blob: ea4eb88a2e45f4fb86a47e5aa77c5d3fdff63b54 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/drivers/block/floppy.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 1993, 1994 Alain Knaff
* Copyright (C) 1998 Alan Cox
*/
/*
* 02.12.91 - Changed to static variables to indicate need for reset
* and recalibrate. This makes some things easier (output_byte reset
* checking etc), and means less interrupt jumping in case of errors,
* so the code is hopefully easier to understand.
*/
/*
* This file is certainly a mess. I've tried my best to get it working,
* but I don't like programming floppies, and I have only one anyway.
* Urgel. I should check for more errors, and do more graceful error
* recovery. Seems there are problems with several drives. I've tried to
* correct them. No promises.
*/
/*
* As with hd.c, all routines within this file can (and will) be called
* by interrupts, so extreme caution is needed. A hardware interrupt
* handler may not sleep, or a kernel panic will happen. Thus I cannot
* call "floppy-on" directly, but have to set a special timer interrupt
* etc.
*/
/*
* 28.02.92 - made track-buffering routines, based on the routines written
* by entropy@wintermute.wpi.edu (Lawrence Foard). Linus.
*/
/*
* Automatic floppy-detection and formatting written by Werner Almesberger
* (almesber@nessie.cs.id.ethz.ch), who also corrected some problems with
* the floppy-change signal detection.
*/
/*
* 1992/7/22 -- Hennus Bergman: Added better error reporting, fixed
* FDC data overrun bug, added some preliminary stuff for vertical
* recording support.
*
* 1992/9/17: Added DMA allocation & DMA functions. -- hhb.
*
* TODO: Errors are still not counted properly.
*/
/* 1992/9/20
* Modifications for ``Sector Shifting'' by Rob Hooft (hooft@chem.ruu.nl)
* modeled after the freeware MS-DOS program fdformat/88 V1.8 by
* Christoph H. Hochst\"atter.
* I have fixed the shift values to the ones I always use. Maybe a new
* ioctl() should be created to be able to modify them.
* There is a bug in the driver that makes it impossible to format a
* floppy as the first thing after bootup.
*/
/*
* 1993/4/29 -- Linus -- cleaned up the timer handling in the kernel, and
* this helped the floppy driver as well. Much cleaner, and still seems to
* work.
*/
/* 1994/6/24 --bbroad-- added the floppy table entries and made
* minor modifications to allow 2.88 floppies to be run.
*/
/* 1994/7/13 -- Paul Vojta -- modified the probing code to allow three or more
* disk types.
*/
/*
* 1994/8/8 -- Alain Knaff -- Switched to fdpatch driver: Support for bigger
* format bug fixes, but unfortunately some new bugs too...
*/
/* 1994/9/17 -- Koen Holtman -- added logging of physical floppy write
* errors to allow safe writing by specialized programs.
*/
/* 1995/4/24 -- Dan Fandrich -- added support for Commodore 1581 3.5" disks
* by defining bit 1 of the "stretch" parameter to mean put sectors on the
* opposite side of the disk, leaving the sector IDs alone (i.e. Commodore's
* drives are "upside-down").
*/
/*
* 1995/8/26 -- Andreas Busse -- added Mips support.
*/
/*
* 1995/10/18 -- Ralf Baechle -- Portability cleanup; move machine dependent
* features to asm/floppy.h.
*/
/*
* 1998/1/21 -- Richard Gooch <rgooch@atnf.csiro.au> -- devfs support
*/
/*
* 1998/05/07 -- Russell King -- More portability cleanups; moved definition of
* interrupt and dma channel to asm/floppy.h. Cleaned up some formatting &
* use of '0' for NULL.
*/
/*
* 1998/06/07 -- Alan Cox -- Merged the 2.0.34 fixes for resource allocation
* failures.
*/
/*
* 1998/09/20 -- David Weinehall -- Added slow-down code for buggy PS/2-drives.
