_tid_proto(i)) { |
| struct qed_tid_seg *segs = p_cfg->tid_seg; |
| |
| /* for each segment there is at most one |
| * protocol for which count is not 0. |
| */ |
| for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++) |
| iids->pf_tids[j] += segs[j].count; |
| |
| /* The last array elelment is for the VFs. As for PF |
| * segments there can be only one protocol for |
| * which this value is not 0. |
| */ |
| iids->per_vf_tids += segs[NUM_TASK_PF_SEGMENTS].count; |
| } |
| } |
| |
| iids->pf_cids = roundup(iids->pf_cids, TM_ALIGN); |
| iids->per_vf_cids = roundup(iids->per_vf_cids, TM_ALIGN); |
| iids->per_vf_tids = roundup(iids->per_vf_tids, TM_ALIGN); |
| |
| for (iids->pf_tids_total = 0, j = 0; j < NUM_TASK_PF_SEGMENTS; j++) { |
| iids->pf_tids[j] = roundup(iids->pf_tids[j], TM_ALIGN); |
| iids->pf_tids_total += iids->pf_tids[j]; |
| } |
| } |
| |
| static void qed_cxt_qm_iids(struct qed_hwfn *p_hwfn, |
| struct qed_qm_iids *iids) |
| { |
| struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; |
| struct qed_tid_seg *segs; |
| u32 vf_cids = 0, type, j; |
| u32 vf_tids = 0; |
| |
| for (type = 0; type < MAX_CONN_TYPES; type++) { |
| iids->cids += p_mngr->conn_cfg[type].cid_count; |
| vf_cids += p_mngr->conn_cfg[type].cids_per_vf; |
| |
| segs = p_mngr->conn_cfg[type].tid_seg; |
| /* for each segment there is at most one |
| * protocol for which count is not 0. |
| */ |
| for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++) |
| iids->tids += segs[j].count; |
| |
| /* The last array elelment is for the VFs. As for PF |
| * segments there can be only one protocol for |
| * which this value is not 0. |
| */ |
| vf_tids += segs[NUM_TASK_PF_SEGMENTS].count; |
| } |
| |
| iids->vf_cids += vf_cids * p_mngr->vf_count; |
| iids->tids += vf_tids * p_mngr->vf_count; |
| |
| DP_VERBOSE(p_hwfn, QED_MSG_ILT, |
| "iids: CIDS %08x vf_cids %08x tids %08x vf_tids %08x\n", |
| iids->cids, iids->vf_cids, iids->tids, vf_tids); |
| } |
| |
| static struct qed_tid_seg *qed_cxt_tid_seg_info(struct qed_hwfn *p_hwfn, |
| u32 seg) |
| { |
| struct qed_cxt_mngr *p_cfg = p_hwfn->p_cxt_mngr; |
| u32 i; |
| |
| /* Find the protocol with tid count > 0 for this segment. |
| * Note: there can only be one and this is already validated. |
| */ |
| for (i = 0; i < MAX_CONN_TYPES; i++) |
| if (p_cfg->conn_cfg[i].tid_seg[seg].count) |
| return &p_cfg->conn_cfg[i].tid_seg[seg]; |
| return NULL; |
| } |
| |
| static void qed_cxt_set_srq_count(struct qed_hwfn *p_hwfn, u32 num_srqs) |
| { |
| struct qed_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr; |
| |
| p_mgr->srq_count = num_srqs; |
| } |
| |
| u32 qed_cxt_get_srq_count(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr; |
| |
| return p_mgr->srq_count; |
| } |
| |
| /* set the iids count per protocol */ |
| static void qed_cxt_set_proto_cid_count(struct qed_hwfn *p_hwfn, |
| enum protocol_type type, |
| u32 cid_count, u32 vf_cid_cnt) |
| { |
| struct qed_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr; |
| struct qed_conn_type_cfg *p_conn = &p_mgr->conn_cfg[type]; |
| |
| p_conn->cid_count = roundup(cid_count, DQ_RANGE_ALIGN); |
| p_conn->cids_per_vf = roundup(vf_cid_cnt, DQ_RANGE_ALIGN); |
| |
| if (type == PROTOCOLID_ROCE) { |
| u32 page_sz = p_mgr->clients[ILT_CLI_CDUC].p_size.val; |
| u32 cxt_size = CONN_CXT_SIZE(p_hwfn); |
| u32 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size; |
| u32 align = elems_per_page * DQ_RANGE_ALIGN; |
| |
| p_conn->cid_count = roundup(p_conn->cid_count, align); |
| } |
| } |
| |
| u32 qed_cxt_get_proto_cid_count(struct qed_hwfn *p_hwfn, |
| enum protocol_type type, u32 *vf_cid) |
| { |
| if (vf_cid) |
| *vf_cid = p_hwfn->p_cxt_mngr->conn_cfg[type].cids_per_vf; |
| |
| return p_hwfn->p_cxt_mngr->conn_cfg[type].cid_count; |
| } |
| |
| u32 qed_cxt_get_proto_cid_start(struct qed_hwfn *p_hwfn, |
| enum protocol_type type) |
| { |
| return p_hwfn->p_cxt_mngr->acquired[type].start_cid; |
| } |
| |
| u32 qed_cxt_get_proto_tid_count(struct qed_hwfn *p_hwfn, |
| enum protocol_type type) |
| { |
| u32 cnt = 0; |
| int i; |
| |
| for (i = 0; i < TASK_SEGMENTS; i++) |
| cnt += p_hwfn->p_cxt_mngr->conn_cfg[type].tid_seg[i].count; |
| |
| return cnt; |
| } |
| |
| static void qed_cxt_set_proto_tid_count(struct qed_hwfn *p_hwfn, |
| enum protocol_type proto, |
| u8 seg, |
| u8 seg_type, u32 count, bool has_fl) |
| { |
| struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; |
| struct qed_tid_seg *p_seg = &p_mngr->conn_cfg[proto].tid_seg[seg]; |
| |
| p_seg->count = count; |
| p_seg->has_fl_mem = has_fl; |
| p_seg->type = seg_type; |
| } |
| |
| static void qed_ilt_cli_blk_fill(struct qed_ilt_client_cfg *p_cli, |
| struct qed_ilt_cli_blk *p_blk, |
| u32 start_line, u32 total_size, u32 elem_size) |
| { |
| u32 ilt_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val); |
| |
| /* verify thatits called only once for each block */ |
| if (p_blk->total_size) |
| return; |
| |
| p_blk->total_size = total_size; |
| p_blk->real_size_in_page = 0; |
| if (elem_size) |
| p_blk->real_size_in_page = (ilt_size / elem_size) * elem_size; |
| p_blk->start_line = start_line; |
| } |
| |
| static void qed_ilt_cli_adv_line(struct qed_hwfn *p_hwfn, |
| struct qed_ilt_client_cfg *p_cli, |
| struct qed_ilt_cli_blk *p_blk, |
| u32 *p_line, enum ilt_clients client_id) |
| { |
| if (!p_blk->total_size) |
| return; |
| |
| if (!p_cli->active) |
| p_cli->first.val = *p_line; |
| |
| p_cli->active = true; |
| *p_line += DIV_ROUND_UP(p_blk->total_size, p_blk->real_size_in_page); |
| p_cli->last.val = *p_line - 1; |
| |
| DP_VERBOSE(p_hwfn, QED_MSG_ILT, |
| "ILT[Client %d] - Lines: [%08x - %08x]. Block - Size %08x [Real %08x] Start line %d\n", |
| client_id, p_cli->first.val, |
| p_cli->last.val, p_blk->total_size, |
| p_blk->real_size_in_page, p_blk->start_line); |
| } |
| |
| static u32 qed_ilt_get_dynamic_line_cnt(struct qed_hwfn *p_hwfn, |
| enum ilt_clients ilt_client) |
| { |
| u32 cid_count = p_hwfn->p_cxt_mngr->conn_cfg[PROTOCOLID_ROCE].cid_count; |
| struct qed_ilt_client_cfg *p_cli; |
| u32 lines_to_skip = 0; |
| u32 cxts_per_p; |
| |
| if (ilt_client == ILT_CLI_CDUC) { |
| p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC]; |
| |
| cxts_per_p = ILT_PAGE_IN_BYTES(p_cli->p_size.val) / |
| (u32) CONN_CXT_SIZE(p_hwfn); |
| |
| lines_to_skip = cid_count / cxts_per_p; |
| } |
| |
| return lines_to_skip; |
| } |
| |
| static struct qed_ilt_client_cfg *qed_cxt_set_cli(struct qed_ilt_client_cfg |
| *p_cli) |
| { |
| p_cli->active = false; |
| p_cli->first.val = 0; |
| p_cli->last.val = 0; |
| return p_cli; |
| } |
| |
| static struct qed_ilt_cli_blk *qed_cxt_set_blk(struct qed_ilt_cli_blk *p_blk) |
| { |
| p_blk->total_size = 0; |
| return p_blk; |
| } |
| |
| int qed_cxt_cfg_ilt_compute(struct qed_hwfn *p_hwfn, u32 *line_count) |
| { |
| struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; |
| u32 curr_line, total, i, task_size, line; |
| struct qed_ilt_client_cfg *p_cli; |
| struct qed_ilt_cli_blk *p_blk; |
| struct qed_cdu_iids cdu_iids; |
| struct qed_src_iids src_iids; |
| struct qed_qm_iids qm_iids; |
| struct qed_tm_iids tm_iids; |
| struct qed_tid_seg *p_seg; |
| |
| memset(&qm_iids, 0, sizeof(qm_iids)); |
| memset(&cdu_iids, 0, sizeof(cdu_iids)); |
| memset(&src_iids, 0, sizeof(src_iids)); |
| memset(&tm_iids, 0, sizeof(tm_iids)); |
| |
| p_mngr->pf_start_line = RESC_START(p_hwfn, QED_ILT); |
| |
| DP_VERBOSE(p_hwfn, QED_MSG_ILT, |
| "hwfn [%d] - Set context manager starting line to be 0x%08x\n", |
| p_hwfn->my_id, p_hwfn->p_cxt_mngr->pf_start_line); |
| |
| /* CDUC */ |
| p_cli = qed_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUC]); |
| |
| curr_line = p_mngr->pf_start_line; |
| |
| /* CDUC PF */ |
| p_cli->pf_total_lines = 0; |
| |
| /* get the counters for the CDUC and QM clients */ |
| qed_cxt_cdu_iids(p_mngr, &cdu_iids); |
| |
| p_blk = qed_cxt_set_blk(&p_cli->pf_blks[CDUC_BLK]); |
| |
| total = cdu_iids.pf_cids * CONN_CXT_SIZE(p_hwfn); |
| |
| qed_ilt_cli_blk_fill(p_cli, p_blk, curr_line, |
| total, CONN_CXT_SIZE(p_hwfn)); |
| |
| qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC); |
| p_cli->pf_total_lines = curr_line - p_blk->start_line; |
| |
| p_blk->dynamic_line_cnt = qed_ilt_get_dynamic_line_cnt(p_hwfn, |
| ILT_CLI_CDUC); |
| |
| /* CDUC VF */ |
| p_blk = qed_cxt_set_blk(&p_cli->vf_blks[CDUC_BLK]); |
| total = cdu_iids.per_vf_cids * CONN_CXT_SIZE(p_hwfn); |
| |
| qed_ilt_cli_blk_fill(p_cli, p_blk, curr_line, |
| total, CONN_CXT_SIZE(p_hwfn)); |
| |
| qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC); |
| p_cli->vf_total_lines = curr_line - p_blk->start_line; |
| |
