blob: 7dd80acf92c78c08870ff26c035d46b64cfff5cc [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
*/
#include <linux/list_sort.h>
#include <linux/libnvdimm.h>
#include <linux/module.h>
#include <linux/nospec.h>
#include <linux/mutex.h>
#include <linux/ndctl.h>
#include <linux/sysfs.h>
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/acpi.h>
#include <linux/sort.h>
#include <linux/io.h>
#include <linux/nd.h>
#include <asm/cacheflush.h>
#include <acpi/nfit.h>
#include "intel.h"
#include "nfit.h"
/*
* For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
* irrelevant.
*/
#include <linux/io-64-nonatomic-hi-lo.h>
static bool force_enable_dimms;
module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
static bool disable_vendor_specific;
module_param(disable_vendor_specific, bool, S_IRUGO);
MODULE_PARM_DESC(disable_vendor_specific,
"Limit commands to the publicly specified set");
static unsigned long override_dsm_mask;
module_param(override_dsm_mask, ulong, S_IRUGO);
MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
static int default_dsm_family = -1;
module_param(default_dsm_family, int, S_IRUGO);
MODULE_PARM_DESC(default_dsm_family,
"Try this DSM type first when identifying NVDIMM family");
static bool no_init_ars;
module_param(no_init_ars, bool, 0644);
MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time");
static bool force_labels;
module_param(force_labels, bool, 0444);
MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods");
LIST_HEAD(acpi_descs);
DEFINE_MUTEX(acpi_desc_lock);
static struct workqueue_struct *nfit_wq;
struct nfit_table_prev {
struct list_head spas;
struct list_head memdevs;
struct list_head dcrs;
struct list_head bdws;
struct list_head idts;
struct list_head flushes;
};
static guid_t nfit_uuid[NFIT_UUID_MAX];
const guid_t *to_nfit_uuid(enum nfit_uuids id)
{
return &nfit_uuid[id];
}
EXPORT_SYMBOL(to_nfit_uuid);
static const guid_t *to_nfit_bus_uuid(int family)
{
if (WARN_ONCE(family == NVDIMM_BUS_FAMILY_NFIT,
"only secondary bus families can be translated\n"))
return NULL;
/*
* The index of bus UUIDs starts immediately following the last
* NVDIMM/leaf family.
*/
return to_nfit_uuid(family + NVDIMM_FAMILY_MAX);
}
static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
{
struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
/*
* If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
* acpi_device.
*/
if (!nd_desc->provider_name
|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
return NULL;
return to_acpi_device(acpi_desc->dev);
}
static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
{
struct nd_cmd_clear_error *clear_err;
struct nd_cmd_ars_status *ars_status;
u16 flags;
switch (cmd) {
case ND_CMD_ARS_CAP:
if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
return -ENOTTY;
/* Command failed */
if (status & 0xffff)
return -EIO;
/* No supported scan types for this range */
flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
if ((status >> 16 & flags) == 0)
return -ENOTTY;
return 0;
case ND_CMD_ARS_START:
/* ARS is in progress */
if ((status & 0xffff) == NFIT_ARS_START_BUSY)
return -EBUSY;
/* Command failed */
if (status & 0xffff)
return -EIO;
return 0;
case ND_CMD_ARS_STATUS:
ars_status = buf;
/* Command failed */
if (status & 0xffff)
return -EIO;
/* Check extended status (Upper two bytes) */
if (status == NFIT_ARS_STATUS_DONE)
return 0;
/* ARS is in progress */
if (status == NFIT_ARS_STATUS_BUSY)
return -EBUSY;
/* No ARS performed for the current boot */
if (status == NFIT_ARS_STATUS_NONE)
return -EAGAIN;
/*
* ARS interrupted, either we overflowed or some other
* agent wants the scan to stop. If we didn't overflow
* then just continue with the returned results.
*/
if (status == NFIT_ARS_STATUS_INTR) {
if (ars_status->out_length >= 40 && (ars_status->flags
& NFIT_ARS_F_OVERFLOW))
return -ENOSPC;
return 0;
}
/* Unknown status */
if (status >> 16)
return -EIO;
return 0;
case ND_CMD_CLEAR_ERROR:
clear_err = buf;
if (status & 0xffff)
return -EIO;
if (!clear_err->cleared)
return -EIO;
if (clear_err->length > clear_err->cleared)
return clear_err->cleared;
return 0;
default:
break;
}
/* all other non-zero status results in an error */
if (status)
return -EIO;
return 0;
}
#define ACPI_LABELS_LOCKED 3
static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
u32 status)
{
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
switch (cmd) {
case ND_CMD_GET_CONFIG_SIZE:
/*
* In the _LSI, _LSR, _LSW case the locked status is
* communicated via the read/write commands
*/
if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
break;
if (status >> 16 & ND_CONFIG_LOCKED)
return -EACCES;
break;
case ND_CMD_GET_CONFIG_DATA:
if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
&& status == ACPI_LABELS_LOCKED)
return -EACCES;
break;
case ND_CMD_SET_CONFIG_DATA:
if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
&& status == ACPI_LABELS_LOCKED)
return -EACCES;
break;
default:
break;
}
/* all other non-zero status results in an error */
if (status)
return -EIO;
return 0;
}
static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
u32 status)
{
if (!nvdimm)
return xlat_bus_status(buf, cmd, status);
return xlat_nvdimm_status(nvdimm, buf, cmd, status);
}
/* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
static union acpi_object *pkg_to_buf(union acpi_object *pkg)
{
int i;
void *dst;
size_t size = 0;
union acpi_object *buf = NULL;
if (pkg->type != ACPI_TYPE_PACKAGE) {
WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
pkg->type);
goto err;
}
for (i = 0; i < pkg->package.count; i++) {
union acpi_object *obj = &pkg->package.elements[i];
if (obj->type == ACPI_TYPE_INTEGER)
size += 4;
else if (obj->type == ACPI_TYPE_BUFFER)
size += obj->buffer.length;
else {
WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
obj->type);
goto err;
}
}
buf = ACPI_ALLOCATE(sizeof(*buf) + size);
if (!buf)
goto err;
dst = buf + 1;
buf->type = ACPI_TYPE_BUFFER;
buf->buffer.length = size;
buf->buffer.pointer = dst;
for (i = 0; i < pkg->package.count; i++) {
union acpi_object *obj = &pkg->package.elements[i];
if (obj->type == ACPI_TYPE_INTEGER) {
memcpy(dst, &obj->integer.value, 4);
dst += 4;
} else if (obj->type == ACPI_TYPE_BUFFER) {
memcpy(dst, obj->buffer.pointer, obj->buffer.length);
dst += obj->buffer.length;
}
}
err:
ACPI_FREE(pkg);
return buf;
}
static union acpi_object *int_to_buf(union acpi_object *integer)
{
union acpi_object *buf = NULL;
void *dst = NULL;
if (integer->type != ACPI_TYPE_INTEGER) {
WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
integer->type);
goto err;
}
buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
if (!buf)
goto err;
dst = buf + 1;
buf->type = ACPI_TYPE_BUFFER;
buf->buffer.length = 4;
buf->buffer.pointer = dst;
memcpy(dst, &integer->integer.value, 4);
err:
ACPI_FREE(integer);
return buf;
}
static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
u32 len, void *data)
{
acpi_status rc;
struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
struct acpi_object_list input = {
.count = 3,
.pointer = (union acpi_object []) {
[0] = {
.integer.type = ACPI_TYPE_INTEGER,
.integer.value = offset,
},
[1] = {
.integer.type = ACPI_TYPE_INTEGER,
.integer.value = len,
},
[2] = {
.buffer.type = ACPI_TYPE_BUFFER,
.buffer.pointer = data,
.buffer.length = len,
},
},
};
rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
if (ACPI_FAILURE(rc))
return NULL;
return int_to_buf(buf.pointer);
}
static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
u32 len)
{
acpi_status rc;
struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
struct acpi_object_list input = {
.count = 2,
.pointer = (union acpi_object []) {
[0] = {
.integer.type = ACPI_TYPE_INTEGER,
.integer.value = offset,
},
[1] = {
.integer.type = ACPI_TYPE_INTEGER,
.integer.value = len,
},
},
};
rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
if (ACPI_FAILURE(rc))
return NULL;
return pkg_to_buf(buf.pointer);
}
static union acpi_object *acpi_label_info(acpi_handle handle)
{
acpi_status rc;
struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
if (ACPI_FAILURE(rc))
return NULL;
return pkg_to_buf(buf.pointer);
}
static u8 nfit_dsm_revid(unsigned family, unsigned func)
{
static const u8 revid_table[NVDIMM_FAMILY_MAX+1][NVDIMM_CMD_MAX+1] = {
[NVDIMM_FAMILY_INTEL] = {
[NVDIMM_INTEL_GET_MODES ...
NVDIMM_INTEL_FW_ACTIVATE_ARM] = 2,
},
};
u8 id;
if (family > NVDIMM_FAMILY_MAX)
return 0;
if (func > NVDIMM_CMD_MAX)
return 0;
id = revid_table[family][func];
if (id == 0)
return 1; /* default */
return id;
}
static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func)
{
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL
&& func >= NVDIMM_INTEL_GET_SECURITY_STATE
&& func <= NVDIMM_INTEL_MASTER_SECURE_ERASE)
return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG);
return true;
}
static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd,
struct nd_cmd_pkg *call_pkg, int *family)
{
if (call_pkg) {
int i;
if (nfit_mem && nfit_mem->family != call_pkg->nd_family)
return -ENOTTY;
for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
if (call_pkg->nd_reserved2[i])
return -EINVAL;
*family = call_pkg->nd_family;
return call_pkg->nd_command;
}
/* In the !call_pkg case, bus commands == bus functions */
if (!nfit_mem)
return cmd;
/* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */
if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
return cmd;
/*
* Force function number validation to fail since 0 is never
* published as a valid function in dsm_mask.
*/
return 0;
}
int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
{
struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
union acpi_object in_obj, in_buf, *out_obj;
const struct nd_cmd_desc *desc = NULL;
struct device *dev = acpi_desc->dev;
struct nd_cmd_pkg *call_pkg = NULL;
const char *cmd_name, *dimm_name;
unsigned long cmd_mask, dsm_mask;
u32 offset, fw_status = 0;
acpi_handle handle;
const guid_t *guid;
int func, rc, i;
int family = 0;
if (cmd_rc)
*cmd_rc = -EINVAL;
if (cmd == ND_CMD_CALL)
call_pkg = buf;
func = cmd_to_func(nfit_mem, cmd, call_pkg, &family);
if (func < 0)
return func;
if (nvdimm) {
struct acpi_device *adev = nfit_mem->adev;
if (!adev)
return -ENOTTY;
dimm_name = nvdimm_name(nvdimm);
cmd_name = nvdimm_cmd_name(cmd);
cmd_mask = nvdimm_cmd_mask(nvdimm);
dsm_mask = nfit_mem->dsm_mask;
desc = nd_cmd_dimm_desc(cmd);
guid = to_nfit_uuid(nfit_mem->family);
handle = adev->handle;
} else {
struct acpi_device *adev = to_acpi_dev(acpi_desc);
cmd_name = nvdimm_bus_cmd_name(cmd);
cmd_mask = nd_desc->cmd_mask;
if (cmd == ND_CMD_CALL && call_pkg->nd_family) {
family = call_pkg->nd_family;
if (family > NVDIMM_BUS_FAMILY_MAX ||
!test_bit(family, &nd_desc->bus_family_mask))
return -EINVAL;
family = array_index_nospec(family,
NVDIMM_BUS_FAMILY_MAX + 1);
dsm_mask = acpi_desc->family_dsm_mask[family];
guid = to_nfit_bus_uuid(family);
} else {
dsm_mask = acpi_desc->bus_dsm_mask;
guid = to_nfit_uuid(NFIT_DEV_BUS);
}
desc = nd_cmd_bus_desc(cmd);
handle = adev->handle;
dimm_name = "bus";
}
if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
return -ENOTTY;
/*
* Check for a valid command. For ND_CMD_CALL, we also have to
* make sure that the DSM function is supported.
