| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* In-software asymmetric public-key crypto subtype |
| * |
| * See Documentation/crypto/asymmetric-keys.rst |
| * |
| * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| */ |
| |
| #define pr_fmt(fmt) "PKEY: "fmt |
| #include <crypto/akcipher.h> |
| #include <crypto/public_key.h> |
| #include <crypto/sig.h> |
| #include <keys/asymmetric-subtype.h> |
| #include <linux/asn1.h> |
| #include <linux/err.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/seq_file.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| |
| MODULE_DESCRIPTION("In-software asymmetric public-key subtype"); |
| MODULE_AUTHOR("Red Hat, Inc."); |
| MODULE_LICENSE("GPL"); |
| |
| /* |
| * Provide a part of a description of the key for /proc/keys. |
| */ |
| static void public_key_describe(const struct key *asymmetric_key, |
| struct seq_file *m) |
| { |
| struct public_key *key = asymmetric_key->payload.data[asym_crypto]; |
| |
| if (key) |
| seq_printf(m, "%s.%s", key->id_type, key->pkey_algo); |
| } |
| |
| /* |
| * Destroy a public key algorithm key. |
| */ |
| void public_key_free(struct public_key *key) |
| { |
| if (key) { |
| kfree_sensitive(key->key); |
| kfree(key->params); |
| kfree(key); |
| } |
| } |
| EXPORT_SYMBOL_GPL(public_key_free); |
| |
| /* |
| * Destroy a public key algorithm key. |
| */ |
| static void public_key_destroy(void *payload0, void *payload3) |
| { |
| public_key_free(payload0); |
| public_key_signature_free(payload3); |
| } |
| |
| /* |
| * Given a public_key, and an encoding and hash_algo to be used for signing |
| * and/or verification with that key, determine the name of the corresponding |
| * akcipher algorithm. Also check that encoding and hash_algo are allowed. |
| */ |
| static int |
| software_key_determine_akcipher(const struct public_key *pkey, |
| const char *encoding, const char *hash_algo, |
| char alg_name[CRYPTO_MAX_ALG_NAME], bool *sig, |
| enum kernel_pkey_operation op) |
| { |
| int n; |
| |
| *sig = true; |
| |
| if (!encoding) |
| return -EINVAL; |
| |
| if (strcmp(pkey->pkey_algo, "rsa") == 0) { |
| /* |
| * RSA signatures usually use EMSA-PKCS1-1_5 [RFC3447 sec 8.2]. |
| */ |
| if (strcmp(encoding, "pkcs1") == 0) { |
| *sig = op == kernel_pkey_sign || |
| op == kernel_pkey_verify; |
| if (!hash_algo) { |
| n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME, |
| "pkcs1pad(%s)", |
| pkey->pkey_algo); |
| } else { |
| n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME, |
| "pkcs1pad(%s,%s)", |
| pkey->pkey_algo, hash_algo); |
| } |
| return n >= CRYPTO_MAX_ALG_NAME ? -EINVAL : 0; |
| } |
| if (strcmp(encoding, "raw") != 0) |
| return -EINVAL; |
| /* |
| * Raw RSA cannot differentiate between different hash |
| * algorithms. |
| */ |
| if (hash_algo) |
| return -EINVAL; |
| *sig = false; |
| } else if (strncmp(pkey->pkey_algo, "ecdsa", 5) == 0) { |
| if (strcmp(encoding, "x962") != 0) |
| return -EINVAL; |
| /* |
| * ECDSA signatures are taken over a raw hash, so they don't |
| * differentiate between different hash algorithms. That means |
| * that the verifier should hard-code a specific hash algorithm. |
| * Unfortunately, in practice ECDSA is used with multiple SHAs, |
| * so we have to allow all of them and not just one. |
| */ |
| if (!hash_algo) |
| return -EINVAL; |