| for (i = 1; i < p_mngr->vf_count; i++) |
| qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, |
| ILT_CLI_CDUC); |
| |
| /* CDUT PF */ |
| p_cli = qed_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUT]); |
| p_cli->first.val = curr_line; |
| |
| /* first the 'working' task memory */ |
| for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) { |
| p_seg = qed_cxt_tid_seg_info(p_hwfn, i); |
| if (!p_seg || p_seg->count == 0) |
| continue; |
| |
| p_blk = qed_cxt_set_blk(&p_cli->pf_blks[CDUT_SEG_BLK(i)]); |
| total = p_seg->count * p_mngr->task_type_size[p_seg->type]; |
| qed_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total, |
| p_mngr->task_type_size[p_seg->type]); |
| |
| qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, |
| ILT_CLI_CDUT); |
| } |
| |
| /* next the 'init' task memory (forced load memory) */ |
| for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) { |
| p_seg = qed_cxt_tid_seg_info(p_hwfn, i); |
| if (!p_seg || p_seg->count == 0) |
| continue; |
| |
| p_blk = |
| qed_cxt_set_blk(&p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)]); |
| |
| if (!p_seg->has_fl_mem) { |
| /* The segment is active (total size pf 'working' |
| * memory is > 0) but has no FL (forced-load, Init) |
| * memory. Thus: |
| * |
| * 1. The total-size in the corrsponding FL block of |
| * the ILT client is set to 0 - No ILT line are |
| * provisioned and no ILT memory allocated. |
| * |
| * 2. The start-line of said block is set to the |
| * start line of the matching working memory |
| * block in the ILT client. This is later used to |
| * configure the CDU segment offset registers and |
| * results in an FL command for TIDs of this |
| * segement behaves as regular load commands |
| * (loading TIDs from the working memory). |
| */ |
| line = p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line; |
| |
| qed_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0); |
| continue; |
| } |
| total = p_seg->count * p_mngr->task_type_size[p_seg->type]; |
| |
| qed_ilt_cli_blk_fill(p_cli, p_blk, |
| curr_line, total, |
| p_mngr->task_type_size[p_seg->type]); |
| |
| qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, |
| ILT_CLI_CDUT); |
| } |
| p_cli->pf_total_lines = curr_line - p_cli->pf_blks[0].start_line; |
| |
| /* CDUT VF */ |
| p_seg = qed_cxt_tid_seg_info(p_hwfn, TASK_SEGMENT_VF); |
| if (p_seg && p_seg->count) { |
| /* Stricly speaking we need to iterate over all VF |
| * task segment types, but a VF has only 1 segment |
| */ |
| |
| /* 'working' memory */ |
| total = p_seg->count * p_mngr->task_type_size[p_seg->type]; |
| |
| p_blk = qed_cxt_set_blk(&p_cli->vf_blks[CDUT_SEG_BLK(0)]); |
| qed_ilt_cli_blk_fill(p_cli, p_blk, |
| curr_line, total, |
| p_mngr->task_type_size[p_seg->type]); |
| |
| qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, |
| ILT_CLI_CDUT); |
| |
| /* 'init' memory */ |
| p_blk = |
| qed_cxt_set_blk(&p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)]); |
| if (!p_seg->has_fl_mem) { |
| /* see comment above */ |
| line = p_cli->vf_blks[CDUT_SEG_BLK(0)].start_line; |
| qed_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0); |
| } else { |
| task_size = p_mngr->task_type_size[p_seg->type]; |
| qed_ilt_cli_blk_fill(p_cli, p_blk, |
| curr_line, total, task_size); |
| qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, |
| ILT_CLI_CDUT); |
| } |
| p_cli->vf_total_lines = curr_line - |
| p_cli->vf_blks[0].start_line; |
| |
| /* Now for the rest of the VFs */ |
| for (i = 1; i < p_mngr->vf_count; i++) { |
| p_blk = &p_cli->vf_blks[CDUT_SEG_BLK(0)]; |
| qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, |
| ILT_CLI_CDUT); |
| |
| p_blk = &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)]; |
| qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, |
| ILT_CLI_CDUT); |
| } |
| } |
| |
| /* QM */ |
| p_cli = qed_cxt_set_cli(&p_mngr->clients[ILT_CLI_QM]); |
| p_blk = qed_cxt_set_blk(&p_cli->pf_blks[0]); |
| |
| qed_cxt_qm_iids(p_hwfn, &qm_iids); |
| total = qed_qm_pf_mem_size(qm_iids.cids, |
| qm_iids.vf_cids, qm_iids.tids, |
| p_hwfn->qm_info.num_pqs, |
| p_hwfn->qm_info.num_vf_pqs); |
| |
| DP_VERBOSE(p_hwfn, |
| QED_MSG_ILT, |
| "QM ILT Info, (cids=%d, vf_cids=%d, tids=%d, num_pqs=%d, num_vf_pqs=%d, memory_size=%d)\n", |
| qm_iids.cids, |
| qm_iids.vf_cids, |
| qm_iids.tids, |
| p_hwfn->qm_info.num_pqs, p_hwfn->qm_info.num_vf_pqs, total); |
| |
| qed_ilt_cli_blk_fill(p_cli, p_blk, |
| curr_line, total * 0x1000, |
| QM_PQ_ELEMENT_SIZE); |
| |
| qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_QM); |
| p_cli->pf_total_lines = curr_line - p_blk->start_line; |
| |
| /* SRC */ |
| p_cli = qed_cxt_set_cli(&p_mngr->clients[ILT_CLI_SRC]); |
| qed_cxt_src_iids(p_mngr, &src_iids); |
| |
| /* Both the PF and VFs searcher connections are stored in the per PF |
| * database. Thus sum the PF searcher cids and all the VFs searcher |
| * cids. |
| */ |
| total = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count; |
| if (total) { |
| u32 local_max = max_t(u32, total, |
| SRC_MIN_NUM_ELEMS); |
| |
| total = roundup_pow_of_two(local_max); |
| |
| p_blk = qed_cxt_set_blk(&p_cli->pf_blks[0]); |
| qed_ilt_cli_blk_fill(p_cli, p_blk, curr_line, |
| total * sizeof(struct src_ent), |
| sizeof(struct src_ent)); |
| |
| qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, |
| ILT_CLI_SRC); |
| p_cli->pf_total_lines = curr_line - p_blk->start_line; |
| } |
| |
| /* TM PF */ |
| p_cli = qed_cxt_set_cli(&p_mngr->clients[ILT_CLI_TM]); |
| qed_cxt_tm_iids(p_hwfn, p_mngr, &tm_iids); |
| total = tm_iids.pf_cids + tm_iids.pf_tids_total; |
| if (total) { |
| p_blk = qed_cxt_set_blk(&p_cli->pf_blks[0]); |
| qed_ilt_cli_blk_fill(p_cli, p_blk, curr_line, |
| total * TM_ELEM_SIZE, TM_ELEM_SIZE); |
| |
| qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, |
| ILT_CLI_TM); |
| p_cli->pf_total_lines = curr_line - p_blk->start_line; |
| } |
| |
| /* TM VF */ |
| total = tm_iids.per_vf_cids + tm_iids.per_vf_tids; |
| if (total) { |
| p_blk = qed_cxt_set_blk(&p_cli->vf_blks[0]); |
| qed_ilt_cli_blk_fill(p_cli, p_blk, curr_line, |
| total * TM_ELEM_SIZE, TM_ELEM_SIZE); |
| |
| qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, |
| ILT_CLI_TM); |
| |
| p_cli->vf_total_lines = curr_line - p_blk->start_line; |
| for (i = 1; i < p_mngr->vf_count; i++) |
| qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, |
| ILT_CLI_TM); |
| } |
| |
| /* TSDM (SRQ CONTEXT) */ |
| total = qed_cxt_get_srq_count(p_hwfn); |
| |
| if (total) { |
| p_cli = qed_cxt_set_cli(&p_mngr->clients[ILT_CLI_TSDM]); |
| p_blk = qed_cxt_set_blk(&p_cli->pf_blks[SRQ_BLK]); |
| qed_ilt_cli_blk_fill(p_cli, p_blk, curr_line, |
| total * SRQ_CXT_SIZE, SRQ_CXT_SIZE); |
| |
| qed_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, |
| ILT_CLI_TSDM); |
| p_cli->pf_total_lines = curr_line - p_blk->start_line; |
| } |
| |
| *line_count = curr_line - p_hwfn->p_cxt_mngr->pf_start_line; |
| |
| if (curr_line - p_hwfn->p_cxt_mngr->pf_start_line > |
| RESC_NUM(p_hwfn, QED_ILT)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| u32 qed_cxt_cfg_ilt_compute_excess(struct qed_hwfn *p_hwfn, u32 used_lines) |
| { |
| struct qed_ilt_client_cfg *p_cli; |
| u32 excess_lines, available_lines; |
| struct qed_cxt_mngr *p_mngr; |
| u32 ilt_page_size, elem_size; |
| struct qed_tid_seg *p_seg; |
| int i; |
| |
| available_lines = RESC_NUM(p_hwfn, QED_ILT); |
| excess_lines = used_lines - available_lines; |
| |
| if (!excess_lines) |
| return 0; |
| |
| if (!QED_IS_RDMA_PERSONALITY(p_hwfn)) |
| return 0; |
| |
| p_mngr = p_hwfn->p_cxt_mngr; |
| p_cli = &p_mngr->clients[ILT_CLI_CDUT]; |
| ilt_page_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val); |
| |
| for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) { |
| p_seg = qed_cxt_tid_seg_info(p_hwfn, i); |
| if (!p_seg || p_seg->count == 0) |
| continue; |
| |
| elem_size = p_mngr->task_type_size[p_seg->type]; |
| if (!elem_size) |
| continue; |
| |
| return (ilt_page_size / elem_size) * excess_lines; |
| } |
| |
| DP_NOTICE(p_hwfn, "failed computing excess ILT lines\n"); |
| return 0; |
| } |
| |
| static void qed_cxt_src_t2_free(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; |
| u32 i; |
| |
| if (!p_mngr->t2) |
| return; |
| |
| for (i = 0; i < p_mngr->t2_num_pages; i++) |
| if (p_mngr->t2[i].p_virt) |
| dma_free_coherent(&p_hwfn->cdev->pdev->dev, |
| p_mngr->t2[i].size, |
| p_mngr->t2[i].p_virt, |
| p_mngr->t2[i].p_phys); |
| |
| kfree(p_mngr->t2); |
| p_mngr->t2 = NULL; |
| } |
| |
| static int qed_cxt_src_t2_alloc(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; |
| u32 conn_num, total_size, ent_per_page, psz, i; |