*/
if (cmd == ND_CMD_CALL &&
(func > NVDIMM_CMD_MAX || !test_bit(func, &dsm_mask)))
return -ENOTTY;
else if (!test_bit(cmd, &cmd_mask))
return -ENOTTY;
in_obj.type = ACPI_TYPE_PACKAGE;
in_obj.package.count = 1;
in_obj.package.elements = &in_buf;
in_buf.type = ACPI_TYPE_BUFFER;
in_buf.buffer.pointer = buf;
in_buf.buffer.length = 0;
/* libnvdimm has already validated the input envelope */
for (i = 0; i < desc->in_num; i++)
in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
i, buf);
if (call_pkg) {
/* skip over package wrapper */
in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
in_buf.buffer.length = call_pkg->nd_size_in;
}
dev_dbg(dev, "%s cmd: %d: family: %d func: %d input length: %d\n",
dimm_name, cmd, family, func, in_buf.buffer.length);
if (payload_dumpable(nvdimm, func))
print_hex_dump_debug("nvdimm in ", DUMP_PREFIX_OFFSET, 4, 4,
in_buf.buffer.pointer,
min_t(u32, 256, in_buf.buffer.length), true);
/* call the BIOS, prefer the named methods over _DSM if available */
if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE
&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
out_obj = acpi_label_info(handle);
else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA
&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
struct nd_cmd_get_config_data_hdr *p = buf;
out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
} else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
&& test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) {
struct nd_cmd_set_config_hdr *p = buf;
out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
p->in_buf);
} else {
u8 revid;
if (nvdimm)
revid = nfit_dsm_revid(nfit_mem->family, func);
else
revid = 1;
out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
}
if (!out_obj) {
dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
return -EINVAL;
}
if (out_obj->type != ACPI_TYPE_BUFFER) {
dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
dimm_name, cmd_name, out_obj->type);
rc = -EINVAL;
goto out;
}
dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
cmd_name, out_obj->buffer.length);
print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
out_obj->buffer.pointer,
min_t(u32, 128, out_obj->buffer.length), true);
if (call_pkg) {
call_pkg->nd_fw_size = out_obj->buffer.length;
memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
out_obj->buffer.pointer,
min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
ACPI_FREE(out_obj);
/*
* Need to support FW function w/o known size in advance.
* Caller can determine required size based upon nd_fw_size.
* If we return an error (like elsewhere) then caller wouldn't
* be able to rely upon data returned to make calculation.
*/
if (cmd_rc)
*cmd_rc = 0;
return 0;
}
for (i = 0, offset = 0; i < desc->out_num; i++) {
u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
(u32 *) out_obj->buffer.pointer,
out_obj->buffer.length - offset);
if (offset + out_size > out_obj->buffer.length) {
dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
dimm_name, cmd_name, i);
break;
}
if (in_buf.buffer.length + offset + out_size > buf_len) {
dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
dimm_name, cmd_name, i);
rc = -ENXIO;
goto out;
}
memcpy(buf + in_buf.buffer.length + offset,
out_obj->buffer.pointer + offset, out_size);
offset += out_size;
}
/*
* Set fw_status for all the commands with a known format to be
* later interpreted by xlat_status().
*/
if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
&& cmd <= ND_CMD_CLEAR_ERROR)
|| (nvdimm && cmd >= ND_CMD_SMART
&& cmd <= ND_CMD_VENDOR)))
fw_status = *(u32 *) out_obj->buffer.pointer;
if (offset + in_buf.buffer.length < buf_len) {
if (i >= 1) {
/*
* status valid, return the number of bytes left
* unfilled in the output buffer
*/
rc = buf_len - offset - in_buf.buffer.length;
if (cmd_rc)
*cmd_rc = xlat_status(nvdimm, buf, cmd,
fw_status);
} else {
dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
__func__, dimm_name, cmd_name, buf_len,
offset);
rc = -ENXIO;
}
} else {
rc = 0;
if (cmd_rc)
*cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
}
out:
ACPI_FREE(out_obj);
return rc;
}
EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
static const char *spa_type_name(u16 type)
{
static const char *to_name[] = {
[NFIT_SPA_VOLATILE] = "volatile",
[NFIT_SPA_PM] = "pmem",
[NFIT_SPA_DCR] = "dimm-control-region",
[NFIT_SPA_BDW] = "block-data-window",
[NFIT_SPA_VDISK] = "volatile-disk",
[NFIT_SPA_VCD] = "volatile-cd",
[NFIT_SPA_PDISK] = "persistent-disk",
[NFIT_SPA_PCD] = "persistent-cd",
};
if (type > NFIT_SPA_PCD)
return "unknown";
return to_name[type];
}
int nfit_spa_type(struct acpi_nfit_system_address *spa)
{
int i;
for (i = 0; i < NFIT_UUID_MAX; i++)
if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid))
return i;
return -1;
}
static size_t sizeof_spa(struct acpi_nfit_system_address *spa)
{
if (spa->flags & ACPI_NFIT_LOCATION_COOKIE_VALID)
return sizeof(*spa);
return sizeof(*spa) - 8;
}
static bool add_spa(struct acpi_nfit_desc *acpi_desc,
struct nfit_table_prev *prev,
struct acpi_nfit_system_address *spa)
{
struct device *dev = acpi_desc->dev;
struct nfit_spa *nfit_spa;
if (spa->header.length != sizeof_spa(spa))
return false;
list_for_each_entry(nfit_spa, &prev->spas, list) {
if (memcmp(nfit_spa->spa, spa, sizeof_spa(spa)) == 0) {
list_move_tail(&nfit_spa->list, &acpi_desc->spas);
return true;
}
}
nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof_spa(spa),
GFP_KERNEL);
if (!nfit_spa)
return false;
INIT_LIST_HEAD(&nfit_spa->list);
memcpy(nfit_spa->spa, spa, sizeof_spa(spa));
list_add_tail(&nfit_spa->list, &acpi_desc->spas);
dev_dbg(dev, "spa index: %d type: %s\n",
spa->range_index,
spa_type_name(nfit_spa_type(spa)));
return true;
}
static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
struct nfit_table_prev *prev,
struct acpi_nfit_memory_map *memdev)
{
struct device *dev = acpi_desc->dev;
struct nfit_memdev *nfit_memdev;
if (memdev->header.length != sizeof(*memdev))
return false;
list_for_each_entry(nfit_memdev, &prev->memdevs, list)
if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
return true;
}
nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
GFP_KERNEL);
if (!nfit_memdev)
return false;
INIT_LIST_HEAD(&nfit_memdev->list);
memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
memdev->device_handle, memdev->range_index,
memdev->region_index, memdev->flags);
return true;
}
int nfit_get_smbios_id(u32 device_handle, u16 *flags)
{
struct acpi_nfit_memory_map *memdev;
struct acpi_nfit_desc *acpi_desc;
struct nfit_mem *nfit_mem;
u16 physical_id;
mutex_lock(&acpi_desc_lock);
list_for_each_entry(acpi_desc, &acpi_descs, list) {
mutex_lock(&acpi_desc->init_mutex);
list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
memdev = __to_nfit_memdev(nfit_mem);
if (memdev->device_handle == device_handle) {
*flags = memdev->flags;
physical_id = memdev->physical_id;
mutex_unlock(&acpi_desc->init_mutex);
mutex_unlock(&acpi_desc_lock);
return physical_id;
}
}
mutex_unlock(&acpi_desc->init_mutex);
}
mutex_unlock(&acpi_desc_lock);
return -ENODEV;
}
EXPORT_SYMBOL_GPL(nfit_get_smbios_id);
/*
* An implementation may provide a truncated control region if no block windows
* are defined.
*/
static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
{
if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
window_size))
return 0;
if (dcr->windows)
return sizeof(*dcr);
return offsetof(struct acpi_nfit_control_region, window_size);
}
static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
struct nfit_table_prev *prev,
struct acpi_nfit_control_region *dcr)
{
struct device *dev = acpi_desc->dev;
struct nfit_dcr *nfit_dcr;
if (!sizeof_dcr(dcr))
return false;
list_for_each_entry(nfit_dcr, &prev->dcrs, list)
if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
return true;
}
nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
GFP_KERNEL);
if (!nfit_dcr)
return false;
INIT_LIST_HEAD(&nfit_dcr->list);
memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
dev_dbg(dev, "dcr index: %d windows: %d\n",
dcr->region_index, dcr->windows);
return true;
}
static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
struct nfit_table_prev *prev,
struct acpi_nfit_data_region *bdw)
{
struct device *dev = acpi_desc->dev;
struct nfit_bdw *nfit_bdw;
if (bdw->header.length != sizeof(*bdw))
return false;
list_for_each_entry(nfit_bdw, &prev->bdws, list)
if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
return true;
}
nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
GFP_KERNEL);
if (!nfit_bdw)
return false;
INIT_LIST_HEAD(&nfit_bdw->list);
memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
dev_dbg(dev, "bdw dcr: %d windows: %d\n",
bdw->region_index, bdw->windows);
return true;
}
static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
{
if (idt->header.length < sizeof(*idt))
return 0;
return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
}
static bool add_idt(struct acpi_nfit_desc *acpi_desc,
struct nfit_table_prev *prev,
struct acpi_nfit_interleave *idt)
{
struct device *dev = acpi_desc->dev;
struct nfit_idt *nfit_idt;
if (!sizeof_idt(idt))
return false;
list_for_each_entry(nfit_idt, &prev->idts, list) {
if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
continue;
if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
list_move_tail(&nfit_idt->list, &acpi_desc->idts);
return true;
}
}
nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
GFP_KERNEL);
if (!nfit_idt)
return false;
INIT_LIST_HEAD(&nfit_idt->list);
memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
list_add_tail(&nfit_idt->list, &acpi_desc->idts);
dev_dbg(dev, "idt index: %d num_lines: %d\n",
idt->interleave_index, idt->line_count);
return true;
}
static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
{
if (flush->header.length < sizeof(*flush))
return 0;
return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
}
static bool add_flush(struct acpi_nfit_desc *acpi_desc,
struct nfit_table_prev *prev,
struct acpi_nfit_flush_address *flush)
{
struct device *dev = acpi_desc->dev;
struct nfit_flush *nfit_flush;
if (!sizeof_flush(flush))
return false;
list_for_each_entry(nfit_flush, &prev->flushes, list) {
if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
continue;
if (memcmp(nfit_flush->flush, flush,
sizeof_flush(flush)) == 0) {
list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
return true;
}
}
nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
+ sizeof_flush(flush), GFP_KERNEL);
if (!nfit_flush)
return false;
INIT_LIST_HEAD(&nfit_flush->list);
memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
flush->device_handle, flush->hint_count);
return true;
}
static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
struct acpi_nfit_capabilities *pcap)
{
struct device *dev = acpi_desc->dev;
u32 mask;
mask = (1 << (pcap->highest_capability + 1)) - 1;
acpi_desc->platform_cap = pcap->capabilities & mask;
dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
return true;
}
static void *add_table(struct acpi_nfit_desc *acpi_desc,
struct nfit_table_prev *prev, void *table, const void *end)
{
struct device *dev = acpi_desc->dev;
struct acpi_nfit_header *hdr;
void *err = ERR_PTR(-ENOMEM);
if (table >= end)
return NULL;
hdr = table;
if (!hdr->length) {
dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
hdr->type);
return NULL;
}
switch (hdr->type) {
case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
if (!add_spa(acpi_desc, prev, table))
return err;
break;
case ACPI_NFIT_TYPE_MEMORY_MAP:
if (!add_memdev(acpi_desc, prev, table))
return err;
break;
case ACPI_NFIT_TYPE_CONTROL_REGION:
if (!add_dcr(acpi_desc, prev, table))
return err;
break;
case ACPI_NFIT_TYPE_DATA_REGION:
if (!add_bdw(acpi_desc, prev, table))
return err;
break;
case ACPI_NFIT_TYPE_INTERLEAVE:
if (!add_idt(acpi_desc, prev, table))
return err;
break;
case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
if (!add_flush(acpi_desc, prev, table))
return err;
break;
case ACPI_NFIT_TYPE_SMBIOS:
dev_dbg(dev, "smbios\n");
break;
case ACPI_NFIT_TYPE_CAPABILITIES:
if (!add_platform_cap(acpi_desc, table))
return err;
break;
default:
dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
break;
}
return table + hdr->length;
}
static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
struct nfit_mem *nfit_mem)
{
u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
u16 dcr = nfit_mem->dcr->region_index;
struct nfit_spa *nfit_spa;
list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
u16 range_index = nfit_spa->spa->range_index;
int type = nfit_spa_type(nfit_spa->spa);
struct nfit_memdev *nfit_memdev;
if (type != NFIT_SPA_BDW)
continue;
list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
if (nfit_memdev->memdev->range_index != range_index)
continue;
if (nfit_memdev->memdev->device_handle != device_handle)
continue;
if (nfit_memdev->memdev->region_index != dcr)
continue;
nfit_mem->spa_bdw = nfit_spa->spa;
return;
}
}
dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
nfit_mem->spa_dcr->range_index);
nfit_mem->bdw = NULL;
}
static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
{
u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
struct nfit_memdev *nfit_memdev;
struct nfit_bdw *nfit_bdw;
struct nfit_idt *nfit_idt;
u16 idt_idx, range_index;
list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
if (nfit_bdw->bdw->region_index != dcr)
continue;
nfit_mem->bdw = nfit_bdw->bdw;
break;
}
if (!nfit_mem->bdw)
return;
nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
if (!nfit_mem->spa_bdw)
return;
range_index = nfit_mem->spa_bdw->range_index;
list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
if (nfit_memdev->memdev->range_index != range_index ||
nfit_memdev->memdev->region_index != dcr)
continue;
nfit_mem->memdev_bdw = nfit_memdev->memdev;
idt_idx = nfit_memdev->memdev->interleave_index;
list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
if (nfit_idt->idt->interleave_index != idt_idx)
continue;
nfit_mem->idt_bdw = nfit_idt->idt;
break;
}
break;
}
}
static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
struct acpi_nfit_system_address *spa)
{
struct nfit_mem *nfit_mem, *found;
struct nfit_memdev *nfit_memdev;
int type = spa ? nfit_spa_type(spa) : 0;
switch (type) {
case NFIT_SPA_DCR:
case NFIT_SPA_PM:
break;
default:
if (spa)
return 0;
}
/*
* This loop runs in two modes, when a dimm is mapped the loop
* adds memdev associations to an existing dimm, or creates a
* dimm. In the unmapped dimm case this loop sweeps for memdev
* instances with an invalid / zero range_index and adds those
* dimms without spa associations.
