| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * TI K3 Cortex-M4 Remote Processor(s) driver |
| * |
| * Copyright (C) 2021-2024 Texas Instruments Incorporated - https://www.ti.com/ |
| * Hari Nagalla <hnagalla@ti.com> |
| */ |
| |
| #include <linux/io.h> |
| #include <linux/mailbox_client.h> |
| #include <linux/module.h> |
| #include <linux/of_address.h> |
| #include <linux/of_reserved_mem.h> |
| #include <linux/platform_device.h> |
| #include <linux/remoteproc.h> |
| #include <linux/reset.h> |
| #include <linux/slab.h> |
| |
| #include "omap_remoteproc.h" |
| #include "remoteproc_internal.h" |
| #include "ti_sci_proc.h" |
| |
| #define K3_M4_IRAM_DEV_ADDR 0x00000 |
| #define K3_M4_DRAM_DEV_ADDR 0x30000 |
| |
| /** |
| * struct k3_m4_rproc_mem - internal memory structure |
| * @cpu_addr: MPU virtual address of the memory region |
| * @bus_addr: Bus address used to access the memory region |
| * @dev_addr: Device address of the memory region from remote processor view |
| * @size: Size of the memory region |
| */ |
| struct k3_m4_rproc_mem { |
| void __iomem *cpu_addr; |
| phys_addr_t bus_addr; |
| u32 dev_addr; |
| size_t size; |
| }; |
| |
| /** |
| * struct k3_m4_rproc_mem_data - memory definitions for a remote processor |
| * @name: name for this memory entry |
| * @dev_addr: device address for the memory entry |
| */ |
| struct k3_m4_rproc_mem_data { |
| const char *name; |
| const u32 dev_addr; |
| }; |
| |
| /** |
| * struct k3_m4_rproc - k3 remote processor driver structure |
| * @dev: cached device pointer |
| * @mem: internal memory regions data |
| * @num_mems: number of internal memory regions |
| * @rmem: reserved memory regions data |
| * @num_rmems: number of reserved memory regions |
| * @reset: reset control handle |
| * @tsp: TI-SCI processor control handle |
| * @ti_sci: TI-SCI handle |
| * @ti_sci_id: TI-SCI device identifier |
| * @mbox: mailbox channel handle |
| * @client: mailbox client to request the mailbox channel |
| */ |
| struct k3_m4_rproc { |
| struct device *dev; |
| struct k3_m4_rproc_mem *mem; |
| int num_mems; |
| struct k3_m4_rproc_mem *rmem; |
| int num_rmems; |
| struct reset_control *reset; |
| struct ti_sci_proc *tsp; |
| const struct ti_sci_handle *ti_sci; |
| u32 ti_sci_id; |
| struct mbox_chan *mbox; |
| struct mbox_client client; |
| }; |
| |
| /** |
| * k3_m4_rproc_mbox_callback() - inbound mailbox message handler |
| * @client: mailbox client pointer used for requesting the mailbox channel |
| * @data: mailbox payload |
| * |
| * This handler is invoked by the K3 mailbox driver whenever a mailbox |
| * message is received. Usually, the mailbox payload simply contains |
| * the index of the virtqueue that is kicked by the remote processor, |
| * and we let remoteproc core handle it. |
| * |
| * In addition to virtqueue indices, we also have some out-of-band values |
| * that indicate different events. Those values are deliberately very |
| * large so they don't coincide with virtqueue indices. |
| */ |
| static void k3_m4_rproc_mbox_callback(struct mbox_client *client, void *data) |
| { |
| struct device *dev = client->dev; |
| struct rproc *rproc = dev_get_drvdata(dev); |
| u32 msg = (u32)(uintptr_t)(data); |
| |
| dev_dbg(dev, "mbox msg: 0x%x\n", msg); |
| |
| switch (msg) { |
| case RP_MBOX_CRASH: |
| /* |
| * remoteproc detected an exception, but error recovery is not |
| * supported. So, just log this for now |
| */ |
| dev_err(dev, "K3 rproc %s crashed\n", rproc->name); |
| break; |
