blob: f0351e6f0ef6d44ba6d6615ad5e99abcf7abd1ef [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
*Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
*/
#include <linux/kernel.h>
#include <linux/serial_reg.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/console.h>
#include <linux/serial_core.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/dmi.h>
#include <linux/nmi.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/debugfs.h>
#include <linux/dmaengine.h>
#include <linux/pch_dma.h>
enum {
PCH_UART_HANDLED_RX_INT_SHIFT,
PCH_UART_HANDLED_TX_INT_SHIFT,
PCH_UART_HANDLED_RX_ERR_INT_SHIFT,
PCH_UART_HANDLED_RX_TRG_INT_SHIFT,
PCH_UART_HANDLED_MS_INT_SHIFT,
PCH_UART_HANDLED_LS_INT_SHIFT,
};
#define PCH_UART_DRIVER_DEVICE "ttyPCH"
/* Set the max number of UART port
* Intel EG20T PCH: 4 port
* LAPIS Semiconductor ML7213 IOH: 3 port
* LAPIS Semiconductor ML7223 IOH: 2 port
*/
#define PCH_UART_NR 4
#define PCH_UART_HANDLED_RX_INT (1<<((PCH_UART_HANDLED_RX_INT_SHIFT)<<1))
#define PCH_UART_HANDLED_TX_INT (1<<((PCH_UART_HANDLED_TX_INT_SHIFT)<<1))
#define PCH_UART_HANDLED_RX_ERR_INT (1<<((\
PCH_UART_HANDLED_RX_ERR_INT_SHIFT)<<1))
#define PCH_UART_HANDLED_RX_TRG_INT (1<<((\
PCH_UART_HANDLED_RX_TRG_INT_SHIFT)<<1))
#define PCH_UART_HANDLED_MS_INT (1<<((PCH_UART_HANDLED_MS_INT_SHIFT)<<1))
#define PCH_UART_HANDLED_LS_INT (1<<((PCH_UART_HANDLED_LS_INT_SHIFT)<<1))
#define PCH_UART_RBR 0x00
#define PCH_UART_THR 0x00
#define PCH_UART_IER_MASK (PCH_UART_IER_ERBFI|PCH_UART_IER_ETBEI|\
PCH_UART_IER_ELSI|PCH_UART_IER_EDSSI)
#define PCH_UART_IER_ERBFI 0x00000001
#define PCH_UART_IER_ETBEI 0x00000002
#define PCH_UART_IER_ELSI 0x00000004
#define PCH_UART_IER_EDSSI 0x00000008
#define PCH_UART_IIR_IP 0x00000001
#define PCH_UART_IIR_IID 0x00000006
#define PCH_UART_IIR_MSI 0x00000000
#define PCH_UART_IIR_TRI 0x00000002
#define PCH_UART_IIR_RRI 0x00000004
#define PCH_UART_IIR_REI 0x00000006
#define PCH_UART_IIR_TOI 0x00000008
#define PCH_UART_IIR_FIFO256 0x00000020
#define PCH_UART_IIR_FIFO64 PCH_UART_IIR_FIFO256
#define PCH_UART_IIR_FE 0x000000C0
#define PCH_UART_FCR_FIFOE 0x00000001
#define PCH_UART_FCR_RFR 0x00000002
#define PCH_UART_FCR_TFR 0x00000004
#define PCH_UART_FCR_DMS 0x00000008
#define PCH_UART_FCR_FIFO256 0x00000020
#define PCH_UART_FCR_RFTL 0x000000C0
#define PCH_UART_FCR_RFTL1 0x00000000
#define PCH_UART_FCR_RFTL64 0x00000040
#define PCH_UART_FCR_RFTL128 0x00000080
#define PCH_UART_FCR_RFTL224 0x000000C0
#define PCH_UART_FCR_RFTL16 PCH_UART_FCR_RFTL64
#define PCH_UART_FCR_RFTL32 PCH_UART_FCR_RFTL128
#define PCH_UART_FCR_RFTL56 PCH_UART_FCR_RFTL224
#define PCH_UART_FCR_RFTL4 PCH_UART_FCR_RFTL64
#define PCH_UART_FCR_RFTL8 PCH_UART_FCR_RFTL128
#define PCH_UART_FCR_RFTL14 PCH_UART_FCR_RFTL224
#define PCH_UART_FCR_RFTL_SHIFT 6
#define PCH_UART_LCR_WLS 0x00000003
#define PCH_UART_LCR_STB 0x00000004
#define PCH_UART_LCR_PEN 0x00000008
#define PCH_UART_LCR_EPS 0x00000010
#define PCH_UART_LCR_SP 0x00000020
#define PCH_UART_LCR_SB 0x00000040
#define PCH_UART_LCR_DLAB 0x00000080
#define PCH_UART_LCR_NP 0x00000000
#define PCH_UART_LCR_OP PCH_UART_LCR_PEN
#define PCH_UART_LCR_EP (PCH_UART_LCR_PEN | PCH_UART_LCR_EPS)
#define PCH_UART_LCR_1P (PCH_UART_LCR_PEN | PCH_UART_LCR_SP)
#define PCH_UART_LCR_0P (PCH_UART_LCR_PEN | PCH_UART_LCR_EPS |\
PCH_UART_LCR_SP)
#define PCH_UART_LCR_5BIT 0x00000000
#define PCH_UART_LCR_6BIT 0x00000001
#define PCH_UART_LCR_7BIT 0x00000002
#define PCH_UART_LCR_8BIT 0x00000003
#define PCH_UART_MCR_DTR 0x00000001
#define PCH_UART_MCR_RTS 0x00000002
#define PCH_UART_MCR_OUT 0x0000000C
#define PCH_UART_MCR_LOOP 0x00000010
#define PCH_UART_MCR_AFE 0x00000020
#define PCH_UART_LSR_DR 0x00000001
#define PCH_UART_LSR_ERR (1<<7)
#define PCH_UART_MSR_DCTS 0x00000001
#define PCH_UART_MSR_DDSR 0x00000002
#define PCH_UART_MSR_TERI 0x00000004
#define PCH_UART_MSR_DDCD 0x00000008
#define PCH_UART_MSR_CTS 0x00000010
#define PCH_UART_MSR_DSR 0x00000020
#define PCH_UART_MSR_RI 0x00000040
#define PCH_UART_MSR_DCD 0x00000080
#define PCH_UART_MSR_DELTA (PCH_UART_MSR_DCTS | PCH_UART_MSR_DDSR |\
PCH_UART_MSR_TERI | PCH_UART_MSR_DDCD)
#define PCH_UART_DLL 0x00
#define PCH_UART_DLM 0x01
#define PCH_UART_BRCSR 0x0E
#define PCH_UART_IID_RLS (PCH_UART_IIR_REI)
#define PCH_UART_IID_RDR (PCH_UART_IIR_RRI)
#define PCH_UART_IID_RDR_TO (PCH_UART_IIR_RRI | PCH_UART_IIR_TOI)
#define PCH_UART_IID_THRE (PCH_UART_IIR_TRI)
#define PCH_UART_IID_MS (PCH_UART_IIR_MSI)
#define PCH_UART_HAL_PARITY_NONE (PCH_UART_LCR_NP)
#define PCH_UART_HAL_PARITY_ODD (PCH_UART_LCR_OP)
#define PCH_UART_HAL_PARITY_EVEN (PCH_UART_LCR_EP)
#define PCH_UART_HAL_PARITY_FIX1 (PCH_UART_LCR_1P)
#define PCH_UART_HAL_PARITY_FIX0 (PCH_UART_LCR_0P)
#define PCH_UART_HAL_5BIT (PCH_UART_LCR_5BIT)
#define PCH_UART_HAL_6BIT (PCH_UART_LCR_6BIT)
#define PCH_UART_HAL_7BIT (PCH_UART_LCR_7BIT)
#define PCH_UART_HAL_8BIT (PCH_UART_LCR_8BIT)
#define PCH_UART_HAL_STB1 0
#define PCH_UART_HAL_STB2 (PCH_UART_LCR_STB)
#define PCH_UART_HAL_CLR_TX_FIFO (PCH_UART_FCR_TFR)
#define PCH_UART_HAL_CLR_RX_FIFO (PCH_UART_FCR_RFR)
#define PCH_UART_HAL_CLR_ALL_FIFO (PCH_UART_HAL_CLR_TX_FIFO | \
PCH_UART_HAL_CLR_RX_FIFO)
#define PCH_UART_HAL_DMA_MODE0 0
#define PCH_UART_HAL_FIFO_DIS 0
#define PCH_UART_HAL_FIFO16 (PCH_UART_FCR_FIFOE)
#define PCH_UART_HAL_FIFO256 (PCH_UART_FCR_FIFOE | \
PCH_UART_FCR_FIFO256)
#define PCH_UART_HAL_FIFO64 (PCH_UART_HAL_FIFO256)
#define PCH_UART_HAL_TRIGGER1 (PCH_UART_FCR_RFTL1)
#define PCH_UART_HAL_TRIGGER64 (PCH_UART_FCR_RFTL64)
#define PCH_UART_HAL_TRIGGER128 (PCH_UART_FCR_RFTL128)
#define PCH_UART_HAL_TRIGGER224 (PCH_UART_FCR_RFTL224)
#define PCH_UART_HAL_TRIGGER16 (PCH_UART_FCR_RFTL16)
#define PCH_UART_HAL_TRIGGER32 (PCH_UART_FCR_RFTL32)
#define PCH_UART_HAL_TRIGGER56 (PCH_UART_FCR_RFTL56)
#define PCH_UART_HAL_TRIGGER4 (PCH_UART_FCR_RFTL4)
#define PCH_UART_HAL_TRIGGER8 (PCH_UART_FCR_RFTL8)
#define PCH_UART_HAL_TRIGGER14 (PCH_UART_FCR_RFTL14)
#define PCH_UART_HAL_TRIGGER_L (PCH_UART_FCR_RFTL64)
#define PCH_UART_HAL_TRIGGER_M (PCH_UART_FCR_RFTL128)
#define PCH_UART_HAL_TRIGGER_H (PCH_UART_FCR_RFTL224)