*/
list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
struct nfit_flush *nfit_flush;
struct nfit_dcr *nfit_dcr;
u32 device_handle;
u16 dcr;
if (spa && nfit_memdev->memdev->range_index != spa->range_index)
continue;
if (!spa && nfit_memdev->memdev->range_index)
continue;
found = NULL;
dcr = nfit_memdev->memdev->region_index;
device_handle = nfit_memdev->memdev->device_handle;
list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
if (__to_nfit_memdev(nfit_mem)->device_handle
== device_handle) {
found = nfit_mem;
break;
}
if (found)
nfit_mem = found;
else {
nfit_mem = devm_kzalloc(acpi_desc->dev,
sizeof(*nfit_mem), GFP_KERNEL);
if (!nfit_mem)
return -ENOMEM;
INIT_LIST_HEAD(&nfit_mem->list);
nfit_mem->acpi_desc = acpi_desc;
list_add(&nfit_mem->list, &acpi_desc->dimms);
}
list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
if (nfit_dcr->dcr->region_index != dcr)
continue;
/*
* Record the control region for the dimm. For
* the ACPI 6.1 case, where there are separate
* control regions for the pmem vs blk
* interfaces, be sure to record the extended
* blk details.
*/
if (!nfit_mem->dcr)
nfit_mem->dcr = nfit_dcr->dcr;
else if (nfit_mem->dcr->windows == 0
&& nfit_dcr->dcr->windows)
nfit_mem->dcr = nfit_dcr->dcr;
break;
}
list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
struct acpi_nfit_flush_address *flush;
u16 i;
if (nfit_flush->flush->device_handle != device_handle)
continue;
nfit_mem->nfit_flush = nfit_flush;
flush = nfit_flush->flush;
nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev,
flush->hint_count,
sizeof(struct resource),
GFP_KERNEL);
if (!nfit_mem->flush_wpq)
return -ENOMEM;
for (i = 0; i < flush->hint_count; i++) {
struct resource *res = &nfit_mem->flush_wpq[i];
res->start = flush->hint_address[i];
res->end = res->start + 8 - 1;
}
break;
}
if (dcr && !nfit_mem->dcr) {
dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
spa->range_index, dcr);
return -ENODEV;
}
if (type == NFIT_SPA_DCR) {
struct nfit_idt *nfit_idt;
u16 idt_idx;
/* multiple dimms may share a SPA when interleaved */
nfit_mem->spa_dcr = spa;
nfit_mem->memdev_dcr = nfit_memdev->memdev;
idt_idx = nfit_memdev->memdev->interleave_index;
list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
if (nfit_idt->idt->interleave_index != idt_idx)
continue;
nfit_mem->idt_dcr = nfit_idt->idt;
break;
}
nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
} else if (type == NFIT_SPA_PM) {
/*
* A single dimm may belong to multiple SPA-PM
* ranges, record at least one in addition to
* any SPA-DCR range.
*/
nfit_mem->memdev_pmem = nfit_memdev->memdev;
} else
nfit_mem->memdev_dcr = nfit_memdev->memdev;
}
return 0;
}
static int nfit_mem_cmp(void *priv, const struct list_head *_a,
const struct list_head *_b)
{
struct nfit_mem *a = container_of(_a, typeof(*a), list);
struct nfit_mem *b = container_of(_b, typeof(*b), list);
u32 handleA, handleB;
handleA = __to_nfit_memdev(a)->device_handle;
handleB = __to_nfit_memdev(b)->device_handle;
if (handleA < handleB)
return -1;
else if (handleA > handleB)
return 1;
return 0;
}
static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
{
struct nfit_spa *nfit_spa;
int rc;
/*
* For each SPA-DCR or SPA-PMEM address range find its
* corresponding MEMDEV(s). From each MEMDEV find the
* corresponding DCR. Then, if we're operating on a SPA-DCR,
* try to find a SPA-BDW and a corresponding BDW that references
* the DCR. Throw it all into an nfit_mem object. Note, that
* BDWs are optional.
*/
list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
if (rc)
return rc;
}
/*
* If a DIMM has failed to be mapped into SPA there will be no
* SPA entries above. Find and register all the unmapped DIMMs
* for reporting and recovery purposes.
*/
rc = __nfit_mem_init(acpi_desc, NULL);
if (rc)
return rc;
list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
return 0;
}
static ssize_t bus_dsm_mask_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
return sprintf(buf, "%#lx\n", acpi_desc->bus_dsm_mask);
}
static struct device_attribute dev_attr_bus_dsm_mask =
__ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
static ssize_t revision_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
}
static DEVICE_ATTR_RO(revision);
static ssize_t hw_error_scrub_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
}
/*
* The 'hw_error_scrub' attribute can have the following values written to it:
* '0': Switch to the default mode where an exception will only insert
* the address of the memory error into the poison and badblocks lists.
* '1': Enable a full scrub to happen if an exception for a memory error is
* received.
*/
static ssize_t hw_error_scrub_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct nvdimm_bus_descriptor *nd_desc;
ssize_t rc;
long val;
rc = kstrtol(buf, 0, &val);
if (rc)
return rc;
nfit_device_lock(dev);
nd_desc = dev_get_drvdata(dev);
if (nd_desc) {
struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
switch (val) {
case HW_ERROR_SCRUB_ON:
acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
break;
case HW_ERROR_SCRUB_OFF:
acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
break;
default:
rc = -EINVAL;
break;
}
}
nfit_device_unlock(dev);
if (rc)
return rc;
return size;
}
static DEVICE_ATTR_RW(hw_error_scrub);
/*
* This shows the number of full Address Range Scrubs that have been
* completed since driver load time. Userspace can wait on this using
* select/poll etc. A '+' at the end indicates an ARS is in progress
*/
static ssize_t scrub_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvdimm_bus_descriptor *nd_desc;
struct acpi_nfit_desc *acpi_desc;
ssize_t rc = -ENXIO;
bool busy;
nfit_device_lock(dev);
nd_desc = dev_get_drvdata(dev);
if (!nd_desc) {
nfit_device_unlock(dev);
return rc;
}
acpi_desc = to_acpi_desc(nd_desc);
mutex_lock(&acpi_desc->init_mutex);
busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags)
&& !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n");
/* Allow an admin to poll the busy state at a higher rate */
if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL,
&acpi_desc->scrub_flags)) {
acpi_desc->scrub_tmo = 1;
mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ);
}
mutex_unlock(&acpi_desc->init_mutex);
nfit_device_unlock(dev);
return rc;
}
static ssize_t scrub_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t size)
{
struct nvdimm_bus_descriptor *nd_desc;
ssize_t rc;
long val;
rc = kstrtol(buf, 0, &val);
if (rc)
return rc;
if (val != 1)
return -EINVAL;
nfit_device_lock(dev);
nd_desc = dev_get_drvdata(dev);
if (nd_desc) {
struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
}
nfit_device_unlock(dev);
if (rc)
return rc;
return size;
}
static DEVICE_ATTR_RW(scrub);
static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
{
struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
| 1 << ND_CMD_ARS_STATUS;
return (nd_desc->cmd_mask & mask) == mask;
}
static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
{
struct device *dev = kobj_to_dev(kobj);
struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
if (a == &dev_attr_scrub.attr)
return ars_supported(nvdimm_bus) ? a->mode : 0;
if (a == &dev_attr_firmware_activate_noidle.attr)
return intel_fwa_supported(nvdimm_bus) ? a->mode : 0;
return a->mode;
}
static struct attribute *acpi_nfit_attributes[] = {
&dev_attr_revision.attr,
&dev_attr_scrub.attr,
&dev_attr_hw_error_scrub.attr,
&dev_attr_bus_dsm_mask.attr,
&dev_attr_firmware_activate_noidle.attr,
NULL,
};
static const struct attribute_group acpi_nfit_attribute_group = {
.name = "nfit",
.attrs = acpi_nfit_attributes,
.is_visible = nfit_visible,
};
static const struct attribute_group *acpi_nfit_attribute_groups[] = {
&acpi_nfit_attribute_group,
NULL,
};
static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
return __to_nfit_memdev(nfit_mem);
}
static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
return nfit_mem->dcr;
}
static ssize_t handle_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
return sprintf(buf, "%#x\n", memdev->device_handle);
}
static DEVICE_ATTR_RO(handle);
static ssize_t phys_id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
return sprintf(buf, "%#x\n", memdev->physical_id);
}
static DEVICE_ATTR_RO(phys_id);
static ssize_t vendor_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
}
static DEVICE_ATTR_RO(vendor);
static ssize_t rev_id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
}
static DEVICE_ATTR_RO(rev_id);
static ssize_t device_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
}
static DEVICE_ATTR_RO(device);
static ssize_t subsystem_vendor_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
}
static DEVICE_ATTR_RO(subsystem_vendor);
static ssize_t subsystem_rev_id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
return sprintf(buf, "0x%04x\n",
be16_to_cpu(dcr->subsystem_revision_id));
}
static DEVICE_ATTR_RO(subsystem_rev_id);
static ssize_t subsystem_device_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
}
static DEVICE_ATTR_RO(subsystem_device);
static int num_nvdimm_formats(struct nvdimm *nvdimm)
{
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
int formats = 0;
if (nfit_mem->memdev_pmem)
formats++;
if (nfit_mem->memdev_bdw)
formats++;
return formats;
}
static ssize_t format_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
}
static DEVICE_ATTR_RO(format);
static ssize_t format1_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u32 handle;
ssize_t rc = -ENXIO;
struct nfit_mem *nfit_mem;
struct nfit_memdev *nfit_memdev;
struct acpi_nfit_desc *acpi_desc;
struct nvdimm *nvdimm = to_nvdimm(dev);
struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
nfit_mem = nvdimm_provider_data(nvdimm);
acpi_desc = nfit_mem->acpi_desc;
handle = to_nfit_memdev(dev)->device_handle;
/* assumes DIMMs have at most 2 published interface codes */
mutex_lock(&acpi_desc->init_mutex);
list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
struct nfit_dcr *nfit_dcr;
if (memdev->device_handle != handle)
continue;
list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
if (nfit_dcr->dcr->region_index != memdev->region_index)
continue;
if (nfit_dcr->dcr->code == dcr->code)
continue;
rc = sprintf(buf, "0x%04x\n",
le16_to_cpu(nfit_dcr->dcr->code));
break;
}
if (rc != -ENXIO)
break;
}
mutex_unlock(&acpi_desc->init_mutex);
return rc;
}
static DEVICE_ATTR_RO(format1);
