blob: 7c612ba5068f7b31a2740618665a97e69c41bb9c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
*/
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <crypto/scatterwalk.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include "cipher.h"
#include "common.h"
#include "core.h"
#include "regs-v5.h"
#include "sha.h"
#include "aead.h"
static inline u32 qce_read(struct qce_device *qce, u32 offset)
{
return readl(qce->base + offset);
}
static inline void qce_write(struct qce_device *qce, u32 offset, u32 val)
{
writel(val, qce->base + offset);
}
static inline void qce_write_array(struct qce_device *qce, u32 offset,
const u32 *val, unsigned int len)
{
int i;
for (i = 0; i < len; i++)
qce_write(qce, offset + i * sizeof(u32), val[i]);
}
static inline void
qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len)
{
int i;
for (i = 0; i < len; i++)
qce_write(qce, offset + i * sizeof(u32), 0);
}
static u32 qce_config_reg(struct qce_device *qce, int little)
{
u32 beats = (qce->burst_size >> 3) - 1;
u32 pipe_pair = qce->pipe_pair_id;
u32 config;
config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK;
config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) |
BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT);
config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK;
config &= ~HIGH_SPD_EN_N_SHIFT;
if (little)
config |= BIT(LITTLE_ENDIAN_MODE_SHIFT);
return config;
}
void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len)
{
__be32 *d = dst;
const u8 *s = src;
unsigned int n;
n = len / sizeof(u32);
for (; n > 0; n--) {
*d = cpu_to_be32p((const __u32 *) s);
s += sizeof(__u32);
d++;
}
}
static void qce_setup_config(struct qce_device *qce)
{
u32 config;
/* get big endianness */
config = qce_config_reg(qce, 0);
/* clear status */
qce_write(qce, REG_STATUS, 0);
qce_write(qce, REG_CONFIG, config);
}
static inline void qce_crypto_go(struct qce_device *qce, bool result_dump)
{
if (result_dump)
qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT));
else
qce_write(qce, REG_GOPROC, BIT(GO_SHIFT));
}
#if defined(CONFIG_CRYPTO_DEV_QCE_SHA) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD)
static u32 qce_auth_cfg(unsigned long flags, u32 key_size, u32 auth_size)
{
u32 cfg = 0;
if (IS_CCM(flags) || IS_CMAC(flags))
cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT;
else
cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT;
if (IS_CCM(flags) || IS_CMAC(flags)) {
if (key_size == AES_KEYSIZE_128)
cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT;
else if (key_size == AES_KEYSIZE_256)
cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT;
}
if (IS_SHA1(flags) || IS_SHA1_HMAC(flags))
cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT;
else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags))
cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT;
else if (IS_CMAC(flags))
cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT;
else if (IS_CCM(flags))
cfg |= (auth_size - 1) << AUTH_SIZE_SHIFT;
if (IS_SHA1(flags) || IS_SHA256(flags))
cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT;
else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags))
cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT;
else if (IS_CCM(flags))
cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT;
else if (IS_CMAC(flags))
cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT;
if (IS_SHA(flags) || IS_SHA_HMAC(flags))
cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
if (IS_CCM(flags))
cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT;
return cfg;
}
#endif
#ifdef CONFIG_CRYPTO_DEV_QCE_SHA
static int qce_setup_regs_ahash(struct crypto_async_request *async_req)
{
struct ahash_request *req = ahash_request_cast(async_req);
struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm);
struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
struct qce_device *qce = tmpl->qce;
unsigned int digestsize = crypto_ahash_digestsize(ahash);
unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm);
__be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0};
__be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0};
u32 auth_cfg = 0, config;
unsigned int iv_words;
/* if not the last, the size has to be on the block boundary */
if (!rctx->last_blk && req->nbytes % blocksize)
return -EINVAL;
qce_setup_config(qce);
if (IS_CMAC(rctx->flags)) {
qce_write(qce, REG_AUTH_SEG_CFG, 0);
qce_write(qce, REG_ENCR_SEG_CFG, 0);
qce_write(qce, REG_ENCR_SEG_SIZE, 0);
qce_clear_array(qce, REG_AUTH_IV0, 16);
qce_clear_array(qce, REG_AUTH_KEY0, 16);
qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen, digestsize);
}
if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) {
u32 authkey_words = rctx->authklen / sizeof(u32);
qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen);
qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey,
authkey_words);
}
if (IS_CMAC(rctx->flags))
goto go_proc;
if (rctx->first_blk)
memcpy(auth, rctx->digest, digestsize);
else
qce_cpu_to_be32p_array(auth, rctx->digest, digestsize);
iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8;
qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words);
if (rctx->first_blk)
qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
else
qce_write_array(qce, REG_AUTH_BYTECNT0,
(u32 *)rctx->byte_count, 2);
auth_cfg = qce_auth_cfg(rctx->flags, 0, digestsize);
if (rctx->last_blk)
auth_cfg |= BIT(AUTH_LAST_SHIFT);
else
auth_cfg &= ~BIT(AUTH_LAST_SHIFT);
if (rctx->first_blk)
auth_cfg |= BIT(AUTH_FIRST_SHIFT);
else
auth_cfg &= ~BIT(AUTH_FIRST_SHIFT);
go_proc:
qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes);
qce_write(qce, REG_AUTH_SEG_START, 0);
qce_write(qce, REG_ENCR_SEG_CFG, 0);
qce_write(qce, REG_SEG_SIZE, req->nbytes);
/* get little endianness */
config = qce_config_reg(qce, 1);
qce_write(qce, REG_CONFIG, config);
qce_crypto_go(qce, true);
return 0;
}
#endif
#if defined(CONFIG_CRYPTO_DEV_QCE_SKCIPHER) || defined(CONFIG_CRYPTO_DEV_QCE_AEAD)
static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
{
u32 cfg = 0;
if (IS_AES(flags)) {
if (aes_key_size == AES_KEYSIZE_128)
cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT;
else if (aes_key_size == AES_KEYSIZE_256)
cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT;
}
if (IS_AES(flags))
cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT;
else if (IS_DES(flags) || IS_3DES(flags))
cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT;
if (IS_DES(flags))
cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT;
if (IS_3DES(flags))
cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT;
switch (flags & QCE_MODE_MASK) {
case QCE_MODE_ECB:
cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT;
break;
case QCE_MODE_CBC:
cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT;
break;
case QCE_MODE_CTR:
cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT;
break;
case QCE_MODE_XTS:
cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT;
break;
case QCE_MODE_CCM:
cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT;
cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT;
break;
default:
return ~0;
}
return cfg;
}
#endif
#ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
{
u8 swap[QCE_AES_IV_LENGTH];
u32 i, j;
if (ivsize > QCE_AES_IV_LENGTH)
return;
memset(swap, 0, QCE_AES_IV_LENGTH);
for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1;
i < QCE_AES_IV_LENGTH; i++, j--)
swap[i] = src[j];
qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH);
}
static void qce_xtskey(struct qce_device *qce, const u8 *enckey,
unsigned int enckeylen, unsigned int cryptlen)
{
u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
unsigned int xtsklen = enckeylen / (2 * sizeof(u32));
qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2,
enckeylen / 2);
qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen);
/* Set data unit size to cryptlen. Anything else causes
* crypto engine to return back incorrect results.
