security: Fix setting of PF_SUPERPRIV by __capable()
Fix the setting of PF_SUPERPRIV by __capable() as it could corrupt the flags
the target process if that is not the current process and it is trying to
change its own flags in a different way at the same time.
__capable() is using neither atomic ops nor locking to protect t->flags. This
patch removes __capable() and introduces has_capability() that doesn't set
PF_SUPERPRIV on the process being queried.
This patch further splits security_ptrace() in two:
(1) security_ptrace_may_access(). This passes judgement on whether one
process may access another only (PTRACE_MODE_ATTACH for ptrace() and
PTRACE_MODE_READ for /proc), and takes a pointer to the child process.
current is the parent.
(2) security_ptrace_traceme(). This passes judgement on PTRACE_TRACEME only,
and takes only a pointer to the parent process. current is the child.
In Smack and commoncap, this uses has_capability() to determine whether
the parent will be permitted to use PTRACE_ATTACH if normal checks fail.
This does not set PF_SUPERPRIV.
Two of the instances of __capable() actually only act on current, and so have
been changed to calls to capable().
Of the places that were using __capable():
(1) The OOM killer calls __capable() thrice when weighing the killability of a
process. All of these now use has_capability().
(2) cap_ptrace() and smack_ptrace() were using __capable() to check to see
whether the parent was allowed to trace any process. As mentioned above,
these have been split. For PTRACE_ATTACH and /proc, capable() is now
used, and for PTRACE_TRACEME, has_capability() is used.
(3) cap_safe_nice() only ever saw current, so now uses capable().
(4) smack_setprocattr() rejected accesses to tasks other than current just
after calling __capable(), so the order of these two tests have been
switched and capable() is used instead.
(5) In smack_file_send_sigiotask(), we need to allow privileged processes to
receive SIGIO on files they're manipulating.
(6) In smack_task_wait(), we let a process wait for a privileged process,
whether or not the process doing the waiting is privileged.
I've tested this with the LTP SELinux and syscalls testscripts.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Acked-by: Andrew G. Morgan <morgan@kernel.org>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: James Morris <jmorris@namei.org>
diff --git a/kernel/capability.c b/kernel/capability.c
index 0101e84..33e51e7 100644
--- a/kernel/capability.c
+++ b/kernel/capability.c
@@ -486,17 +486,22 @@
return ret;
}
-int __capable(struct task_struct *t, int cap)
+/**
+ * capable - Determine if the current task has a superior capability in effect
+ * @cap: The capability to be tested for
+ *
+ * Return true if the current task has the given superior capability currently
+ * available for use, false if not.
+ *
+ * This sets PF_SUPERPRIV on the task if the capability is available on the
+ * assumption that it's about to be used.
+ */
+int capable(int cap)
{
- if (security_capable(t, cap) == 0) {
- t->flags |= PF_SUPERPRIV;
+ if (has_capability(current, cap)) {
+ current->flags |= PF_SUPERPRIV;
return 1;
}
return 0;
}
-
-int capable(int cap)
-{
- return __capable(current, cap);
-}
EXPORT_SYMBOL(capable);
diff --git a/kernel/ptrace.c b/kernel/ptrace.c
index 082b3fc..356699a 100644
--- a/kernel/ptrace.c
+++ b/kernel/ptrace.c
@@ -140,7 +140,7 @@
if (!dumpable && !capable(CAP_SYS_PTRACE))
return -EPERM;
- return security_ptrace(current, task, mode);
+ return security_ptrace_may_access(task, mode);
}
bool ptrace_may_access(struct task_struct *task, unsigned int mode)
@@ -499,8 +499,7 @@
goto repeat;
}
- ret = security_ptrace(current->parent, current,
- PTRACE_MODE_ATTACH);
+ ret = security_ptrace_traceme(current->parent);
/*
* Set the ptrace bit in the process ptrace flags.