static ssize_t formats_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
}
static DEVICE_ATTR_RO(formats);
static ssize_t serial_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
}
static DEVICE_ATTR_RO(serial);
static ssize_t family_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
if (nfit_mem->family < 0)
return -ENXIO;
return sprintf(buf, "%d\n", nfit_mem->family);
}
static DEVICE_ATTR_RO(family);
static ssize_t dsm_mask_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
if (nfit_mem->family < 0)
return -ENXIO;
return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
}
static DEVICE_ATTR_RO(dsm_mask);
static ssize_t flags_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
u16 flags = __to_nfit_memdev(nfit_mem)->flags;
if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags))
flags |= ACPI_NFIT_MEM_FLUSH_FAILED;
return sprintf(buf, "%s%s%s%s%s%s%s\n",
flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
}
static DEVICE_ATTR_RO(flags);
static ssize_t id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
return sprintf(buf, "%s\n", nfit_mem->id);
}
static DEVICE_ATTR_RO(id);
static ssize_t dirty_shutdown_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown);
}
static DEVICE_ATTR_RO(dirty_shutdown);
static struct attribute *acpi_nfit_dimm_attributes[] = {
&dev_attr_handle.attr,
&dev_attr_phys_id.attr,
&dev_attr_vendor.attr,
&dev_attr_device.attr,
&dev_attr_rev_id.attr,
&dev_attr_subsystem_vendor.attr,
&dev_attr_subsystem_device.attr,
&dev_attr_subsystem_rev_id.attr,
&dev_attr_format.attr,
&dev_attr_formats.attr,
&dev_attr_format1.attr,
&dev_attr_serial.attr,
&dev_attr_flags.attr,
&dev_attr_id.attr,
&dev_attr_family.attr,
&dev_attr_dsm_mask.attr,
&dev_attr_dirty_shutdown.attr,
NULL,
};
static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
struct attribute *a, int n)
{
struct device *dev = kobj_to_dev(kobj);
struct nvdimm *nvdimm = to_nvdimm(dev);
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
if (!to_nfit_dcr(dev)) {
/* Without a dcr only the memdev attributes can be surfaced */
if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
|| a == &dev_attr_flags.attr
|| a == &dev_attr_family.attr
|| a == &dev_attr_dsm_mask.attr)
return a->mode;
return 0;
}
if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
return 0;
if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags)
&& a == &dev_attr_dirty_shutdown.attr)
return 0;
return a->mode;
}
static const struct attribute_group acpi_nfit_dimm_attribute_group = {
.name = "nfit",
.attrs = acpi_nfit_dimm_attributes,
.is_visible = acpi_nfit_dimm_attr_visible,
};
static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
&acpi_nfit_dimm_attribute_group,
NULL,
};
static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
u32 device_handle)
{
struct nfit_mem *nfit_mem;
list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
return nfit_mem->nvdimm;
return NULL;
}
void __acpi_nvdimm_notify(struct device *dev, u32 event)
{
struct nfit_mem *nfit_mem;
struct acpi_nfit_desc *acpi_desc;
dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
event);
if (event != NFIT_NOTIFY_DIMM_HEALTH) {
dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
event);
return;
}
acpi_desc = dev_get_drvdata(dev->parent);
if (!acpi_desc)
return;
/*
* If we successfully retrieved acpi_desc, then we know nfit_mem data
* is still valid.
*/
nfit_mem = dev_get_drvdata(dev);
if (nfit_mem && nfit_mem->flags_attr)
sysfs_notify_dirent(nfit_mem->flags_attr);
}
EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
{
struct acpi_device *adev = data;
struct device *dev = &adev->dev;
nfit_device_lock(dev->parent);
__acpi_nvdimm_notify(dev, event);
nfit_device_unlock(dev->parent);
}
static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
{
acpi_handle handle;
acpi_status status;
status = acpi_get_handle(adev->handle, method, &handle);
if (ACPI_SUCCESS(status))
return true;
return false;
}
__weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem)
{
struct device *dev = &nfit_mem->adev->dev;
struct nd_intel_smart smart = { 0 };
union acpi_object in_buf = {
.buffer.type = ACPI_TYPE_BUFFER,
.buffer.length = 0,
};
union acpi_object in_obj = {
.package.type = ACPI_TYPE_PACKAGE,
.package.count = 1,
.package.elements = &in_buf,
};
const u8 func = ND_INTEL_SMART;
const guid_t *guid = to_nfit_uuid(nfit_mem->family);
u8 revid = nfit_dsm_revid(nfit_mem->family, func);
struct acpi_device *adev = nfit_mem->adev;
acpi_handle handle = adev->handle;
union acpi_object *out_obj;
if ((nfit_mem->dsm_mask & (1 << func)) == 0)
return;
out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
if (!out_obj || out_obj->type != ACPI_TYPE_BUFFER
|| out_obj->buffer.length < sizeof(smart)) {
dev_dbg(dev->parent, "%s: failed to retrieve initial health\n",
dev_name(dev));
ACPI_FREE(out_obj);
return;
}
memcpy(&smart, out_obj->buffer.pointer, sizeof(smart));
ACPI_FREE(out_obj);
if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) {
if (smart.shutdown_state)
set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags);
}
if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) {
set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags);
nfit_mem->dirty_shutdown = smart.shutdown_count;
}
}
static void populate_shutdown_status(struct nfit_mem *nfit_mem)
{
/*
* For DIMMs that provide a dynamic facility to retrieve a
* dirty-shutdown status and/or a dirty-shutdown count, cache
* these values in nfit_mem.
*/
if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
nfit_intel_shutdown_status(nfit_mem);
}
static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
struct nfit_mem *nfit_mem, u32 device_handle)
{
struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
struct acpi_device *adev, *adev_dimm;
struct device *dev = acpi_desc->dev;
unsigned long dsm_mask, label_mask;
const guid_t *guid;
int i;
int family = -1;
struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
/* nfit test assumes 1:1 relationship between commands and dsms */
nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
nfit_mem->family = NVDIMM_FAMILY_INTEL;
set_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x",
be16_to_cpu(dcr->vendor_id),
dcr->manufacturing_location,
be16_to_cpu(dcr->manufacturing_date),
be32_to_cpu(dcr->serial_number));
else
sprintf(nfit_mem->id, "%04x-%08x",
be16_to_cpu(dcr->vendor_id),
be32_to_cpu(dcr->serial_number));
adev = to_acpi_dev(acpi_desc);
if (!adev) {
/* unit test case */
populate_shutdown_status(nfit_mem);
return 0;
}
adev_dimm = acpi_find_child_device(adev, device_handle, false);
nfit_mem->adev = adev_dimm;
if (!adev_dimm) {
dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
device_handle);
return force_enable_dimms ? 0 : -ENODEV;
}
if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
dev_err(dev, "%s: notification registration failed\n",
dev_name(&adev_dimm->dev));
return -ENXIO;
}
/*
* Record nfit_mem for the notification path to track back to
* the nfit sysfs attributes for this dimm device object.
*/
dev_set_drvdata(&adev_dimm->dev, nfit_mem);
/*
* There are 4 "legacy" NVDIMM command sets
* (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before
* an EFI working group was established to constrain this
* proliferation. The nfit driver probes for the supported command
* set by GUID. Note, if you're a platform developer looking to add
* a new command set to this probe, consider using an existing set,
* or otherwise seek approval to publish the command set at
* http://www.uefi.org/RFIC_LIST.
*
* Note, that checking for function0 (bit0) tells us if any commands
* are reachable through this GUID.
*/
clear_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) {
set_bit(i, &nd_desc->dimm_family_mask);
if (family < 0 || i == default_dsm_family)
family = i;
}
/* limit the supported commands to those that are publicly documented */
nfit_mem->family = family;
if (override_dsm_mask && !disable_vendor_specific)
dsm_mask = override_dsm_mask;
else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
dsm_mask = NVDIMM_INTEL_CMDMASK;
if (disable_vendor_specific)
dsm_mask &= ~(1 << ND_CMD_VENDOR);
} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
dsm_mask = 0x1c3c76;
} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
dsm_mask = 0x1fe;
if (disable_vendor_specific)
dsm_mask &= ~(1 << 8);
} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
dsm_mask = 0xffffffff;
} else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) {
dsm_mask = 0x1f;
} else {
dev_dbg(dev, "unknown dimm command family\n");
nfit_mem->family = -1;
/* DSMs are optional, continue loading the driver... */
return 0;
}
/*
* Function 0 is the command interrogation function, don't
* export it to potential userspace use, and enable it to be
* used as an error value in acpi_nfit_ctl().
*/
dsm_mask &= ~1UL;
guid = to_nfit_uuid(nfit_mem->family);
for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
if (acpi_check_dsm(adev_dimm->handle, guid,
nfit_dsm_revid(nfit_mem->family, i),
1ULL << i))
set_bit(i, &nfit_mem->dsm_mask);
/*
* Prefer the NVDIMM_FAMILY_INTEL label read commands if present
* due to their better semantics handling locked capacity.
*/
label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA
| 1 << ND_CMD_SET_CONFIG_DATA;
if (family == NVDIMM_FAMILY_INTEL
&& (dsm_mask & label_mask) == label_mask)
/* skip _LS{I,R,W} enabling */;
else {
if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
&& acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
set_bit(NFIT_MEM_LSR, &nfit_mem->flags);
}
if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
&& acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
set_bit(NFIT_MEM_LSW, &nfit_mem->flags);
}
/*
* Quirk read-only label configurations to preserve
* access to label-less namespaces by default.
*/
if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
&& !force_labels) {
dev_dbg(dev, "%s: No _LSW, disable labels\n",
dev_name(&adev_dimm->dev));
clear_bit(NFIT_MEM_LSR, &nfit_mem->flags);
} else
dev_dbg(dev, "%s: Force enable labels\n",
dev_name(&adev_dimm->dev));
}
populate_shutdown_status(nfit_mem);
return 0;
}
static void shutdown_dimm_notify(void *data)
{
struct acpi_nfit_desc *acpi_desc = data;
struct nfit_mem *nfit_mem;
mutex_lock(&acpi_desc->init_mutex);
/*
* Clear out the nfit_mem->flags_attr and shut down dimm event
* notifications.