| case RP_MBOX_ECHO_REPLY: |
| dev_info(dev, "received echo reply from %s\n", rproc->name); |
| break; |
| default: |
| /* silently handle all other valid messages */ |
| if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) |
| return; |
| if (msg > rproc->max_notifyid) { |
| dev_dbg(dev, "dropping unknown message 0x%x", msg); |
| return; |
| } |
| /* msg contains the index of the triggered vring */ |
| if (rproc_vq_interrupt(rproc, msg) == IRQ_NONE) |
| dev_dbg(dev, "no message was found in vqid %d\n", msg); |
| } |
| } |
| |
| /* |
| * Kick the remote processor to notify about pending unprocessed messages. |
| * The vqid usage is not used and is inconsequential, as the kick is performed |
| * through a simulated GPIO (a bit in an IPC interrupt-triggering register), |
| * the remote processor is expected to process both its Tx and Rx virtqueues. |
| */ |
| static void k3_m4_rproc_kick(struct rproc *rproc, int vqid) |
| { |
| struct k3_m4_rproc *kproc = rproc->priv; |
| struct device *dev = kproc->dev; |
| u32 msg = (u32)vqid; |
| int ret; |
| |
| /* |
| * Send the index of the triggered virtqueue in the mailbox payload. |
| * NOTE: msg is cast to uintptr_t to prevent compiler warnings when |
| * void* is 64bit. It is safely cast back to u32 in the mailbox driver. |
| */ |
| ret = mbox_send_message(kproc->mbox, (void *)(uintptr_t)msg); |
| if (ret < 0) |
| dev_err(dev, "failed to send mailbox message, status = %d\n", |
| ret); |
| } |
| |
| static int k3_m4_rproc_ping_mbox(struct k3_m4_rproc *kproc) |
| { |
| struct device *dev = kproc->dev; |
| int ret; |
| |
| /* |
| * Ping the remote processor, this is only for sanity-sake for now; |
| * there is no functional effect whatsoever. |
| * |
| * Note that the reply will _not_ arrive immediately: this message |
| * will wait in the mailbox fifo until the remote processor is booted. |
| */ |
| ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); |
| if (ret < 0) { |
| dev_err(dev, "mbox_send_message failed: %d\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * The M4 cores have a local reset that affects only the CPU, and a |
| * generic module reset that powers on the device and allows the internal |
| * memories to be accessed while the local reset is asserted. This function is |
| * used to release the global reset on remote cores to allow loading into the |
| * internal RAMs. The .prepare() ops is invoked by remoteproc core before any |
| * firmware loading, and is followed by the .start() ops after loading to |
| * actually let the remote cores to run. |
| */ |
| static int k3_m4_rproc_prepare(struct rproc *rproc) |
| { |
| struct k3_m4_rproc *kproc = rproc->priv; |
| struct device *dev = kproc->dev; |
| int ret; |
| |
| /* If the core is running already no need to deassert the module reset */ |
| if (rproc->state == RPROC_DETACHED) |
| return 0; |
| |
| /* |
| * Ensure the local reset is asserted so the core doesn't |
| * execute bogus code when the module reset is released. |
| */ |
| ret = reset_control_assert(kproc->reset); |
| if (ret) { |
| dev_err(dev, "could not assert local reset\n"); |
| return ret; |
| } |
| |
| ret = reset_control_status(kproc->reset); |
| if (ret <= 0) { |
| dev_err(dev, "local reset still not asserted\n"); |
| return ret; |
| } |
| |
| ret = kproc->ti_sci->ops.dev_ops.get_device(kproc->ti_sci, |
| kproc->ti_sci_id); |
| if (ret) { |
| dev_err(dev, "could not deassert module-reset for internal RAM loading\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * This function implements the .unprepare() ops and performs the complimentary |
