| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Contains common pci routines for ALL ppc platform |
| * (based on pci_32.c and pci_64.c) |
| * |
| * Port for PPC64 David Engebretsen, IBM Corp. |
| * Contains common pci routines for ppc64 platform, pSeries and iSeries brands. |
| * |
| * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM |
| * Rework, based on alpha PCI code. |
| * |
| * Common pmac/prep/chrp pci routines. -- Cort |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/pci.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/export.h> |
| #include <linux/of_address.h> |
| #include <linux/of_pci.h> |
| #include <linux/mm.h> |
| #include <linux/shmem_fs.h> |
| #include <linux/list.h> |
| #include <linux/syscalls.h> |
| #include <linux/irq.h> |
| #include <linux/vmalloc.h> |
| #include <linux/slab.h> |
| #include <linux/vgaarb.h> |
| #include <linux/numa.h> |
| #include <linux/msi.h> |
| #include <linux/irqdomain.h> |
| |
| #include <asm/processor.h> |
| #include <asm/io.h> |
| #include <asm/pci-bridge.h> |
| #include <asm/byteorder.h> |
| #include <asm/machdep.h> |
| #include <asm/ppc-pci.h> |
| #include <asm/eeh.h> |
| #include <asm/setup.h> |
| |
| #include "../../../drivers/pci/pci.h" |
| |
| /* hose_spinlock protects accesses to the phb_bitmap. */ |
| static DEFINE_SPINLOCK(hose_spinlock); |
| LIST_HEAD(hose_list); |
| |
| /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */ |
| #define MAX_PHBS 0x10000 |
| |
| /* |
| * For dynamic PHB numbering: used/free PHBs tracking bitmap. |
| * Accesses to this bitmap should be protected by hose_spinlock. |
| */ |
| static DECLARE_BITMAP(phb_bitmap, MAX_PHBS); |
| |
| /* ISA Memory physical address */ |
| resource_size_t isa_mem_base; |
| EXPORT_SYMBOL(isa_mem_base); |
| |
| |
| static const struct dma_map_ops *pci_dma_ops; |
| |
| void __init set_pci_dma_ops(const struct dma_map_ops *dma_ops) |
| { |
| pci_dma_ops = dma_ops; |
| } |
| |
| static int get_phb_number(struct device_node *dn) |
| { |
| int ret, phb_id = -1; |
| u64 prop; |
| |
| /* |
| * Try fixed PHB numbering first, by checking archs and reading |
| * the respective device-tree properties. Firstly, try reading |
| * standard "linux,pci-domain", then try reading "ibm,opal-phbid" |
| * (only present in powernv OPAL environment), then try device-tree |
| * alias and as the last try to use lower bits of "reg" property. |
| */ |
| ret = of_get_pci_domain_nr(dn); |
| if (ret >= 0) { |
| prop = ret; |
| ret = 0; |
| } |
| if (ret) |
| ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop); |
| |
| if (ret) { |
| ret = of_alias_get_id(dn, "pci"); |
| if (ret >= 0) { |
| prop = ret; |
| ret = 0; |
| } |
| } |
| if (ret) { |
| u32 prop_32; |
| ret = of_property_read_u32_index(dn, "reg", 1, &prop_32); |
| prop = prop_32; |
| } |
| |
| if (!ret) |
| phb_id = (int)(prop & (MAX_PHBS - 1)); |
| |
| spin_lock(&hose_spinlock); |
| |
| /* We need to be sure to not use the same PHB number twice. */ |
| if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap)) |
| goto out_unlock; |
| |
| /* If everything fails then fallback to dynamic PHB numbering. */ |
| phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS); |
| BUG_ON(phb_id >= MAX_PHBS); |
| set_bit(phb_id, phb_bitmap); |
| |
| out_unlock: |
| spin_unlock(&hose_spinlock); |
| |
| return phb_id; |
| } |
| |
| struct pci_controller *pcibios_alloc_controller(struct device_node *dev) |
| { |
| struct pci_controller *phb; |
| |
| phb = kzalloc(sizeof(struct pci_controller), GFP_KERNEL); |
| if (phb == NULL) |
| return NULL; |
| |
| phb->global_number = get_phb_number(dev); |
| |
| spin_lock(&hose_spinlock); |
| list_add_tail(&phb->list_node, &hose_list); |
| spin_unlock(&hose_spinlock); |
| |
| phb->dn = of_node_get(dev); |
| phb->is_dynamic = slab_is_available(); |
| #ifdef CONFIG_PPC64 |
| if (dev) { |
| int nid = of_node_to_nid(dev); |
| |
| if (nid < 0 || !node_online(nid)) |
| nid = NUMA_NO_NODE; |
| |
| PHB_SET_NODE(phb, nid); |
| } |
| #endif |
| return phb; |
| } |
| EXPORT_SYMBOL_GPL(pcibios_alloc_controller); |
| |
| void pcibios_free_controller(struct pci_controller *phb) |
| { |
| spin_lock(&hose_spinlock); |
| |
| /* Clear bit of phb_bitmap to allow reuse of this PHB number. */ |
| if (phb->global_number < MAX_PHBS) |
| clear_bit(phb->global_number, phb_bitmap); |
| of_node_put(phb->dn); |
| list_del(&phb->list_node); |
| spin_unlock(&hose_spinlock); |
| |
| if (phb->is_dynamic) |
| kfree(phb); |
| } |
| EXPORT_SYMBOL_GPL(pcibios_free_controller); |
| |
| /* |
| * This function is used to call pcibios_free_controller() |
| * in a deferred manner: a callback from the PCI subsystem. |
| * |
| * _*DO NOT*_ call pcibios_free_controller() explicitly if |
| * this is used (or it may access an invalid *phb pointer). |
| * |
| * The callback occurs when all references to the root bus |
| * are dropped (e.g., child buses/devices and their users). |
| * |
| * It's called as .release_fn() of 'struct pci_host_bridge' |
| * which is associated with the 'struct pci_controller.bus' |
| * (root bus) - it expects .release_data to hold a pointer |
| * to 'struct pci_controller'. |
| * |
| * In order to use it, register .release_fn()/release_data |
| * like this: |
| * |
| * pci_set_host_bridge_release(bridge, |
| * pcibios_free_controller_deferred |
| * (void *) phb); |
| * |
| * e.g. in the pcibios_root_bridge_prepare() callback from |
| * pci_create_root_bus(). |
| */ |
| void pcibios_free_controller_deferred(struct pci_host_bridge *bridge) |
| { |
| struct pci_controller *phb = (struct pci_controller *) |
| bridge->release_data; |
| |
| pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic); |
| |
| pcibios_free_controller(phb); |
| } |
| EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred); |
| |
| /* |
| * The function is used to return the minimal alignment |
| * for memory or I/O windows of the associated P2P bridge. |
| * By default, 4KiB alignment for I/O windows and 1MiB for |
| * memory windows. |
| */ |
| resource_size_t pcibios_window_alignment(struct pci_bus *bus, |
| unsigned long type) |
| { |
| struct pci_controller *phb = pci_bus_to_host(bus); |
| |
| if (phb->controller_ops.window_alignment) |
| return phb->controller_ops.window_alignment(bus, type); |
| |
| /* |
| * PCI core will figure out the default |
| * alignment: 4KiB for I/O and 1MiB for |
| * memory window. |
| */ |
| return 1; |