*/
list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
struct acpi_device *adev_dimm = nfit_mem->adev;
if (nfit_mem->flags_attr) {
sysfs_put(nfit_mem->flags_attr);
nfit_mem->flags_attr = NULL;
}
if (adev_dimm) {
acpi_remove_notify_handler(adev_dimm->handle,
ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
dev_set_drvdata(&adev_dimm->dev, NULL);
}
}
mutex_unlock(&acpi_desc->init_mutex);
}
static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family)
{
switch (family) {
case NVDIMM_FAMILY_INTEL:
return intel_security_ops;
default:
return NULL;
}
}
static const struct nvdimm_fw_ops *acpi_nfit_get_fw_ops(
struct nfit_mem *nfit_mem)
{
unsigned long mask;
struct acpi_nfit_desc *acpi_desc = nfit_mem->acpi_desc;
struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
if (!nd_desc->fw_ops)
return NULL;
if (nfit_mem->family != NVDIMM_FAMILY_INTEL)
return NULL;
mask = nfit_mem->dsm_mask & NVDIMM_INTEL_FW_ACTIVATE_CMDMASK;
if (mask != NVDIMM_INTEL_FW_ACTIVATE_CMDMASK)
return NULL;
return intel_fw_ops;
}
static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
{
struct nfit_mem *nfit_mem;
int dimm_count = 0, rc;
struct nvdimm *nvdimm;
list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
struct acpi_nfit_flush_address *flush;
unsigned long flags = 0, cmd_mask;
struct nfit_memdev *nfit_memdev;
u32 device_handle;
u16 mem_flags;
device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
if (nvdimm) {
dimm_count++;
continue;
}
if (nfit_mem->bdw && nfit_mem->memdev_pmem) {
set_bit(NDD_ALIASING, &flags);
set_bit(NDD_LABELING, &flags);
}
/* collate flags across all memdevs for this dimm */
list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
struct acpi_nfit_memory_map *dimm_memdev;
dimm_memdev = __to_nfit_memdev(nfit_mem);
if (dimm_memdev->device_handle
!= nfit_memdev->memdev->device_handle)
continue;
dimm_memdev->flags |= nfit_memdev->memdev->flags;
}
mem_flags = __to_nfit_memdev(nfit_mem)->flags;
if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
set_bit(NDD_UNARMED, &flags);
rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
if (rc)
continue;
/*
* TODO: provide translation for non-NVDIMM_FAMILY_INTEL
* devices (i.e. from nd_cmd to acpi_dsm) to standardize the
* userspace interface.
*/
cmd_mask = 1UL << ND_CMD_CALL;
if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
/*
* These commands have a 1:1 correspondence
* between DSM payload and libnvdimm ioctl
* payload format.
*/
cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
}
/* Quirk to ignore LOCAL for labels on HYPERV DIMMs */
if (nfit_mem->family == NVDIMM_FAMILY_HYPERV)
set_bit(NDD_NOBLK, &flags);
if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
}
if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags))
set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
: NULL;
nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
acpi_nfit_dimm_attribute_groups,
flags, cmd_mask, flush ? flush->hint_count : 0,
nfit_mem->flush_wpq, &nfit_mem->id[0],
acpi_nfit_get_security_ops(nfit_mem->family),
acpi_nfit_get_fw_ops(nfit_mem));
if (!nvdimm)
return -ENOMEM;
nfit_mem->nvdimm = nvdimm;
dimm_count++;
if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
continue;
dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n",
nvdimm_name(nvdimm),
mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
}
rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
if (rc)
return rc;
/*
* Now that dimms are successfully registered, and async registration
* is flushed, attempt to enable event notification.
*/
list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
struct kernfs_node *nfit_kernfs;
nvdimm = nfit_mem->nvdimm;
if (!nvdimm)
continue;
nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
if (nfit_kernfs)
nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
"flags");
sysfs_put(nfit_kernfs);
if (!nfit_mem->flags_attr)
dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
nvdimm_name(nvdimm));
}
return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
acpi_desc);
}
/*
* These constants are private because there are no kernel consumers of
* these commands.
*/
enum nfit_aux_cmds {
NFIT_CMD_TRANSLATE_SPA = 5,
NFIT_CMD_ARS_INJECT_SET = 7,
NFIT_CMD_ARS_INJECT_CLEAR = 8,
NFIT_CMD_ARS_INJECT_GET = 9,
};
static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
{
struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
unsigned long dsm_mask, *mask;
struct acpi_device *adev;
int i;
set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
set_bit(NVDIMM_BUS_FAMILY_NFIT, &nd_desc->bus_family_mask);
/* enable nfit_test to inject bus command emulation */
if (acpi_desc->bus_cmd_force_en) {
nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
mask = &nd_desc->bus_family_mask;
if (acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL]) {
set_bit(NVDIMM_BUS_FAMILY_INTEL, mask);
nd_desc->fw_ops = intel_bus_fw_ops;
}
}
adev = to_acpi_dev(acpi_desc);
if (!adev)
return;
for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
set_bit(i, &nd_desc->cmd_mask);
dsm_mask =
(1 << ND_CMD_ARS_CAP) |
(1 << ND_CMD_ARS_START) |
(1 << ND_CMD_ARS_STATUS) |
(1 << ND_CMD_CLEAR_ERROR) |
(1 << NFIT_CMD_TRANSLATE_SPA) |
(1 << NFIT_CMD_ARS_INJECT_SET) |
(1 << NFIT_CMD_ARS_INJECT_CLEAR) |
(1 << NFIT_CMD_ARS_INJECT_GET);
for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
set_bit(i, &acpi_desc->bus_dsm_mask);
/* Enumerate allowed NVDIMM_BUS_FAMILY_INTEL commands */
dsm_mask = NVDIMM_BUS_INTEL_FW_ACTIVATE_CMDMASK;
guid = to_nfit_bus_uuid(NVDIMM_BUS_FAMILY_INTEL);
mask = &acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL];
for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
set_bit(i, mask);
if (*mask == dsm_mask) {
set_bit(NVDIMM_BUS_FAMILY_INTEL, &nd_desc->bus_family_mask);
nd_desc->fw_ops = intel_bus_fw_ops;
}
}
static ssize_t range_index_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
}
static DEVICE_ATTR_RO(range_index);
static struct attribute *acpi_nfit_region_attributes[] = {
&dev_attr_range_index.attr,
NULL,
};
static const struct attribute_group acpi_nfit_region_attribute_group = {
.name = "nfit",
.attrs = acpi_nfit_region_attributes,
};
static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
&acpi_nfit_region_attribute_group,
NULL,
};
/* enough info to uniquely specify an interleave set */
struct nfit_set_info {
u64 region_offset;
u32 serial_number;
u32 pad;
};
struct nfit_set_info2 {
u64 region_offset;
u32 serial_number;
u16 vendor_id;
u16 manufacturing_date;
u8 manufacturing_location;
u8 reserved[31];
};
static int cmp_map_compat(const void *m0, const void *m1)
{
const struct nfit_set_info *map0 = m0;
const struct nfit_set_info *map1 = m1;
return memcmp(&map0->region_offset, &map1->region_offset,
sizeof(u64));
}
static int cmp_map(const void *m0, const void *m1)
{
const struct nfit_set_info *map0 = m0;
const struct nfit_set_info *map1 = m1;
if (map0->region_offset < map1->region_offset)
return -1;
else if (map0->region_offset > map1->region_offset)
return 1;
return 0;
}
static int cmp_map2(const void *m0, const void *m1)
{
const struct nfit_set_info2 *map0 = m0;
const struct nfit_set_info2 *map1 = m1;
if (map0->region_offset < map1->region_offset)
return -1;
else if (map0->region_offset > map1->region_offset)
return 1;
return 0;
}
/* Retrieve the nth entry referencing this spa */
static struct acpi_nfit_memory_map *memdev_from_spa(
struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
{
struct nfit_memdev *nfit_memdev;
list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
if (nfit_memdev->memdev->range_index == range_index)
if (n-- == 0)
return nfit_memdev->memdev;
return NULL;
}
static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
struct nd_region_desc *ndr_desc,
struct acpi_nfit_system_address *spa)
{
struct device *dev = acpi_desc->dev;
struct nd_interleave_set *nd_set;
u16 nr = ndr_desc->num_mappings;
struct nfit_set_info2 *info2;
struct nfit_set_info *info;
int i;
nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
if (!nd_set)
return -ENOMEM;
import_guid(&nd_set->type_guid, spa->range_guid);
info = devm_kcalloc(dev, nr, sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info2 = devm_kcalloc(dev, nr, sizeof(*info2), GFP_KERNEL);
if (!info2)
return -ENOMEM;
for (i = 0; i < nr; i++) {
struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
struct nvdimm *nvdimm = mapping->nvdimm;
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
struct nfit_set_info *map = &info[i];
struct nfit_set_info2 *map2 = &info2[i];
struct acpi_nfit_memory_map *memdev =
memdev_from_spa(acpi_desc, spa->range_index, i);
struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
if (!memdev || !nfit_mem->dcr) {
dev_err(dev, "%s: failed to find DCR\n", __func__);
return -ENODEV;
}
map->region_offset = memdev->region_offset;
map->serial_number = dcr->serial_number;
map2->region_offset = memdev->region_offset;
map2->serial_number = dcr->serial_number;
map2->vendor_id = dcr->vendor_id;
map2->manufacturing_date = dcr->manufacturing_date;
map2->manufacturing_location = dcr->manufacturing_location;
}
/* v1.1 namespaces */
sort(info, nr, sizeof(*info), cmp_map, NULL);
nd_set->cookie1 = nd_fletcher64(info, sizeof(*info) * nr, 0);
/* v1.2 namespaces */
sort(info2, nr, sizeof(*info2), cmp_map2, NULL);
nd_set->cookie2 = nd_fletcher64(info2, sizeof(*info2) * nr, 0);
/* support v1.1 namespaces created with the wrong sort order */
sort(info, nr, sizeof(*info), cmp_map_compat, NULL);
nd_set->altcookie = nd_fletcher64(info, sizeof(*info) * nr, 0);
/* record the result of the sort for the mapping position */
for (i = 0; i < nr; i++) {
struct nfit_set_info2 *map2 = &info2[i];
int j;
for (j = 0; j < nr; j++) {
struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
struct nvdimm *nvdimm = mapping->nvdimm;
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
if (map2->serial_number == dcr->serial_number &&
map2->vendor_id == dcr->vendor_id &&
map2->manufacturing_date == dcr->manufacturing_date &&
map2->manufacturing_location
== dcr->manufacturing_location) {
mapping->position = i;
break;
}
}
}
ndr_desc->nd_set = nd_set;
devm_kfree(dev, info);