*/
/*
* 1999/08/13 -- Paul Slootman -- floppy stopped working on Alpha after 24
* days, 6 hours, 32 minutes and 32 seconds (i.e. MAXINT jiffies; ints were
* being used to store jiffies, which are unsigned longs).
*/
/*
* 2000/08/28 -- Arnaldo Carvalho de Melo <acme@conectiva.com.br>
* - get rid of check_region
* - s/suser/capable/
*/
/*
* 2001/08/26 -- Paul Gortmaker - fix insmod oops on machines with no
* floppy controller (lingering task on list after module is gone... boom.)
*/
/*
* 2002/02/07 -- Anton Altaparmakov - Fix io ports reservation to correct range
* (0x3f2-0x3f5, 0x3f7). This fix is a bit of a hack but the proper fix
* requires many non-obvious changes in arch dependent code.
*/
/* 2003/07/28 -- Daniele Bellucci <bellucda@tiscali.it>.
* Better audit of register_blkdev.
*/
#define REALLY_SLOW_IO
#define DEBUGT 2
#define DPRINT(format, args...) \
pr_info("floppy%d: " format, current_drive, ##args)
#define DCL_DEBUG /* debug disk change line */
#ifdef DCL_DEBUG
#define debug_dcl(test, fmt, args...) \
do { if ((test) & FD_DEBUG) DPRINT(fmt, ##args); } while (0)
#else
#define debug_dcl(test, fmt, args...) \
do { if (0) DPRINT(fmt, ##args); } while (0)
#endif
/* do print messages for unexpected interrupts */
static int print_unex = 1;
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/fdreg.h>
#include <linux/fd.h>
#include <linux/hdreg.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/bio.h>
#include <linux/string.h>
#include <linux/jiffies.h>
#include <linux/fcntl.h>
#include <linux/delay.h>
#include <linux/mc146818rtc.h> /* CMOS defines */
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/major.h>
#include <linux/platform_device.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/io.h>
#include <linux/uaccess.h>
#include <linux/async.h>
#include <linux/compat.h>
/*
* PS/2 floppies have much slower step rates than regular floppies.
* It's been recommended that take about 1/4 of the default speed
* in some more extreme cases.
*/
static DEFINE_MUTEX(floppy_mutex);
static int slow_floppy;
#include <asm/dma.h>
#include <asm/irq.h>
static int FLOPPY_IRQ = 6;
static int FLOPPY_DMA = 2;
static int can_use_virtual_dma = 2;
/* =======
* can use virtual DMA:
* 0 = use of virtual DMA disallowed by config
* 1 = use of virtual DMA prescribed by config
* 2 = no virtual DMA preference configured. By default try hard DMA,
* but fall back on virtual DMA when not enough memory available
*/
static int use_virtual_dma;
/* =======
* use virtual DMA
* 0 using hard DMA
* 1 using virtual DMA
* This variable is set to virtual when a DMA mem problem arises, and
* reset back in floppy_grab_irq_and_dma.
* It is not safe to reset it in other circumstances, because the floppy
* driver may have several buffers in use at once, and we do currently not
* record each buffers capabilities
*/
static DEFINE_SPINLOCK(floppy_lock);
static unsigned short virtual_dma_port = 0x3f0;
irqreturn_t floppy_interrupt(int irq, void *dev_id);
static int set_dor(int fdc, char mask, char data);
#define K_64 0x10000 /* 64KB */
/* the following is the mask of allowed drives. By default units 2 and
* 3 of both floppy controllers are disabled, because switching on the
* motor of these drives causes system hangs on some PCI computers. drive
* 0 is the low bit (0x1), and drive 7 is the high bit (0x80). Bits are on if
* a drive is allowed.