| * operations to that of the .prepare() ops. The function is used to assert the |
| * global reset on applicable cores. This completes the second portion of |
| * powering down the remote core. The cores themselves are only halted in the |
| * .stop() callback through the local reset, and the .unprepare() ops is invoked |
| * by the remoteproc core after the remoteproc is stopped to balance the global |
| * reset. |
| */ |
| static int k3_m4_rproc_unprepare(struct rproc *rproc) |
| { |
| struct k3_m4_rproc *kproc = rproc->priv; |
| struct device *dev = kproc->dev; |
| int ret; |
| |
| /* If the core is going to be detached do not assert the module reset */ |
| if (rproc->state == RPROC_ATTACHED) |
| return 0; |
| |
| ret = kproc->ti_sci->ops.dev_ops.put_device(kproc->ti_sci, |
| kproc->ti_sci_id); |
| if (ret) { |
| dev_err(dev, "module-reset assert failed\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * This function implements the .get_loaded_rsc_table() callback and is used |
| * to provide the resource table for a booted remote processor in IPC-only |
| * mode. The remote processor firmwares follow a design-by-contract approach |
| * and are expected to have the resource table at the base of the DDR region |
| * reserved for firmware usage. This provides flexibility for the remote |
| * processor to be booted by different bootloaders that may or may not have the |
| * ability to publish the resource table address and size through a DT |
| * property. |
| */ |
| static struct resource_table *k3_m4_get_loaded_rsc_table(struct rproc *rproc, |
| size_t *rsc_table_sz) |
| { |
| struct k3_m4_rproc *kproc = rproc->priv; |
| struct device *dev = kproc->dev; |
| |
| if (!kproc->rmem[0].cpu_addr) { |
| dev_err(dev, "memory-region #1 does not exist, loaded rsc table can't be found"); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* |
| * NOTE: The resource table size is currently hard-coded to a maximum |
| * of 256 bytes. The most common resource table usage for K3 firmwares |
| * is to only have the vdev resource entry and an optional trace entry. |
| * The exact size could be computed based on resource table address, but |
| * the hard-coded value suffices to support the IPC-only mode. |
| */ |
| *rsc_table_sz = 256; |
| return (__force struct resource_table *)kproc->rmem[0].cpu_addr; |
| } |
| |
| /* |
| * Custom function to translate a remote processor device address (internal |
| * RAMs only) to a kernel virtual address. The remote processors can access |
| * their RAMs at either an internal address visible only from a remote |
| * processor, or at the SoC-level bus address. Both these addresses need to be |
| * looked through for translation. The translated addresses can be used either |
| * by the remoteproc core for loading (when using kernel remoteproc loader), or |
| * by any rpmsg bus drivers. |
| */ |
| static void *k3_m4_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) |
| { |
| struct k3_m4_rproc *kproc = rproc->priv; |
| void __iomem *va = NULL; |
| phys_addr_t bus_addr; |
| u32 dev_addr, offset; |
| size_t size; |
| int i; |
| |
| if (len == 0) |
| return NULL; |
| |
| for (i = 0; i < kproc->num_mems; i++) { |
| bus_addr = kproc->mem[i].bus_addr; |
| dev_addr = kproc->mem[i].dev_addr; |
| size = kproc->mem[i].size; |
| |
| /* handle M4-view addresses */ |
| if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { |
| offset = da - dev_addr; |