devm_kfree(dev, info2);
return 0;
}
static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
{
struct acpi_nfit_interleave *idt = mmio->idt;
u32 sub_line_offset, line_index, line_offset;
u64 line_no, table_skip_count, table_offset;
line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
line_offset = idt->line_offset[line_index]
* mmio->line_size;
table_offset = table_skip_count * mmio->table_size;
return mmio->base_offset + line_offset + table_offset + sub_line_offset;
}
static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
{
struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
u64 offset = nfit_blk->stat_offset + mmio->size * bw;
const u32 STATUS_MASK = 0x80000037;
if (mmio->num_lines)
offset = to_interleave_offset(offset, mmio);
return readl(mmio->addr.base + offset) & STATUS_MASK;
}
static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
resource_size_t dpa, unsigned int len, unsigned int write)
{
u64 cmd, offset;
struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
enum {
BCW_OFFSET_MASK = (1ULL << 48)-1,
BCW_LEN_SHIFT = 48,
BCW_LEN_MASK = (1ULL << 8) - 1,
BCW_CMD_SHIFT = 56,
};
cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
len = len >> L1_CACHE_SHIFT;
cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
cmd |= ((u64) write) << BCW_CMD_SHIFT;
offset = nfit_blk->cmd_offset + mmio->size * bw;
if (mmio->num_lines)
offset = to_interleave_offset(offset, mmio);
writeq(cmd, mmio->addr.base + offset);
nvdimm_flush(nfit_blk->nd_region, NULL);
if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
readq(mmio->addr.base + offset);
}
static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
resource_size_t dpa, void *iobuf, size_t len, int rw,
unsigned int lane)
{
struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
unsigned int copied = 0;
u64 base_offset;
int rc;
base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
+ lane * mmio->size;
write_blk_ctl(nfit_blk, lane, dpa, len, rw);
while (len) {
unsigned int c;
u64 offset;
if (mmio->num_lines) {
u32 line_offset;
offset = to_interleave_offset(base_offset + copied,
mmio);
div_u64_rem(offset, mmio->line_size, &line_offset);
c = min_t(size_t, len, mmio->line_size - line_offset);
} else {
offset = base_offset + nfit_blk->bdw_offset;
c = len;
}
if (rw)
memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c);
else {
if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
arch_invalidate_pmem((void __force *)
mmio->addr.aperture + offset, c);
memcpy(iobuf + copied, mmio->addr.aperture + offset, c);
}
copied += c;
len -= c;
}
if (rw)
nvdimm_flush(nfit_blk->nd_region, NULL);
rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
return rc;
}
static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
resource_size_t dpa, void *iobuf, u64 len, int rw)
{
struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
struct nd_region *nd_region = nfit_blk->nd_region;
unsigned int lane, copied = 0;
int rc = 0;
lane = nd_region_acquire_lane(nd_region);
while (len) {
u64 c = min(len, mmio->size);
rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
iobuf + copied, c, rw, lane);
if (rc)
break;
copied += c;
len -= c;
}
nd_region_release_lane(nd_region, lane);
return rc;
}
static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
struct acpi_nfit_interleave *idt, u16 interleave_ways)
{
if (idt) {
mmio->num_lines = idt->line_count;
mmio->line_size = idt->line_size;
if (interleave_ways == 0)
return -ENXIO;
mmio->table_size = mmio->num_lines * interleave_ways
* mmio->line_size;
}
return 0;
}
static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
{
struct nd_cmd_dimm_flags flags;
int rc;
memset(&flags, 0, sizeof(flags));
rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
sizeof(flags), NULL);
if (rc >= 0 && flags.status == 0)
nfit_blk->dimm_flags = flags.flags;
else if (rc == -ENOTTY) {
/* fall back to a conservative default */
nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
rc = 0;
} else
rc = -ENXIO;
return rc;
}
static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
struct device *dev)
{
struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
struct nd_blk_region *ndbr = to_nd_blk_region(dev);
struct nfit_blk_mmio *mmio;
struct nfit_blk *nfit_blk;
struct nfit_mem *nfit_mem;
struct nvdimm *nvdimm;
int rc;
nvdimm = nd_blk_region_to_dimm(ndbr);
nfit_mem = nvdimm_provider_data(nvdimm);
if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
dev_dbg(dev, "missing%s%s%s\n",
nfit_mem ? "" : " nfit_mem",
(nfit_mem && nfit_mem->dcr) ? "" : " dcr",
(nfit_mem && nfit_mem->bdw) ? "" : " bdw");
return -ENXIO;
}
nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
if (!nfit_blk)
return -ENOMEM;
nd_blk_region_set_provider_data(ndbr, nfit_blk);
nfit_blk->nd_region = to_nd_region(dev);
/* map block aperture memory */
nfit_blk->bdw_offset = nfit_mem->bdw->offset;
mmio = &nfit_blk->mmio[BDW];
mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr));
if (!mmio->addr.base) {
dev_dbg(dev, "%s failed to map bdw\n",
nvdimm_name(nvdimm));
return -ENOMEM;
}
mmio->size = nfit_mem->bdw->size;
mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
mmio->idt = nfit_mem->idt_bdw;
mmio->spa = nfit_mem->spa_bdw;
rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
nfit_mem->memdev_bdw->interleave_ways);
if (rc) {
dev_dbg(dev, "%s failed to init bdw interleave\n",
nvdimm_name(nvdimm));
return rc;
}
/* map block control memory */
nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
mmio = &nfit_blk->mmio[DCR];
mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
nfit_mem->spa_dcr->length);
if (!mmio->addr.base) {
dev_dbg(dev, "%s failed to map dcr\n",
nvdimm_name(nvdimm));
return -ENOMEM;
}
mmio->size = nfit_mem->dcr->window_size;
mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
mmio->idt = nfit_mem->idt_dcr;
mmio->spa = nfit_mem->spa_dcr;
rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
nfit_mem->memdev_dcr->interleave_ways);
if (rc) {
dev_dbg(dev, "%s failed to init dcr interleave\n",
nvdimm_name(nvdimm));
return rc;
}
rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
if (rc < 0) {
dev_dbg(dev, "%s failed get DIMM flags\n",
nvdimm_name(nvdimm));
return rc;
}
if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
dev_warn(dev, "unable to guarantee persistence of writes\n");
if (mmio->line_size == 0)
return 0;
if ((u32) nfit_blk->cmd_offset % mmio->line_size
+ 8 > mmio->line_size) {
dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
return -ENXIO;
} else if ((u32) nfit_blk->stat_offset % mmio->line_size
+ 8 > mmio->line_size) {
dev_dbg(dev, "stat_offset crosses interleave boundary\n");
return -ENXIO;
}
return 0;
}
static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
{
struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
struct acpi_nfit_system_address *spa = nfit_spa->spa;
int cmd_rc, rc;
cmd->address = spa->address;
cmd->length = spa->length;
rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
sizeof(*cmd), &cmd_rc);
if (rc < 0)
return rc;
return cmd_rc;
}
static int ars_start(struct acpi_nfit_desc *acpi_desc,
struct nfit_spa *nfit_spa, enum nfit_ars_state req_type)
{
int rc;
int cmd_rc;
struct nd_cmd_ars_start ars_start;
struct acpi_nfit_system_address *spa = nfit_spa->spa;
struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
memset(&ars_start, 0, sizeof(ars_start));
ars_start.address = spa->address;
ars_start.length = spa->length;
if (req_type == ARS_REQ_SHORT)
ars_start.flags = ND_ARS_RETURN_PREV_DATA;
if (nfit_spa_type(spa) == NFIT_SPA_PM)
ars_start.type = ND_ARS_PERSISTENT;
else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
ars_start.type = ND_ARS_VOLATILE;
else
return -ENOTTY;
rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
sizeof(ars_start), &cmd_rc);
if (rc < 0)
return rc;
if (cmd_rc < 0)
return cmd_rc;
set_bit(ARS_VALID, &acpi_desc->scrub_flags);
return 0;
}
static int ars_continue(struct acpi_nfit_desc *acpi_desc)
{
int rc, cmd_rc;
struct nd_cmd_ars_start ars_start;
struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
ars_start = (struct nd_cmd_ars_start) {
.address = ars_status->restart_address,
.length = ars_status->restart_length,
.type = ars_status->type,
};
rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
sizeof(ars_start), &cmd_rc);
if (rc < 0)
return rc;
return cmd_rc;
}
static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
{
struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
int rc, cmd_rc;
rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
acpi_desc->max_ars, &cmd_rc);
if (rc < 0)
return rc;
return cmd_rc;
}
static void ars_complete(struct acpi_nfit_desc *acpi_desc,
struct nfit_spa *nfit_spa)
{
struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
struct acpi_nfit_system_address *spa = nfit_spa->spa;
struct nd_region *nd_region = nfit_spa->nd_region;
struct device *dev;
lockdep_assert_held(&acpi_desc->init_mutex);
/*
* Only advance the ARS state for ARS runs initiated by the
* kernel, ignore ARS results from BIOS initiated runs for scrub
* completion tracking.
*/
if (acpi_desc->scrub_spa != nfit_spa)
return;
if ((ars_status->address >= spa->address && ars_status->address
< spa->address + spa->length)
|| (ars_status->address < spa->address)) {
/*
* Assume that if a scrub starts at an offset from the
* start of nfit_spa that we are in the continuation
* case.
*
* Otherwise, if the scrub covers the spa range, mark
* any pending request complete.
*/
if (ars_status->address + ars_status->length
>= spa->address + spa->length)
/* complete */;
else
return;
} else
return;
acpi_desc->scrub_spa = NULL;
if (nd_region) {
dev = nd_region_dev(nd_region);
nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON);
} else
dev = acpi_desc->dev;
dev_dbg(dev, "ARS: range %d complete\n", spa->range_index);
}
static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc)
{
struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
int rc;
u32 i;
/*
* First record starts at 44 byte offset from the start of the
* payload.
*/
if (ars_status->out_length < 44)
return 0;
/*
* Ignore potentially stale results that are only refreshed
* after a start-ARS event.