| } |
| |
| void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type) |
| { |
| struct pci_controller *hose = pci_bus_to_host(bus); |
| |
| if (hose->controller_ops.setup_bridge) |
| hose->controller_ops.setup_bridge(bus, type); |
| } |
| |
| void pcibios_reset_secondary_bus(struct pci_dev *dev) |
| { |
| struct pci_controller *phb = pci_bus_to_host(dev->bus); |
| |
| if (phb->controller_ops.reset_secondary_bus) { |
| phb->controller_ops.reset_secondary_bus(dev); |
| return; |
| } |
| |
| pci_reset_secondary_bus(dev); |
| } |
| |
| resource_size_t pcibios_default_alignment(void) |
| { |
| if (ppc_md.pcibios_default_alignment) |
| return ppc_md.pcibios_default_alignment(); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PCI_IOV |
| resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno) |
| { |
| if (ppc_md.pcibios_iov_resource_alignment) |
| return ppc_md.pcibios_iov_resource_alignment(pdev, resno); |
| |
| return pci_iov_resource_size(pdev, resno); |
| } |
| |
| int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs) |
| { |
| if (ppc_md.pcibios_sriov_enable) |
| return ppc_md.pcibios_sriov_enable(pdev, num_vfs); |
| |
| return 0; |
| } |
| |
| int pcibios_sriov_disable(struct pci_dev *pdev) |
| { |
| if (ppc_md.pcibios_sriov_disable) |
| return ppc_md.pcibios_sriov_disable(pdev); |
| |
| return 0; |
| } |
| |
| #endif /* CONFIG_PCI_IOV */ |
| |
| static resource_size_t pcibios_io_size(const struct pci_controller *hose) |
| { |
| #ifdef CONFIG_PPC64 |
| return hose->pci_io_size; |
| #else |
| return resource_size(&hose->io_resource); |
| #endif |
| } |
| |
| int pcibios_vaddr_is_ioport(void __iomem *address) |
| { |
| int ret = 0; |
| struct pci_controller *hose; |
| resource_size_t size; |
| |
| spin_lock(&hose_spinlock); |
| list_for_each_entry(hose, &hose_list, list_node) { |
| size = pcibios_io_size(hose); |
| if (address >= hose->io_base_virt && |
| address < (hose->io_base_virt + size)) { |
| ret = 1; |
| break; |
| } |
| } |
| spin_unlock(&hose_spinlock); |
| return ret; |
| } |
| |
| unsigned long pci_address_to_pio(phys_addr_t address) |
| { |
| struct pci_controller *hose; |
| resource_size_t size; |
| unsigned long ret = ~0; |
| |
| spin_lock(&hose_spinlock); |
| list_for_each_entry(hose, &hose_list, list_node) { |
| size = pcibios_io_size(hose); |
| if (address >= hose->io_base_phys && |
| address < (hose->io_base_phys + size)) { |
| unsigned long base = |
| (unsigned long)hose->io_base_virt - _IO_BASE; |
| ret = base + (address - hose->io_base_phys); |
| break; |
| } |
| } |
| spin_unlock(&hose_spinlock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(pci_address_to_pio); |
| |
| /* |
| * Return the domain number for this bus. |
| */ |
| int pci_domain_nr(struct pci_bus *bus) |
| { |
| struct pci_controller *hose = pci_bus_to_host(bus); |
| |
| return hose->global_number; |
| } |
| EXPORT_SYMBOL(pci_domain_nr); |
| |
| /* This routine is meant to be used early during boot, when the |
| * PCI bus numbers have not yet been assigned, and you need to |
| * issue PCI config cycles to an OF device. |
| * It could also be used to "fix" RTAS config cycles if you want |
| * to set pci_assign_all_buses to 1 and still use RTAS for PCI |
| * config cycles. |
| */ |
| struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node) |
| { |
| while(node) { |
| struct pci_controller *hose, *tmp; |
| list_for_each_entry_safe(hose, tmp, &hose_list, list_node) |
| if (hose->dn == node) |
| return hose; |
| node = node->parent; |
| } |
| return NULL; |
| } |
| |
| struct pci_controller *pci_find_controller_for_domain(int domain_nr) |
| { |
| struct pci_controller *hose; |
| |
| list_for_each_entry(hose, &hose_list, list_node) |
| if (hose->global_number == domain_nr) |
| return hose; |
| |
| return NULL; |
| } |
| |
| struct pci_intx_virq { |
| int virq; |
| struct kref kref; |
| struct list_head list_node; |
| }; |
| |
| static LIST_HEAD(intx_list); |
| static DEFINE_MUTEX(intx_mutex); |
| |
| static void ppc_pci_intx_release(struct kref *kref) |
| { |
| struct pci_intx_virq *vi = container_of(kref, struct pci_intx_virq, kref); |
| |
| list_del(&vi->list_node); |
| irq_dispose_mapping(vi->virq); |
| kfree(vi); |
| } |
| |
| static int ppc_pci_unmap_irq_line(struct notifier_block *nb, |
| unsigned long action, void *data) |
| { |
| struct pci_dev *pdev = to_pci_dev(data); |
| |
| if (action == BUS_NOTIFY_DEL_DEVICE) { |
| struct pci_intx_virq *vi; |
| |
| mutex_lock(&intx_mutex); |
| list_for_each_entry(vi, &intx_list, list_node) { |
| if (vi->virq == pdev->irq) { |
| kref_put(&vi->kref, ppc_pci_intx_release); |
| break; |
| } |
| } |
| mutex_unlock(&intx_mutex); |
| } |
| |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block ppc_pci_unmap_irq_notifier = { |
| .notifier_call = ppc_pci_unmap_irq_line, |
| }; |
| |
| static int ppc_pci_register_irq_notifier(void) |
| { |
| return bus_register_notifier(&pci_bus_type, &ppc_pci_unmap_irq_notifier); |
| } |
| arch_initcall(ppc_pci_register_irq_notifier); |
| |
| /* |
| * Reads the interrupt pin to determine if interrupt is use by card. |
| * If the interrupt is used, then gets the interrupt line from the |
| * openfirmware and sets it in the pci_dev and pci_config line. |
| */ |
| static int pci_read_irq_line(struct pci_dev *pci_dev) |
| { |
| int virq; |
| struct pci_intx_virq *vi, *vitmp; |
| |
| /* Preallocate vi as rewind is complex if this fails after mapping */ |
| vi = kzalloc(sizeof(struct pci_intx_virq), GFP_KERNEL); |
| if (!vi) |
| return -1; |
| |
| pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev)); |
| |
| /* Try to get a mapping from the device-tree */ |
| virq = of_irq_parse_and_map_pci(pci_dev, 0, 0); |
| if (virq <= 0) { |
| u8 line, pin; |
| |
| /* If that fails, lets fallback to what is in the config |
| * space and map that through the default controller. We |
| * also set the type to level low since that's what PCI |
| * interrupts are. If your platform does differently, then |
| * either provide a proper interrupt tree or don't use this |
| * function. |
| */ |
| if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin)) |
| goto error_exit; |
| if (pin == 0) |
| goto error_exit; |
| if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) || |
| line == 0xff || line == 0) { |
| goto error_exit; |
| } |
| pr_debug(" No map ! Using line %d (pin %d) from PCI config\n", |
| line, pin); |