*
* NOTE: This must come before we include the arch floppy header because
* some ports reference this variable from there. -DaveM
*/
static int allowed_drive_mask = 0x33;
#include <asm/floppy.h>
static int irqdma_allocated;
#include <linux/blk-mq.h>
#include <linux/blkpg.h>
#include <linux/cdrom.h> /* for the compatibility eject ioctl */
#include <linux/completion.h>
static LIST_HEAD(floppy_reqs);
static struct request *current_req;
static int set_next_request(void);
#ifndef fd_get_dma_residue
#define fd_get_dma_residue() get_dma_residue(FLOPPY_DMA)
#endif
/* Dma Memory related stuff */
#ifndef fd_dma_mem_free
#define fd_dma_mem_free(addr, size) free_pages(addr, get_order(size))
#endif
#ifndef fd_dma_mem_alloc
#define fd_dma_mem_alloc(size) __get_dma_pages(GFP_KERNEL, get_order(size))
#endif
#ifndef fd_cacheflush
#define fd_cacheflush(addr, size) /* nothing... */
#endif
static inline void fallback_on_nodma_alloc(char **addr, size_t l)
{
#ifdef FLOPPY_CAN_FALLBACK_ON_NODMA
if (*addr)
return; /* we have the memory */
if (can_use_virtual_dma != 2)
return; /* no fallback allowed */
pr_info("DMA memory shortage. Temporarily falling back on virtual DMA\n");
*addr = (char *)nodma_mem_alloc(l);
#else
return;
#endif
}
/* End dma memory related stuff */
static unsigned long fake_change;
static bool initialized;
#define ITYPE(x) (((x) >> 2) & 0x1f)
#define TOMINOR(x) ((x & 3) | ((x & 4) << 5))
#define UNIT(x) ((x) & 0x03) /* drive on fdc */
#define FDC(x) (((x) & 0x04) >> 2) /* fdc of drive */
/* reverse mapping from unit and fdc to drive */
#define REVDRIVE(fdc, unit) ((unit) + ((fdc) << 2))
#define PH_HEAD(floppy, head) (((((floppy)->stretch & 2) >> 1) ^ head) << 2)
#define STRETCH(floppy) ((floppy)->stretch & FD_STRETCH)
/* read/write commands */
#define COMMAND 0
#define DR_SELECT 1
#define TRACK 2
#define HEAD 3
#define SECTOR 4
#define SIZECODE 5
#define SECT_PER_TRACK 6
#define GAP 7
#define SIZECODE2 8
#define NR_RW 9
/* format commands */
#define F_SIZECODE 2
#define F_SECT_PER_TRACK 3
#define F_GAP 4
#define F_FILL 5
#define NR_F 6
/*
* Maximum disk size (in kilobytes).
* This default is used whenever the current disk size is unknown.
* [Now it is rather a minimum]
*/
#define MAX_DISK_SIZE 4 /* 3984 */
/*
* globals used by 'result()'
*/
static unsigned char reply_buffer[FD_RAW_REPLY_SIZE];
static int inr; /* size of reply buffer, when called from interrupt */
#define ST0 0
#define ST1 1
#define ST2 2
#define ST3 0 /* result of GETSTATUS */
#define R_TRACK 3
#define R_HEAD 4
#define R_SECTOR 5
#define R_SIZECODE 6
#define SEL_DLY (2 * HZ / 100)
/*
* this struct defines the different floppy drive types.
*/
static struct {
struct floppy_drive_params params;
const char *name; /* name printed while booting */
} default_drive_params[] = {
/* NOTE: the time values in jiffies should be in msec!