*/
if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) {
dev_dbg(acpi_desc->dev, "skip %d stale records\n",
ars_status->num_records);
return 0;
}
for (i = 0; i < ars_status->num_records; i++) {
/* only process full records */
if (ars_status->out_length
< 44 + sizeof(struct nd_ars_record) * (i + 1))
break;
rc = nvdimm_bus_add_badrange(nvdimm_bus,
ars_status->records[i].err_address,
ars_status->records[i].length);
if (rc)
return rc;
}
if (i < ars_status->num_records)
dev_warn(acpi_desc->dev, "detected truncated ars results\n");
return 0;
}
static void acpi_nfit_remove_resource(void *data)
{
struct resource *res = data;
remove_resource(res);
}
static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
struct nd_region_desc *ndr_desc)
{
struct resource *res, *nd_res = ndr_desc->res;
int is_pmem, ret;
/* No operation if the region is already registered as PMEM */
is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
if (is_pmem == REGION_INTERSECTS)
return 0;
res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
if (!res)
return -ENOMEM;
res->name = "Persistent Memory";
res->start = nd_res->start;
res->end = nd_res->end;
res->flags = IORESOURCE_MEM;
res->desc = IORES_DESC_PERSISTENT_MEMORY;
ret = insert_resource(&iomem_resource, res);
if (ret)
return ret;
ret = devm_add_action_or_reset(acpi_desc->dev,
acpi_nfit_remove_resource,
res);
if (ret)
return ret;
return 0;
}
static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
struct acpi_nfit_memory_map *memdev,
struct nfit_spa *nfit_spa)
{
struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
memdev->device_handle);
struct acpi_nfit_system_address *spa = nfit_spa->spa;
struct nd_blk_region_desc *ndbr_desc;
struct nfit_mem *nfit_mem;
int rc;
if (!nvdimm) {
dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
spa->range_index, memdev->device_handle);
return -ENODEV;
}
mapping->nvdimm = nvdimm;
switch (nfit_spa_type(spa)) {
case NFIT_SPA_PM:
case NFIT_SPA_VOLATILE:
mapping->start = memdev->address;
mapping->size = memdev->region_size;
break;
case NFIT_SPA_DCR:
nfit_mem = nvdimm_provider_data(nvdimm);
if (!nfit_mem || !nfit_mem->bdw) {
dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
spa->range_index, nvdimm_name(nvdimm));
break;
}
mapping->size = nfit_mem->bdw->capacity;
mapping->start = nfit_mem->bdw->start_address;
ndr_desc->num_lanes = nfit_mem->bdw->windows;
ndr_desc->mapping = mapping;
ndr_desc->num_mappings = 1;
ndbr_desc = to_blk_region_desc(ndr_desc);
ndbr_desc->enable = acpi_nfit_blk_region_enable;
ndbr_desc->do_io = acpi_desc->blk_do_io;
rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
if (rc)
return rc;
nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
ndr_desc);
if (!nfit_spa->nd_region)
return -ENOMEM;
break;
}
return 0;
}
static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
{
return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
nfit_spa_type(spa) == NFIT_SPA_VCD ||
nfit_spa_type(spa) == NFIT_SPA_PDISK ||
nfit_spa_type(spa) == NFIT_SPA_PCD);
}
static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
{
return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
nfit_spa_type(spa) == NFIT_SPA_VCD ||
nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
}
static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
struct nfit_spa *nfit_spa)
{
static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
struct acpi_nfit_system_address *spa = nfit_spa->spa;
struct nd_blk_region_desc ndbr_desc;
struct nd_region_desc *ndr_desc;
struct nfit_memdev *nfit_memdev;
struct nvdimm_bus *nvdimm_bus;
struct resource res;
int count = 0, rc;
if (nfit_spa->nd_region)
return 0;
if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
return 0;
}
memset(&res, 0, sizeof(res));
memset(&mappings, 0, sizeof(mappings));
memset(&ndbr_desc, 0, sizeof(ndbr_desc));
res.start = spa->address;
res.end = res.start + spa->length - 1;
ndr_desc = &ndbr_desc.ndr_desc;
ndr_desc->res = &res;
ndr_desc->provider_data = nfit_spa;
ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) {
ndr_desc->numa_node = pxm_to_online_node(spa->proximity_domain);
ndr_desc->target_node = pxm_to_node(spa->proximity_domain);
} else {
ndr_desc->numa_node = NUMA_NO_NODE;
ndr_desc->target_node = NUMA_NO_NODE;
}
/* Fallback to address based numa information if node lookup failed */
if (ndr_desc->numa_node == NUMA_NO_NODE) {
ndr_desc->numa_node = memory_add_physaddr_to_nid(spa->address);
dev_info(acpi_desc->dev, "changing numa node from %d to %d for nfit region [%pa-%pa]",
NUMA_NO_NODE, ndr_desc->numa_node, &res.start, &res.end);
}
if (ndr_desc->target_node == NUMA_NO_NODE) {
ndr_desc->target_node = phys_to_target_node(spa->address);
dev_info(acpi_desc->dev, "changing target node from %d to %d for nfit region [%pa-%pa]",
NUMA_NO_NODE, ndr_desc->numa_node, &res.start, &res.end);
}
/*
* Persistence domain bits are hierarchical, if
* ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
* ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
*/
if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
struct nd_mapping_desc *mapping;
/* range index 0 == unmapped in SPA or invalid-SPA */
if (memdev->range_index == 0 || spa->range_index == 0)
continue;
if (memdev->range_index != spa->range_index)
continue;
if (count >= ND_MAX_MAPPINGS) {
dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
spa->range_index, ND_MAX_MAPPINGS);
return -ENXIO;
}
mapping = &mappings[count++];
rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
memdev, nfit_spa);
if (rc)
goto out;
}
ndr_desc->mapping = mappings;
ndr_desc->num_mappings = count;
rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
if (rc)
goto out;
nvdimm_bus = acpi_desc->nvdimm_bus;
if (nfit_spa_type(spa) == NFIT_SPA_PM) {
rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
if (rc) {
dev_warn(acpi_desc->dev,
"failed to insert pmem resource to iomem: %d\n",
rc);
goto out;
}
nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
ndr_desc);
if (!nfit_spa->nd_region)
rc = -ENOMEM;
} else if (nfit_spa_is_volatile(spa)) {
nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
ndr_desc);
if (!nfit_spa->nd_region)
rc = -ENOMEM;
} else if (nfit_spa_is_virtual(spa)) {
nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
ndr_desc);
if (!nfit_spa->nd_region)
rc = -ENOMEM;
}
out:
if (rc)
dev_err(acpi_desc->dev, "failed to register spa range %d\n",
nfit_spa->spa->range_index);
return rc;
}
static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc)
{
struct device *dev = acpi_desc->dev;
struct nd_cmd_ars_status *ars_status;
if (acpi_desc->ars_status) {
memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
return 0;
}
ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL);
if (!ars_status)
return -ENOMEM;
acpi_desc->ars_status = ars_status;
return 0;
}
static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc)
{
int rc;
if (ars_status_alloc(acpi_desc))
return -ENOMEM;
rc = ars_get_status(acpi_desc);
if (rc < 0 && rc != -ENOSPC)
return rc;
if (ars_status_process_records(acpi_desc))
dev_err(acpi_desc->dev, "Failed to process ARS records\n");
return rc;
}
static int ars_register(struct acpi_nfit_desc *acpi_desc,
struct nfit_spa *nfit_spa)
{
int rc;
if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
return acpi_nfit_register_region(acpi_desc, nfit_spa);
set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
if (!no_init_ars)
set_bit(ARS_REQ_LONG, &nfit_spa->ars_state);
switch (acpi_nfit_query_poison(acpi_desc)) {
case 0:
case -ENOSPC:
case -EAGAIN:
rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT);
/* shouldn't happen, try again later */
if (rc == -EBUSY)
break;
if (rc) {
set_bit(ARS_FAILED, &nfit_spa->ars_state);
break;
}
clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
rc = acpi_nfit_query_poison(acpi_desc);
if (rc)
break;
acpi_desc->scrub_spa = nfit_spa;
ars_complete(acpi_desc, nfit_spa);
/*
* If ars_complete() says we didn't complete the
* short scrub, we'll try again with a long
* request.
*/
acpi_desc->scrub_spa = NULL;
break;
case -EBUSY:
case -ENOMEM:
/*
* BIOS was using ARS, wait for it to complete (or
* resources to become available) and then perform our
* own scrubs.
*/
break;
default:
set_bit(ARS_FAILED, &nfit_spa->ars_state);
break;
}
return acpi_nfit_register_region(acpi_desc, nfit_spa);
}
static void ars_complete_all(struct acpi_nfit_desc *acpi_desc)
{
struct nfit_spa *nfit_spa;
list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
continue;
ars_complete(acpi_desc, nfit_spa);
}
}
static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc,
int query_rc)
{
unsigned int tmo = acpi_desc->scrub_tmo;
struct device *dev = acpi_desc->dev;
struct nfit_spa *nfit_spa;
lockdep_assert_held(&acpi_desc->init_mutex);
if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags))
return 0;
if (query_rc == -EBUSY) {
dev_dbg(dev, "ARS: ARS busy\n");
return min(30U * 60U, tmo * 2);
}
if (query_rc == -ENOSPC) {
dev_dbg(dev, "ARS: ARS continue\n");
ars_continue(acpi_desc);
return 1;
}
if (query_rc && query_rc != -EAGAIN) {
unsigned long long addr, end;
addr = acpi_desc->ars_status->address;
end = addr + acpi_desc->ars_status->length;
dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end,
query_rc);
}
ars_complete_all(acpi_desc);
list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
enum nfit_ars_state req_type;
int rc;
if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
continue;
/* prefer short ARS requests first */
if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state))
req_type = ARS_REQ_SHORT;
else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state))
req_type = ARS_REQ_LONG;
else
continue;
rc = ars_start(acpi_desc, nfit_spa, req_type);
dev = nd_region_dev(nfit_spa->nd_region);
dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n",
nfit_spa->spa->range_index,
req_type == ARS_REQ_SHORT ? "short" : "long",
rc);
/*
* Hmm, we raced someone else starting ARS? Try again in
* a bit.
*/
if (rc == -EBUSY)
return 1;
if (rc == 0) {
dev_WARN_ONCE(dev, acpi_desc->scrub_spa,
"scrub start while range %d active\n",
acpi_desc->scrub_spa->spa->range_index);
clear_bit(req_type, &nfit_spa->ars_state);
acpi_desc->scrub_spa = nfit_spa;
/*
* Consider this spa last for future scrub
* requests
*/
list_move_tail(&nfit_spa->list, &acpi_desc->spas);
return 1;
}
dev_err(dev, "ARS: range %d ARS failed (%d)\n",
nfit_spa->spa->range_index, rc);
set_bit(ARS_FAILED, &nfit_spa->ars_state);
}
return 0;
}
static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo)
{
lockdep_assert_held(&acpi_desc->init_mutex);
set_bit(ARS_BUSY, &acpi_desc->scrub_flags);
/* note this should only be set from within the workqueue */
if (tmo)
acpi_desc->scrub_tmo = tmo;
queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ);
}
static void sched_ars(struct acpi_nfit_desc *acpi_desc)
{
__sched_ars(acpi_desc, 0);
}
static void notify_ars_done(struct acpi_nfit_desc *acpi_desc)
{
lockdep_assert_held(&acpi_desc->init_mutex);
clear_bit(ARS_BUSY, &acpi_desc->scrub_flags);
acpi_desc->scrub_count++;
if (acpi_desc->scrub_count_state)
sysfs_notify_dirent(acpi_desc->scrub_count_state);
}
static void acpi_nfit_scrub(struct work_struct *work)
{
struct acpi_nfit_desc *acpi_desc;
unsigned int tmo;
int query_rc;
acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work);
mutex_lock(&acpi_desc->init_mutex);
query_rc = acpi_nfit_query_poison(acpi_desc);
tmo = __acpi_nfit_scrub(acpi_desc, query_rc);
if (tmo)
__sched_ars(acpi_desc, tmo);
else
notify_ars_done(acpi_desc);
memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
clear_bit(ARS_POLL, &acpi_desc->scrub_flags);
mutex_unlock(&acpi_desc->init_mutex);
}
static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc,
struct nfit_spa *nfit_spa)
{
int type = nfit_spa_type(nfit_spa->spa);
struct nd_cmd_ars_cap ars_cap;
int rc;
set_bit(ARS_FAILED, &nfit_spa->ars_state);
memset(&ars_cap, 0, sizeof(ars_cap));
rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
if (rc < 0)
return;
/* check that the supported scrub types match the spa type */
if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16)
& ND_ARS_VOLATILE) == 0)
return;
if (type == NFIT_SPA_PM && ((ars_cap.status >> 16)
& ND_ARS_PERSISTENT) == 0)
return;
nfit_spa->max_ars = ars_cap.max_ars_out;
nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars);
clear_bit(ARS_FAILED, &nfit_spa->ars_state);
}
static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
{
struct nfit_spa *nfit_spa;
int rc, do_sched_ars = 0;
set_bit(ARS_VALID, &acpi_desc->scrub_flags);
list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
switch (nfit_spa_type(nfit_spa->spa)) {
case NFIT_SPA_VOLATILE:
case NFIT_SPA_PM:
acpi_nfit_init_ars(acpi_desc, nfit_spa);
break;
}
}
list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
switch (nfit_spa_type(nfit_spa->spa)) {
case NFIT_SPA_VOLATILE:
case NFIT_SPA_PM:
/* register regions and kick off initial ARS run */
rc = ars_register(acpi_desc, nfit_spa);
if (rc)
return rc;
/*
* Kick off background ARS if at least one
* region successfully registered ARS
*/
if (!test_bit(ARS_FAILED, &nfit_spa->ars_state))
do_sched_ars++;
break;
case NFIT_SPA_BDW:
/* nothing to register */
break;
case NFIT_SPA_DCR:
case NFIT_SPA_VDISK:
case NFIT_SPA_VCD:
case NFIT_SPA_PDISK:
case NFIT_SPA_PCD:
/* register known regions that don't support ARS */
rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
if (rc)
return rc;
break;
default:
/* don't register unknown regions */
break;
}
}
if (do_sched_ars)
sched_ars(acpi_desc);
return 0;
}
static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
struct nfit_table_prev *prev)
{
struct device *dev = acpi_desc->dev;
if (!list_empty(&prev->spas) ||
!list_empty(&prev->memdevs) ||
!list_empty(&prev->dcrs) ||
!list_empty(&prev->bdws) ||
!list_empty(&prev->idts) ||
!list_empty(&prev->flushes)) {
dev_err(dev, "new nfit deletes entries (unsupported)\n");
return -ENXIO;
}
return 0;
}
static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
{
struct device *dev = acpi_desc->dev;
struct kernfs_node *nfit;
struct device *bus_dev;
if (!ars_supported(acpi_desc->nvdimm_bus))
return 0;
bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
if (!nfit) {
dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
return -ENODEV;
}
acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
sysfs_put(nfit);
if (!acpi_desc->scrub_count_state) {
dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
return -ENODEV;
}
return 0;
}
static void acpi_nfit_unregister(void *data)
{
struct acpi_nfit_desc *acpi_desc = data;
nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
}
int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
{
struct device *dev = acpi_desc->dev;
struct nfit_table_prev prev;
const void *end;
int rc;
if (!acpi_desc->nvdimm_bus) {
acpi_nfit_init_dsms(acpi_desc);
acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
&acpi_desc->nd_desc);
if (!acpi_desc->nvdimm_bus)
return -ENOMEM;
rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
acpi_desc);
if (rc)
return rc;
rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
if (rc)
return rc;
/* register this acpi_desc for mce notifications */
mutex_lock(&acpi_desc_lock);
list_add_tail(&acpi_desc->list, &acpi_descs);
mutex_unlock(&acpi_desc_lock);
}
mutex_lock(&acpi_desc->init_mutex);
INIT_LIST_HEAD(&prev.spas);
INIT_LIST_HEAD(&prev.memdevs);
INIT_LIST_HEAD(&prev.dcrs);
INIT_LIST_HEAD(&prev.bdws);
INIT_LIST_HEAD(&prev.idts);
INIT_LIST_HEAD(&prev.flushes);
list_cut_position(&prev.spas, &acpi_desc->spas,
acpi_desc->spas.prev);
list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
acpi_desc->memdevs.prev);
list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
acpi_desc->dcrs.prev);
list_cut_position(&prev.bdws, &acpi_desc->bdws,
acpi_desc->bdws.prev);
list_cut_position(&prev.idts, &acpi_desc->idts,
acpi_desc->idts.prev);
list_cut_position(&prev.flushes, &acpi_desc->flushes,
acpi_desc->flushes.prev);
end = data + sz;
while (!IS_ERR_OR_NULL(data))
data = add_table(acpi_desc, &prev, data, end);
if (IS_ERR(data)) {
dev_dbg(dev, "nfit table parsing error: %ld\n", PTR_ERR(data));
rc = PTR_ERR(data);
goto out_unlock;
}
rc = acpi_nfit_check_deletions(acpi_desc, &prev);
if (rc)
goto out_unlock;
rc = nfit_mem_init(acpi_desc);
if (rc)
goto out_unlock;
rc = acpi_nfit_register_dimms(acpi_desc);
if (rc)
goto out_unlock;
rc = acpi_nfit_register_regions(acpi_desc);
out_unlock:
mutex_unlock(&acpi_desc->init_mutex);
return rc;
}
EXPORT_SYMBOL_GPL(acpi_nfit_init);
static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
{
struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
struct device *dev = acpi_desc->dev;
/* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
nfit_device_lock(dev);
nfit_device_unlock(dev);
/* Bounce the init_mutex to complete initial registration */
mutex_lock(&acpi_desc->init_mutex);
mutex_unlock(&acpi_desc->init_mutex);
return 0;
}
static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
struct nvdimm *nvdimm, unsigned int cmd)
{
struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
if (nvdimm)
return 0;
if (cmd != ND_CMD_ARS_START)
return 0;
/*
* The kernel and userspace may race to initiate a scrub, but
* the scrub thread is prepared to lose that initial race. It
* just needs guarantees that any ARS it initiates are not
* interrupted by any intervening start requests from userspace.