| struct qed_ilt_client_cfg *p_src; |
| struct qed_src_iids src_iids; |
| struct qed_dma_mem *p_t2; |
| int rc; |
| |
| memset(&src_iids, 0, sizeof(src_iids)); |
| |
| /* if the SRC ILT client is inactive - there are no connection |
| * requiring the searcer, leave. |
| */ |
| p_src = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_SRC]; |
| if (!p_src->active) |
| return 0; |
| |
| qed_cxt_src_iids(p_mngr, &src_iids); |
| conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count; |
| total_size = conn_num * sizeof(struct src_ent); |
| |
| /* use the same page size as the SRC ILT client */ |
| psz = ILT_PAGE_IN_BYTES(p_src->p_size.val); |
| p_mngr->t2_num_pages = DIV_ROUND_UP(total_size, psz); |
| |
| /* allocate t2 */ |
| p_mngr->t2 = kcalloc(p_mngr->t2_num_pages, sizeof(struct qed_dma_mem), |
| GFP_KERNEL); |
| if (!p_mngr->t2) { |
| rc = -ENOMEM; |
| goto t2_fail; |
| } |
| |
| /* allocate t2 pages */ |
| for (i = 0; i < p_mngr->t2_num_pages; i++) { |
| u32 size = min_t(u32, total_size, psz); |
| void **p_virt = &p_mngr->t2[i].p_virt; |
| |
| *p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, size, |
| &p_mngr->t2[i].p_phys, |
| GFP_KERNEL); |
| if (!p_mngr->t2[i].p_virt) { |
| rc = -ENOMEM; |
| goto t2_fail; |
| } |
| p_mngr->t2[i].size = size; |
| total_size -= size; |
| } |
| |
| /* Set the t2 pointers */ |
| |
| /* entries per page - must be a power of two */ |
| ent_per_page = psz / sizeof(struct src_ent); |
| |
| p_mngr->first_free = (u64) p_mngr->t2[0].p_phys; |
| |
| p_t2 = &p_mngr->t2[(conn_num - 1) / ent_per_page]; |
| p_mngr->last_free = (u64) p_t2->p_phys + |
| ((conn_num - 1) & (ent_per_page - 1)) * sizeof(struct src_ent); |
| |
| for (i = 0; i < p_mngr->t2_num_pages; i++) { |
| u32 ent_num = min_t(u32, |
| ent_per_page, |
| conn_num); |
| struct src_ent *entries = p_mngr->t2[i].p_virt; |
| u64 p_ent_phys = (u64) p_mngr->t2[i].p_phys, val; |
| u32 j; |
| |
| for (j = 0; j < ent_num - 1; j++) { |
| val = p_ent_phys + (j + 1) * sizeof(struct src_ent); |
| entries[j].next = cpu_to_be64(val); |
| } |
| |
| if (i < p_mngr->t2_num_pages - 1) |
| val = (u64) p_mngr->t2[i + 1].p_phys; |
| else |
| val = 0; |
| entries[j].next = cpu_to_be64(val); |
| |
| conn_num -= ent_num; |
| } |
| |
| return 0; |
| |
| t2_fail: |
| qed_cxt_src_t2_free(p_hwfn); |
| return rc; |
| } |
| |
| #define for_each_ilt_valid_client(pos, clients) \ |
| for (pos = 0; pos < ILT_CLI_MAX; pos++) \ |
| if (!clients[pos].active) { \ |
| continue; \ |
| } else \ |
| |
| /* Total number of ILT lines used by this PF */ |
| static u32 qed_cxt_ilt_shadow_size(struct qed_ilt_client_cfg *ilt_clients) |
| { |
| u32 size = 0; |
| u32 i; |
| |
| for_each_ilt_valid_client(i, ilt_clients) |
| size += (ilt_clients[i].last.val - ilt_clients[i].first.val + 1); |
| |
| return size; |
| } |
| |
| static void qed_ilt_shadow_free(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_ilt_client_cfg *p_cli = p_hwfn->p_cxt_mngr->clients; |
| struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; |
| u32 ilt_size, i; |
| |
| ilt_size = qed_cxt_ilt_shadow_size(p_cli); |
| |
| for (i = 0; p_mngr->ilt_shadow && i < ilt_size; i++) { |
| struct qed_dma_mem *p_dma = &p_mngr->ilt_shadow[i]; |
| |
| if (p_dma->p_virt) |
| dma_free_coherent(&p_hwfn->cdev->pdev->dev, |
| p_dma->size, p_dma->p_virt, |
| p_dma->p_phys); |
| p_dma->p_virt = NULL; |
| } |
| kfree(p_mngr->ilt_shadow); |
| } |
| |
| static int qed_ilt_blk_alloc(struct qed_hwfn *p_hwfn, |
| struct qed_ilt_cli_blk *p_blk, |
| enum ilt_clients ilt_client, |
| u32 start_line_offset) |
| { |
| struct qed_dma_mem *ilt_shadow = p_hwfn->p_cxt_mngr->ilt_shadow; |
| u32 lines, line, sz_left, lines_to_skip = 0; |
| |
| /* Special handling for RoCE that supports dynamic allocation */ |
| if (QED_IS_RDMA_PERSONALITY(p_hwfn) && |
| ((ilt_client == ILT_CLI_CDUT) || ilt_client == ILT_CLI_TSDM)) |
| return 0; |
| |
| lines_to_skip = p_blk->dynamic_line_cnt; |
| |
| if (!p_blk->total_size) |
| return 0; |
| |
| sz_left = p_blk->total_size; |
| lines = DIV_ROUND_UP(sz_left, p_blk->real_size_in_page) - lines_to_skip; |
| line = p_blk->start_line + start_line_offset - |
| p_hwfn->p_cxt_mngr->pf_start_line + lines_to_skip; |
| |
| for (; lines; lines--) { |
| dma_addr_t p_phys; |
| void *p_virt; |
| u32 size; |
| |
| size = min_t(u32, sz_left, p_blk->real_size_in_page); |
| p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, size, |
| &p_phys, GFP_KERNEL); |
| if (!p_virt) |
| return -ENOMEM; |
| |
| ilt_shadow[line].p_phys = p_phys; |
| ilt_shadow[line].p_virt = p_virt; |
| ilt_shadow[line].size = size; |
| |
| DP_VERBOSE(p_hwfn, QED_MSG_ILT, |
| "ILT shadow: Line [%d] Physical 0x%llx Virtual %p Size %d\n", |
| line, (u64)p_phys, p_virt, size); |
| |
| sz_left -= size; |
| line++; |
| } |
| |
| return 0; |
| } |
| |
| static int qed_ilt_shadow_alloc(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; |
| struct qed_ilt_client_cfg *clients = p_mngr->clients; |
| struct qed_ilt_cli_blk *p_blk; |
| u32 size, i, j, k; |
| int rc; |
| |
| size = qed_cxt_ilt_shadow_size(clients); |
| p_mngr->ilt_shadow = kcalloc(size, sizeof(struct qed_dma_mem), |
| GFP_KERNEL); |
| if (!p_mngr->ilt_shadow) { |
| rc = -ENOMEM; |
| goto ilt_shadow_fail; |
| } |
| |
| DP_VERBOSE(p_hwfn, QED_MSG_ILT, |
| "Allocated 0x%x bytes for ilt shadow\n", |
| (u32)(size * sizeof(struct qed_dma_mem))); |
| |
| for_each_ilt_valid_client(i, clients) { |
| for (j = 0; j < ILT_CLI_PF_BLOCKS; j++) { |
| p_blk = &clients[i].pf_blks[j]; |
| rc = qed_ilt_blk_alloc(p_hwfn, p_blk, i, 0); |
| if (rc) |
| goto ilt_shadow_fail; |
| } |
| for (k = 0; k < p_mngr->vf_count; k++) { |
| for (j = 0; j < ILT_CLI_VF_BLOCKS; j++) { |
| u32 lines = clients[i].vf_total_lines * k; |
| |
| p_blk = &clients[i].vf_blks[j]; |
| rc = qed_ilt_blk_alloc(p_hwfn, p_blk, i, lines); |
| if (rc) |
| goto ilt_shadow_fail; |
| } |
| } |
| } |
| |
| return 0; |
| |
| ilt_shadow_fail: |
| qed_ilt_shadow_free(p_hwfn); |
| return rc; |
| } |
| |
| static void qed_cid_map_free(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; |
| u32 type, vf; |
| |
| for (type = 0; type < MAX_CONN_TYPES; type++) { |
| kfree(p_mngr->acquired[type].cid_map); |
| p_mngr->acquired[type].max_count = 0; |
| p_mngr->acquired[type].start_cid = 0; |
| |
| for (vf = 0; vf < MAX_NUM_VFS; vf++) { |
| kfree(p_mngr->acquired_vf[type][vf].cid_map); |
| p_mngr->acquired_vf[type][vf].max_count = 0; |
| p_mngr->acquired_vf[type][vf].start_cid = 0; |
| } |
| } |
| } |
| |
| static int |
| qed_cid_map_alloc_single(struct qed_hwfn *p_hwfn, |
| u32 type, |
| u32 cid_start, |
| u32 cid_count, struct qed_cid_acquired_map *p_map) |
| { |
| u32 size; |
| |
| if (!cid_count) |
| return 0; |
| |
| size = DIV_ROUND_UP(cid_count, |
| sizeof(unsigned long) * BITS_PER_BYTE) * |
| sizeof(unsigned long); |
| p_map->cid_map = kzalloc(size, GFP_KERNEL); |
| if (!p_map->cid_map) |
| return -ENOMEM; |
| |
| p_map->max_count = cid_count; |
| p_map->start_cid = cid_start; |
| |
| DP_VERBOSE(p_hwfn, QED_MSG_CXT, |
| "Type %08x start: %08x count %08x\n", |
| type, p_map->start_cid, p_map->max_count); |
| |
| return 0; |
| } |
| |
| static int qed_cid_map_alloc(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; |
| u32 start_cid = 0, vf_start_cid = 0; |
| u32 type, vf; |
| |
| for (type = 0; type < MAX_CONN_TYPES; type++) { |
| struct qed_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[type]; |
| struct qed_cid_acquired_map *p_map; |
| |
| /* Handle PF maps */ |
| p_map = &p_mngr->acquired[type]; |
| if (qed_cid_map_alloc_single(p_hwfn, type, start_cid, |
| p_cfg->cid_count, p_map)) |
| goto cid_map_fail; |
| |
| /* Handle VF maps */ |
| for (vf = 0; vf < MAX_NUM_VFS; vf++) { |
| p_map = &p_mngr->acquired_vf[type][vf]; |
| if (qed_cid_map_alloc_single(p_hwfn, type, |
| vf_start_cid, |
| p_cfg->cids_per_vf, p_map)) |
| goto cid_map_fail; |
| } |
| |
| start_cid += p_cfg->cid_count; |
| vf_start_cid += p_cfg->cids_per_vf; |
| } |
| |
| return 0; |
| |
| cid_map_fail: |
| qed_cid_map_free(p_hwfn); |
| return -ENOMEM; |
| } |
| |
| int qed_cxt_mngr_alloc(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_ilt_client_cfg *clients; |
| struct qed_cxt_mngr *p_mngr; |
| u32 i; |
| |
| p_mngr = kzalloc(sizeof(*p_mngr), GFP_KERNEL); |
| if (!p_mngr) |
| return -ENOMEM; |
| |
| /* Initialize ILT client registers */ |
| clients = p_mngr->clients; |
| clients[ILT_CLI_CDUC].first.reg = ILT_CFG_REG(CDUC, FIRST_ILT); |
| clients[ILT_CLI_CDUC].last.reg = ILT_CFG_REG(CDUC, LAST_ILT); |
| clients[ILT_CLI_CDUC].p_size.reg = ILT_CFG_REG(CDUC, P_SIZE); |
| |
| clients[ILT_CLI_QM].first.reg = ILT_CFG_REG(QM, FIRST_ILT); |