| |
| virq = irq_create_mapping(NULL, line); |
| if (virq) |
| irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW); |
| } |
| |
| if (!virq) { |
| pr_debug(" Failed to map !\n"); |
| goto error_exit; |
| } |
| |
| pr_debug(" Mapped to linux irq %d\n", virq); |
| |
| pci_dev->irq = virq; |
| |
| mutex_lock(&intx_mutex); |
| list_for_each_entry(vitmp, &intx_list, list_node) { |
| if (vitmp->virq == virq) { |
| kref_get(&vitmp->kref); |
| kfree(vi); |
| vi = NULL; |
| break; |
| } |
| } |
| if (vi) { |
| vi->virq = virq; |
| kref_init(&vi->kref); |
| list_add_tail(&vi->list_node, &intx_list); |
| } |
| mutex_unlock(&intx_mutex); |
| |
| return 0; |
| error_exit: |
| kfree(vi); |
| return -1; |
| } |
| |
| /* |
| * Platform support for /proc/bus/pci/X/Y mmap()s. |
| * -- paulus. |
| */ |
| int pci_iobar_pfn(struct pci_dev *pdev, int bar, struct vm_area_struct *vma) |
| { |
| struct pci_controller *hose = pci_bus_to_host(pdev->bus); |
| resource_size_t ioaddr = pci_resource_start(pdev, bar); |
| |
| if (!hose) |
| return -EINVAL; |
| |
| /* Convert to an offset within this PCI controller */ |
| ioaddr -= (unsigned long)hose->io_base_virt - _IO_BASE; |
| |
| vma->vm_pgoff += (ioaddr + hose->io_base_phys) >> PAGE_SHIFT; |
| return 0; |
| } |
| |
| /* |
| * This one is used by /dev/mem and video who have no clue about the |
| * PCI device, it tries to find the PCI device first and calls the |
| * above routine |
| */ |
| pgprot_t pci_phys_mem_access_prot(unsigned long pfn, |
| unsigned long size, |
| pgprot_t prot) |
| { |
| struct pci_dev *pdev = NULL; |
| struct resource *found = NULL; |
| resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT; |
| int i; |
| |
| if (page_is_ram(pfn)) |
| return prot; |
| |
| prot = pgprot_noncached(prot); |
| for_each_pci_dev(pdev) { |
| for (i = 0; i <= PCI_ROM_RESOURCE; i++) { |
| struct resource *rp = &pdev->resource[i]; |
| int flags = rp->flags; |
| |
| /* Active and same type? */ |
| if ((flags & IORESOURCE_MEM) == 0) |
| continue; |
| /* In the range of this resource? */ |
| if (offset < (rp->start & PAGE_MASK) || |
| offset > rp->end) |
| continue; |
| found = rp; |
| break; |
| } |
| if (found) |
| break; |
| } |
| if (found) { |
| if (found->flags & IORESOURCE_PREFETCH) |
| prot = pgprot_noncached_wc(prot); |
| pci_dev_put(pdev); |
| } |
| |
| pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n", |
| (unsigned long long)offset, pgprot_val(prot)); |
| |
| return prot; |
| } |
| |
| /* This provides legacy IO read access on a bus */ |
| int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size) |
| { |
| unsigned long offset; |
| struct pci_controller *hose = pci_bus_to_host(bus); |
| struct resource *rp = &hose->io_resource; |
| void __iomem *addr; |
| |
| /* Check if port can be supported by that bus. We only check |
| * the ranges of the PHB though, not the bus itself as the rules |
| * for forwarding legacy cycles down bridges are not our problem |
| * here. So if the host bridge supports it, we do it. |
| */ |
| offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| offset += port; |
| |
| if (!(rp->flags & IORESOURCE_IO)) |
| return -ENXIO; |
| if (offset < rp->start || (offset + size) > rp->end) |
| return -ENXIO; |
| addr = hose->io_base_virt + port; |
| |
| switch(size) { |
| case 1: |
| *((u8 *)val) = in_8(addr); |
| return 1; |
| case 2: |
| if (port & 1) |
| return -EINVAL; |
| *((u16 *)val) = in_le16(addr); |
| return 2; |
| case 4: |
| if (port & 3) |
| return -EINVAL; |
| *((u32 *)val) = in_le32(addr); |
| return 4; |
| } |
| return -EINVAL; |
| } |
| |
| /* This provides legacy IO write access on a bus */ |
| int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size) |
| { |
| unsigned long offset; |
| struct pci_controller *hose = pci_bus_to_host(bus); |
| struct resource *rp = &hose->io_resource; |
| void __iomem *addr; |
| |
| /* Check if port can be supported by that bus. We only check |
| * the ranges of the PHB though, not the bus itself as the rules |
| * for forwarding legacy cycles down bridges are not our problem |
| * here. So if the host bridge supports it, we do it. |
| */ |
| offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| offset += port; |
| |
| if (!(rp->flags & IORESOURCE_IO)) |
| return -ENXIO; |
| if (offset < rp->start || (offset + size) > rp->end) |
| return -ENXIO; |
| addr = hose->io_base_virt + port; |
| |
| /* WARNING: The generic code is idiotic. It gets passed a pointer |
| * to what can be a 1, 2 or 4 byte quantity and always reads that |
| * as a u32, which means that we have to correct the location of |
| * the data read within those 32 bits for size 1 and 2 |
| */ |
| switch(size) { |
| case 1: |
| out_8(addr, val >> 24); |
| return 1; |
| case 2: |
| if (port & 1) |
| return -EINVAL; |
| out_le16(addr, val >> 16); |
| return 2; |
| case 4: |
| if (port & 3) |
| return -EINVAL; |
| out_le32(addr, val); |
| return 4; |
| } |
| return -EINVAL; |
| } |
| |
| /* This provides legacy IO or memory mmap access on a bus */ |
| int pci_mmap_legacy_page_range(struct pci_bus *bus, |
| struct vm_area_struct *vma, |
| enum pci_mmap_state mmap_state) |
| { |
| struct pci_controller *hose = pci_bus_to_host(bus); |
| resource_size_t offset = |
| ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; |
| resource_size_t size = vma->vm_end - vma->vm_start; |
| struct resource *rp; |
| |
| pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n", |
| pci_domain_nr(bus), bus->number, |
| mmap_state == pci_mmap_mem ? "MEM" : "IO", |
| (unsigned long long)offset, |
| (unsigned long long)(offset + size - 1)); |
| |
| if (mmap_state == pci_mmap_mem) { |
| /* Hack alert ! |
| * |
| * Because X is lame and can fail starting if it gets an error trying |
| * to mmap legacy_mem (instead of just moving on without legacy memory |
| * access) we fake it here by giving it anonymous memory, effectively |
| * behaving just like /dev/zero |
| */ |
| if ((offset + size) > hose->isa_mem_size) { |
| printk(KERN_DEBUG |
| "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n", |
| current->comm, current->pid, pci_domain_nr(bus), bus->number); |
| if (vma->vm_flags & VM_SHARED) |
| return shmem_zero_setup(vma); |
| return 0; |
| } |
| offset += hose->isa_mem_phys; |
| } else { |
| unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| unsigned long roffset = offset + io_offset; |
| rp = &hose->io_resource; |