#define PCH_UART_HAL_RX_INT (PCH_UART_IER_ERBFI)
#define PCH_UART_HAL_TX_INT (PCH_UART_IER_ETBEI)
#define PCH_UART_HAL_RX_ERR_INT (PCH_UART_IER_ELSI)
#define PCH_UART_HAL_MS_INT (PCH_UART_IER_EDSSI)
#define PCH_UART_HAL_ALL_INT (PCH_UART_IER_MASK)
#define PCH_UART_HAL_DTR (PCH_UART_MCR_DTR)
#define PCH_UART_HAL_RTS (PCH_UART_MCR_RTS)
#define PCH_UART_HAL_OUT (PCH_UART_MCR_OUT)
#define PCH_UART_HAL_LOOP (PCH_UART_MCR_LOOP)
#define PCH_UART_HAL_AFE (PCH_UART_MCR_AFE)
#define BOTH_EMPTY (UART_LSR_TEMT | UART_LSR_THRE)
#define DEFAULT_UARTCLK 1843200 /* 1.8432 MHz */
#define CMITC_UARTCLK 192000000 /* 192.0000 MHz */
#define FRI2_64_UARTCLK 64000000 /* 64.0000 MHz */
#define FRI2_48_UARTCLK 48000000 /* 48.0000 MHz */
#define NTC1_UARTCLK 64000000 /* 64.0000 MHz */
#define MINNOW_UARTCLK 50000000 /* 50.0000 MHz */
struct pch_uart_buffer {
unsigned char *buf;
int size;
};
struct eg20t_port {
struct uart_port port;
int port_type;
void __iomem *membase;
resource_size_t mapbase;
unsigned int iobase;
struct pci_dev *pdev;
int fifo_size;
unsigned int uartclk;
int start_tx;
int start_rx;
int tx_empty;
int trigger;
int trigger_level;
struct pch_uart_buffer rxbuf;
unsigned int dmsr;
unsigned int fcr;
unsigned int mcr;
unsigned int use_dma;
struct dma_async_tx_descriptor *desc_tx;
struct dma_async_tx_descriptor *desc_rx;
struct pch_dma_slave param_tx;
struct pch_dma_slave param_rx;
struct dma_chan *chan_tx;
struct dma_chan *chan_rx;
struct scatterlist *sg_tx_p;
int nent;
int orig_nent;
struct scatterlist sg_rx;
int tx_dma_use;
void *rx_buf_virt;
dma_addr_t rx_buf_dma;
#define IRQ_NAME_SIZE 17
char irq_name[IRQ_NAME_SIZE];
/* protect the eg20t_port private structure and io access to membase */
spinlock_t lock;
};
/**
* struct pch_uart_driver_data - private data structure for UART-DMA
* @port_type: The type of UART port
* @line_no: UART port line number (0, 1, 2...)
*/
struct pch_uart_driver_data {
int port_type;
int line_no;
};
enum pch_uart_num_t {
pch_et20t_uart0 = 0,
pch_et20t_uart1,
pch_et20t_uart2,
pch_et20t_uart3,
pch_ml7213_uart0,
pch_ml7213_uart1,
pch_ml7213_uart2,
pch_ml7223_uart0,
pch_ml7223_uart1,
pch_ml7831_uart0,
pch_ml7831_uart1,
};
static struct pch_uart_driver_data drv_dat[] = {
[pch_et20t_uart0] = {PORT_PCH_8LINE, 0},
[pch_et20t_uart1] = {PORT_PCH_2LINE, 1},
[pch_et20t_uart2] = {PORT_PCH_2LINE, 2},
[pch_et20t_uart3] = {PORT_PCH_2LINE, 3},
[pch_ml7213_uart0] = {PORT_PCH_8LINE, 0},
[pch_ml7213_uart1] = {PORT_PCH_2LINE, 1},
[pch_ml7213_uart2] = {PORT_PCH_2LINE, 2},
[pch_ml7223_uart0] = {PORT_PCH_8LINE, 0},
[pch_ml7223_uart1] = {PORT_PCH_2LINE, 1},
[pch_ml7831_uart0] = {PORT_PCH_8LINE, 0},
[pch_ml7831_uart1] = {PORT_PCH_2LINE, 1},
};
#ifdef CONFIG_SERIAL_PCH_UART_CONSOLE
static struct eg20t_port *pch_uart_ports[PCH_UART_NR];
#endif
static unsigned int default_baud = 9600;
static unsigned int user_uartclk = 0;
static const int trigger_level_256[4] = { 1, 64, 128, 224 };
static const int trigger_level_64[4] = { 1, 16, 32, 56 };
static const int trigger_level_16[4] = { 1, 4, 8, 14 };
static const int trigger_level_1[4] = { 1, 1, 1, 1 };
#define PCH_REGS_BUFSIZE 1024
static ssize_t port_show_regs(struct file *file, char __user *user_buf,
size_t count, loff_t *ppos)
{
struct eg20t_port *priv = file->private_data;
char *buf;
u32 len = 0;
ssize_t ret;
unsigned char lcr;
buf = kzalloc(PCH_REGS_BUFSIZE, GFP_KERNEL);
if (!buf)
return 0;
len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len,
"PCH EG20T port[%d] regs:\n", priv->port.line);
len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len,
"=================================\n");
len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len,
"IER: \t0x%02x\n", ioread8(priv->membase + UART_IER));
len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len,
"IIR: \t0x%02x\n", ioread8(priv->membase + UART_IIR));
len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len,
"LCR: \t0x%02x\n", ioread8(priv->membase + UART_LCR));
len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len,
"MCR: \t0x%02x\n", ioread8(priv->membase + UART_MCR));
len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len,
"LSR: \t0x%02x\n", ioread8(priv->membase + UART_LSR));
len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len,
"MSR: \t0x%02x\n", ioread8(priv->membase + UART_MSR));
len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len,
"BRCSR: \t0x%02x\n",
ioread8(priv->membase + PCH_UART_BRCSR));
lcr = ioread8(priv->membase + UART_LCR);
iowrite8(PCH_UART_LCR_DLAB, priv->membase + UART_LCR);
len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len,
"DLL: \t0x%02x\n", ioread8(priv->membase + UART_DLL));
len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len,
"DLM: \t0x%02x\n", ioread8(priv->membase + UART_DLM));
iowrite8(lcr, priv->membase + UART_LCR);
if (len > PCH_REGS_BUFSIZE)
len = PCH_REGS_BUFSIZE;
ret = simple_read_from_buffer(user_buf, count, ppos, buf, len);
kfree(buf);
return ret;
}
static const struct file_operations port_regs_ops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = port_show_regs,
.llseek = default_llseek,
};
static const struct dmi_system_id pch_uart_dmi_table[] = {
{
.ident = "CM-iTC",
{
DMI_MATCH(DMI_BOARD_NAME, "CM-iTC"),
},
(void *)CMITC_UARTCLK,
},
{
.ident = "FRI2",
{
DMI_MATCH(DMI_BIOS_VERSION, "FRI2"),
},
(void *)FRI2_64_UARTCLK,
},
{
.ident = "Fish River Island II",
{
DMI_MATCH(DMI_PRODUCT_NAME, "Fish River Island II"),
},
(void *)FRI2_48_UARTCLK,
},
{
.ident = "COMe-mTT",
{
DMI_MATCH(DMI_BOARD_NAME, "COMe-mTT"),
},
(void *)NTC1_UARTCLK,
},
{
.ident = "nanoETXexpress-TT",
{
DMI_MATCH(DMI_BOARD_NAME, "nanoETXexpress-TT"),
},
(void *)NTC1_UARTCLK,
},
{
.ident = "MinnowBoard",
{
DMI_MATCH(DMI_BOARD_NAME, "MinnowBoard"),
},
(void *)MINNOW_UARTCLK,
},
{ }
};
/* Return UART clock, checking for board specific clocks. */
static unsigned int pch_uart_get_uartclk(void)
{
const struct dmi_system_id *d;
if (user_uartclk)
return user_uartclk;
d = dmi_first_match(pch_uart_dmi_table);
if (d)
return (unsigned long)d->driver_data;
return DEFAULT_UARTCLK;
}
