crypto: arm64/crct10dif - Use faster 16x64 bit polynomial multiply
The CRC-T10DIF implementation for arm64 has a version that uses 8x8
polynomial multiplication, for cores that lack the crypto extensions,
which cover the 64x64 polynomial multiplication instruction that the
algorithm was built around.
This fallback version rather naively adopted the 64x64 polynomial
multiplication algorithm that I ported from ARM for the GHASH driver,
which needs 8 PMULL8 instructions to implement one PMULL64. This is
reasonable, given that each 8-bit vector element needs to be multiplied
with each element in the other vector, producing 8 vectors with partial
results that need to be combined to yield the correct result.
However, most PMULL64 invocations in the CRC-T10DIF code involve
multiplication by a pair of 16-bit folding coefficients, and so all the
partial results from higher order bytes will be zero, and there is no
need to calculate them to begin with.
Then, the CRC-T10DIF algorithm always XORs the output values of the
PMULL64 instructions being issued in pairs, and so there is no need to
faithfully implement each individual PMULL64 instruction, as long as
XORing the results pairwise produces the expected result.
Implementing these improvements results in a speedup of 3.3x on low-end
platforms such as Raspberry Pi 4 (Cortex-A72)
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
1 file changed