| if (strcmp(hash_algo, "sha1") != 0 && |
| strcmp(hash_algo, "sha224") != 0 && |
| strcmp(hash_algo, "sha256") != 0 && |
| strcmp(hash_algo, "sha384") != 0 && |
| strcmp(hash_algo, "sha512") != 0 && |
| strcmp(hash_algo, "sha3-256") != 0 && |
| strcmp(hash_algo, "sha3-384") != 0 && |
| strcmp(hash_algo, "sha3-512") != 0) |
| return -EINVAL; |
| } else if (strcmp(pkey->pkey_algo, "ecrdsa") == 0) { |
| if (strcmp(encoding, "raw") != 0) |
| return -EINVAL; |
| if (!hash_algo) |
| return -EINVAL; |
| if (strcmp(hash_algo, "streebog256") != 0 && |
| strcmp(hash_algo, "streebog512") != 0) |
| return -EINVAL; |
| } else { |
| /* Unknown public key algorithm */ |
| return -ENOPKG; |
| } |
| if (strscpy(alg_name, pkey->pkey_algo, CRYPTO_MAX_ALG_NAME) < 0) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static u8 *pkey_pack_u32(u8 *dst, u32 val) |
| { |
| memcpy(dst, &val, sizeof(val)); |
| return dst + sizeof(val); |
| } |
| |
| /* |
| * Query information about a key. |
| */ |
| static int software_key_query(const struct kernel_pkey_params *params, |
| struct kernel_pkey_query *info) |
| { |
| struct crypto_akcipher *tfm; |
| struct public_key *pkey = params->key->payload.data[asym_crypto]; |
| char alg_name[CRYPTO_MAX_ALG_NAME]; |
| struct crypto_sig *sig; |
| u8 *key, *ptr; |
| int ret, len; |
| bool issig; |
| |
| ret = software_key_determine_akcipher(pkey, params->encoding, |
| params->hash_algo, alg_name, |
| &issig, kernel_pkey_sign); |
| if (ret < 0) |
| return ret; |
| |
| key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen, |
| GFP_KERNEL); |
| if (!key) |
| return -ENOMEM; |
| |
| memcpy(key, pkey->key, pkey->keylen); |
| ptr = key + pkey->keylen; |
| ptr = pkey_pack_u32(ptr, pkey->algo); |
| ptr = pkey_pack_u32(ptr, pkey->paramlen); |
| memcpy(ptr, pkey->params, pkey->paramlen); |
| |
| if (issig) { |
| sig = crypto_alloc_sig(alg_name, 0, 0); |
| if (IS_ERR(sig)) { |
| ret = PTR_ERR(sig); |
| goto error_free_key; |
| } |
| |
| if (pkey->key_is_private) |
| ret = crypto_sig_set_privkey(sig, key, pkey->keylen); |
| else |
| ret = crypto_sig_set_pubkey(sig, key, pkey->keylen); |
| if (ret < 0) |
| goto error_free_tfm; |
| |
| len = crypto_sig_maxsize(sig); |
| |
| info->supported_ops = KEYCTL_SUPPORTS_VERIFY; |
| if (pkey->key_is_private) |
| info->supported_ops |= KEYCTL_SUPPORTS_SIGN; |
| |
| if (strcmp(params->encoding, "pkcs1") == 0) { |
| info->supported_ops |= KEYCTL_SUPPORTS_ENCRYPT; |
| if (pkey->key_is_private) |
| info->supported_ops |= KEYCTL_SUPPORTS_DECRYPT; |
| } |
| } else { |
| tfm = crypto_alloc_akcipher(alg_name, 0, 0); |
| if (IS_ERR(tfm)) { |
| ret = PTR_ERR(tfm); |
| goto error_free_key; |
| } |
| |
| if (pkey->key_is_private) |
| ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen); |
| else |
| ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen); |
| if (ret < 0) |
| goto error_free_tfm; |
| |
| len = crypto_akcipher_maxsize(tfm); |
| |
| info->supported_ops = KEYCTL_SUPPORTS_ENCRYPT; |
| if (pkey->key_is_private) |
| info->supported_ops |= KEYCTL_SUPPORTS_DECRYPT; |
| } |
| |
| info->key_size = len * 8; |
| |
| if (strncmp(pkey->pkey_algo, "ecdsa", 5) == 0) { |
| int slen = len; |
| /* |
| * ECDSA key sizes are much smaller than RSA, and thus could |
| * operate on (hashed) inputs that are larger than key size. |