| if (!(rp->flags & IORESOURCE_IO)) |
| return -ENXIO; |
| if (roffset < rp->start || (roffset + size) > rp->end) |
| return -ENXIO; |
| offset += hose->io_base_phys; |
| } |
| pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset); |
| |
| vma->vm_pgoff = offset >> PAGE_SHIFT; |
| vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); |
| return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, |
| vma->vm_end - vma->vm_start, |
| vma->vm_page_prot); |
| } |
| |
| void pci_resource_to_user(const struct pci_dev *dev, int bar, |
| const struct resource *rsrc, |
| resource_size_t *start, resource_size_t *end) |
| { |
| struct pci_bus_region region; |
| |
| if (rsrc->flags & IORESOURCE_IO) { |
| pcibios_resource_to_bus(dev->bus, ®ion, |
| (struct resource *) rsrc); |
| *start = region.start; |
| *end = region.end; |
| return; |
| } |
| |
| /* We pass a CPU physical address to userland for MMIO instead of a |
| * BAR value because X is lame and expects to be able to use that |
| * to pass to /dev/mem! |
| * |
| * That means we may have 64-bit values where some apps only expect |
| * 32 (like X itself since it thinks only Sparc has 64-bit MMIO). |
| */ |
| *start = rsrc->start; |
| *end = rsrc->end; |
| } |
| |
| /** |
| * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree |
| * @hose: newly allocated pci_controller to be setup |
| * @dev: device node of the host bridge |
| * @primary: set if primary bus (32 bits only, soon to be deprecated) |
| * |
| * This function will parse the "ranges" property of a PCI host bridge device |
| * node and setup the resource mapping of a pci controller based on its |
| * content. |
| * |
| * Life would be boring if it wasn't for a few issues that we have to deal |
| * with here: |
| * |
| * - We can only cope with one IO space range and up to 3 Memory space |
| * ranges. However, some machines (thanks Apple !) tend to split their |
| * space into lots of small contiguous ranges. So we have to coalesce. |
| * |
| * - Some busses have IO space not starting at 0, which causes trouble with |
| * the way we do our IO resource renumbering. The code somewhat deals with |
| * it for 64 bits but I would expect problems on 32 bits. |
| * |
| * - Some 32 bits platforms such as 4xx can have physical space larger than |
| * 32 bits so we need to use 64 bits values for the parsing |
| */ |
| void pci_process_bridge_OF_ranges(struct pci_controller *hose, |
| struct device_node *dev, int primary) |
| { |
| int memno = 0; |
| struct resource *res; |
| struct of_pci_range range; |
| struct of_pci_range_parser parser; |
| |
| printk(KERN_INFO "PCI host bridge %pOF %s ranges:\n", |
| dev, primary ? "(primary)" : ""); |
| |
| /* Check for ranges property */ |
| if (of_pci_range_parser_init(&parser, dev)) |
| return; |
| |
| /* Parse it */ |
| for_each_of_pci_range(&parser, &range) { |
| /* If we failed translation or got a zero-sized region |
| * (some FW try to feed us with non sensical zero sized regions |
| * such as power3 which look like some kind of attempt at exposing |
| * the VGA memory hole) |
| */ |
| if (range.cpu_addr == OF_BAD_ADDR || range.size == 0) |
| continue; |
| |
| /* Act based on address space type */ |
| res = NULL; |
| switch (range.flags & IORESOURCE_TYPE_BITS) { |
| case IORESOURCE_IO: |
| printk(KERN_INFO |
| " IO 0x%016llx..0x%016llx -> 0x%016llx\n", |
| range.cpu_addr, range.cpu_addr + range.size - 1, |
| range.pci_addr); |
| |
| /* We support only one IO range */ |
| if (hose->pci_io_size) { |
| printk(KERN_INFO |
| " \\--> Skipped (too many) !\n"); |
| continue; |
| } |
| #ifdef CONFIG_PPC32 |
| /* On 32 bits, limit I/O space to 16MB */ |
| if (range.size > 0x01000000) |
| range.size = 0x01000000; |
| |
| /* 32 bits needs to map IOs here */ |
| hose->io_base_virt = ioremap(range.cpu_addr, |
| range.size); |
| |
| /* Expect trouble if pci_addr is not 0 */ |
| if (primary) |
| isa_io_base = |
| (unsigned long)hose->io_base_virt; |
| #endif /* CONFIG_PPC32 */ |
| /* pci_io_size and io_base_phys always represent IO |
| * space starting at 0 so we factor in pci_addr |
| */ |
| hose->pci_io_size = range.pci_addr + range.size; |
| hose->io_base_phys = range.cpu_addr - range.pci_addr; |
| |
| /* Build resource */ |
| res = &hose->io_resource; |
| range.cpu_addr = range.pci_addr; |
| break; |
| case IORESOURCE_MEM: |
| printk(KERN_INFO |
| " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n", |
| range.cpu_addr, range.cpu_addr + range.size - 1, |
| range.pci_addr, |
| (range.flags & IORESOURCE_PREFETCH) ? |
| "Prefetch" : ""); |
| |
| /* We support only 3 memory ranges */ |
| if (memno >= 3) { |
| printk(KERN_INFO |
| " \\--> Skipped (too many) !\n"); |
| continue; |
| } |
| /* Handles ISA memory hole space here */ |
| if (range.pci_addr == 0) { |
| if (primary || isa_mem_base == 0) |
| isa_mem_base = range.cpu_addr; |
| hose->isa_mem_phys = range.cpu_addr; |
| hose->isa_mem_size = range.size; |
| } |
| |
| /* Build resource */ |
| hose->mem_offset[memno] = range.cpu_addr - |
| range.pci_addr; |
| res = &hose->mem_resources[memno++]; |
| break; |
| } |
| if (res != NULL) { |
| res->name = dev->full_name; |
| res->flags = range.flags; |
| res->start = range.cpu_addr; |
| res->end = range.cpu_addr + range.size - 1; |
| res->parent = res->child = res->sibling = NULL; |
| } |
| } |
| } |
| |
| /* Decide whether to display the domain number in /proc */ |
| int pci_proc_domain(struct pci_bus *bus) |
| { |
| struct pci_controller *hose = pci_bus_to_host(bus); |
| |
| if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS)) |
| return 0; |
| if (pci_has_flag(PCI_COMPAT_DOMAIN_0)) |
| return hose->global_number != 0; |
| return 1; |
| } |
| |
| int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge) |
| { |
| if (ppc_md.pcibios_root_bridge_prepare) |
| return ppc_md.pcibios_root_bridge_prepare(bridge); |
| |
| return 0; |
| } |
| |
| /* This header fixup will do the resource fixup for all devices as they are |
| * probed, but not for bridge ranges |
| */ |
| static void pcibios_fixup_resources(struct pci_dev *dev) |
| { |
| struct pci_controller *hose = pci_bus_to_host(dev->bus); |
| struct resource *res; |
| int i; |
| |
| if (!hose) { |
| printk(KERN_ERR "No host bridge for PCI dev %s !\n", |
| pci_name(dev)); |
| return; |
| } |
| |
| if (dev->is_virtfn) |
| return; |
| |
| pci_dev_for_each_resource(dev, res, i) { |