*/
qce_write(qce, REG_ENCR_XTS_DU_SIZE, cryptlen);
}
static int qce_setup_regs_skcipher(struct crypto_async_request *async_req)
{
struct skcipher_request *req = skcipher_request_cast(async_req);
struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req);
struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req));
struct qce_device *qce = tmpl->qce;
__be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0};
__be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0};
unsigned int enckey_words, enciv_words;
unsigned int keylen;
u32 encr_cfg = 0, auth_cfg = 0, config;
unsigned int ivsize = rctx->ivsize;
unsigned long flags = rctx->flags;
qce_setup_config(qce);
if (IS_XTS(flags))
keylen = ctx->enc_keylen / 2;
else
keylen = ctx->enc_keylen;
qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen);
enckey_words = keylen / sizeof(u32);
qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
encr_cfg = qce_encr_cfg(flags, keylen);
if (IS_DES(flags)) {
enciv_words = 2;
enckey_words = 2;
} else if (IS_3DES(flags)) {
enciv_words = 2;
enckey_words = 6;
} else if (IS_AES(flags)) {
if (IS_XTS(flags))
qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen,
rctx->cryptlen);
enciv_words = 4;
} else {
return -EINVAL;
}
qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words);
if (!IS_ECB(flags)) {
if (IS_XTS(flags))
qce_xts_swapiv(enciv, rctx->iv, ivsize);
else
qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize);
qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words);
}
if (IS_ENCRYPT(flags))
encr_cfg |= BIT(ENCODE_SHIFT);
qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
qce_write(qce, REG_ENCR_SEG_START, 0);
if (IS_CTR(flags)) {
qce_write(qce, REG_CNTR_MASK, ~0);
qce_write(qce, REG_CNTR_MASK0, ~0);
qce_write(qce, REG_CNTR_MASK1, ~0);
qce_write(qce, REG_CNTR_MASK2, ~0);
}
qce_write(qce, REG_SEG_SIZE, rctx->cryptlen);
/* get little endianness */
config = qce_config_reg(qce, 1);
qce_write(qce, REG_CONFIG, config);
qce_crypto_go(qce, true);
return 0;
}
#endif
#ifdef CONFIG_CRYPTO_DEV_QCE_AEAD
static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
};
static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
};
static unsigned int qce_be32_to_cpu_array(u32 *dst, const u8 *src, unsigned int len)
{
u32 *d = dst;
const u8 *s = src;
unsigned int n;
n = len / sizeof(u32);
for (; n > 0; n--) {
*d = be32_to_cpup((const __be32 *)s);
s += sizeof(u32);
d++;
}
return DIV_ROUND_UP(len, sizeof(u32));
}
static int qce_setup_regs_aead(struct crypto_async_request *async_req)
{
struct aead_request *req = aead_request_cast(async_req);
struct qce_aead_reqctx *rctx = aead_request_ctx(req);
struct qce_aead_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
struct qce_alg_template *tmpl = to_aead_tmpl(crypto_aead_reqtfm(req));
struct qce_device *qce = tmpl->qce;
u32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
u32 enciv[QCE_MAX_IV_SIZE / sizeof(u32)] = {0};
u32 authkey[QCE_SHA_HMAC_KEY_SIZE / sizeof(u32)] = {0};
u32 authiv[SHA256_DIGEST_SIZE / sizeof(u32)] = {0};
u32 authnonce[QCE_MAX_NONCE / sizeof(u32)] = {0};
unsigned int enc_keylen = ctx->enc_keylen;
unsigned int auth_keylen = ctx->auth_keylen;
unsigned int enc_ivsize = rctx->ivsize;
unsigned int auth_ivsize = 0;
unsigned int enckey_words, enciv_words;
unsigned int authkey_words, authiv_words, authnonce_words;
unsigned long flags = rctx->flags;
u32 encr_cfg, auth_cfg, config, totallen;
u32 iv_last_word;
qce_setup_config(qce);
/* Write encryption key */
enckey_words = qce_be32_to_cpu_array(enckey, ctx->enc_key, enc_keylen);
qce_write_array(qce, REG_ENCR_KEY0, enckey, enckey_words);
/* Write encryption iv */
enciv_words = qce_be32_to_cpu_array(enciv, rctx->iv, enc_ivsize);
qce_write_array(qce, REG_CNTR0_IV0, enciv, enciv_words);
if (IS_CCM(rctx->flags)) {
iv_last_word = enciv[enciv_words - 1];
qce_write(qce, REG_CNTR3_IV3, iv_last_word + 1);
qce_write_array(qce, REG_ENCR_CCM_INT_CNTR0, (u32 *)enciv, enciv_words);
qce_write(qce, REG_CNTR_MASK, ~0);
qce_write(qce, REG_CNTR_MASK0, ~0);
qce_write(qce, REG_CNTR_MASK1, ~0);