static void pch_uart_hal_enable_interrupt(struct eg20t_port *priv,
unsigned int flag)
{
u8 ier = ioread8(priv->membase + UART_IER);
ier |= flag & PCH_UART_IER_MASK;
iowrite8(ier, priv->membase + UART_IER);
}
static void pch_uart_hal_disable_interrupt(struct eg20t_port *priv,
unsigned int flag)
{
u8 ier = ioread8(priv->membase + UART_IER);
ier &= ~(flag & PCH_UART_IER_MASK);
iowrite8(ier, priv->membase + UART_IER);
}
static int pch_uart_hal_set_line(struct eg20t_port *priv, unsigned int baud,
unsigned int parity, unsigned int bits,
unsigned int stb)
{
unsigned int dll, dlm, lcr;
int div;
div = DIV_ROUND_CLOSEST(priv->uartclk / 16, baud);
if (div < 0 || USHRT_MAX <= div) {
dev_err(priv->port.dev, "Invalid Baud(div=0x%x)\n", div);
return -EINVAL;
}
dll = (unsigned int)div & 0x00FFU;
dlm = ((unsigned int)div >> 8) & 0x00FFU;
if (parity & ~(PCH_UART_LCR_PEN | PCH_UART_LCR_EPS | PCH_UART_LCR_SP)) {
dev_err(priv->port.dev, "Invalid parity(0x%x)\n", parity);
return -EINVAL;
}
if (bits & ~PCH_UART_LCR_WLS) {
dev_err(priv->port.dev, "Invalid bits(0x%x)\n", bits);
return -EINVAL;
}
if (stb & ~PCH_UART_LCR_STB) {
dev_err(priv->port.dev, "Invalid STB(0x%x)\n", stb);
return -EINVAL;
}
lcr = parity;
lcr |= bits;
lcr |= stb;
dev_dbg(priv->port.dev, "%s:baud = %u, div = %04x, lcr = %02x (%lu)\n",
__func__, baud, div, lcr, jiffies);
iowrite8(PCH_UART_LCR_DLAB, priv->membase + UART_LCR);
iowrite8(dll, priv->membase + PCH_UART_DLL);
iowrite8(dlm, priv->membase + PCH_UART_DLM);
iowrite8(lcr, priv->membase + UART_LCR);
return 0;
}
static int pch_uart_hal_fifo_reset(struct eg20t_port *priv,
unsigned int flag)
{
if (flag & ~(PCH_UART_FCR_TFR | PCH_UART_FCR_RFR)) {
dev_err(priv->port.dev, "%s:Invalid flag(0x%x)\n",
__func__, flag);
return -EINVAL;
}
iowrite8(PCH_UART_FCR_FIFOE | priv->fcr, priv->membase + UART_FCR);
iowrite8(PCH_UART_FCR_FIFOE | priv->fcr | flag,
priv->membase + UART_FCR);
iowrite8(priv->fcr, priv->membase + UART_FCR);
return 0;
}
static int pch_uart_hal_set_fifo(struct eg20t_port *priv,
unsigned int dmamode,
unsigned int fifo_size, unsigned int trigger)
{
u8 fcr;
if (dmamode & ~PCH_UART_FCR_DMS) {
dev_err(priv->port.dev, "%s:Invalid DMA Mode(0x%x)\n",
__func__, dmamode);
return -EINVAL;
}
if (fifo_size & ~(PCH_UART_FCR_FIFOE | PCH_UART_FCR_FIFO256)) {
dev_err(priv->port.dev, "%s:Invalid FIFO SIZE(0x%x)\n",
__func__, fifo_size);
return -EINVAL;
}
if (trigger & ~PCH_UART_FCR_RFTL) {
dev_err(priv->port.dev, "%s:Invalid TRIGGER(0x%x)\n",
__func__, trigger);
return -EINVAL;
}
switch (priv->fifo_size) {
case 256:
priv->trigger_level =
trigger_level_256[trigger >> PCH_UART_FCR_RFTL_SHIFT];
break;
case 64:
priv->trigger_level =
trigger_level_64[trigger >> PCH_UART_FCR_RFTL_SHIFT];
break;
case 16:
priv->trigger_level =
trigger_level_16[trigger >> PCH_UART_FCR_RFTL_SHIFT];
break;
default:
priv->trigger_level =
trigger_level_1[trigger >> PCH_UART_FCR_RFTL_SHIFT];
break;
}
fcr =
dmamode | fifo_size | trigger | PCH_UART_FCR_RFR | PCH_UART_FCR_TFR;
iowrite8(PCH_UART_FCR_FIFOE, priv->membase + UART_FCR);
iowrite8(PCH_UART_FCR_FIFOE | PCH_UART_FCR_RFR | PCH_UART_FCR_TFR,
priv->membase + UART_FCR);
iowrite8(fcr, priv->membase + UART_FCR);
priv->fcr = fcr;
return 0;
}
static u8 pch_uart_hal_get_modem(struct eg20t_port *priv)
{
unsigned int msr = ioread8(priv->membase + UART_MSR);
priv->dmsr = msr & PCH_UART_MSR_DELTA;
return (u8)msr;
}
static void pch_uart_hal_write(struct eg20t_port *priv,
const unsigned char *buf, int tx_size)
{
int i;
unsigned int thr;
for (i = 0; i < tx_size;) {
thr = buf[i++];
iowrite8(thr, priv->membase + PCH_UART_THR);
}
}
static int pch_uart_hal_read(struct eg20t_port *priv, unsigned char *buf,
int rx_size)
{
int i;
u8 rbr, lsr;
struct uart_port *port = &priv->port;
lsr = ioread8(priv->membase + UART_LSR);
for (i = 0, lsr = ioread8(priv->membase + UART_LSR);
i < rx_size && lsr & (UART_LSR_DR | UART_LSR_BI);
lsr = ioread8(priv->membase + UART_LSR)) {
rbr = ioread8(priv->membase + PCH_UART_RBR);
if (lsr & UART_LSR_BI) {
port->icount.brk++;
if (uart_handle_break(port))
continue;
}
if (uart_handle_sysrq_char(port, rbr))
continue;
buf[i++] = rbr;
}
return i;
}
static unsigned char pch_uart_hal_get_iid(struct eg20t_port *priv)
{
return ioread8(priv->membase + UART_IIR) &\
(PCH_UART_IIR_IID | PCH_UART_IIR_TOI | PCH_UART_IIR_IP);
}
static u8 pch_uart_hal_get_line_status(struct eg20t_port *priv)
{
return ioread8(priv->membase + UART_LSR);
}
static void pch_uart_hal_set_break(struct eg20t_port *priv, int on)
{
unsigned int lcr;
lcr = ioread8(priv->membase + UART_LCR);
if (on)
lcr |= PCH_UART_LCR_SB;
else
lcr &= ~PCH_UART_LCR_SB;
iowrite8(lcr, priv->membase + UART_LCR);
}
static int push_rx(struct eg20t_port *priv, const unsigned char *buf,
int size)
{
struct uart_port *port = &priv->port;
struct tty_port *tport = &port->state->port;
tty_insert_flip_string(tport, buf, size);
tty_flip_buffer_push(tport);
return 0;
}
static int pop_tx_x(struct eg20t_port *priv, unsigned char *buf)
{
int ret = 0;
struct uart_port *port = &priv->port;
if (port->x_char) {
dev_dbg(priv->port.dev, "%s:X character send %02x (%lu)\n",
__func__, port->x_char, jiffies);
buf[0] = port->x_char;
port->x_char = 0;
ret = 1;
}
return ret;
}
static int dma_push_rx(struct eg20t_port *priv, int size)
{
int room;
struct uart_port *port = &priv->port;
struct tty_port *tport = &port->state->port;
room = tty_buffer_request_room(tport, size);
if (room < size)
dev_warn(port->dev, "Rx overrun: dropping %u bytes\n",
size - room);
if (!room)
return 0;
tty_insert_flip_string(tport, sg_virt(&priv->sg_rx), size);
port->icount.rx += room;
return room;
}
static void pch_free_dma(struct uart_port *port)
{
struct eg20t_port *priv;
priv = container_of(port, struct eg20t_port, port);
if (priv->chan_tx) {
dma_release_channel(priv->chan_tx);
priv->chan_tx = NULL;
}
if (priv->chan_rx) {
dma_release_channel(priv->chan_rx);
priv->chan_rx = NULL;
}
if (priv->rx_buf_dma) {
dma_free_coherent(port->dev, port->fifosize, priv->rx_buf_virt,
priv->rx_buf_dma);
priv->rx_buf_virt = NULL;
priv->rx_buf_dma = 0;
}
return;
}
static bool filter(struct dma_chan *chan, void *slave)