| va = kproc->mem[i].cpu_addr + offset; |
| return (__force void *)va; |
| } |
| |
| /* handle SoC-view addresses */ |
| if (da >= bus_addr && ((da + len) <= (bus_addr + size))) { |
| offset = da - bus_addr; |
| va = kproc->mem[i].cpu_addr + offset; |
| return (__force void *)va; |
| } |
| } |
| |
| /* handle static DDR reserved memory regions */ |
| for (i = 0; i < kproc->num_rmems; i++) { |
| dev_addr = kproc->rmem[i].dev_addr; |
| size = kproc->rmem[i].size; |
| |
| if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { |
| offset = da - dev_addr; |
| va = kproc->rmem[i].cpu_addr + offset; |
| return (__force void *)va; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static int k3_m4_rproc_of_get_memories(struct platform_device *pdev, |
| struct k3_m4_rproc *kproc) |
| { |
| static const char * const mem_names[] = { "iram", "dram" }; |
| static const u32 mem_addrs[] = { K3_M4_IRAM_DEV_ADDR, K3_M4_DRAM_DEV_ADDR }; |
| struct device *dev = &pdev->dev; |
| struct resource *res; |
| int num_mems; |
| int i; |
| |
| num_mems = ARRAY_SIZE(mem_names); |
| kproc->mem = devm_kcalloc(kproc->dev, num_mems, |
| sizeof(*kproc->mem), GFP_KERNEL); |
| if (!kproc->mem) |
| return -ENOMEM; |
| |
| for (i = 0; i < num_mems; i++) { |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, |
| mem_names[i]); |
| if (!res) { |
| dev_err(dev, "found no memory resource for %s\n", |
| mem_names[i]); |
| return -EINVAL; |
| } |
| if (!devm_request_mem_region(dev, res->start, |
| resource_size(res), |
| dev_name(dev))) { |
| dev_err(dev, "could not request %s region for resource\n", |
| mem_names[i]); |
| return -EBUSY; |
| } |
| |
| kproc->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, |
| resource_size(res)); |
| if (!kproc->mem[i].cpu_addr) { |
| dev_err(dev, "failed to map %s memory\n", |
| mem_names[i]); |
| return -ENOMEM; |
| } |
| kproc->mem[i].bus_addr = res->start; |
| kproc->mem[i].dev_addr = mem_addrs[i]; |
| kproc->mem[i].size = resource_size(res); |
| |
| dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %pK da 0x%x\n", |
| mem_names[i], &kproc->mem[i].bus_addr, |
| kproc->mem[i].size, kproc->mem[i].cpu_addr, |
| kproc->mem[i].dev_addr); |
| } |
| kproc->num_mems = num_mems; |
| |
| return 0; |
| } |
| |
| static void k3_m4_rproc_dev_mem_release(void *data) |
| { |
| struct device *dev = data; |
| |
| of_reserved_mem_device_release(dev); |
| } |
| |
| static int k3_m4_reserved_mem_init(struct k3_m4_rproc *kproc) |
| { |
| struct device *dev = kproc->dev; |
| struct device_node *np = dev->of_node; |
| struct device_node *rmem_np; |
| struct reserved_mem *rmem; |
| int num_rmems; |
| int ret, i; |
| |
| num_rmems = of_property_count_elems_of_size(np, "memory-region", |
| sizeof(phandle)); |
| if (num_rmems < 0) { |
| dev_err(dev, "device does not reserved memory regions (%d)\n", |
| num_rmems); |
| return -EINVAL; |
| } |
| if (num_rmems < 2) { |
| dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n", |
| num_rmems); |
| return -EINVAL; |
| } |
| |
| /* use reserved memory region 0 for vring DMA allocations */ |
| ret = of_reserved_mem_device_init_by_idx(dev, np, 0); |
| if (ret) { |
| dev_err(dev, "device cannot initialize DMA pool (%d)\n", ret); |
| return ret; |
| } |
| ret = devm_add_action_or_reset(dev, k3_m4_rproc_dev_mem_release, dev); |
| if (ret) |
| return ret; |
| |
| num_rmems--; |
| kproc->rmem = devm_kcalloc(dev, num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); |
| if (!kproc->rmem) |
| return -ENOMEM; |
| |