qce_write(qce, REG_CNTR_MASK2, ~0);
}
/* Clear authentication IV and KEY registers of previous values */
qce_clear_array(qce, REG_AUTH_IV0, 16);
qce_clear_array(qce, REG_AUTH_KEY0, 16);
/* Clear byte count */
qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
/* Write authentication key */
authkey_words = qce_be32_to_cpu_array(authkey, ctx->auth_key, auth_keylen);
qce_write_array(qce, REG_AUTH_KEY0, (u32 *)authkey, authkey_words);
/* Write initial authentication IV only for HMAC algorithms */
if (IS_SHA_HMAC(rctx->flags)) {
/* Write default authentication iv */
if (IS_SHA1_HMAC(rctx->flags)) {
auth_ivsize = SHA1_DIGEST_SIZE;
memcpy(authiv, std_iv_sha1, auth_ivsize);
} else if (IS_SHA256_HMAC(rctx->flags)) {
auth_ivsize = SHA256_DIGEST_SIZE;
memcpy(authiv, std_iv_sha256, auth_ivsize);
}
authiv_words = auth_ivsize / sizeof(u32);
qce_write_array(qce, REG_AUTH_IV0, (u32 *)authiv, authiv_words);
} else if (IS_CCM(rctx->flags)) {
/* Write nonce for CCM algorithms */
authnonce_words = qce_be32_to_cpu_array(authnonce, rctx->ccm_nonce, QCE_MAX_NONCE);
qce_write_array(qce, REG_AUTH_INFO_NONCE0, authnonce, authnonce_words);
}
/* Set up ENCR_SEG_CFG */
encr_cfg = qce_encr_cfg(flags, enc_keylen);
if (IS_ENCRYPT(flags))
encr_cfg |= BIT(ENCODE_SHIFT);
qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
/* Set up AUTH_SEG_CFG */
auth_cfg = qce_auth_cfg(rctx->flags, auth_keylen, ctx->authsize);
auth_cfg |= BIT(AUTH_LAST_SHIFT);
auth_cfg |= BIT(AUTH_FIRST_SHIFT);
if (IS_ENCRYPT(flags)) {
if (IS_CCM(rctx->flags))
auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
else
auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT;
} else {
if (IS_CCM(rctx->flags))
auth_cfg |= AUTH_POS_AFTER << AUTH_POS_SHIFT;
else
auth_cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
}
qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
totallen = rctx->cryptlen + rctx->assoclen;
/* Set the encryption size and start offset */
if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags))
qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen + ctx->authsize);
else
qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
qce_write(qce, REG_ENCR_SEG_START, rctx->assoclen & 0xffff);
/* Set the authentication size and start offset */
qce_write(qce, REG_AUTH_SEG_SIZE, totallen);
qce_write(qce, REG_AUTH_SEG_START, 0);
/* Write total length */
if (IS_CCM(rctx->flags) && IS_DECRYPT(rctx->flags))
qce_write(qce, REG_SEG_SIZE, totallen + ctx->authsize);
else
qce_write(qce, REG_SEG_SIZE, totallen);
/* get little endianness */
config = qce_config_reg(qce, 1);
qce_write(qce, REG_CONFIG, config);
/* Start the process */
qce_crypto_go(qce, !IS_CCM(flags));
return 0;
}
#endif
int qce_start(struct crypto_async_request *async_req, u32 type)
{
switch (type) {
#ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
case CRYPTO_ALG_TYPE_SKCIPHER:
return qce_setup_regs_skcipher(async_req);
#endif
#ifdef CONFIG_CRYPTO_DEV_QCE_SHA
case CRYPTO_ALG_TYPE_AHASH:
return qce_setup_regs_ahash(async_req);
#endif
#ifdef CONFIG_CRYPTO_DEV_QCE_AEAD
case CRYPTO_ALG_TYPE_AEAD:
return qce_setup_regs_aead(async_req);
#endif
default:
return -EINVAL;
}
}
#define STATUS_ERRORS \
(BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT))
int qce_check_status(struct qce_device *qce, u32 *status)
{
int ret = 0;
*status = qce_read(qce, REG_STATUS);
/*
* Don't use result dump status. The operation may not be complete.
* Instead, use the status we just read from device. In case, we need to
* use result_status from result dump the result_status needs to be byte
* swapped, since we set the device to little endian.
*/
if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT)))
ret = -ENXIO;
else if (*status & BIT(MAC_FAILED_SHIFT))
ret = -EBADMSG;
return ret;
}
void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step)
{
u32 val;
val = qce_read(qce, REG_VERSION);
*major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT;
*minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT;
*step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT;
}