{
struct pch_dma_slave *param = slave;
if ((chan->chan_id == param->chan_id) && (param->dma_dev ==
chan->device->dev)) {
chan->private = param;
return true;
} else {
return false;
}
}
static void pch_request_dma(struct uart_port *port)
{
dma_cap_mask_t mask;
struct dma_chan *chan;
struct pci_dev *dma_dev;
struct pch_dma_slave *param;
struct eg20t_port *priv =
container_of(port, struct eg20t_port, port);
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
/* Get DMA's dev information */
dma_dev = pci_get_slot(priv->pdev->bus,
PCI_DEVFN(PCI_SLOT(priv->pdev->devfn), 0));
/* Set Tx DMA */
param = &priv->param_tx;
param->dma_dev = &dma_dev->dev;
param->chan_id = priv->port.line * 2; /* Tx = 0, 2, 4, ... */
param->tx_reg = port->mapbase + UART_TX;
chan = dma_request_channel(mask, filter, param);
if (!chan) {
dev_err(priv->port.dev, "%s:dma_request_channel FAILS(Tx)\n",
__func__);
return;
}
priv->chan_tx = chan;
/* Set Rx DMA */
param = &priv->param_rx;
param->dma_dev = &dma_dev->dev;
param->chan_id = priv->port.line * 2 + 1; /* Rx = Tx + 1 */
param->rx_reg = port->mapbase + UART_RX;
chan = dma_request_channel(mask, filter, param);
if (!chan) {
dev_err(priv->port.dev, "%s:dma_request_channel FAILS(Rx)\n",
__func__);
dma_release_channel(priv->chan_tx);
priv->chan_tx = NULL;
return;
}
/* Get Consistent memory for DMA */
priv->rx_buf_virt = dma_alloc_coherent(port->dev, port->fifosize,
&priv->rx_buf_dma, GFP_KERNEL);
priv->chan_rx = chan;
}
static void pch_dma_rx_complete(void *arg)
{
struct eg20t_port *priv = arg;
struct uart_port *port = &priv->port;
int count;
dma_sync_sg_for_cpu(port->dev, &priv->sg_rx, 1, DMA_FROM_DEVICE);
count = dma_push_rx(priv, priv->trigger_level);
if (count)
tty_flip_buffer_push(&port->state->port);
async_tx_ack(priv->desc_rx);
pch_uart_hal_enable_interrupt(priv, PCH_UART_HAL_RX_INT |
PCH_UART_HAL_RX_ERR_INT);
}
static void pch_dma_tx_complete(void *arg)
{
struct eg20t_port *priv = arg;
struct uart_port *port = &priv->port;
struct circ_buf *xmit = &port->state->xmit;
struct scatterlist *sg = priv->sg_tx_p;
int i;
for (i = 0; i < priv->nent; i++, sg++) {
xmit->tail += sg_dma_len(sg);
port->icount.tx += sg_dma_len(sg);
}
xmit->tail &= UART_XMIT_SIZE - 1;
async_tx_ack(priv->desc_tx);
dma_unmap_sg(port->dev, sg, priv->orig_nent, DMA_TO_DEVICE);
priv->tx_dma_use = 0;
priv->nent = 0;
priv->orig_nent = 0;
kfree(priv->sg_tx_p);
pch_uart_hal_enable_interrupt(priv, PCH_UART_HAL_TX_INT);
}
static int pop_tx(struct eg20t_port *priv, int size)
{
int count = 0;
struct uart_port *port = &priv->port;
struct circ_buf *xmit = &port->state->xmit;
if (uart_tx_stopped(port) || uart_circ_empty(xmit) || count >= size)
goto pop_tx_end;
do {
int cnt_to_end =
CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE);
int sz = min(size - count, cnt_to_end);
pch_uart_hal_write(priv, &xmit->buf[xmit->tail], sz);
xmit->tail = (xmit->tail + sz) & (UART_XMIT_SIZE - 1);
count += sz;
} while (!uart_circ_empty(xmit) && count < size);
pop_tx_end:
dev_dbg(priv->port.dev, "%d characters. Remained %d characters.(%lu)\n",
count, size - count, jiffies);
return count;
}
static int handle_rx_to(struct eg20t_port *priv)
{
struct pch_uart_buffer *buf;
int rx_size;
int ret;
if (!priv->start_rx) {
pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_RX_INT |
PCH_UART_HAL_RX_ERR_INT);
return 0;
}
buf = &priv->rxbuf;
do {
rx_size = pch_uart_hal_read(priv, buf->buf, buf->size);
ret = push_rx(priv, buf->buf, rx_size);
if (ret)
return 0;
} while (rx_size == buf->size);
return PCH_UART_HANDLED_RX_INT;
}
static int handle_rx(struct eg20t_port *priv)
{
return handle_rx_to(priv);
}
static int dma_handle_rx(struct eg20t_port *priv)
{
struct uart_port *port = &priv->port;
struct dma_async_tx_descriptor *desc;
struct scatterlist *sg;
priv = container_of(port, struct eg20t_port, port);
sg = &priv->sg_rx;
sg_init_table(&priv->sg_rx, 1); /* Initialize SG table */
sg_dma_len(sg) = priv->trigger_level;
sg_set_page(&priv->sg_rx, virt_to_page(priv->rx_buf_virt),
sg_dma_len(sg), offset_in_page(priv->rx_buf_virt));
sg_dma_address(sg) = priv->rx_buf_dma;
desc = dmaengine_prep_slave_sg(priv->chan_rx,
sg, 1, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc)
return 0;
priv->desc_rx = desc;
desc->callback = pch_dma_rx_complete;
desc->callback_param = priv;
desc->tx_submit(desc);
dma_async_issue_pending(priv->chan_rx);
return PCH_UART_HANDLED_RX_INT;
}
static unsigned int handle_tx(struct eg20t_port *priv)
{
struct uart_port *port = &priv->port;
struct circ_buf *xmit = &port->state->xmit;
int fifo_size;
int tx_size;
int size;
int tx_empty;
if (!priv->start_tx) {
dev_info(priv->port.dev, "%s:Tx isn't started. (%lu)\n",
__func__, jiffies);
pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_TX_INT);
priv->tx_empty = 1;
return 0;
}
fifo_size = max(priv->fifo_size, 1);
tx_empty = 1;
if (pop_tx_x(priv, xmit->buf)) {
pch_uart_hal_write(priv, xmit->buf, 1);
port->icount.tx++;
tx_empty = 0;
fifo_size--;
}
size = min(xmit->head - xmit->tail, fifo_size);
if (size < 0)
size = fifo_size;
tx_size = pop_tx(priv, size);
if (tx_size > 0) {
port->icount.tx += tx_size;
tx_empty = 0;
}
priv->tx_empty = tx_empty;
if (tx_empty) {
pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_TX_INT);
uart_write_wakeup(port);
}
return PCH_UART_HANDLED_TX_INT;
}
static unsigned int dma_handle_tx(struct eg20t_port *priv)
{
struct uart_port *port = &priv->port;
struct circ_buf *xmit = &port->state->xmit;
struct scatterlist *sg;
int nent;
int fifo_size;
struct dma_async_tx_descriptor *desc;
int num;
int i;
int bytes;
int size;
int rem;
if (!priv->start_tx) {
dev_info(priv->port.dev, "%s:Tx isn't started. (%lu)\n",
__func__, jiffies);
pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_TX_INT);
priv->tx_empty = 1;
return 0;
}
if (priv->tx_dma_use) {
dev_dbg(priv->port.dev, "%s:Tx is not completed. (%lu)\n",
__func__, jiffies);
pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_TX_INT);
priv->tx_empty = 1;
return 0;
}
fifo_size = max(priv->fifo_size, 1);
if (pop_tx_x(priv, xmit->buf)) {