| clients[ILT_CLI_QM].last.reg = ILT_CFG_REG(QM, LAST_ILT); |
| clients[ILT_CLI_QM].p_size.reg = ILT_CFG_REG(QM, P_SIZE); |
| |
| clients[ILT_CLI_TM].first.reg = ILT_CFG_REG(TM, FIRST_ILT); |
| clients[ILT_CLI_TM].last.reg = ILT_CFG_REG(TM, LAST_ILT); |
| clients[ILT_CLI_TM].p_size.reg = ILT_CFG_REG(TM, P_SIZE); |
| |
| clients[ILT_CLI_SRC].first.reg = ILT_CFG_REG(SRC, FIRST_ILT); |
| clients[ILT_CLI_SRC].last.reg = ILT_CFG_REG(SRC, LAST_ILT); |
| clients[ILT_CLI_SRC].p_size.reg = ILT_CFG_REG(SRC, P_SIZE); |
| |
| clients[ILT_CLI_CDUT].first.reg = ILT_CFG_REG(CDUT, FIRST_ILT); |
| clients[ILT_CLI_CDUT].last.reg = ILT_CFG_REG(CDUT, LAST_ILT); |
| clients[ILT_CLI_CDUT].p_size.reg = ILT_CFG_REG(CDUT, P_SIZE); |
| |
| clients[ILT_CLI_TSDM].first.reg = ILT_CFG_REG(TSDM, FIRST_ILT); |
| clients[ILT_CLI_TSDM].last.reg = ILT_CFG_REG(TSDM, LAST_ILT); |
| clients[ILT_CLI_TSDM].p_size.reg = ILT_CFG_REG(TSDM, P_SIZE); |
| /* default ILT page size for all clients is 64K */ |
| for (i = 0; i < ILT_CLI_MAX; i++) |
| p_mngr->clients[i].p_size.val = ILT_DEFAULT_HW_P_SIZE; |
| |
| /* Initialize task sizes */ |
| p_mngr->task_type_size[0] = TYPE0_TASK_CXT_SIZE(p_hwfn); |
| p_mngr->task_type_size[1] = TYPE1_TASK_CXT_SIZE(p_hwfn); |
| |
| if (p_hwfn->cdev->p_iov_info) |
| p_mngr->vf_count = p_hwfn->cdev->p_iov_info->total_vfs; |
| /* Initialize the dynamic ILT allocation mutex */ |
| mutex_init(&p_mngr->mutex); |
| |
| /* Set the cxt mangr pointer priori to further allocations */ |
| p_hwfn->p_cxt_mngr = p_mngr; |
| |
| return 0; |
| } |
| |
| int qed_cxt_tables_alloc(struct qed_hwfn *p_hwfn) |
| { |
| int rc; |
| |
| /* Allocate the ILT shadow table */ |
| rc = qed_ilt_shadow_alloc(p_hwfn); |
| if (rc) |
| goto tables_alloc_fail; |
| |
| /* Allocate the T2 table */ |
| rc = qed_cxt_src_t2_alloc(p_hwfn); |
| if (rc) |
| goto tables_alloc_fail; |
| |
| /* Allocate and initialize the acquired cids bitmaps */ |
| rc = qed_cid_map_alloc(p_hwfn); |
| if (rc) |
| goto tables_alloc_fail; |
| |
| return 0; |
| |
| tables_alloc_fail: |
| qed_cxt_mngr_free(p_hwfn); |
| return rc; |
| } |
| |
| void qed_cxt_mngr_free(struct qed_hwfn *p_hwfn) |
| { |
| if (!p_hwfn->p_cxt_mngr) |
| return; |
| |
| qed_cid_map_free(p_hwfn); |
| qed_cxt_src_t2_free(p_hwfn); |
| qed_ilt_shadow_free(p_hwfn); |
| kfree(p_hwfn->p_cxt_mngr); |
| |
| p_hwfn->p_cxt_mngr = NULL; |
| } |
| |
| void qed_cxt_mngr_setup(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; |
| struct qed_cid_acquired_map *p_map; |
| struct qed_conn_type_cfg *p_cfg; |
| int type; |
| u32 len; |
| |
| /* Reset acquired cids */ |
| for (type = 0; type < MAX_CONN_TYPES; type++) { |
| u32 vf; |
| |
| p_cfg = &p_mngr->conn_cfg[type]; |
| if (p_cfg->cid_count) { |
| p_map = &p_mngr->acquired[type]; |
| len = DIV_ROUND_UP(p_map->max_count, |
| sizeof(unsigned long) * |
| BITS_PER_BYTE) * |
| sizeof(unsigned long); |
| memset(p_map->cid_map, 0, len); |
| } |
| |
| if (!p_cfg->cids_per_vf) |
| continue; |
| |
| for (vf = 0; vf < MAX_NUM_VFS; vf++) { |
| p_map = &p_mngr->acquired_vf[type][vf]; |
| len = DIV_ROUND_UP(p_map->max_count, |
| sizeof(unsigned long) * |
| BITS_PER_BYTE) * |
| sizeof(unsigned long); |
| memset(p_map->cid_map, 0, len); |
| } |
| } |
| } |
| |
| /* CDU Common */ |
| #define CDUC_CXT_SIZE_SHIFT \ |
| CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE_SHIFT |
| |
| #define CDUC_CXT_SIZE_MASK \ |
| (CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE >> CDUC_CXT_SIZE_SHIFT) |
| |
| #define CDUC_BLOCK_WASTE_SHIFT \ |
| CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE_SHIFT |
| |
| #define CDUC_BLOCK_WASTE_MASK \ |
| (CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE >> CDUC_BLOCK_WASTE_SHIFT) |
| |
| #define CDUC_NCIB_SHIFT \ |
| CDU_REG_CID_ADDR_PARAMS_NCIB_SHIFT |
| |
| #define CDUC_NCIB_MASK \ |
| (CDU_REG_CID_ADDR_PARAMS_NCIB >> CDUC_NCIB_SHIFT) |
| |
| #define CDUT_TYPE0_CXT_SIZE_SHIFT \ |
| CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE_SHIFT |
| |
| #define CDUT_TYPE0_CXT_SIZE_MASK \ |
| (CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE >> \ |
| CDUT_TYPE0_CXT_SIZE_SHIFT) |
| |
| #define CDUT_TYPE0_BLOCK_WASTE_SHIFT \ |
| CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE_SHIFT |
| |
| #define CDUT_TYPE0_BLOCK_WASTE_MASK \ |
| (CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE >> \ |
| CDUT_TYPE0_BLOCK_WASTE_SHIFT) |
| |
| #define CDUT_TYPE0_NCIB_SHIFT \ |
| CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK_SHIFT |
| |
| #define CDUT_TYPE0_NCIB_MASK \ |
| (CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK >> \ |
| CDUT_TYPE0_NCIB_SHIFT) |
| |
| #define CDUT_TYPE1_CXT_SIZE_SHIFT \ |
| CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE_SHIFT |
| |
| #define CDUT_TYPE1_CXT_SIZE_MASK \ |
| (CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE >> \ |
| CDUT_TYPE1_CXT_SIZE_SHIFT) |
| |
| #define CDUT_TYPE1_BLOCK_WASTE_SHIFT \ |
| CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE_SHIFT |
| |
| #define CDUT_TYPE1_BLOCK_WASTE_MASK \ |
| (CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE >> \ |
| CDUT_TYPE1_BLOCK_WASTE_SHIFT) |
| |
| #define CDUT_TYPE1_NCIB_SHIFT \ |
| CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK_SHIFT |
| |
| #define CDUT_TYPE1_NCIB_MASK \ |
| (CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK >> \ |
| CDUT_TYPE1_NCIB_SHIFT) |
| |
| static void qed_cdu_init_common(struct qed_hwfn *p_hwfn) |
| { |
| u32 page_sz, elems_per_page, block_waste, cxt_size, cdu_params = 0; |
| |
| /* CDUC - connection configuration */ |
| page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val; |
| cxt_size = CONN_CXT_SIZE(p_hwfn); |
| elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size; |
| block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size; |
| |
| SET_FIELD(cdu_params, CDUC_CXT_SIZE, cxt_size); |
| SET_FIELD(cdu_params, CDUC_BLOCK_WASTE, block_waste); |
| SET_FIELD(cdu_params, CDUC_NCIB, elems_per_page); |
| STORE_RT_REG(p_hwfn, CDU_REG_CID_ADDR_PARAMS_RT_OFFSET, cdu_params); |
| |
| /* CDUT - type-0 tasks configuration */ |
| page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT].p_size.val; |
| cxt_size = p_hwfn->p_cxt_mngr->task_type_size[0]; |
| elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size; |
| block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size; |
| |
| /* cxt size and block-waste are multipes of 8 */ |
| cdu_params = 0; |
| SET_FIELD(cdu_params, CDUT_TYPE0_CXT_SIZE, (cxt_size >> 3)); |
| SET_FIELD(cdu_params, CDUT_TYPE0_BLOCK_WASTE, (block_waste >> 3)); |
| SET_FIELD(cdu_params, CDUT_TYPE0_NCIB, elems_per_page); |
| STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT0_PARAMS_RT_OFFSET, cdu_params); |
| |
| /* CDUT - type-1 tasks configuration */ |
| cxt_size = p_hwfn->p_cxt_mngr->task_type_size[1]; |
| elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size; |
| block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size; |
| |
| /* cxt size and block-waste are multipes of 8 */ |
| cdu_params = 0; |
| SET_FIELD(cdu_params, CDUT_TYPE1_CXT_SIZE, (cxt_size >> 3)); |
| SET_FIELD(cdu_params, CDUT_TYPE1_BLOCK_WASTE, (block_waste >> 3)); |
| SET_FIELD(cdu_params, CDUT_TYPE1_NCIB, elems_per_page); |
| STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT1_PARAMS_RT_OFFSET, cdu_params); |
| } |
| |
| /* CDU PF */ |
| #define CDU_SEG_REG_TYPE_SHIFT CDU_SEG_TYPE_OFFSET_REG_TYPE_SHIFT |
| #define CDU_SEG_REG_TYPE_MASK 0x1 |
| #define CDU_SEG_REG_OFFSET_SHIFT 0 |
| #define CDU_SEG_REG_OFFSET_MASK CDU_SEG_TYPE_OFFSET_REG_OFFSET_MASK |
| |
| static void qed_cdu_init_pf(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_ilt_client_cfg *p_cli; |
| struct qed_tid_seg *p_seg; |
| u32 cdu_seg_params, offset; |
| int i; |
| |
| static const u32 rt_type_offset_arr[] = { |
| CDU_REG_PF_SEG0_TYPE_OFFSET_RT_OFFSET, |
| CDU_REG_PF_SEG1_TYPE_OFFSET_RT_OFFSET, |
| CDU_REG_PF_SEG2_TYPE_OFFSET_RT_OFFSET, |
| CDU_REG_PF_SEG3_TYPE_OFFSET_RT_OFFSET |
| }; |
| |
| static const u32 rt_type_offset_fl_arr[] = { |
| CDU_REG_PF_FL_SEG0_TYPE_OFFSET_RT_OFFSET, |
| CDU_REG_PF_FL_SEG1_TYPE_OFFSET_RT_OFFSET, |
| CDU_REG_PF_FL_SEG2_TYPE_OFFSET_RT_OFFSET, |
| CDU_REG_PF_FL_SEG3_TYPE_OFFSET_RT_OFFSET |
| }; |
| |
| p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT]; |
| |
| /* There are initializations only for CDUT during pf Phase */ |
| for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) { |
| /* Segment 0 */ |
| p_seg = qed_cxt_tid_seg_info(p_hwfn, i); |
| if (!p_seg) |
| continue; |
| |
| /* Note: start_line is already adjusted for the CDU |
| * segment register granularity, so we just need to |
| * divide. Adjustment is implicit as we assume ILT |