| struct pci_bus_region reg; |
| |
| if (!res->flags) |
| continue; |
| |
| /* If we're going to re-assign everything, we mark all resources |
| * as unset (and 0-base them). In addition, we mark BARs starting |
| * at 0 as unset as well, except if PCI_PROBE_ONLY is also set |
| * since in that case, we don't want to re-assign anything |
| */ |
| pcibios_resource_to_bus(dev->bus, ®, res); |
| if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) || |
| (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) { |
| /* Only print message if not re-assigning */ |
| if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) |
| pr_debug("PCI:%s Resource %d %pR is unassigned\n", |
| pci_name(dev), i, res); |
| res->end -= res->start; |
| res->start = 0; |
| res->flags |= IORESOURCE_UNSET; |
| continue; |
| } |
| |
| pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res); |
| } |
| |
| /* Call machine specific resource fixup */ |
| if (ppc_md.pcibios_fixup_resources) |
| ppc_md.pcibios_fixup_resources(dev); |
| } |
| DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources); |
| |
| /* This function tries to figure out if a bridge resource has been initialized |
| * by the firmware or not. It doesn't have to be absolutely bullet proof, but |
| * things go more smoothly when it gets it right. It should covers cases such |
| * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges |
| */ |
| static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus, |
| struct resource *res) |
| { |
| struct pci_controller *hose = pci_bus_to_host(bus); |
| struct pci_dev *dev = bus->self; |
| resource_size_t offset; |
| struct pci_bus_region region; |
| u16 command; |
| int i; |
| |
| /* We don't do anything if PCI_PROBE_ONLY is set */ |
| if (pci_has_flag(PCI_PROBE_ONLY)) |
| return 0; |
| |
| /* Job is a bit different between memory and IO */ |
| if (res->flags & IORESOURCE_MEM) { |
| pcibios_resource_to_bus(dev->bus, ®ion, res); |
| |
| /* If the BAR is non-0 then it's probably been initialized */ |
| if (region.start != 0) |
| return 0; |
| |
| /* The BAR is 0, let's check if memory decoding is enabled on |
| * the bridge. If not, we consider it unassigned |
| */ |
| pci_read_config_word(dev, PCI_COMMAND, &command); |
| if ((command & PCI_COMMAND_MEMORY) == 0) |
| return 1; |
| |
| /* Memory decoding is enabled and the BAR is 0. If any of the bridge |
| * resources covers that starting address (0 then it's good enough for |
| * us for memory space) |
| */ |
| for (i = 0; i < 3; i++) { |
| if ((hose->mem_resources[i].flags & IORESOURCE_MEM) && |
| hose->mem_resources[i].start == hose->mem_offset[i]) |
| return 0; |
| } |
| |
| /* Well, it starts at 0 and we know it will collide so we may as |
| * well consider it as unassigned. That covers the Apple case. |
| */ |
| return 1; |
| } else { |
| /* If the BAR is non-0, then we consider it assigned */ |
| offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| if (((res->start - offset) & 0xfffffffful) != 0) |
| return 0; |
| |
| /* Here, we are a bit different than memory as typically IO space |
| * starting at low addresses -is- valid. What we do instead if that |
| * we consider as unassigned anything that doesn't have IO enabled |
| * in the PCI command register, and that's it. |
| */ |
| pci_read_config_word(dev, PCI_COMMAND, &command); |
| if (command & PCI_COMMAND_IO) |
| return 0; |
| |
| /* It's starting at 0 and IO is disabled in the bridge, consider |
| * it unassigned |
| */ |
| return 1; |
| } |
| } |
| |
| /* Fixup resources of a PCI<->PCI bridge */ |
| static void pcibios_fixup_bridge(struct pci_bus *bus) |
| { |
| struct resource *res; |
| int i; |
| |
| struct pci_dev *dev = bus->self; |
| |
| pci_bus_for_each_resource(bus, res, i) { |
| if (!res || !res->flags) |
| continue; |
| if (i >= 3 && bus->self->transparent) |
| continue; |
| |
| /* If we're going to reassign everything, we can |
| * shrink the P2P resource to have size as being |
| * of 0 in order to save space. |
| */ |
| if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { |
| res->flags |= IORESOURCE_UNSET; |
| res->start = 0; |
| res->end = -1; |
| continue; |
| } |
| |
| pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res); |
| |
| /* Try to detect uninitialized P2P bridge resources, |
| * and clear them out so they get re-assigned later |
| */ |
| if (pcibios_uninitialized_bridge_resource(bus, res)) { |
| res->flags = 0; |
| pr_debug("PCI:%s (unassigned)\n", pci_name(dev)); |
| } |
| } |
| } |
| |
| void pcibios_setup_bus_self(struct pci_bus *bus) |
| { |
| struct pci_controller *phb; |
| |
| /* Fix up the bus resources for P2P bridges */ |
| if (bus->self != NULL) |
| pcibios_fixup_bridge(bus); |
| |
| /* Platform specific bus fixups. This is currently only used |
| * by fsl_pci and I'm hoping to get rid of it at some point |
| */ |
| if (ppc_md.pcibios_fixup_bus) |
| ppc_md.pcibios_fixup_bus(bus); |
| |
| /* Setup bus DMA mappings */ |
| phb = pci_bus_to_host(bus); |
| if (phb->controller_ops.dma_bus_setup) |
| phb->controller_ops.dma_bus_setup(bus); |
| } |
| |
| void pcibios_bus_add_device(struct pci_dev *dev) |
| { |
| struct pci_controller *phb; |
| /* Fixup NUMA node as it may not be setup yet by the generic |
| * code and is needed by the DMA init |
| */ |
| set_dev_node(&dev->dev, pcibus_to_node(dev->bus)); |
| |
| /* Hook up default DMA ops */ |
| set_dma_ops(&dev->dev, pci_dma_ops); |
| dev->dev.archdata.dma_offset = PCI_DRAM_OFFSET; |
| |
| /* Additional platform DMA/iommu setup */ |
| phb = pci_bus_to_host(dev->bus); |
| if (phb->controller_ops.dma_dev_setup) |
| phb->controller_ops.dma_dev_setup(dev); |
| |
| /* Read default IRQs and fixup if necessary */ |
| pci_read_irq_line(dev); |
| if (ppc_md.pci_irq_fixup) |
| ppc_md.pci_irq_fixup(dev); |
| |
| if (ppc_md.pcibios_bus_add_device) |
| ppc_md.pcibios_bus_add_device(dev); |
| } |
| |
| int pcibios_device_add(struct pci_dev *dev) |
| { |
| struct irq_domain *d; |
| |
| #ifdef CONFIG_PCI_IOV |
| if (ppc_md.pcibios_fixup_sriov) |
| ppc_md.pcibios_fixup_sriov(dev); |
| #endif /* CONFIG_PCI_IOV */ |
| |
| d = dev_get_msi_domain(&dev->bus->dev); |
| if (d) |
| dev_set_msi_domain(&dev->dev, d); |
| return 0; |
| } |
| |
| void pcibios_set_master(struct pci_dev *dev) |
| { |
| /* No special bus mastering setup handling */ |
| } |
| |
| void pcibios_fixup_bus(struct pci_bus *bus) |
| { |