| * For example SHA384-hashed input used with secp256r1 |
| * based keys. Set max_data_size to be at least as large as |
| * the largest supported hash size (SHA512) |
| */ |
| info->max_data_size = 64; |
| |
| /* |
| * Verify takes ECDSA-Sig (described in RFC 5480) as input, |
| * which is actually 2 'key_size'-bit integers encoded in |
| * ASN.1. Account for the ASN.1 encoding overhead here. |
| * |
| * NIST P192/256/384 may prepend a '0' to a coordinate to |
| * indicate a positive integer. NIST P521 never needs it. |
| */ |
| if (strcmp(pkey->pkey_algo, "ecdsa-nist-p521") != 0) |
| slen += 1; |
| /* Length of encoding the x & y coordinates */ |
| slen = 2 * (slen + 2); |
| /* |
| * If coordinate encoding takes at least 128 bytes then an |
| * additional byte for length encoding is needed. |
| */ |
| info->max_sig_size = 1 + (slen >= 128) + 1 + slen; |
| } else { |
| info->max_data_size = len; |
| info->max_sig_size = len; |
| } |
| |
| info->max_enc_size = len; |
| info->max_dec_size = len; |
| |
| ret = 0; |
| |
| error_free_tfm: |
| if (issig) |
| crypto_free_sig(sig); |
| else |
| crypto_free_akcipher(tfm); |
| error_free_key: |
| kfree_sensitive(key); |
| pr_devel("<==%s() = %d\n", __func__, ret); |
| return ret; |
| } |
| |
| /* |
| * Do encryption, decryption and signing ops. |
| */ |
| static int software_key_eds_op(struct kernel_pkey_params *params, |
| const void *in, void *out) |
| { |
| const struct public_key *pkey = params->key->payload.data[asym_crypto]; |
| char alg_name[CRYPTO_MAX_ALG_NAME]; |
| struct crypto_akcipher *tfm; |
| struct crypto_sig *sig; |
| char *key, *ptr; |
| bool issig; |
| int ksz; |
| int ret; |
| |
| pr_devel("==>%s()\n", __func__); |
| |
| ret = software_key_determine_akcipher(pkey, params->encoding, |
| params->hash_algo, alg_name, |
| &issig, params->op); |
| if (ret < 0) |
| return ret; |
| |
| key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen, |
| GFP_KERNEL); |
| if (!key) |
| return -ENOMEM; |
| |
| memcpy(key, pkey->key, pkey->keylen); |
| ptr = key + pkey->keylen; |
| ptr = pkey_pack_u32(ptr, pkey->algo); |
| ptr = pkey_pack_u32(ptr, pkey->paramlen); |
| memcpy(ptr, pkey->params, pkey->paramlen); |
| |
| if (issig) { |
| sig = crypto_alloc_sig(alg_name, 0, 0); |
| if (IS_ERR(sig)) { |
| ret = PTR_ERR(sig); |
| goto error_free_key; |
| } |
| |
| if (pkey->key_is_private) |
| ret = crypto_sig_set_privkey(sig, key, pkey->keylen); |
| else |
| ret = crypto_sig_set_pubkey(sig, key, pkey->keylen); |
| if (ret) |
| goto error_free_tfm; |
| |
| ksz = crypto_sig_maxsize(sig); |
| } else { |
| tfm = crypto_alloc_akcipher(alg_name, 0, 0); |
| if (IS_ERR(tfm)) { |
| ret = PTR_ERR(tfm); |
| goto error_free_key; |
| } |
| |
| if (pkey->key_is_private) |
| ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen); |
| else |
| ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen); |
| if (ret) |
| goto error_free_tfm; |
| |
| ksz = crypto_akcipher_maxsize(tfm); |
| } |
| |
| ret = -EINVAL; |
| |
| /* Perform the encryption calculation. */ |
| switch (params->op) { |
| case kernel_pkey_encrypt: |
| if (issig) |
| break; |
| ret = crypto_akcipher_sync_encrypt(tfm, in, params->in_len, |
| out, params->out_len); |
| break; |
| case kernel_pkey_decrypt: |
| if (issig) |
| break; |
| ret = crypto_akcipher_sync_decrypt(tfm, in, params->in_len, |