*/
if (work_busy(&acpi_desc->dwork.work))
return -EBUSY;
return 0;
}
/*
* Prevent security and firmware activate commands from being issued via
* ioctl.
*/
static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
struct nvdimm *nvdimm, unsigned int cmd, void *buf)
{
struct nd_cmd_pkg *call_pkg = buf;
unsigned int func;
if (nvdimm && cmd == ND_CMD_CALL &&
call_pkg->nd_family == NVDIMM_FAMILY_INTEL) {
func = call_pkg->nd_command;
if (func > NVDIMM_CMD_MAX ||
(1 << func) & NVDIMM_INTEL_DENY_CMDMASK)
return -EOPNOTSUPP;
}
/* block all non-nfit bus commands */
if (!nvdimm && cmd == ND_CMD_CALL &&
call_pkg->nd_family != NVDIMM_BUS_FAMILY_NFIT)
return -EOPNOTSUPP;
return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd);
}
int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc,
enum nfit_ars_state req_type)
{
struct device *dev = acpi_desc->dev;
int scheduled = 0, busy = 0;
struct nfit_spa *nfit_spa;
mutex_lock(&acpi_desc->init_mutex);
if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) {
mutex_unlock(&acpi_desc->init_mutex);
return 0;
}
list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
int type = nfit_spa_type(nfit_spa->spa);
if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE)
continue;
if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
continue;
if (test_and_set_bit(req_type, &nfit_spa->ars_state))
busy++;
else
scheduled++;
}
if (scheduled) {
sched_ars(acpi_desc);
dev_dbg(dev, "ars_scan triggered\n");
}
mutex_unlock(&acpi_desc->init_mutex);
if (scheduled)
return 0;
if (busy)
return -EBUSY;
return -ENOTTY;
}
void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
{
struct nvdimm_bus_descriptor *nd_desc;
dev_set_drvdata(dev, acpi_desc);
acpi_desc->dev = dev;
acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
nd_desc = &acpi_desc->nd_desc;
nd_desc->provider_name = "ACPI.NFIT";
nd_desc->module = THIS_MODULE;
nd_desc->ndctl = acpi_nfit_ctl;
nd_desc->flush_probe = acpi_nfit_flush_probe;
nd_desc->clear_to_send = acpi_nfit_clear_to_send;
nd_desc->attr_groups = acpi_nfit_attribute_groups;
INIT_LIST_HEAD(&acpi_desc->spas);
INIT_LIST_HEAD(&acpi_desc->dcrs);
INIT_LIST_HEAD(&acpi_desc->bdws);
INIT_LIST_HEAD(&acpi_desc->idts);
INIT_LIST_HEAD(&acpi_desc->flushes);
INIT_LIST_HEAD(&acpi_desc->memdevs);
INIT_LIST_HEAD(&acpi_desc->dimms);
INIT_LIST_HEAD(&acpi_desc->list);
mutex_init(&acpi_desc->init_mutex);
acpi_desc->scrub_tmo = 1;
INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub);
}
EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
static void acpi_nfit_put_table(void *table)
{
acpi_put_table(table);
}
void acpi_nfit_shutdown(void *data)
{
struct acpi_nfit_desc *acpi_desc = data;
struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
/*
* Destruct under acpi_desc_lock so that nfit_handle_mce does not
* race teardown
*/
mutex_lock(&acpi_desc_lock);
list_del(&acpi_desc->list);
mutex_unlock(&acpi_desc_lock);
mutex_lock(&acpi_desc->init_mutex);
set_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
cancel_delayed_work_sync(&acpi_desc->dwork);
mutex_unlock(&acpi_desc->init_mutex);
/*
* Bounce the nvdimm bus lock to make sure any in-flight
* acpi_nfit_ars_rescan() submissions have had a chance to
* either submit or see ->cancel set.
*/
nfit_device_lock(bus_dev);
nfit_device_unlock(bus_dev);
flush_workqueue(nfit_wq);
}
EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
static int acpi_nfit_add(struct acpi_device *adev)
{
struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
struct acpi_nfit_desc *acpi_desc;
struct device *dev = &adev->dev;
struct acpi_table_header *tbl;
acpi_status status = AE_OK;
acpi_size sz;
int rc = 0;
status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
if (ACPI_FAILURE(status)) {
/* The NVDIMM root device allows OS to trigger enumeration of
* NVDIMMs through NFIT at boot time and re-enumeration at
* root level via the _FIT method during runtime.
* This is ok to return 0 here, we could have an nvdimm
* hotplugged later and evaluate _FIT method which returns
* data in the format of a series of NFIT Structures.
*/
dev_dbg(dev, "failed to find NFIT at startup\n");
return 0;
}
rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
if (rc)
return rc;
sz = tbl->length;
acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
if (!acpi_desc)
return -ENOMEM;
acpi_nfit_desc_init(acpi_desc, &adev->dev);
/* Save the acpi header for exporting the revision via sysfs */
acpi_desc->acpi_header = *tbl;
/* Evaluate _FIT and override with that if present */
status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
if (ACPI_SUCCESS(status) && buf.length > 0) {
union acpi_object *obj = buf.pointer;
if (obj->type == ACPI_TYPE_BUFFER)
rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
obj->buffer.length);
else
dev_dbg(dev, "invalid type %d, ignoring _FIT\n",
(int) obj->type);
kfree(buf.pointer);
} else
/* skip over the lead-in header table */
rc = acpi_nfit_init(acpi_desc, (void *) tbl
+ sizeof(struct acpi_table_nfit),
sz - sizeof(struct acpi_table_nfit));
if (rc)
return rc;
return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
}
static int acpi_nfit_remove(struct acpi_device *adev)
{
/* see acpi_nfit_unregister */
return 0;
}
static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
{
struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *obj;
acpi_status status;
int ret;
if (!dev->driver) {
/* dev->driver may be null if we're being removed */
dev_dbg(dev, "no driver found for dev\n");
return;
}
if (!acpi_desc) {
acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
if (!acpi_desc)
return;
acpi_nfit_desc_init(acpi_desc, dev);
} else {
/*
* Finish previous registration before considering new
* regions.
*/
flush_workqueue(nfit_wq);
}
/* Evaluate _FIT */
status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
if (ACPI_FAILURE(status)) {
dev_err(dev, "failed to evaluate _FIT\n");
return;
}
obj = buf.pointer;
if (obj->type == ACPI_TYPE_BUFFER) {
ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
obj->buffer.length);
if (ret)
dev_err(dev, "failed to merge updated NFIT\n");
} else
dev_err(dev, "Invalid _FIT\n");
kfree(buf.pointer);
}
static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
{
struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON)
acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
else
acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT);
}
void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
{
dev_dbg(dev, "event: 0x%x\n", event);
switch (event) {
case NFIT_NOTIFY_UPDATE:
return acpi_nfit_update_notify(dev, handle);
case NFIT_NOTIFY_UC_MEMORY_ERROR:
return acpi_nfit_uc_error_notify(dev, handle);
default:
return;
}
}
EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
{
nfit_device_lock(&adev->dev);
__acpi_nfit_notify(&adev->dev, adev->handle, event);
nfit_device_unlock(&adev->dev);
}
static const struct acpi_device_id acpi_nfit_ids[] = {
{ "ACPI0012", 0 },
{ "", 0 },
};
MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
static struct acpi_driver acpi_nfit_driver = {
.name = KBUILD_MODNAME,
.ids = acpi_nfit_ids,
.ops = {
.add = acpi_nfit_add,
.remove = acpi_nfit_remove,
.notify = acpi_nfit_notify,
},
};
static __init int nfit_init(void)
{
int ret;
BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 64);
BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]);
guid_parse(UUID_INTEL_BUS, &nfit_uuid[NFIT_BUS_INTEL]);
nfit_wq = create_singlethread_workqueue("nfit");
if (!nfit_wq)
return -ENOMEM;
nfit_mce_register();
ret = acpi_bus_register_driver(&acpi_nfit_driver);
if (ret) {
nfit_mce_unregister();
destroy_workqueue(nfit_wq);
}
return ret;
}
static __exit void nfit_exit(void)
{
nfit_mce_unregister();
acpi_bus_unregister_driver(&acpi_nfit_driver);
destroy_workqueue(nfit_wq);
WARN_ON(!list_empty(&acpi_descs));
}
module_init(nfit_init);
module_exit(nfit_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Intel Corporation");