| /* When called from the generic PCI probe, read PCI<->PCI bridge |
| * bases. This is -not- called when generating the PCI tree from |
| * the OF device-tree. |
| */ |
| pci_read_bridge_bases(bus); |
| |
| /* Now fixup the bus */ |
| pcibios_setup_bus_self(bus); |
| } |
| EXPORT_SYMBOL(pcibios_fixup_bus); |
| |
| static int skip_isa_ioresource_align(struct pci_dev *dev) |
| { |
| if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) && |
| !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA)) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * We need to avoid collisions with `mirrored' VGA ports |
| * and other strange ISA hardware, so we always want the |
| * addresses to be allocated in the 0x000-0x0ff region |
| * modulo 0x400. |
| * |
| * Why? Because some silly external IO cards only decode |
| * the low 10 bits of the IO address. The 0x00-0xff region |
| * is reserved for motherboard devices that decode all 16 |
| * bits, so it's ok to allocate at, say, 0x2800-0x28ff, |
| * but we want to try to avoid allocating at 0x2900-0x2bff |
| * which might have be mirrored at 0x0100-0x03ff.. |
| */ |
| resource_size_t pcibios_align_resource(void *data, const struct resource *res, |
| resource_size_t size, resource_size_t align) |
| { |
| struct pci_dev *dev = data; |
| resource_size_t start = res->start; |
| |
| if (res->flags & IORESOURCE_IO) { |
| if (skip_isa_ioresource_align(dev)) |
| return start; |
| if (start & 0x300) |
| start = (start + 0x3ff) & ~0x3ff; |
| } |
| |
| return start; |
| } |
| EXPORT_SYMBOL(pcibios_align_resource); |
| |
| /* |
| * Reparent resource children of pr that conflict with res |
| * under res, and make res replace those children. |
| */ |
| static int reparent_resources(struct resource *parent, |
| struct resource *res) |
| { |
| struct resource *p, **pp; |
| struct resource **firstpp = NULL; |
| |
| for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) { |
| if (p->end < res->start) |
| continue; |
| if (res->end < p->start) |
| break; |
| if (p->start < res->start || p->end > res->end) |
| return -1; /* not completely contained */ |
| if (firstpp == NULL) |
| firstpp = pp; |
| } |
| if (firstpp == NULL) |
| return -1; /* didn't find any conflicting entries? */ |
| res->parent = parent; |
| res->child = *firstpp; |
| res->sibling = *pp; |
| *firstpp = res; |
| *pp = NULL; |
| for (p = res->child; p != NULL; p = p->sibling) { |
| p->parent = res; |
| pr_debug("PCI: Reparented %s %pR under %s\n", |
| p->name, p, res->name); |
| } |
| return 0; |
| } |
| |
| /* |
| * Handle resources of PCI devices. If the world were perfect, we could |
| * just allocate all the resource regions and do nothing more. It isn't. |
| * On the other hand, we cannot just re-allocate all devices, as it would |
| * require us to know lots of host bridge internals. So we attempt to |
| * keep as much of the original configuration as possible, but tweak it |
| * when it's found to be wrong. |
| * |
| * Known BIOS problems we have to work around: |
| * - I/O or memory regions not configured |
| * - regions configured, but not enabled in the command register |
| * - bogus I/O addresses above 64K used |
| * - expansion ROMs left enabled (this may sound harmless, but given |
| * the fact the PCI specs explicitly allow address decoders to be |
| * shared between expansion ROMs and other resource regions, it's |
| * at least dangerous) |
| * |
| * Our solution: |
| * (1) Allocate resources for all buses behind PCI-to-PCI bridges. |
| * This gives us fixed barriers on where we can allocate. |
| * (2) Allocate resources for all enabled devices. If there is |
| * a collision, just mark the resource as unallocated. Also |
| * disable expansion ROMs during this step. |
| * (3) Try to allocate resources for disabled devices. If the |
| * resources were assigned correctly, everything goes well, |
| * if they weren't, they won't disturb allocation of other |
| * resources. |
| * (4) Assign new addresses to resources which were either |
| * not configured at all or misconfigured. If explicitly |
| * requested by the user, configure expansion ROM address |
| * as well. |
| */ |
| |
| static void pcibios_allocate_bus_resources(struct pci_bus *bus) |
| { |
| struct pci_bus *b; |
| int i; |
| struct resource *res, *pr; |
| |
| pr_debug("PCI: Allocating bus resources for %04x:%02x...\n", |
| pci_domain_nr(bus), bus->number); |
| |
| pci_bus_for_each_resource(bus, res, i) { |
| if (!res || !res->flags || res->start > res->end || res->parent) |
| continue; |
| |
| /* If the resource was left unset at this point, we clear it */ |
| if (res->flags & IORESOURCE_UNSET) |
| goto clear_resource; |
| |
| if (bus->parent == NULL) |
| pr = (res->flags & IORESOURCE_IO) ? |
| &ioport_resource : &iomem_resource; |
| else { |
| pr = pci_find_parent_resource(bus->self, res); |
| if (pr == res) { |
| /* this happens when the generic PCI |
| * code (wrongly) decides that this |
| * bridge is transparent -- paulus |
| */ |
| continue; |
| } |
| } |
| |
| pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n", |
| bus->self ? pci_name(bus->self) : "PHB", bus->number, |
| i, res, pr, (pr && pr->name) ? pr->name : "nil"); |
| |
| if (pr && !(pr->flags & IORESOURCE_UNSET)) { |
| struct pci_dev *dev = bus->self; |
| |
| if (request_resource(pr, res) == 0) |
| continue; |
| /* |
| * Must be a conflict with an existing entry. |
| * Move that entry (or entries) under the |
| * bridge resource and try again. |
| */ |
| if (reparent_resources(pr, res) == 0) |
| continue; |
| |
| if (dev && i < PCI_BRIDGE_RESOURCE_NUM && |
| pci_claim_bridge_resource(dev, |
| i + PCI_BRIDGE_RESOURCES) == 0) |
| continue; |
| } |
| pr_warn("PCI: Cannot allocate resource region %d of PCI bridge %d, will remap\n", |
| i, bus->number); |
| clear_resource: |
| /* The resource might be figured out when doing |
| * reassignment based on the resources required |
| * by the downstream PCI devices. Here we set |
| * the size of the resource to be 0 in order to |
| * save more space. |
| */ |
| res->start = 0; |
| res->end = -1; |
| res->flags = 0; |
| } |
| |
| list_for_each_entry(b, &bus->children, node) |
| pcibios_allocate_bus_resources(b); |
| } |
| |
| static inline void alloc_resource(struct pci_dev *dev, int idx) |
| { |
| struct resource *pr, *r = &dev->resource[idx]; |
| |
| pr_debug("PCI: Allocating %s: Resource %d: %pR\n", |