| out, params->out_len); |
| break; |
| case kernel_pkey_sign: |
| if (!issig) |
| break; |
| ret = crypto_sig_sign(sig, in, params->in_len, |
| out, params->out_len); |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (ret == 0) |
| ret = ksz; |
| |
| error_free_tfm: |
| if (issig) |
| crypto_free_sig(sig); |
| else |
| crypto_free_akcipher(tfm); |
| error_free_key: |
| kfree_sensitive(key); |
| pr_devel("<==%s() = %d\n", __func__, ret); |
| return ret; |
| } |
| |
| /* |
| * Verify a signature using a public key. |
| */ |
| int public_key_verify_signature(const struct public_key *pkey, |
| const struct public_key_signature *sig) |
| { |
| char alg_name[CRYPTO_MAX_ALG_NAME]; |
| struct crypto_sig *tfm; |
| char *key, *ptr; |
| bool issig; |
| int ret; |
| |
| pr_devel("==>%s()\n", __func__); |
| |
| BUG_ON(!pkey); |
| BUG_ON(!sig); |
| BUG_ON(!sig->s); |
| |
| /* |
| * If the signature specifies a public key algorithm, it *must* match |
| * the key's actual public key algorithm. |
| * |
| * Small exception: ECDSA signatures don't specify the curve, but ECDSA |
| * keys do. So the strings can mismatch slightly in that case: |
| * "ecdsa-nist-*" for the key, but "ecdsa" for the signature. |
| */ |
| if (sig->pkey_algo) { |
| if (strcmp(pkey->pkey_algo, sig->pkey_algo) != 0 && |
| (strncmp(pkey->pkey_algo, "ecdsa-", 6) != 0 || |
| strcmp(sig->pkey_algo, "ecdsa") != 0)) |
| return -EKEYREJECTED; |
| } |
| |
| ret = software_key_determine_akcipher(pkey, sig->encoding, |
| sig->hash_algo, alg_name, |
| &issig, kernel_pkey_verify); |
| if (ret < 0) |
| return ret; |
| |
| tfm = crypto_alloc_sig(alg_name, 0, 0); |
| if (IS_ERR(tfm)) |
| return PTR_ERR(tfm); |
| |
| key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen, |
| GFP_KERNEL); |
| if (!key) { |
| ret = -ENOMEM; |
| goto error_free_tfm; |
| } |
| |
| memcpy(key, pkey->key, pkey->keylen); |
| ptr = key + pkey->keylen; |
| ptr = pkey_pack_u32(ptr, pkey->algo); |
| ptr = pkey_pack_u32(ptr, pkey->paramlen); |
| memcpy(ptr, pkey->params, pkey->paramlen); |
| |
| if (pkey->key_is_private) |
| ret = crypto_sig_set_privkey(tfm, key, pkey->keylen); |
| else |
| ret = crypto_sig_set_pubkey(tfm, key, pkey->keylen); |
| if (ret) |
| goto error_free_key; |
| |
| ret = crypto_sig_verify(tfm, sig->s, sig->s_size, |
| sig->digest, sig->digest_size); |
| |
| error_free_key: |
| kfree_sensitive(key); |
| error_free_tfm: |
| crypto_free_sig(tfm); |
| pr_devel("<==%s() = %d\n", __func__, ret); |
| if (WARN_ON_ONCE(ret > 0)) |
| ret = -EINVAL; |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(public_key_verify_signature); |
| |
| static int public_key_verify_signature_2(const struct key *key, |
| const struct public_key_signature *sig) |
| { |
| const struct public_key *pk = key->payload.data[asym_crypto]; |
| return public_key_verify_signature(pk, sig); |
| } |
| |
| /* |
| * Public key algorithm asymmetric key subtype |
| */ |
| struct asymmetric_key_subtype public_key_subtype = { |
| .owner = THIS_MODULE, |
| .name = "public_key", |
| .name_len = sizeof("public_key") - 1, |
| .describe = public_key_describe, |
| .destroy = public_key_destroy, |
| .query = software_key_query, |
| .eds_op = software_key_eds_op, |
| .verify_signature = public_key_verify_signature_2, |
| }; |
| EXPORT_SYMBOL_GPL(public_key_subtype); |