| * Page size is larger than 32K! |
| */ |
| offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) * |
| (p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line - |
| p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES; |
| |
| cdu_seg_params = 0; |
| SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type); |
| SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset); |
| STORE_RT_REG(p_hwfn, rt_type_offset_arr[i], cdu_seg_params); |
| |
| offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) * |
| (p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)].start_line - |
| p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES; |
| |
| cdu_seg_params = 0; |
| SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type); |
| SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset); |
| STORE_RT_REG(p_hwfn, rt_type_offset_fl_arr[i], cdu_seg_params); |
| } |
| } |
| |
| void qed_qm_init_pf(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, bool is_pf_loading) |
| { |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| struct qed_qm_pf_rt_init_params params; |
| struct qed_mcp_link_state *p_link; |
| struct qed_qm_iids iids; |
| |
| memset(&iids, 0, sizeof(iids)); |
| qed_cxt_qm_iids(p_hwfn, &iids); |
| |
| p_link = &QED_LEADING_HWFN(p_hwfn->cdev)->mcp_info->link_output; |
| |
| memset(¶ms, 0, sizeof(params)); |
| params.port_id = p_hwfn->port_id; |
| params.pf_id = p_hwfn->rel_pf_id; |
| params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port; |
| params.is_pf_loading = is_pf_loading; |
| params.num_pf_cids = iids.cids; |
| params.num_vf_cids = iids.vf_cids; |
| params.num_tids = iids.tids; |
| params.start_pq = qm_info->start_pq; |
| params.num_pf_pqs = qm_info->num_pqs - qm_info->num_vf_pqs; |
| params.num_vf_pqs = qm_info->num_vf_pqs; |
| params.start_vport = qm_info->start_vport; |
| params.num_vports = qm_info->num_vports; |
| params.pf_wfq = qm_info->pf_wfq; |
| params.pf_rl = qm_info->pf_rl; |
| params.link_speed = p_link->speed; |
| params.pq_params = qm_info->qm_pq_params; |
| params.vport_params = qm_info->qm_vport_params; |
| |
| qed_qm_pf_rt_init(p_hwfn, p_ptt, ¶ms); |
| } |
| |
| /* CM PF */ |
| static void qed_cm_init_pf(struct qed_hwfn *p_hwfn) |
| { |
| /* XCM pure-LB queue */ |
| STORE_RT_REG(p_hwfn, XCM_REG_CON_PHY_Q3_RT_OFFSET, |
| qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LB)); |
| } |
| |
| /* DQ PF */ |
| static void qed_dq_init_pf(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; |
| u32 dq_pf_max_cid = 0, dq_vf_max_cid = 0; |
| |
| dq_pf_max_cid += (p_mngr->conn_cfg[0].cid_count >> DQ_RANGE_SHIFT); |
| STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_0_RT_OFFSET, dq_pf_max_cid); |
| |
| dq_vf_max_cid += (p_mngr->conn_cfg[0].cids_per_vf >> DQ_RANGE_SHIFT); |
| STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_0_RT_OFFSET, dq_vf_max_cid); |
| |
| dq_pf_max_cid += (p_mngr->conn_cfg[1].cid_count >> DQ_RANGE_SHIFT); |
| STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_1_RT_OFFSET, dq_pf_max_cid); |
| |
| dq_vf_max_cid += (p_mngr->conn_cfg[1].cids_per_vf >> DQ_RANGE_SHIFT); |
| STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_1_RT_OFFSET, dq_vf_max_cid); |
| |
| dq_pf_max_cid += (p_mngr->conn_cfg[2].cid_count >> DQ_RANGE_SHIFT); |
| STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_2_RT_OFFSET, dq_pf_max_cid); |
| |
| dq_vf_max_cid += (p_mngr->conn_cfg[2].cids_per_vf >> DQ_RANGE_SHIFT); |
| STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_2_RT_OFFSET, dq_vf_max_cid); |
| |
| dq_pf_max_cid += (p_mngr->conn_cfg[3].cid_count >> DQ_RANGE_SHIFT); |
| STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_3_RT_OFFSET, dq_pf_max_cid); |
| |
| dq_vf_max_cid += (p_mngr->conn_cfg[3].cids_per_vf >> DQ_RANGE_SHIFT); |
| STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_3_RT_OFFSET, dq_vf_max_cid); |
| |
| dq_pf_max_cid += (p_mngr->conn_cfg[4].cid_count >> DQ_RANGE_SHIFT); |
| STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_4_RT_OFFSET, dq_pf_max_cid); |
| |
| dq_vf_max_cid += (p_mngr->conn_cfg[4].cids_per_vf >> DQ_RANGE_SHIFT); |
| STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_4_RT_OFFSET, dq_vf_max_cid); |
| |
| dq_pf_max_cid += (p_mngr->conn_cfg[5].cid_count >> DQ_RANGE_SHIFT); |
| STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_5_RT_OFFSET, dq_pf_max_cid); |
| |
| dq_vf_max_cid += (p_mngr->conn_cfg[5].cids_per_vf >> DQ_RANGE_SHIFT); |
| STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_5_RT_OFFSET, dq_vf_max_cid); |
| |
| /* Connection types 6 & 7 are not in use, yet they must be configured |
| * as the highest possible connection. Not configuring them means the |
| * defaults will be used, and with a large number of cids a bug may |
| * occur, if the defaults will be smaller than dq_pf_max_cid / |
| * dq_vf_max_cid. |
| */ |
| STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_6_RT_OFFSET, dq_pf_max_cid); |
| STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_6_RT_OFFSET, dq_vf_max_cid); |
| |
| STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_7_RT_OFFSET, dq_pf_max_cid); |
| STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_7_RT_OFFSET, dq_vf_max_cid); |
| } |
| |
| static void qed_ilt_bounds_init(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_ilt_client_cfg *ilt_clients; |
| int i; |
| |
| ilt_clients = p_hwfn->p_cxt_mngr->clients; |
| for_each_ilt_valid_client(i, ilt_clients) { |
| STORE_RT_REG(p_hwfn, |
| ilt_clients[i].first.reg, |
| ilt_clients[i].first.val); |
| STORE_RT_REG(p_hwfn, |
| ilt_clients[i].last.reg, ilt_clients[i].last.val); |
| STORE_RT_REG(p_hwfn, |
| ilt_clients[i].p_size.reg, |
| ilt_clients[i].p_size.val); |
| } |
| } |
| |
| static void qed_ilt_vf_bounds_init(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_ilt_client_cfg *p_cli; |
| u32 blk_factor; |
| |
| /* For simplicty we set the 'block' to be an ILT page */ |
| if (p_hwfn->cdev->p_iov_info) { |
| struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info; |
| |
| STORE_RT_REG(p_hwfn, |
| PSWRQ2_REG_VF_BASE_RT_OFFSET, |
| p_iov->first_vf_in_pf); |
| STORE_RT_REG(p_hwfn, |
| PSWRQ2_REG_VF_LAST_ILT_RT_OFFSET, |
| p_iov->first_vf_in_pf + p_iov->total_vfs); |
| } |
| |
| p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC]; |
| blk_factor = ilog2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10); |
| if (p_cli->active) { |
| STORE_RT_REG(p_hwfn, |
| PSWRQ2_REG_CDUC_BLOCKS_FACTOR_RT_OFFSET, |
| blk_factor); |
| STORE_RT_REG(p_hwfn, |
| PSWRQ2_REG_CDUC_NUMBER_OF_PF_BLOCKS_RT_OFFSET, |
| p_cli->pf_total_lines); |
| STORE_RT_REG(p_hwfn, |
| PSWRQ2_REG_CDUC_VF_BLOCKS_RT_OFFSET, |
| p_cli->vf_total_lines); |
| } |
| |
| p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT]; |
| blk_factor = ilog2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10); |
| if (p_cli->active) { |
| STORE_RT_REG(p_hwfn, |
| PSWRQ2_REG_CDUT_BLOCKS_FACTOR_RT_OFFSET, |
| blk_factor); |
| STORE_RT_REG(p_hwfn, |
| PSWRQ2_REG_CDUT_NUMBER_OF_PF_BLOCKS_RT_OFFSET, |
| p_cli->pf_total_lines); |
| STORE_RT_REG(p_hwfn, |
| PSWRQ2_REG_CDUT_VF_BLOCKS_RT_OFFSET, |
| p_cli->vf_total_lines); |
| } |
| |
| p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TM]; |
| blk_factor = ilog2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10); |
| if (p_cli->active) { |
| STORE_RT_REG(p_hwfn, |
| PSWRQ2_REG_TM_BLOCKS_FACTOR_RT_OFFSET, blk_factor); |
| STORE_RT_REG(p_hwfn, |
| PSWRQ2_REG_TM_NUMBER_OF_PF_BLOCKS_RT_OFFSET, |
| p_cli->pf_total_lines); |
| STORE_RT_REG(p_hwfn, |
| PSWRQ2_REG_TM_VF_BLOCKS_RT_OFFSET, |
| p_cli->vf_total_lines); |
| } |
| } |
| |
| /* ILT (PSWRQ2) PF */ |
| static void qed_ilt_init_pf(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_ilt_client_cfg *clients; |
| struct qed_cxt_mngr *p_mngr; |
| struct qed_dma_mem *p_shdw; |
| u32 line, rt_offst, i; |
| |
| qed_ilt_bounds_init(p_hwfn); |
| qed_ilt_vf_bounds_init(p_hwfn); |
| |
| p_mngr = p_hwfn->p_cxt_mngr; |
| p_shdw = p_mngr->ilt_shadow; |
| clients = p_hwfn->p_cxt_mngr->clients; |
| |
| for_each_ilt_valid_client(i, clients) { |
| /** Client's 1st val and RT array are absolute, ILT shadows' |
| * lines are relative. |
| */ |
| line = clients[i].first.val - p_mngr->pf_start_line; |
| rt_offst = PSWRQ2_REG_ILT_MEMORY_RT_OFFSET + |
| clients[i].first.val * ILT_ENTRY_IN_REGS; |
| |
| for (; line <= clients[i].last.val - p_mngr->pf_start_line; |
| line++, rt_offst += ILT_ENTRY_IN_REGS) { |
| u64 ilt_hw_entry = 0; |
| |
| /** p_virt could be NULL incase of dynamic |
| * allocation |
| */ |
| if (p_shdw[line].p_virt) { |
| SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL); |