pch_uart_hal_write(priv, xmit->buf, 1);
port->icount.tx++;
fifo_size--;
}
bytes = min((int)CIRC_CNT(xmit->head, xmit->tail,
UART_XMIT_SIZE), CIRC_CNT_TO_END(xmit->head,
xmit->tail, UART_XMIT_SIZE));
if (!bytes) {
dev_dbg(priv->port.dev, "%s 0 bytes return\n", __func__);
pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_TX_INT);
uart_write_wakeup(port);
return 0;
}
if (bytes > fifo_size) {
num = bytes / fifo_size + 1;
size = fifo_size;
rem = bytes % fifo_size;
} else {
num = 1;
size = bytes;
rem = bytes;
}
dev_dbg(priv->port.dev, "%s num=%d size=%d rem=%d\n",
__func__, num, size, rem);
priv->tx_dma_use = 1;
priv->sg_tx_p = kmalloc_array(num, sizeof(struct scatterlist), GFP_ATOMIC);
if (!priv->sg_tx_p) {
dev_err(priv->port.dev, "%s:kzalloc Failed\n", __func__);
return 0;
}
sg_init_table(priv->sg_tx_p, num); /* Initialize SG table */
sg = priv->sg_tx_p;
for (i = 0; i < num; i++, sg++) {
if (i == (num - 1))
sg_set_page(sg, virt_to_page(xmit->buf),
rem, fifo_size * i);
else
sg_set_page(sg, virt_to_page(xmit->buf),
size, fifo_size * i);
}
sg = priv->sg_tx_p;
nent = dma_map_sg(port->dev, sg, num, DMA_TO_DEVICE);
if (!nent) {
dev_err(priv->port.dev, "%s:dma_map_sg Failed\n", __func__);
return 0;
}
priv->orig_nent = num;
priv->nent = nent;
for (i = 0; i < nent; i++, sg++) {
sg->offset = (xmit->tail & (UART_XMIT_SIZE - 1)) +
fifo_size * i;
sg_dma_address(sg) = (sg_dma_address(sg) &
~(UART_XMIT_SIZE - 1)) + sg->offset;
if (i == (nent - 1))
sg_dma_len(sg) = rem;
else
sg_dma_len(sg) = size;
}
desc = dmaengine_prep_slave_sg(priv->chan_tx,
priv->sg_tx_p, nent, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc) {
dev_err(priv->port.dev, "%s:dmaengine_prep_slave_sg Failed\n",
__func__);
return 0;
}
dma_sync_sg_for_device(port->dev, priv->sg_tx_p, nent, DMA_TO_DEVICE);
priv->desc_tx = desc;
desc->callback = pch_dma_tx_complete;
desc->callback_param = priv;
desc->tx_submit(desc);
dma_async_issue_pending(priv->chan_tx);
return PCH_UART_HANDLED_TX_INT;
}
static void pch_uart_err_ir(struct eg20t_port *priv, unsigned int lsr)
{
struct uart_port *port = &priv->port;
struct tty_struct *tty = tty_port_tty_get(&port->state->port);
char *error_msg[5] = {};
int i = 0;
if (lsr & PCH_UART_LSR_ERR)
error_msg[i++] = "Error data in FIFO\n";
if (lsr & UART_LSR_FE) {
port->icount.frame++;
error_msg[i++] = " Framing Error\n";
}
if (lsr & UART_LSR_PE) {
port->icount.parity++;
error_msg[i++] = " Parity Error\n";
}
if (lsr & UART_LSR_OE) {
port->icount.overrun++;
error_msg[i++] = " Overrun Error\n";
}
if (tty == NULL) {
for (i = 0; error_msg[i] != NULL; i++)
dev_err(&priv->pdev->dev, error_msg[i]);
} else {
tty_kref_put(tty);
}
}
static irqreturn_t pch_uart_interrupt(int irq, void *dev_id)
{
struct eg20t_port *priv = dev_id;
unsigned int handled;
u8 lsr;
int ret = 0;
unsigned char iid;
unsigned long flags;
int next = 1;
u8 msr;
spin_lock_irqsave(&priv->lock, flags);
handled = 0;
while (next) {
iid = pch_uart_hal_get_iid(priv);
if (iid & PCH_UART_IIR_IP) /* No Interrupt */
break;
switch (iid) {
case PCH_UART_IID_RLS: /* Receiver Line Status */
lsr = pch_uart_hal_get_line_status(priv);
if (lsr & (PCH_UART_LSR_ERR | UART_LSR_FE |
UART_LSR_PE | UART_LSR_OE)) {
pch_uart_err_ir(priv, lsr);
ret = PCH_UART_HANDLED_RX_ERR_INT;
} else {
ret = PCH_UART_HANDLED_LS_INT;
}
break;
case PCH_UART_IID_RDR: /* Received Data Ready */
if (priv->use_dma) {
pch_uart_hal_disable_interrupt(priv,
PCH_UART_HAL_RX_INT |
PCH_UART_HAL_RX_ERR_INT);
ret = dma_handle_rx(priv);
if (!ret)
pch_uart_hal_enable_interrupt(priv,
PCH_UART_HAL_RX_INT |
PCH_UART_HAL_RX_ERR_INT);
} else {
ret = handle_rx(priv);
}
break;
case PCH_UART_IID_RDR_TO: /* Received Data Ready
(FIFO Timeout) */
ret = handle_rx_to(priv);
break;
case PCH_UART_IID_THRE: /* Transmitter Holding Register
Empty */
if (priv->use_dma)
ret = dma_handle_tx(priv);
else
ret = handle_tx(priv);
break;
case PCH_UART_IID_MS: /* Modem Status */
msr = pch_uart_hal_get_modem(priv);
next = 0; /* MS ir prioirty is the lowest. So, MS ir
means final interrupt */
if ((msr & UART_MSR_ANY_DELTA) == 0)
break;
ret |= PCH_UART_HANDLED_MS_INT;
break;
default: /* Never junp to this label */
dev_err(priv->port.dev, "%s:iid=%02x (%lu)\n", __func__,
iid, jiffies);
ret = -1;
next = 0;
break;
}
handled |= (unsigned int)ret;
}
spin_unlock_irqrestore(&priv->lock, flags);
return IRQ_RETVAL(handled);
}
/* This function tests whether the transmitter fifo and shifter for the port
described by 'port' is empty. */
static unsigned int pch_uart_tx_empty(struct uart_port *port)
{
struct eg20t_port *priv;
priv = container_of(port, struct eg20t_port, port);
if (priv->tx_empty)
return TIOCSER_TEMT;
else
return 0;
}
/* Returns the current state of modem control inputs. */
static unsigned int pch_uart_get_mctrl(struct uart_port *port)
{
struct eg20t_port *priv;
u8 modem;
unsigned int ret = 0;
priv = container_of(port, struct eg20t_port, port);
modem = pch_uart_hal_get_modem(priv);
if (modem & UART_MSR_DCD)
ret |= TIOCM_CAR;
if (modem & UART_MSR_RI)
ret |= TIOCM_RNG;
if (modem & UART_MSR_DSR)
ret |= TIOCM_DSR;
if (modem & UART_MSR_CTS)
ret |= TIOCM_CTS;
return ret;
}
static void pch_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
u32 mcr = 0;
struct eg20t_port *priv = container_of(port, struct eg20t_port, port);
if (mctrl & TIOCM_DTR)
mcr |= UART_MCR_DTR;
if (mctrl & TIOCM_RTS)
mcr |= UART_MCR_RTS;
if (mctrl & TIOCM_LOOP)
mcr |= UART_MCR_LOOP;
if (priv->mcr & UART_MCR_AFE)
mcr |= UART_MCR_AFE;
if (mctrl)
iowrite8(mcr, priv->membase + UART_MCR);
}
static void pch_uart_stop_tx(struct uart_port *port)
{
struct eg20t_port *priv;
priv = container_of(port, struct eg20t_port, port);
priv->start_tx = 0;
priv->tx_dma_use = 0;
}
static void pch_uart_start_tx(struct uart_port *port)
{
struct eg20t_port *priv;
priv = container_of(port, struct eg20t_port, port);
if (priv->use_dma) {
if (priv->tx_dma_use) {
dev_dbg(priv->port.dev, "%s : Tx DMA is NOT empty.\n",
__func__);
return;
}
}
priv->start_tx = 1;
pch_uart_hal_enable_interrupt(priv, PCH_UART_HAL_TX_INT);
}
static void pch_uart_stop_rx(struct uart_port *port)
{