| /* use remaining reserved memory regions for static carveouts */ |
| for (i = 0; i < num_rmems; i++) { |
| rmem_np = of_parse_phandle(np, "memory-region", i + 1); |
| if (!rmem_np) |
| return -EINVAL; |
| |
| rmem = of_reserved_mem_lookup(rmem_np); |
| if (!rmem) { |
| of_node_put(rmem_np); |
| return -EINVAL; |
| } |
| of_node_put(rmem_np); |
| |
| kproc->rmem[i].bus_addr = rmem->base; |
| /* 64-bit address regions currently not supported */ |
| kproc->rmem[i].dev_addr = (u32)rmem->base; |
| kproc->rmem[i].size = rmem->size; |
| kproc->rmem[i].cpu_addr = devm_ioremap_wc(dev, rmem->base, rmem->size); |
| if (!kproc->rmem[i].cpu_addr) { |
| dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", |
| i + 1, &rmem->base, &rmem->size); |
| return -ENOMEM; |
| } |
| |
| dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", |
| i + 1, &kproc->rmem[i].bus_addr, |
| kproc->rmem[i].size, kproc->rmem[i].cpu_addr, |
| kproc->rmem[i].dev_addr); |
| } |
| kproc->num_rmems = num_rmems; |
| |
| return 0; |
| } |
| |
| static void k3_m4_release_tsp(void *data) |
| { |
| struct ti_sci_proc *tsp = data; |
| |
| ti_sci_proc_release(tsp); |
| } |
| |
| /* |
| * Power up the M4 remote processor. |
| * |
| * This function will be invoked only after the firmware for this rproc |
| * was loaded, parsed successfully, and all of its resource requirements |
| * were met. This callback is invoked only in remoteproc mode. |
| */ |
| static int k3_m4_rproc_start(struct rproc *rproc) |
| { |
| struct k3_m4_rproc *kproc = rproc->priv; |
| struct device *dev = kproc->dev; |
| int ret; |
| |
| ret = k3_m4_rproc_ping_mbox(kproc); |
| if (ret) |
| return ret; |
| |
| ret = reset_control_deassert(kproc->reset); |
| if (ret) { |
| dev_err(dev, "local-reset deassert failed, ret = %d\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Stop the M4 remote processor. |
| * |
| * This function puts the M4 processor into reset, and finishes processing |
| * of any pending messages. This callback is invoked only in remoteproc mode. |
| */ |
| static int k3_m4_rproc_stop(struct rproc *rproc) |
| { |
| struct k3_m4_rproc *kproc = rproc->priv; |
| struct device *dev = kproc->dev; |
| int ret; |
| |
| ret = reset_control_assert(kproc->reset); |
| if (ret) { |
| dev_err(dev, "local-reset assert failed, ret = %d\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Attach to a running M4 remote processor (IPC-only mode) |
| * |
| * The remote processor is already booted, so there is no need to issue any |
| * TI-SCI commands to boot the M4 core. This callback is used only in IPC-only |
| * mode. |
| */ |
| static int k3_m4_rproc_attach(struct rproc *rproc) |
| { |
| struct k3_m4_rproc *kproc = rproc->priv; |
| int ret; |
| |
| ret = k3_m4_rproc_ping_mbox(kproc); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| /* |
| * Detach from a running M4 remote processor (IPC-only mode) |
| * |
| * This rproc detach callback performs the opposite operation to attach |
| * callback, the M4 core is not stopped and will be left to continue to |
| * run its booted firmware. This callback is invoked only in IPC-only mode. |
| */ |
| static int k3_m4_rproc_detach(struct rproc *rproc) |
| { |
| return 0; |
| } |
| |
| static const struct rproc_ops k3_m4_rproc_ops = { |
| .prepare = k3_m4_rproc_prepare, |
| .unprepare = k3_m4_rproc_unprepare, |
| .start = k3_m4_rproc_start, |
| .stop = k3_m4_rproc_stop, |
| .attach = k3_m4_rproc_attach, |
| .detach = k3_m4_rproc_detach, |
| .kick = k3_m4_rproc_kick, |