| SET_FIELD(ilt_hw_entry, ILT_ENTRY_PHY_ADDR, |
| (p_shdw[line].p_phys >> 12)); |
| |
| DP_VERBOSE(p_hwfn, QED_MSG_ILT, |
| "Setting RT[0x%08x] from ILT[0x%08x] [Client is %d] to Physical addr: 0x%llx\n", |
| rt_offst, line, i, |
| (u64)(p_shdw[line].p_phys >> 12)); |
| } |
| |
| STORE_RT_REG_AGG(p_hwfn, rt_offst, ilt_hw_entry); |
| } |
| } |
| } |
| |
| /* SRC (Searcher) PF */ |
| static void qed_src_init_pf(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; |
| u32 rounded_conn_num, conn_num, conn_max; |
| struct qed_src_iids src_iids; |
| |
| memset(&src_iids, 0, sizeof(src_iids)); |
| qed_cxt_src_iids(p_mngr, &src_iids); |
| conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count; |
| if (!conn_num) |
| return; |
| |
| conn_max = max_t(u32, conn_num, SRC_MIN_NUM_ELEMS); |
| rounded_conn_num = roundup_pow_of_two(conn_max); |
| |
| STORE_RT_REG(p_hwfn, SRC_REG_COUNTFREE_RT_OFFSET, conn_num); |
| STORE_RT_REG(p_hwfn, SRC_REG_NUMBER_HASH_BITS_RT_OFFSET, |
| ilog2(rounded_conn_num)); |
| |
| STORE_RT_REG_AGG(p_hwfn, SRC_REG_FIRSTFREE_RT_OFFSET, |
| p_hwfn->p_cxt_mngr->first_free); |
| STORE_RT_REG_AGG(p_hwfn, SRC_REG_LASTFREE_RT_OFFSET, |
| p_hwfn->p_cxt_mngr->last_free); |
| } |
| |
| /* Timers PF */ |
| #define TM_CFG_NUM_IDS_SHIFT 0 |
| #define TM_CFG_NUM_IDS_MASK 0xFFFFULL |
| #define TM_CFG_PRE_SCAN_OFFSET_SHIFT 16 |
| #define TM_CFG_PRE_SCAN_OFFSET_MASK 0x1FFULL |
| #define TM_CFG_PARENT_PF_SHIFT 25 |
| #define TM_CFG_PARENT_PF_MASK 0x7ULL |
| |
| #define TM_CFG_CID_PRE_SCAN_ROWS_SHIFT 30 |
| #define TM_CFG_CID_PRE_SCAN_ROWS_MASK 0x1FFULL |
| |
| #define TM_CFG_TID_OFFSET_SHIFT 30 |
| #define TM_CFG_TID_OFFSET_MASK 0x7FFFFULL |
| #define TM_CFG_TID_PRE_SCAN_ROWS_SHIFT 49 |
| #define TM_CFG_TID_PRE_SCAN_ROWS_MASK 0x1FFULL |
| |
| static void qed_tm_init_pf(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; |
| u32 active_seg_mask = 0, tm_offset, rt_reg; |
| struct qed_tm_iids tm_iids; |
| u64 cfg_word; |
| u8 i; |
| |
| memset(&tm_iids, 0, sizeof(tm_iids)); |
| qed_cxt_tm_iids(p_hwfn, p_mngr, &tm_iids); |
| |
| /* @@@TBD No pre-scan for now */ |
| |
| /* Note: We assume consecutive VFs for a PF */ |
| for (i = 0; i < p_mngr->vf_count; i++) { |
| cfg_word = 0; |
| SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_cids); |
| SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0); |
| SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id); |
| SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); |
| rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET + |
| (sizeof(cfg_word) / sizeof(u32)) * |
| (p_hwfn->cdev->p_iov_info->first_vf_in_pf + i); |
| STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word); |
| } |
| |
| cfg_word = 0; |
| SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_cids); |
| SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0); |
| SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0); /* n/a for PF */ |
| SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all */ |
| |
| rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET + |
| (sizeof(cfg_word) / sizeof(u32)) * |
| (NUM_OF_VFS(p_hwfn->cdev) + p_hwfn->rel_pf_id); |
| STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word); |
| |
| /* enale scan */ |
| STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_CONN_RT_OFFSET, |
| tm_iids.pf_cids ? 0x1 : 0x0); |
| |
| /* @@@TBD how to enable the scan for the VFs */ |
| |
| tm_offset = tm_iids.per_vf_cids; |
| |
| /* Note: We assume consecutive VFs for a PF */ |
| for (i = 0; i < p_mngr->vf_count; i++) { |
| cfg_word = 0; |
| SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_tids); |
| SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0); |
| SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id); |
| SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset); |
| SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64) 0); |
| |
| rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET + |
| (sizeof(cfg_word) / sizeof(u32)) * |
| (p_hwfn->cdev->p_iov_info->first_vf_in_pf + i); |
| |
| STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word); |
| } |
| |
| tm_offset = tm_iids.pf_cids; |
| for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) { |
| cfg_word = 0; |
| SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_tids[i]); |
| SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0); |
| SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0); |
| SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset); |
| SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64) 0); |
| |
| rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET + |
| (sizeof(cfg_word) / sizeof(u32)) * |
| (NUM_OF_VFS(p_hwfn->cdev) + |
| p_hwfn->rel_pf_id * NUM_TASK_PF_SEGMENTS + i); |
| |
| STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word); |
| active_seg_mask |= (tm_iids.pf_tids[i] ? BIT(i) : 0); |
| |
| tm_offset += tm_iids.pf_tids[i]; |
| } |
| |
| if (QED_IS_RDMA_PERSONALITY(p_hwfn)) |
| active_seg_mask = 0; |
| |
| STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_TASK_RT_OFFSET, active_seg_mask); |
| |
| /* @@@TBD how to enable the scan for the VFs */ |
| } |
| |
| static void qed_prs_init_common(struct qed_hwfn *p_hwfn) |
| { |
| if ((p_hwfn->hw_info.personality == QED_PCI_FCOE) && |
| p_hwfn->pf_params.fcoe_pf_params.is_target) |
| STORE_RT_REG(p_hwfn, |
| PRS_REG_SEARCH_RESP_INITIATOR_TYPE_RT_OFFSET, 0); |
| } |
| |
| static void qed_prs_init_pf(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; |
| struct qed_conn_type_cfg *p_fcoe; |
| struct qed_tid_seg *p_tid; |
| |
| p_fcoe = &p_mngr->conn_cfg[PROTOCOLID_FCOE]; |
| |
| /* If FCoE is active set the MAX OX_ID (tid) in the Parser */ |
| if (!p_fcoe->cid_count) |
| return; |
| |
| p_tid = &p_fcoe->tid_seg[QED_CXT_FCOE_TID_SEG]; |
| if (p_hwfn->pf_params.fcoe_pf_params.is_target) { |
| STORE_RT_REG_AGG(p_hwfn, |
| PRS_REG_TASK_ID_MAX_TARGET_PF_RT_OFFSET, |
| p_tid->count); |
| } else { |
| STORE_RT_REG_AGG(p_hwfn, |
| PRS_REG_TASK_ID_MAX_INITIATOR_PF_RT_OFFSET, |
| p_tid->count); |
| } |
| } |
| |
| void qed_cxt_hw_init_common(struct qed_hwfn *p_hwfn) |
| { |
| qed_cdu_init_common(p_hwfn); |
| qed_prs_init_common(p_hwfn); |
| } |
| |
| void qed_cxt_hw_init_pf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| qed_qm_init_pf(p_hwfn, p_ptt, true); |
| qed_cm_init_pf(p_hwfn); |
| qed_dq_init_pf(p_hwfn); |
| qed_cdu_init_pf(p_hwfn); |
| qed_ilt_init_pf(p_hwfn); |
| qed_src_init_pf(p_hwfn); |
| qed_tm_init_pf(p_hwfn); |
| qed_prs_init_pf(p_hwfn); |
| } |
| |
| int _qed_cxt_acquire_cid(struct qed_hwfn *p_hwfn, |
| enum protocol_type type, u32 *p_cid, u8 vfid) |
| { |
| struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; |
| struct qed_cid_acquired_map *p_map; |
| u32 rel_cid; |
| |
| if (type >= MAX_CONN_TYPES) { |
| DP_NOTICE(p_hwfn, "Invalid protocol type %d", type); |
| return -EINVAL; |
| } |
| |
| if (vfid >= MAX_NUM_VFS && vfid != QED_CXT_PF_CID) { |
| DP_NOTICE(p_hwfn, "VF [%02x] is out of range\n", vfid); |
| return -EINVAL; |
| } |
| |
| /* Determine the right map to take this CID from */ |
| if (vfid == QED_CXT_PF_CID) |
| p_map = &p_mngr->acquired[type]; |
| else |
| p_map = &p_mngr->acquired_vf[type][vfid]; |
| |
| if (!p_map->cid_map) { |
| DP_NOTICE(p_hwfn, "Invalid protocol type %d", type); |
| return -EINVAL; |
| } |
| |
| rel_cid = find_first_zero_bit(p_map->cid_map, p_map->max_count); |
| |
| if (rel_cid >= p_map->max_count) { |
| DP_NOTICE(p_hwfn, "no CID available for protocol %d\n", type); |
| return -EINVAL; |
| } |
| |
| __set_bit(rel_cid, p_map->cid_map); |
| |
| *p_cid = rel_cid + p_map->start_cid; |
| |
| DP_VERBOSE(p_hwfn, QED_MSG_CXT, |
| "Acquired cid 0x%08x [rel. %08x] vfid %02x type %d\n", |
| *p_cid, rel_cid, vfid, type); |
| |
| return 0; |
| } |
| |
| int qed_cxt_acquire_cid(struct qed_hwfn *p_hwfn, |
| enum protocol_type type, u32 *p_cid) |
| { |
| return _qed_cxt_acquire_cid(p_hwfn, type, p_cid, QED_CXT_PF_CID); |
| } |
| |
| static bool qed_cxt_test_cid_acquired(struct qed_hwfn *p_hwfn, |
| u32 cid, |
| u8 vfid, |
| enum protocol_type *p_type, |
| struct qed_cid_acquired_map **pp_map) |
| { |
| struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; |
| u32 rel_cid; |
| |
| /* Iterate over protocols and find matching cid range */ |
| for (*p_type = 0; *p_type < MAX_CONN_TYPES; (*p_type)++) { |
| if (vfid == QED_CXT_PF_CID) |
| *pp_map = &p_mngr->acquired[*p_type]; |
| else |
| *pp_map = &p_mngr->acquired_vf[*p_type][vfid]; |
| |
| if (!((*pp_map)->cid_map)) |
| continue; |
| if (cid >= (*pp_map)->start_cid && |
| cid < (*pp_map)->start_cid + (*pp_map)->max_count) |
| break; |