| pci_name(dev), idx, r); |
| |
| pr = pci_find_parent_resource(dev, r); |
| if (!pr || (pr->flags & IORESOURCE_UNSET) || |
| request_resource(pr, r) < 0) { |
| printk(KERN_WARNING "PCI: Cannot allocate resource region %d" |
| " of device %s, will remap\n", idx, pci_name(dev)); |
| if (pr) |
| pr_debug("PCI: parent is %p: %pR\n", pr, pr); |
| /* We'll assign a new address later */ |
| r->flags |= IORESOURCE_UNSET; |
| r->end -= r->start; |
| r->start = 0; |
| } |
| } |
| |
| static void __init pcibios_allocate_resources(int pass) |
| { |
| struct pci_dev *dev = NULL; |
| int idx, disabled; |
| u16 command; |
| struct resource *r; |
| |
| for_each_pci_dev(dev) { |
| pci_read_config_word(dev, PCI_COMMAND, &command); |
| for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) { |
| r = &dev->resource[idx]; |
| if (r->parent) /* Already allocated */ |
| continue; |
| if (!r->flags || (r->flags & IORESOURCE_UNSET)) |
| continue; /* Not assigned at all */ |
| /* We only allocate ROMs on pass 1 just in case they |
| * have been screwed up by firmware |
| */ |
| if (idx == PCI_ROM_RESOURCE ) |
| disabled = 1; |
| if (r->flags & IORESOURCE_IO) |
| disabled = !(command & PCI_COMMAND_IO); |
| else |
| disabled = !(command & PCI_COMMAND_MEMORY); |
| if (pass == disabled) |
| alloc_resource(dev, idx); |
| } |
| if (pass) |
| continue; |
| r = &dev->resource[PCI_ROM_RESOURCE]; |
| if (r->flags) { |
| /* Turn the ROM off, leave the resource region, |
| * but keep it unregistered. |
| */ |
| u32 reg; |
| pci_read_config_dword(dev, dev->rom_base_reg, ®); |
| if (reg & PCI_ROM_ADDRESS_ENABLE) { |
| pr_debug("PCI: Switching off ROM of %s\n", |
| pci_name(dev)); |
| r->flags &= ~IORESOURCE_ROM_ENABLE; |
| pci_write_config_dword(dev, dev->rom_base_reg, |
| reg & ~PCI_ROM_ADDRESS_ENABLE); |
| } |
| } |
| } |
| } |
| |
| static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus) |
| { |
| struct pci_controller *hose = pci_bus_to_host(bus); |
| resource_size_t offset; |
| struct resource *res, *pres; |
| int i; |
| |
| pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus)); |
| |
| /* Check for IO */ |
| if (!(hose->io_resource.flags & IORESOURCE_IO)) |
| goto no_io; |
| offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| res = kzalloc(sizeof(struct resource), GFP_KERNEL); |
| BUG_ON(res == NULL); |
| res->name = "Legacy IO"; |
| res->flags = IORESOURCE_IO; |
| res->start = offset; |
| res->end = (offset + 0xfff) & 0xfffffffful; |
| pr_debug("Candidate legacy IO: %pR\n", res); |
| if (request_resource(&hose->io_resource, res)) { |
| printk(KERN_DEBUG |
| "PCI %04x:%02x Cannot reserve Legacy IO %pR\n", |
| pci_domain_nr(bus), bus->number, res); |
| kfree(res); |
| } |
| |
| no_io: |
| /* Check for memory */ |
| for (i = 0; i < 3; i++) { |
| pres = &hose->mem_resources[i]; |
| offset = hose->mem_offset[i]; |
| if (!(pres->flags & IORESOURCE_MEM)) |
| continue; |
| pr_debug("hose mem res: %pR\n", pres); |
| if ((pres->start - offset) <= 0xa0000 && |
| (pres->end - offset) >= 0xbffff) |
| break; |
| } |
| if (i >= 3) |
| return; |
| res = kzalloc(sizeof(struct resource), GFP_KERNEL); |
| BUG_ON(res == NULL); |
| res->name = "Legacy VGA memory"; |
| res->flags = IORESOURCE_MEM; |
| res->start = 0xa0000 + offset; |
| res->end = 0xbffff + offset; |
| pr_debug("Candidate VGA memory: %pR\n", res); |
| if (request_resource(pres, res)) { |
| printk(KERN_DEBUG |
| "PCI %04x:%02x Cannot reserve VGA memory %pR\n", |
| pci_domain_nr(bus), bus->number, res); |
| kfree(res); |
| } |
| } |
| |
| void __init pcibios_resource_survey(void) |
| { |
| struct pci_bus *b; |
| |
| /* Allocate and assign resources */ |
| list_for_each_entry(b, &pci_root_buses, node) |
| pcibios_allocate_bus_resources(b); |
| if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { |
| pcibios_allocate_resources(0); |
| pcibios_allocate_resources(1); |
| } |
| |
| /* Before we start assigning unassigned resource, we try to reserve |
| * the low IO area and the VGA memory area if they intersect the |
| * bus available resources to avoid allocating things on top of them |
| */ |
| if (!pci_has_flag(PCI_PROBE_ONLY)) { |
| list_for_each_entry(b, &pci_root_buses, node) |
| pcibios_reserve_legacy_regions(b); |
| } |
| |
| /* Now, if the platform didn't decide to blindly trust the firmware, |
| * we proceed to assigning things that were left unassigned |
| */ |
| if (!pci_has_flag(PCI_PROBE_ONLY)) { |
| pr_debug("PCI: Assigning unassigned resources...\n"); |
| pci_assign_unassigned_resources(); |
| } |
| } |
| |
| /* This is used by the PCI hotplug driver to allocate resource |
| * of newly plugged busses. We can try to consolidate with the |
| * rest of the code later, for now, keep it as-is as our main |
| * resource allocation function doesn't deal with sub-trees yet. |
| */ |
| void pcibios_claim_one_bus(struct pci_bus *bus) |
| { |
| struct pci_dev *dev; |
| struct pci_bus *child_bus; |
| |
| list_for_each_entry(dev, &bus->devices, bus_list) { |
| struct resource *r; |
| int i; |
| |
| pci_dev_for_each_resource(dev, r, i) { |
| if (r->parent || !r->start || !r->flags) |
| continue; |
| |
| pr_debug("PCI: Claiming %s: Resource %d: %pR\n", |
| pci_name(dev), i, r); |
| |
| if (pci_claim_resource(dev, i) == 0) |
| continue; |
| |
| pci_claim_bridge_resource(dev, i); |
| } |
| } |
| |
| list_for_each_entry(child_bus, &bus->children, node) |
| pcibios_claim_one_bus(child_bus); |
| } |
| EXPORT_SYMBOL_GPL(pcibios_claim_one_bus); |
| |
| |
| /* pcibios_finish_adding_to_bus |
| * |
| * This is to be called by the hotplug code after devices have been |
| * added to a bus, this include calling it for a PHB that is just |
| * being added |
| */ |
| void pcibios_finish_adding_to_bus(struct pci_bus *bus) |
| { |
| pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n", |
| pci_domain_nr(bus), bus->number); |
| |
| /* Allocate bus and devices resources */ |
| pcibios_allocate_bus_resources(bus); |
| pcibios_claim_one_bus(bus); |
| if (!pci_has_flag(PCI_PROBE_ONLY)) { |
| if (bus->self) |
| pci_assign_unassigned_bridge_resources(bus->self); |
| else |
| pci_assign_unassigned_bus_resources(bus); |
| } |
| |
| /* Add new devices to global lists. Register in proc, sysfs. */ |
| pci_bus_add_devices(bus); |
| } |
| EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus); |
| |
| int pcibios_enable_device(struct pci_dev *dev, int mask) |
| { |