struct eg20t_port *priv;
priv = container_of(port, struct eg20t_port, port);
priv->start_rx = 0;
pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_RX_INT |
PCH_UART_HAL_RX_ERR_INT);
}
/* Enable the modem status interrupts. */
static void pch_uart_enable_ms(struct uart_port *port)
{
struct eg20t_port *priv;
priv = container_of(port, struct eg20t_port, port);
pch_uart_hal_enable_interrupt(priv, PCH_UART_HAL_MS_INT);
}
/* Control the transmission of a break signal. */
static void pch_uart_break_ctl(struct uart_port *port, int ctl)
{
struct eg20t_port *priv;
unsigned long flags;
priv = container_of(port, struct eg20t_port, port);
spin_lock_irqsave(&priv->lock, flags);
pch_uart_hal_set_break(priv, ctl);
spin_unlock_irqrestore(&priv->lock, flags);
}
/* Grab any interrupt resources and initialise any low level driver state. */
static int pch_uart_startup(struct uart_port *port)
{
struct eg20t_port *priv;
int ret;
int fifo_size;
int trigger_level;
priv = container_of(port, struct eg20t_port, port);
priv->tx_empty = 1;
if (port->uartclk)
priv->uartclk = port->uartclk;
else
port->uartclk = priv->uartclk;
pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_ALL_INT);
ret = pch_uart_hal_set_line(priv, default_baud,
PCH_UART_HAL_PARITY_NONE, PCH_UART_HAL_8BIT,
PCH_UART_HAL_STB1);
if (ret)
return ret;
switch (priv->fifo_size) {
case 256:
fifo_size = PCH_UART_HAL_FIFO256;
break;
case 64:
fifo_size = PCH_UART_HAL_FIFO64;
break;
case 16:
fifo_size = PCH_UART_HAL_FIFO16;
break;
case 1:
default:
fifo_size = PCH_UART_HAL_FIFO_DIS;
break;
}
switch (priv->trigger) {
case PCH_UART_HAL_TRIGGER1:
trigger_level = 1;
break;
case PCH_UART_HAL_TRIGGER_L:
trigger_level = priv->fifo_size / 4;
break;
case PCH_UART_HAL_TRIGGER_M:
trigger_level = priv->fifo_size / 2;
break;
case PCH_UART_HAL_TRIGGER_H:
default:
trigger_level = priv->fifo_size - (priv->fifo_size / 8);
break;
}
priv->trigger_level = trigger_level;
ret = pch_uart_hal_set_fifo(priv, PCH_UART_HAL_DMA_MODE0,
fifo_size, priv->trigger);
if (ret < 0)
return ret;
ret = request_irq(priv->port.irq, pch_uart_interrupt, IRQF_SHARED,
priv->irq_name, priv);
if (ret < 0)
return ret;
if (priv->use_dma)
pch_request_dma(port);
priv->start_rx = 1;
pch_uart_hal_enable_interrupt(priv, PCH_UART_HAL_RX_INT |
PCH_UART_HAL_RX_ERR_INT);
uart_update_timeout(port, CS8, default_baud);
return 0;
}
static void pch_uart_shutdown(struct uart_port *port)
{
struct eg20t_port *priv;
int ret;
priv = container_of(port, struct eg20t_port, port);
pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_ALL_INT);
pch_uart_hal_fifo_reset(priv, PCH_UART_HAL_CLR_ALL_FIFO);
ret = pch_uart_hal_set_fifo(priv, PCH_UART_HAL_DMA_MODE0,
PCH_UART_HAL_FIFO_DIS, PCH_UART_HAL_TRIGGER1);
if (ret)
dev_err(priv->port.dev,
"pch_uart_hal_set_fifo Failed(ret=%d)\n", ret);
pch_free_dma(port);
free_irq(priv->port.irq, priv);
}
/* Change the port parameters, including word length, parity, stop
*bits. Update read_status_mask and ignore_status_mask to indicate
*the types of events we are interested in receiving. */
static void pch_uart_set_termios(struct uart_port *port,
struct ktermios *termios, struct ktermios *old)
{
int rtn;
unsigned int baud, parity, bits, stb;
struct eg20t_port *priv;
unsigned long flags;
priv = container_of(port, struct eg20t_port, port);
switch (termios->c_cflag & CSIZE) {
case CS5:
bits = PCH_UART_HAL_5BIT;
break;
case CS6:
bits = PCH_UART_HAL_6BIT;
break;
case CS7:
bits = PCH_UART_HAL_7BIT;
break;
default: /* CS8 */
bits = PCH_UART_HAL_8BIT;
break;
}
if (termios->c_cflag & CSTOPB)
stb = PCH_UART_HAL_STB2;
else
stb = PCH_UART_HAL_STB1;
if (termios->c_cflag & PARENB) {
if (termios->c_cflag & PARODD)
parity = PCH_UART_HAL_PARITY_ODD;
else
parity = PCH_UART_HAL_PARITY_EVEN;
} else
parity = PCH_UART_HAL_PARITY_NONE;
/* Only UART0 has auto hardware flow function */
if ((termios->c_cflag & CRTSCTS) && (priv->fifo_size == 256))
priv->mcr |= UART_MCR_AFE;
else
priv->mcr &= ~UART_MCR_AFE;
termios->c_cflag &= ~CMSPAR; /* Mark/Space parity is not supported */
baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk / 16);
spin_lock_irqsave(&priv->lock, flags);
spin_lock(&port->lock);
uart_update_timeout(port, termios->c_cflag, baud);
rtn = pch_uart_hal_set_line(priv, baud, parity, bits, stb);
if (rtn)
goto out;
pch_uart_set_mctrl(&priv->port, priv->port.mctrl);
/* Don't rewrite B0 */
if (tty_termios_baud_rate(termios))
tty_termios_encode_baud_rate(termios, baud, baud);
out:
spin_unlock(&port->lock);
spin_unlock_irqrestore(&priv->lock, flags);
}
static const char *pch_uart_type(struct uart_port *port)
{
return KBUILD_MODNAME;
}
static void pch_uart_release_port(struct uart_port *port)
{
struct eg20t_port *priv;
priv = container_of(port, struct eg20t_port, port);
pci_iounmap(priv->pdev, priv->membase);
pci_release_regions(priv->pdev);
}
static int pch_uart_request_port(struct uart_port *port)
{
struct eg20t_port *priv;
int ret;
void __iomem *membase;
priv = container_of(port, struct eg20t_port, port);
ret = pci_request_regions(priv->pdev, KBUILD_MODNAME);
if (ret < 0)
return -EBUSY;
membase = pci_iomap(priv->pdev, 1, 0);
if (!membase) {
pci_release_regions(priv->pdev);
return -EBUSY;
}
priv->membase = port->membase = membase;
return 0;
}
static void pch_uart_config_port(struct uart_port *port, int type)
{
struct eg20t_port *priv;
priv = container_of(port, struct eg20t_port, port);
if (type & UART_CONFIG_TYPE) {
port->type = priv->port_type;
pch_uart_request_port(port);
}
}
static int pch_uart_verify_port(struct uart_port *port,
struct serial_struct *serinfo)
{
struct eg20t_port *priv;
priv = container_of(port, struct eg20t_port, port);
if (serinfo->flags & UPF_LOW_LATENCY) {
dev_info(priv->port.dev,
"PCH UART : Use PIO Mode (without DMA)\n");
priv->use_dma = 0;
serinfo->flags &= ~UPF_LOW_LATENCY;
} else {
#ifndef CONFIG_PCH_DMA
dev_err(priv->port.dev, "%s : PCH DMA is not Loaded.\n",
__func__);
return -EOPNOTSUPP;
#endif
if (!priv->use_dma) {
pch_request_dma(port);
if (priv->chan_rx)
priv->use_dma = 1;
}
dev_info(priv->port.dev, "PCH UART: %s\n",
priv->use_dma ?