| } |
| |
| if (*p_type == MAX_CONN_TYPES) { |
| DP_NOTICE(p_hwfn, "Invalid CID %d vfid %02x", cid, vfid); |
| goto fail; |
| } |
| |
| rel_cid = cid - (*pp_map)->start_cid; |
| if (!test_bit(rel_cid, (*pp_map)->cid_map)) { |
| DP_NOTICE(p_hwfn, "CID %d [vifd %02x] not acquired", |
| cid, vfid); |
| goto fail; |
| } |
| |
| return true; |
| fail: |
| *p_type = MAX_CONN_TYPES; |
| *pp_map = NULL; |
| return false; |
| } |
| |
| void _qed_cxt_release_cid(struct qed_hwfn *p_hwfn, u32 cid, u8 vfid) |
| { |
| struct qed_cid_acquired_map *p_map = NULL; |
| enum protocol_type type; |
| bool b_acquired; |
| u32 rel_cid; |
| |
| if (vfid != QED_CXT_PF_CID && vfid > MAX_NUM_VFS) { |
| DP_NOTICE(p_hwfn, |
| "Trying to return incorrect CID belonging to VF %02x\n", |
| vfid); |
| return; |
| } |
| |
| /* Test acquired and find matching per-protocol map */ |
| b_acquired = qed_cxt_test_cid_acquired(p_hwfn, cid, vfid, |
| &type, &p_map); |
| |
| if (!b_acquired) |
| return; |
| |
| rel_cid = cid - p_map->start_cid; |
| clear_bit(rel_cid, p_map->cid_map); |
| |
| DP_VERBOSE(p_hwfn, QED_MSG_CXT, |
| "Released CID 0x%08x [rel. %08x] vfid %02x type %d\n", |
| cid, rel_cid, vfid, type); |
| } |
| |
| void qed_cxt_release_cid(struct qed_hwfn *p_hwfn, u32 cid) |
| { |
| _qed_cxt_release_cid(p_hwfn, cid, QED_CXT_PF_CID); |
| } |
| |
| int qed_cxt_get_cid_info(struct qed_hwfn *p_hwfn, struct qed_cxt_info *p_info) |
| { |
| struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; |
| struct qed_cid_acquired_map *p_map = NULL; |
| u32 conn_cxt_size, hw_p_size, cxts_per_p, line; |
| enum protocol_type type; |
| bool b_acquired; |
| |
| /* Test acquired and find matching per-protocol map */ |
| b_acquired = qed_cxt_test_cid_acquired(p_hwfn, p_info->iid, |
| QED_CXT_PF_CID, &type, &p_map); |
| |
| if (!b_acquired) |
| return -EINVAL; |
| |
| /* set the protocl type */ |
| p_info->type = type; |
| |
| /* compute context virtual pointer */ |
| hw_p_size = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val; |
| |
| conn_cxt_size = CONN_CXT_SIZE(p_hwfn); |
| cxts_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / conn_cxt_size; |
| line = p_info->iid / cxts_per_p; |
| |
| /* Make sure context is allocated (dynamic allocation) */ |
| if (!p_mngr->ilt_shadow[line].p_virt) |
| return -EINVAL; |
| |
| p_info->p_cxt = p_mngr->ilt_shadow[line].p_virt + |
| p_info->iid % cxts_per_p * conn_cxt_size; |
| |
| DP_VERBOSE(p_hwfn, (QED_MSG_ILT | QED_MSG_CXT), |
| "Accessing ILT shadow[%d]: CXT pointer is at %p (for iid %d)\n", |
| p_info->iid / cxts_per_p, p_info->p_cxt, p_info->iid); |
| |
| return 0; |
| } |
| |
| static void qed_rdma_set_pf_params(struct qed_hwfn *p_hwfn, |
| struct qed_rdma_pf_params *p_params, |
| u32 num_tasks) |
| { |
| u32 num_cons, num_qps, num_srqs; |
| enum protocol_type proto; |
| |
| num_srqs = min_t(u32, QED_RDMA_MAX_SRQS, p_params->num_srqs); |
| |
| if (p_hwfn->mcp_info->func_info.protocol == QED_PCI_ETH_RDMA) { |
| DP_NOTICE(p_hwfn, |
| "Current day drivers don't support RoCE & iWARP simultaneously on the same PF. Default to RoCE-only\n"); |
| p_hwfn->hw_info.personality = QED_PCI_ETH_ROCE; |
| } |
| |
| switch (p_hwfn->hw_info.personality) { |
| case QED_PCI_ETH_IWARP: |
| /* Each QP requires one connection */ |
| num_cons = min_t(u32, IWARP_MAX_QPS, p_params->num_qps); |
| proto = PROTOCOLID_IWARP; |
| break; |
| case QED_PCI_ETH_ROCE: |
| num_qps = min_t(u32, ROCE_MAX_QPS, p_params->num_qps); |
| num_cons = num_qps * 2; /* each QP requires two connections */ |
| proto = PROTOCOLID_ROCE; |
| break; |
| default: |
| return; |
| } |
| |
| if (num_cons && num_tasks) { |
| qed_cxt_set_proto_cid_count(p_hwfn, proto, num_cons, 0); |
| |
| /* Deliberatly passing ROCE for tasks id. This is because |
| * iWARP / RoCE share the task id. |
| */ |
| qed_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ROCE, |
| QED_CXT_ROCE_TID_SEG, 1, |
| num_tasks, false); |
| qed_cxt_set_srq_count(p_hwfn, num_srqs); |
| } else { |
| DP_INFO(p_hwfn->cdev, |
| "RDMA personality used without setting params!\n"); |
| } |
| } |
| |
| int qed_cxt_set_pf_params(struct qed_hwfn *p_hwfn, u32 rdma_tasks) |
| { |
| /* Set the number of required CORE connections */ |
| u32 core_cids = 1; /* SPQ */ |
| |
| if (p_hwfn->using_ll2) |
| core_cids += 4; |
| qed_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_CORE, core_cids, 0); |
| |
| switch (p_hwfn->hw_info.personality) { |
| case QED_PCI_ETH_RDMA: |
| case QED_PCI_ETH_IWARP: |
| case QED_PCI_ETH_ROCE: |
| { |
| qed_rdma_set_pf_params(p_hwfn, |
| &p_hwfn-> |
| pf_params.rdma_pf_params, |
| rdma_tasks); |
| /* no need for break since RoCE coexist with Ethernet */ |
| } |
| case QED_PCI_ETH: |
| { |
| struct qed_eth_pf_params *p_params = |
| &p_hwfn->pf_params.eth_pf_params; |
| |
| if (!p_params->num_vf_cons) |
| p_params->num_vf_cons = |
| ETH_PF_PARAMS_VF_CONS_DEFAULT; |
| qed_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ETH, |
| p_params->num_cons, |
| p_params->num_vf_cons); |
| p_hwfn->p_cxt_mngr->arfs_count = p_params->num_arfs_filters; |
| break; |
| } |
| case QED_PCI_FCOE: |
| { |
| struct qed_fcoe_pf_params *p_params; |
| |
| p_params = &p_hwfn->pf_params.fcoe_pf_params; |
| |
| if (p_params->num_cons && p_params->num_tasks) { |
| qed_cxt_set_proto_cid_count(p_hwfn, |
| PROTOCOLID_FCOE, |
| p_params->num_cons, |
| 0); |
| |
| qed_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_FCOE, |
| QED_CXT_FCOE_TID_SEG, 0, |
| p_params->num_tasks, true); |
| } else { |
| DP_INFO(p_hwfn->cdev, |
| "Fcoe personality used without setting params!\n"); |
| } |
| break; |
| } |
| case QED_PCI_ISCSI: |
| { |
| struct qed_iscsi_pf_params *p_params; |
| |
| p_params = &p_hwfn->pf_params.iscsi_pf_params; |
| |
| if (p_params->num_cons && p_params->num_tasks) { |
| qed_cxt_set_proto_cid_count(p_hwfn, |
| PROTOCOLID_ISCSI, |
| p_params->num_cons, |
| 0); |
| |
| qed_cxt_set_proto_tid_count(p_hwfn, |
| PROTOCOLID_ISCSI, |
| QED_CXT_ISCSI_TID_SEG, |
| 0, |
| p_params->num_tasks, |
| true); |
| } else { |
| DP_INFO(p_hwfn->cdev, |
| "Iscsi personality used without setting params!\n"); |
| } |
| break; |
| } |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| int qed_cxt_get_tid_mem_info(struct qed_hwfn *p_hwfn, |
| struct qed_tid_mem *p_info) |
| { |
| struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; |
| u32 proto, seg, total_lines, i, shadow_line; |
| struct qed_ilt_client_cfg *p_cli; |
| struct qed_ilt_cli_blk *p_fl_seg; |
| struct qed_tid_seg *p_seg_info; |
| |
| /* Verify the personality */ |
| switch (p_hwfn->hw_info.personality) { |
| case QED_PCI_FCOE: |
| proto = PROTOCOLID_FCOE; |
| seg = QED_CXT_FCOE_TID_SEG; |
| break; |
| case QED_PCI_ISCSI: |
| proto = PROTOCOLID_ISCSI; |
| seg = QED_CXT_ISCSI_TID_SEG; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| p_cli = &p_mngr->clients[ILT_CLI_CDUT]; |
| if (!p_cli->active) |
| return -EINVAL; |
| |
| p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg]; |
| if (!p_seg_info->has_fl_mem) |
| return -EINVAL; |
| |
| p_fl_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)]; |
| total_lines = DIV_ROUND_UP(p_fl_seg->total_size, |
| p_fl_seg->real_size_in_page); |
| |
| for (i = 0; i < total_lines; i++) { |
| shadow_line = i + p_fl_seg->start_line - |
| p_hwfn->p_cxt_mngr->pf_start_line; |
| p_info->blocks[i] = p_mngr->ilt_shadow[shadow_line].p_virt; |
| } |
| p_info->waste = ILT_PAGE_IN_BYTES(p_cli->p_size.val) - |
| p_fl_seg->real_size_in_page; |
| p_info->tid_size = p_mngr->task_type_size[p_seg_info->type]; |
| p_info->num_tids_per_block = p_fl_seg->real_size_in_page / |
| p_info->tid_size; |
| |
| return 0; |
| } |
| |
| /* This function is very RoCE oriented, if another protocol in the future |
| * will want this feature we'll need to modify the function to be more generic |
| */ |
| int |
| qed_cxt_dynamic_ilt_alloc(struct qed_hwfn *p_hwfn, |
| enum qed_cxt_elem_type elem_type, u32 iid) |
| { |
| u32 reg_offset, shadow_line, elem_size, hw_p_size, elems_per_p, line; |
| struct qed_ilt_client_cfg *p_cli; |
| struct qed_ilt_cli_blk *p_blk; |
| struct qed_ptt *p_ptt; |
| dma_addr_t p_phys; |
| u64 ilt_hw_entry; |
| void *p_virt; |
| int rc = 0; |
| |
| switch (elem_type) { |
| case QED_ELEM_CXT: |
| p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC]; |
| elem_size = CONN_CXT_SIZE(p_hwfn); |
| p_blk = &p_cli->pf_blks[CDUC_BLK]; |
| break; |
| case QED_ELEM_SRQ: |
| p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM]; |
| elem_size = SRQ_CXT_SIZE; |
| p_blk = &p_cli->pf_blks[SRQ_BLK]; |
| break; |
| case QED_ELEM_TASK: |
| p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT]; |
| elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn); |
| p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(QED_CXT_ROCE_TID_SEG)]; |
| break; |
| default: |
| DP_NOTICE(p_hwfn, "-EINVALID elem type = %d", elem_type); |
| return -EINVAL; |
| } |
| |
| /* Calculate line in ilt */ |
| hw_p_size = p_cli->p_size.val; |
| elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size; |
| line = p_blk->start_line + (iid / elems_per_p); |
| shadow_line = line - p_hwfn->p_cxt_mngr->pf_start_line; |
| |
| /* If line is already allocated, do nothing, otherwise allocate it and |
| * write it to the PSWRQ2 registers. |
| * This section can be run in parallel from different contexts and thus |
| * a mutex protection is needed. |
| */ |
| |
| mutex_lock(&p_hwfn->p_cxt_mngr->mutex); |
| |
| if (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt) |
| goto out0; |
| |
| p_ptt = qed_ptt_acquire(p_hwfn); |
| if (!p_ptt) { |
| DP_NOTICE(p_hwfn, |
| "QED_TIME_OUT on ptt acquire - dynamic allocation"); |
| rc = -EBUSY; |
| goto out0; |
| } |
| |
| p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, |
| p_blk->real_size_in_page, &p_phys, |
| GFP_KERNEL); |
| if (!p_virt) { |
| rc = -ENOMEM; |
| goto out1; |
| } |
| |
| /* configuration of refTagMask to 0xF is required for RoCE DIF MR only, |
| * to compensate for a HW bug, but it is configured even if DIF is not |
| * enabled. This is harmless and allows us to avoid a dedicated API. We |
| * configure the field for all of the contexts on the newly allocated |
| * page. |
| */ |
| if (elem_type == QED_ELEM_TASK) { |
| u32 elem_i; |
| u8 *elem_start = (u8 *)p_virt; |
| union type1_task_context *elem; |
| |
| for (elem_i = 0; elem_i < elems_per_p; elem_i++) { |
| elem = (union type1_task_context *)elem_start; |
| SET_FIELD(elem->roce_ctx.tdif_context.flags1, |
| TDIF_TASK_CONTEXT_REF_TAG_MASK, 0xf); |
| elem_start += TYPE1_TASK_CXT_SIZE(p_hwfn); |
| } |
| } |
| |
| p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt = p_virt; |
| p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys = p_phys; |
| p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].size = |
| p_blk->real_size_in_page; |
| |
| /* compute absolute offset */ |
| reg_offset = PSWRQ2_REG_ILT_MEMORY + |
| (line * ILT_REG_SIZE_IN_BYTES * ILT_ENTRY_IN_REGS); |
| |
| ilt_hw_entry = 0; |
| SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL); |
| SET_FIELD(ilt_hw_entry, |
| ILT_ENTRY_PHY_ADDR, |
| (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys >> 12)); |
| |
| /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a wide-bus */ |
| qed_dmae_host2grc(p_hwfn, p_ptt, (u64) (uintptr_t)&ilt_hw_entry, |
| reg_offset, sizeof(ilt_hw_entry) / sizeof(u32), 0); |
| |
| if (elem_type == QED_ELEM_CXT) { |
| u32 last_cid_allocated = (1 + (iid / elems_per_p)) * |
| elems_per_p; |
| |
| /* Update the relevant register in the parser */ |
| qed_wr(p_hwfn, p_ptt, PRS_REG_ROCE_DEST_QP_MAX_PF, |
| last_cid_allocated - 1); |
| |
| if (!p_hwfn->b_rdma_enabled_in_prs) { |
| /* Enable RDMA search */ |
| qed_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 1); |
| p_hwfn->b_rdma_enabled_in_prs = true; |
| } |
| } |
| |
| out1: |
| qed_ptt_release(p_hwfn, p_ptt); |
| out0: |
| mutex_unlock(&p_hwfn->p_cxt_mngr->mutex); |
| |
| return rc; |
| } |
| |
| /* This function is very RoCE oriented, if another protocol in the future |
| * will want this feature we'll need to modify the function to be more generic |
| */ |
| static int |
| qed_cxt_free_ilt_range(struct qed_hwfn *p_hwfn, |
| enum qed_cxt_elem_type elem_type, |
| u32 start_iid, u32 count) |
| { |
| u32 start_line, end_line, shadow_start_line, shadow_end_line; |
| u32 reg_offset, elem_size, hw_p_size, elems_per_p; |
| struct qed_ilt_client_cfg *p_cli; |
| struct qed_ilt_cli_blk *p_blk; |
| u32 end_iid = start_iid + count; |
| struct qed_ptt *p_ptt; |
| u64 ilt_hw_entry = 0; |
| u32 i; |
| |
| switch (elem_type) { |
| case QED_ELEM_CXT: |
| p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC]; |
| elem_size = CONN_CXT_SIZE(p_hwfn); |
| p_blk = &p_cli->pf_blks[CDUC_BLK]; |
| break; |
| case QED_ELEM_SRQ: |
| p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM]; |
| elem_size = SRQ_CXT_SIZE; |
| p_blk = &p_cli->pf_blks[SRQ_BLK]; |
| break; |
| case QED_ELEM_TASK: |
| p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT]; |
| elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn); |
| p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(QED_CXT_ROCE_TID_SEG)]; |
| break; |
| default: |
| DP_NOTICE(p_hwfn, "-EINVALID elem type = %d", elem_type); |
| return -EINVAL; |
| } |
| |
| /* Calculate line in ilt */ |
| hw_p_size = p_cli->p_size.val; |
| elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size; |
| start_line = p_blk->start_line + (start_iid / elems_per_p); |
| end_line = p_blk->start_line + (end_iid / elems_per_p); |
| if (((end_iid + 1) / elems_per_p) != (end_iid / elems_per_p)) |
| end_line--; |
| |
| shadow_start_line = start_line - p_hwfn->p_cxt_mngr->pf_start_line; |
| shadow_end_line = end_line - p_hwfn->p_cxt_mngr->pf_start_line; |
| |
| p_ptt = qed_ptt_acquire(p_hwfn); |
| if (!p_ptt) { |
| DP_NOTICE(p_hwfn, |
| "QED_TIME_OUT on ptt acquire - dynamic allocation"); |
| return -EBUSY; |
| } |
| |
| for (i = shadow_start_line; i < shadow_end_line; i++) { |
| if (!p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt) |
| continue; |
| |
| dma_free_coherent(&p_hwfn->cdev->pdev->dev, |
| p_hwfn->p_cxt_mngr->ilt_shadow[i].size, |
| p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt, |
| p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys); |
| |
| p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt = NULL; |
| p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys = 0; |
| p_hwfn->p_cxt_mngr->ilt_shadow[i].size = 0; |
| |
| /* compute absolute offset */ |
| reg_offset = PSWRQ2_REG_ILT_MEMORY + |
| ((start_line++) * ILT_REG_SIZE_IN_BYTES * |
| ILT_ENTRY_IN_REGS); |
| |
| /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a |
| * wide-bus. |
| */ |
| qed_dmae_host2grc(p_hwfn, p_ptt, |
| (u64) (uintptr_t) &ilt_hw_entry, |
| reg_offset, |
| sizeof(ilt_hw_entry) / sizeof(u32), |
| 0); |
| } |
| |
| qed_ptt_release(p_hwfn, p_ptt); |
| |
| return 0; |
| } |
| |
| int qed_cxt_free_proto_ilt(struct qed_hwfn *p_hwfn, enum protocol_type proto) |
| { |
| int rc; |
| u32 cid; |
| |
| /* Free Connection CXT */ |
| rc = qed_cxt_free_ilt_range(p_hwfn, QED_ELEM_CXT, |
| qed_cxt_get_proto_cid_start(p_hwfn, |
| proto), |
| qed_cxt_get_proto_cid_count(p_hwfn, |
| proto, &cid)); |
| |
| if (rc) |
| return rc; |
| |
| /* Free Task CXT ( Intentionally RoCE as task-id is shared between |
| * RoCE and iWARP ) |
| */ |
| proto = PROTOCOLID_ROCE; |
| rc = qed_cxt_free_ilt_range(p_hwfn, QED_ELEM_TASK, 0, |
| qed_cxt_get_proto_tid_count(p_hwfn, proto)); |
| if (rc) |
| return rc; |
| |
| /* Free TSDM CXT */ |
| rc = qed_cxt_free_ilt_range(p_hwfn, QED_ELEM_SRQ, 0, |
| qed_cxt_get_srq_count(p_hwfn)); |
| |
| return rc; |
| } |
| |
| int qed_cxt_get_task_ctx(struct qed_hwfn *p_hwfn, |
| u32 tid, u8 ctx_type, void **pp_task_ctx) |
| { |
| struct qed_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr; |
| struct qed_ilt_client_cfg *p_cli; |
| struct qed_tid_seg *p_seg_info; |
| struct qed_ilt_cli_blk *p_seg; |
| u32 num_tids_per_block; |
| u32 tid_size, ilt_idx; |
| u32 total_lines; |
| u32 proto, seg; |
| |
| /* Verify the personality */ |
| switch (p_hwfn->hw_info.personality) { |
| case QED_PCI_FCOE: |
| proto = PROTOCOLID_FCOE; |
| seg = QED_CXT_FCOE_TID_SEG; |
| break; |
| case QED_PCI_ISCSI: |
| proto = PROTOCOLID_ISCSI; |
| seg = QED_CXT_ISCSI_TID_SEG; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| p_cli = &p_mngr->clients[ILT_CLI_CDUT]; |
| if (!p_cli->active) |
| return -EINVAL; |
| |
| p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg]; |
| |
| if (ctx_type == QED_CTX_WORKING_MEM) { |
| p_seg = &p_cli->pf_blks[CDUT_SEG_BLK(seg)]; |
| } else if (ctx_type == QED_CTX_FL_MEM) { |
| if (!p_seg_info->has_fl_mem) |
| return -EINVAL; |
| p_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)]; |
| } else { |
| return -EINVAL; |
| } |
| total_lines = DIV_ROUND_UP(p_seg->total_size, p_seg->real_size_in_page); |
| tid_size = p_mngr->task_type_size[p_seg_info->type]; |
| num_tids_per_block = p_seg->real_size_in_page / tid_size; |
| |
| if (total_lines < tid / num_tids_per_block) |
| return -EINVAL; |
| |
| ilt_idx = tid / num_tids_per_block + p_seg->start_line - |
| p_mngr->pf_start_line; |
| *pp_task_ctx = (u8 *)p_mngr->ilt_shadow[ilt_idx].p_virt + |
| (tid % num_tids_per_block) * tid_size; |
| |
| return 0; |
| } |