| struct pci_controller *phb = pci_bus_to_host(dev->bus); |
| |
| if (phb->controller_ops.enable_device_hook) |
| if (!phb->controller_ops.enable_device_hook(dev)) |
| return -EINVAL; |
| |
| return pci_enable_resources(dev, mask); |
| } |
| |
| void pcibios_disable_device(struct pci_dev *dev) |
| { |
| struct pci_controller *phb = pci_bus_to_host(dev->bus); |
| |
| if (phb->controller_ops.disable_device) |
| phb->controller_ops.disable_device(dev); |
| } |
| |
| resource_size_t pcibios_io_space_offset(struct pci_controller *hose) |
| { |
| return (unsigned long) hose->io_base_virt - _IO_BASE; |
| } |
| |
| static void pcibios_setup_phb_resources(struct pci_controller *hose, |
| struct list_head *resources) |
| { |
| struct resource *res; |
| resource_size_t offset; |
| int i; |
| |
| /* Hookup PHB IO resource */ |
| res = &hose->io_resource; |
| |
| if (!res->flags) { |
| pr_debug("PCI: I/O resource not set for host" |
| " bridge %pOF (domain %d)\n", |
| hose->dn, hose->global_number); |
| } else { |
| offset = pcibios_io_space_offset(hose); |
| |
| pr_debug("PCI: PHB IO resource = %pR off 0x%08llx\n", |
| res, (unsigned long long)offset); |
| pci_add_resource_offset(resources, res, offset); |
| } |
| |
| /* Hookup PHB Memory resources */ |
| for (i = 0; i < 3; ++i) { |
| res = &hose->mem_resources[i]; |
| if (!res->flags) |
| continue; |
| |
| offset = hose->mem_offset[i]; |
| pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i, |
| res, (unsigned long long)offset); |
| |
| pci_add_resource_offset(resources, res, offset); |
| } |
| } |
| |
| /* |
| * Null PCI config access functions, for the case when we can't |
| * find a hose. |
| */ |
| #define NULL_PCI_OP(rw, size, type) \ |
| static int \ |
| null_##rw##_config_##size(struct pci_dev *dev, int offset, type val) \ |
| { \ |
| return PCIBIOS_DEVICE_NOT_FOUND; \ |
| } |
| |
| static int |
| null_read_config(struct pci_bus *bus, unsigned int devfn, int offset, |
| int len, u32 *val) |
| { |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| } |
| |
| static int |
| null_write_config(struct pci_bus *bus, unsigned int devfn, int offset, |
| int len, u32 val) |
| { |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| } |
| |
| static struct pci_ops null_pci_ops = |
| { |
| .read = null_read_config, |
| .write = null_write_config, |
| }; |
| |
| /* |
| * These functions are used early on before PCI scanning is done |
| * and all of the pci_dev and pci_bus structures have been created. |
| */ |
| static struct pci_bus * |
| fake_pci_bus(struct pci_controller *hose, int busnr) |
| { |
| static struct pci_bus bus; |
| |
| if (hose == NULL) { |
| printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr); |
| } |
| bus.number = busnr; |
| bus.sysdata = hose; |
| bus.ops = hose? hose->ops: &null_pci_ops; |
| return &bus; |
| } |
| |
| #define EARLY_PCI_OP(rw, size, type) \ |
| int early_##rw##_config_##size(struct pci_controller *hose, int bus, \ |
| int devfn, int offset, type value) \ |
| { \ |
| return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus), \ |
| devfn, offset, value); \ |
| } |
| |
| EARLY_PCI_OP(read, byte, u8 *) |
| EARLY_PCI_OP(read, word, u16 *) |
| EARLY_PCI_OP(read, dword, u32 *) |
| EARLY_PCI_OP(write, byte, u8) |
| EARLY_PCI_OP(write, word, u16) |
| EARLY_PCI_OP(write, dword, u32) |
| |
| int early_find_capability(struct pci_controller *hose, int bus, int devfn, |
| int cap) |
| { |
| return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap); |
| } |
| |
| struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus) |
| { |
| struct pci_controller *hose = bus->sysdata; |
| |
| return of_node_get(hose->dn); |
| } |
| |
| /** |
| * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus |
| * @hose: Pointer to the PCI host controller instance structure |
| */ |
| void pcibios_scan_phb(struct pci_controller *hose) |
| { |
| LIST_HEAD(resources); |
| struct pci_bus *bus; |
| struct device_node *node = hose->dn; |
| int mode; |
| |
| pr_debug("PCI: Scanning PHB %pOF\n", node); |
| |
| /* Get some IO space for the new PHB */ |
| pcibios_setup_phb_io_space(hose); |
| |
| /* Wire up PHB bus resources */ |
| pcibios_setup_phb_resources(hose, &resources); |
| |
| hose->busn.start = hose->first_busno; |
| hose->busn.end = hose->last_busno; |
| hose->busn.flags = IORESOURCE_BUS; |
| pci_add_resource(&resources, &hose->busn); |
| |
| /* Create an empty bus for the toplevel */ |
| bus = pci_create_root_bus(hose->parent, hose->first_busno, |
| hose->ops, hose, &resources); |
| if (bus == NULL) { |
| pr_err("Failed to create bus for PCI domain %04x\n", |
| hose->global_number); |
| pci_free_resource_list(&resources); |
| return; |
| } |
| hose->bus = bus; |
| |
| /* Get probe mode and perform scan */ |
| mode = PCI_PROBE_NORMAL; |
| if (node && hose->controller_ops.probe_mode) |
| mode = hose->controller_ops.probe_mode(bus); |
| pr_debug(" probe mode: %d\n", mode); |
| if (mode == PCI_PROBE_DEVTREE) |
| of_scan_bus(node, bus); |
| |
| if (mode == PCI_PROBE_NORMAL) { |
| pci_bus_update_busn_res_end(bus, 255); |
| hose->last_busno = pci_scan_child_bus(bus); |
| pci_bus_update_busn_res_end(bus, hose->last_busno); |
| } |
| |
| /* Platform gets a chance to do some global fixups before |
| * we proceed to resource allocation |
| */ |
| if (ppc_md.pcibios_fixup_phb) |
| ppc_md.pcibios_fixup_phb(hose); |
| |
| /* Configure PCI Express settings */ |
| if (bus && !pci_has_flag(PCI_PROBE_ONLY)) { |
| struct pci_bus *child; |
| list_for_each_entry(child, &bus->children, node) |
| pcie_bus_configure_settings(child); |
| } |
| } |
| EXPORT_SYMBOL_GPL(pcibios_scan_phb); |
| |
| static void fixup_hide_host_resource_fsl(struct pci_dev *dev) |
| { |
| int class = dev->class >> 8; |
| /* When configured as agent, programming interface = 1 */ |
| int prog_if = dev->class & 0xf; |
| struct resource *r; |
| |
| if ((class == PCI_CLASS_PROCESSOR_POWERPC || |
| class == PCI_CLASS_BRIDGE_OTHER) && |
| (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) && |
| (prog_if == 0) && |
| (dev->bus->parent == NULL)) { |
| pci_dev_for_each_resource(dev, r) { |
| r->start = 0; |
| r->end = 0; |
| r->flags = 0; |
| } |
| } |
| } |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl); |
| |
| |
| static int __init discover_phbs(void) |
| { |
| if (ppc_md.discover_phbs) |
| ppc_md.discover_phbs(); |
| |
| return 0; |
| } |
| core_initcall(discover_phbs); |