"Use DMA Mode" : "No DMA");
}
return 0;
}
#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_PCH_UART_CONSOLE)
/*
* Wait for transmitter & holding register to empty
*/
static void wait_for_xmitr(struct eg20t_port *up, int bits)
{
unsigned int status, tmout = 10000;
/* Wait up to 10ms for the character(s) to be sent. */
for (;;) {
status = ioread8(up->membase + UART_LSR);
if ((status & bits) == bits)
break;
if (--tmout == 0)
break;
udelay(1);
}
/* Wait up to 1s for flow control if necessary */
if (up->port.flags & UPF_CONS_FLOW) {
unsigned int tmout;
for (tmout = 1000000; tmout; tmout--) {
unsigned int msr = ioread8(up->membase + UART_MSR);
if (msr & UART_MSR_CTS)
break;
udelay(1);
touch_nmi_watchdog();
}
}
}
#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_PCH_UART_CONSOLE */
#ifdef CONFIG_CONSOLE_POLL
/*
* Console polling routines for communicate via uart while
* in an interrupt or debug context.
*/
static int pch_uart_get_poll_char(struct uart_port *port)
{
struct eg20t_port *priv =
container_of(port, struct eg20t_port, port);
u8 lsr = ioread8(priv->membase + UART_LSR);
if (!(lsr & UART_LSR_DR))
return NO_POLL_CHAR;
return ioread8(priv->membase + PCH_UART_RBR);
}
static void pch_uart_put_poll_char(struct uart_port *port,
unsigned char c)
{
unsigned int ier;
struct eg20t_port *priv =
container_of(port, struct eg20t_port, port);
/*
* First save the IER then disable the interrupts
*/
ier = ioread8(priv->membase + UART_IER);
pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_ALL_INT);
wait_for_xmitr(priv, UART_LSR_THRE);
/*
* Send the character out.
*/
iowrite8(c, priv->membase + PCH_UART_THR);
/*
* Finally, wait for transmitter to become empty
* and restore the IER
*/
wait_for_xmitr(priv, BOTH_EMPTY);
iowrite8(ier, priv->membase + UART_IER);
}
#endif /* CONFIG_CONSOLE_POLL */
static const struct uart_ops pch_uart_ops = {
.tx_empty = pch_uart_tx_empty,
.set_mctrl = pch_uart_set_mctrl,
.get_mctrl = pch_uart_get_mctrl,
.stop_tx = pch_uart_stop_tx,
.start_tx = pch_uart_start_tx,
.stop_rx = pch_uart_stop_rx,
.enable_ms = pch_uart_enable_ms,
.break_ctl = pch_uart_break_ctl,
.startup = pch_uart_startup,
.shutdown = pch_uart_shutdown,
.set_termios = pch_uart_set_termios,
/* .pm = pch_uart_pm, Not supported yet */
.type = pch_uart_type,
.release_port = pch_uart_release_port,
.request_port = pch_uart_request_port,
.config_port = pch_uart_config_port,
.verify_port = pch_uart_verify_port,
#ifdef CONFIG_CONSOLE_POLL
.poll_get_char = pch_uart_get_poll_char,
.poll_put_char = pch_uart_put_poll_char,
#endif
};
#ifdef CONFIG_SERIAL_PCH_UART_CONSOLE
static void pch_console_putchar(struct uart_port *port, int ch)
{
struct eg20t_port *priv =
container_of(port, struct eg20t_port, port);
wait_for_xmitr(priv, UART_LSR_THRE);
iowrite8(ch, priv->membase + PCH_UART_THR);
}
/*
* Print a string to the serial port trying not to disturb
* any possible real use of the port...
*
* The console_lock must be held when we get here.
*/
static void
pch_console_write(struct console *co, const char *s, unsigned int count)
{
struct eg20t_port *priv;
unsigned long flags;
int priv_locked = 1;
int port_locked = 1;
u8 ier;
priv = pch_uart_ports[co->index];
touch_nmi_watchdog();
local_irq_save(flags);
if (priv->port.sysrq) {
/* call to uart_handle_sysrq_char already took the priv lock */
priv_locked = 0;
/* serial8250_handle_port() already took the port lock */
port_locked = 0;
} else if (oops_in_progress) {
priv_locked = spin_trylock(&priv->lock);
port_locked = spin_trylock(&priv->port.lock);
} else {
spin_lock(&priv->lock);
spin_lock(&priv->port.lock);
}
/*
* First save the IER then disable the interrupts
*/
ier = ioread8(priv->membase + UART_IER);
pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_ALL_INT);
uart_console_write(&priv->port, s, count, pch_console_putchar);
/*
* Finally, wait for transmitter to become empty
* and restore the IER
*/
wait_for_xmitr(priv, BOTH_EMPTY);
iowrite8(ier, priv->membase + UART_IER);
if (port_locked)
spin_unlock(&priv->port.lock);
if (priv_locked)
spin_unlock(&priv->lock);
local_irq_restore(flags);
}
static int __init pch_console_setup(struct console *co, char *options)
{
struct uart_port *port;
int baud = default_baud;
int bits = 8;
int parity = 'n';
int flow = 'n';
/*
* Check whether an invalid uart number has been specified, and
* if so, search for the first available port that does have
* console support.