| .da_to_va = k3_m4_rproc_da_to_va, |
| .get_loaded_rsc_table = k3_m4_get_loaded_rsc_table, |
| }; |
| |
| static int k3_m4_rproc_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct k3_m4_rproc *kproc; |
| struct rproc *rproc; |
| const char *fw_name; |
| bool r_state = false; |
| bool p_state = false; |
| int ret; |
| |
| ret = rproc_of_parse_firmware(dev, 0, &fw_name); |
| if (ret) |
| return dev_err_probe(dev, ret, "failed to parse firmware-name property\n"); |
| |
| rproc = devm_rproc_alloc(dev, dev_name(dev), &k3_m4_rproc_ops, fw_name, |
| sizeof(*kproc)); |
| if (!rproc) |
| return -ENOMEM; |
| |
| rproc->has_iommu = false; |
| rproc->recovery_disabled = true; |
| kproc = rproc->priv; |
| kproc->dev = dev; |
| platform_set_drvdata(pdev, rproc); |
| |
| kproc->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci"); |
| if (IS_ERR(kproc->ti_sci)) |
| return dev_err_probe(dev, PTR_ERR(kproc->ti_sci), |
| "failed to get ti-sci handle\n"); |
| |
| ret = of_property_read_u32(dev->of_node, "ti,sci-dev-id", &kproc->ti_sci_id); |
| if (ret) |
| return dev_err_probe(dev, ret, "missing 'ti,sci-dev-id' property\n"); |
| |
| kproc->reset = devm_reset_control_get_exclusive(dev, NULL); |
| if (IS_ERR(kproc->reset)) |
| return dev_err_probe(dev, PTR_ERR(kproc->reset), "failed to get reset\n"); |
| |
| kproc->tsp = ti_sci_proc_of_get_tsp(dev, kproc->ti_sci); |
| if (IS_ERR(kproc->tsp)) |
| return dev_err_probe(dev, PTR_ERR(kproc->tsp), |
| "failed to construct ti-sci proc control\n"); |
| |
| ret = ti_sci_proc_request(kproc->tsp); |
| if (ret < 0) |
| return dev_err_probe(dev, ret, "ti_sci_proc_request failed\n"); |
| ret = devm_add_action_or_reset(dev, k3_m4_release_tsp, kproc->tsp); |
| if (ret) |
| return ret; |
| |
| ret = k3_m4_rproc_of_get_memories(pdev, kproc); |
| if (ret) |
| return ret; |
| |
| ret = k3_m4_reserved_mem_init(kproc); |
| if (ret) |
| return dev_err_probe(dev, ret, "reserved memory init failed\n"); |
| |
| ret = kproc->ti_sci->ops.dev_ops.is_on(kproc->ti_sci, kproc->ti_sci_id, |
| &r_state, &p_state); |
| if (ret) |
| return dev_err_probe(dev, ret, |
| "failed to get initial state, mode cannot be determined\n"); |
| |
| /* configure devices for either remoteproc or IPC-only mode */ |
| if (p_state) { |
| rproc->state = RPROC_DETACHED; |
| dev_info(dev, "configured M4F for IPC-only mode\n"); |
| } else { |
| dev_info(dev, "configured M4F for remoteproc mode\n"); |
| } |
| |
| kproc->client.dev = dev; |
| kproc->client.tx_done = NULL; |
| kproc->client.rx_callback = k3_m4_rproc_mbox_callback; |
| kproc->client.tx_block = false; |
| kproc->client.knows_txdone = false; |
| kproc->mbox = mbox_request_channel(&kproc->client, 0); |
| if (IS_ERR(kproc->mbox)) |
| return dev_err_probe(dev, PTR_ERR(kproc->mbox), |
| "mbox_request_channel failed\n"); |
| |
| ret = devm_rproc_add(dev, rproc); |
| if (ret) |
| return dev_err_probe(dev, ret, |
| "failed to register device with remoteproc core\n"); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id k3_m4_of_match[] = { |
| { .compatible = "ti,am64-m4fss", }, |
| { /* sentinel */ }, |
| }; |
| MODULE_DEVICE_TABLE(of, k3_m4_of_match); |
| |
| static struct platform_driver k3_m4_rproc_driver = { |
| .probe = k3_m4_rproc_probe, |
| .driver = { |
| .name = "k3-m4-rproc", |
| .of_match_table = k3_m4_of_match, |
| }, |
| }; |
| module_platform_driver(k3_m4_rproc_driver); |
| |
| MODULE_AUTHOR("Hari Nagalla <hnagalla@ti.com>"); |
| MODULE_DESCRIPTION("TI K3 M4 Remoteproc driver"); |
| MODULE_LICENSE("GPL"); |