*/
if (co->index >= PCH_UART_NR)
co->index = 0;
port = &pch_uart_ports[co->index]->port;
if (!port || (!port->iobase && !port->membase))
return -ENODEV;
port->uartclk = pch_uart_get_uartclk();
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
return uart_set_options(port, co, baud, parity, bits, flow);
}
static struct uart_driver pch_uart_driver;
static struct console pch_console = {
.name = PCH_UART_DRIVER_DEVICE,
.write = pch_console_write,
.device = uart_console_device,
.setup = pch_console_setup,
.flags = CON_PRINTBUFFER | CON_ANYTIME,
.index = -1,
.data = &pch_uart_driver,
};
#define PCH_CONSOLE (&pch_console)
#else
#define PCH_CONSOLE NULL
#endif /* CONFIG_SERIAL_PCH_UART_CONSOLE */
static struct uart_driver pch_uart_driver = {
.owner = THIS_MODULE,
.driver_name = KBUILD_MODNAME,
.dev_name = PCH_UART_DRIVER_DEVICE,
.major = 0,
.minor = 0,
.nr = PCH_UART_NR,
.cons = PCH_CONSOLE,
};
static struct eg20t_port *pch_uart_init_port(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct eg20t_port *priv;
int ret;
unsigned int iobase;
unsigned int mapbase;
unsigned char *rxbuf;
int fifosize;
int port_type;
struct pch_uart_driver_data *board;
char name[32];
board = &drv_dat[id->driver_data];
port_type = board->port_type;
priv = kzalloc(sizeof(struct eg20t_port), GFP_KERNEL);
if (priv == NULL)
goto init_port_alloc_err;
rxbuf = (unsigned char *)__get_free_page(GFP_KERNEL);
if (!rxbuf)
goto init_port_free_txbuf;
switch (port_type) {
case PORT_PCH_8LINE:
fifosize = 256; /* EG20T/ML7213: UART0 */
break;
case PORT_PCH_2LINE:
fifosize = 64; /* EG20T:UART1~3 ML7213: UART1~2*/
break;
default:
dev_err(&pdev->dev, "Invalid Port Type(=%d)\n", port_type);
goto init_port_hal_free;
}
pci_enable_msi(pdev);
pci_set_master(pdev);
spin_lock_init(&priv->lock);
iobase = pci_resource_start(pdev, 0);
mapbase = pci_resource_start(pdev, 1);
priv->mapbase = mapbase;
priv->iobase = iobase;
priv->pdev = pdev;
priv->tx_empty = 1;
priv->rxbuf.buf = rxbuf;
priv->rxbuf.size = PAGE_SIZE;
priv->fifo_size = fifosize;
priv->uartclk = pch_uart_get_uartclk();
priv->port_type = port_type;
priv->port.dev = &pdev->dev;
priv->port.iobase = iobase;
priv->port.membase = NULL;
priv->port.mapbase = mapbase;
priv->port.irq = pdev->irq;
priv->port.iotype = UPIO_PORT;
priv->port.ops = &pch_uart_ops;
priv->port.flags = UPF_BOOT_AUTOCONF;
priv->port.fifosize = fifosize;
priv->port.line = board->line_no;
priv->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_PCH_UART_CONSOLE);
priv->trigger = PCH_UART_HAL_TRIGGER_M;
snprintf(priv->irq_name, IRQ_NAME_SIZE,
KBUILD_MODNAME ":" PCH_UART_DRIVER_DEVICE "%d",
priv->port.line);
spin_lock_init(&priv->port.lock);
pci_set_drvdata(pdev, priv);
priv->trigger_level = 1;
priv->fcr = 0;
if (pdev->dev.of_node)
of_property_read_u32(pdev->dev.of_node, "clock-frequency"
, &user_uartclk);
#ifdef CONFIG_SERIAL_PCH_UART_CONSOLE
pch_uart_ports[board->line_no] = priv;
#endif
ret = uart_add_one_port(&pch_uart_driver, &priv->port);
if (ret < 0)
goto init_port_hal_free;
snprintf(name, sizeof(name), "uart%d_regs", priv->port.line);
debugfs_create_file(name, S_IFREG | S_IRUGO, NULL, priv,
&port_regs_ops);
return priv;
init_port_hal_free:
#ifdef CONFIG_SERIAL_PCH_UART_CONSOLE
pch_uart_ports[board->line_no] = NULL;
#endif
free_page((unsigned long)rxbuf);
init_port_free_txbuf:
kfree(priv);
init_port_alloc_err:
return NULL;
}
static void pch_uart_exit_port(struct eg20t_port *priv)
{
char name[32];
snprintf(name, sizeof(name), "uart%d_regs", priv->port.line);
debugfs_remove(debugfs_lookup(name, NULL));
uart_remove_one_port(&pch_uart_driver, &priv->port);
free_page((unsigned long)priv->rxbuf.buf);
}
static void pch_uart_pci_remove(struct pci_dev *pdev)
{
struct eg20t_port *priv = pci_get_drvdata(pdev);
pci_disable_msi(pdev);
#ifdef CONFIG_SERIAL_PCH_UART_CONSOLE
pch_uart_ports[priv->port.line] = NULL;
#endif
pch_uart_exit_port(priv);
pci_disable_device(pdev);
kfree(priv);
return;
}
static int __maybe_unused pch_uart_pci_suspend(struct device *dev)
{
struct eg20t_port *priv = dev_get_drvdata(dev);
uart_suspend_port(&pch_uart_driver, &priv->port);
return 0;
}
static int __maybe_unused pch_uart_pci_resume(struct device *dev)
{
struct eg20t_port *priv = dev_get_drvdata(dev);
uart_resume_port(&pch_uart_driver, &priv->port);
return 0;
}
static const struct pci_device_id pch_uart_pci_id[] = {
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x8811),
.driver_data = pch_et20t_uart0},
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x8812),
.driver_data = pch_et20t_uart1},
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x8813),
.driver_data = pch_et20t_uart2},
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x8814),
.driver_data = pch_et20t_uart3},
{PCI_DEVICE(PCI_VENDOR_ID_ROHM, 0x8027),
.driver_data = pch_ml7213_uart0},
{PCI_DEVICE(PCI_VENDOR_ID_ROHM, 0x8028),
.driver_data = pch_ml7213_uart1},
{PCI_DEVICE(PCI_VENDOR_ID_ROHM, 0x8029),
.driver_data = pch_ml7213_uart2},
{PCI_DEVICE(PCI_VENDOR_ID_ROHM, 0x800C),
.driver_data = pch_ml7223_uart0},
{PCI_DEVICE(PCI_VENDOR_ID_ROHM, 0x800D),
.driver_data = pch_ml7223_uart1},
{PCI_DEVICE(PCI_VENDOR_ID_ROHM, 0x8811),
.driver_data = pch_ml7831_uart0},
{PCI_DEVICE(PCI_VENDOR_ID_ROHM, 0x8812),
.driver_data = pch_ml7831_uart1},
{0,},
};
static int pch_uart_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
int ret;
struct eg20t_port *priv;
ret = pci_enable_device(pdev);
if (ret < 0)
goto probe_error;
priv = pch_uart_init_port(pdev, id);
if (!priv) {
ret = -EBUSY;
goto probe_disable_device;
}
pci_set_drvdata(pdev, priv);
return ret;
probe_disable_device:
pci_disable_msi(pdev);
pci_disable_device(pdev);
probe_error:
return ret;
}
static SIMPLE_DEV_PM_OPS(pch_uart_pci_pm_ops,
pch_uart_pci_suspend,
pch_uart_pci_resume);
static struct pci_driver pch_uart_pci_driver = {
.name = "pch_uart",
.id_table = pch_uart_pci_id,
.probe = pch_uart_pci_probe,
.remove = pch_uart_pci_remove,
.driver.pm = &pch_uart_pci_pm_ops,
};
static int __init pch_uart_module_init(void)
{
int ret;
/* register as UART driver */
ret = uart_register_driver(&pch_uart_driver);
if (ret < 0)
return ret;
/* register as PCI driver */
ret = pci_register_driver(&pch_uart_pci_driver);
if (ret < 0)
uart_unregister_driver(&pch_uart_driver);
return ret;
}
module_init(pch_uart_module_init);
static void __exit pch_uart_module_exit(void)
{
pci_unregister_driver(&pch_uart_pci_driver);
uart_unregister_driver(&pch_uart_driver);
}
module_exit(pch_uart_module_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Intel EG20T PCH UART PCI Driver");
MODULE_DEVICE_TABLE(pci, pch_uart_pci_id);
module_param(default_baud, uint, S_IRUGO);
MODULE_PARM_DESC(default_baud,
"Default BAUD for initial driver state and console (default 9600)");
module_param(user_uartclk, uint, S_IRUGO);
MODULE_PARM_DESC(user_uartclk,
"Override UART default or board specific UART clock");