CMOS drive type
| Maximum data rate supported by drive type
| | Head load time, msec
| | | Head unload time, msec (not used)
| | | | Step rate interval, usec
| | | | | Time needed for spinup time (jiffies)
| | | | | | Timeout for spinning down (jiffies)
| | | | | | | Spindown offset (where disk stops)
| | | | | | | | Select delay
| | | | | | | | | RPS
| | | | | | | | | | Max number of tracks
| | | | | | | | | | | Interrupt timeout
| | | | | | | | | | | | Max nonintlv. sectors
| | | | | | | | | | | | | -Max Errors- flags */
{{0, 500, 16, 16, 8000, 1*HZ, 3*HZ, 0, SEL_DLY, 5, 80, 3*HZ, 20, {3,1,2,0,2}, 0,
0, { 7, 4, 8, 2, 1, 5, 3,10}, 3*HZ/2, 0 }, "unknown" },
{{1, 300, 16, 16, 8000, 1*HZ, 3*HZ, 0, SEL_DLY, 5, 40, 3*HZ, 17, {3,1,2,0,2}, 0,
0, { 1, 0, 0, 0, 0, 0, 0, 0}, 3*HZ/2, 1 }, "360K PC" }, /*5 1/4 360 KB PC*/
{{2, 500, 16, 16, 6000, 4*HZ/10, 3*HZ, 14, SEL_DLY, 6, 83, 3*HZ, 17, {3,1,2,0,2}, 0,
0, { 2, 5, 6,23,10,20,12, 0}, 3*HZ/2, 2 }, "1.2M" }, /*5 1/4 HD AT*/
{{3, 250, 16, 16, 3000, 1*HZ, 3*HZ, 0, SEL_DLY, 5, 83, 3*HZ, 20, {3,1,2,0,2}, 0,
0, { 4,22,21,30, 3, 0, 0, 0}, 3*HZ/2, 4 }, "720k" }, /*3 1/2 DD*/
{{4, 500, 16, 16, 4000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5, 83, 3*HZ, 20, {3,1,2,0,2}, 0,
0, { 7, 4,25,22,31,21,29,11}, 3*HZ/2, 7 }, "1.44M" }, /*3 1/2 HD*/
{{5, 1000, 15, 8, 3000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5, 83, 3*HZ, 40, {3,1,2,0,2}, 0,
0, { 7, 8, 4,25,28,22,31,21}, 3*HZ/2, 8 }, "2.88M AMI BIOS" }, /*3 1/2 ED*/
{{6, 1000, 15, 8, 3000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5, 83, 3*HZ, 40, {3,1,2,0,2}, 0,
0, { 7, 8, 4,25,28,22,31,21}, 3*HZ/2, 8 }, "2.88M" } /*3 1/2 ED*/
/* | --autodetected formats--- | | |
* read_track | | Name printed when booting
* | Native format
* Frequency of disk change checks */
};
static struct floppy_drive_params drive_params[N_DRIVE];
static struct floppy_drive_struct drive_state[N_DRIVE];
static struct floppy_write_errors write_errors[N_DRIVE];
static struct timer_list motor_off_timer[N_DRIVE];
static struct blk_mq_tag_set tag_sets[N_DRIVE];
static struct gendisk *opened_disk[N_DRIVE];
static DEFINE_MUTEX(open_lock);
static struct floppy_raw_cmd *raw_cmd, default_raw_cmd;
/*
* This struct defines the different floppy types.
*
* Bit 0 of 'stretch' tells if the tracks need to be doubled for some
* types (e.g. 360kB diskette in 1.2MB drive, etc.). Bit 1 of 'stretch'
* tells if the disk is in Commodore 1581 format, which means side 0 sectors
* are located on side 1 of the disk but with a side 0 ID, and vice-versa.
* This is the same as the Sharp MZ-80 5.25" CP/M disk format, except that the
* 1581's logical side 0 is on physical side 1, whereas the Sharp's logical
* side 0 is on physical side 0 (but with the misnamed sector IDs).
* 'stretch' should probably be renamed to something more general, like
* 'options'.
*
* Bits 2 through 9 of 'stretch' tell the number of the first sector.
* The LSB (bit 2) is flipped. For most disks, the first sector
* is 1 (represented by 0x00<<2). For some CP/M and music sampler
* disks (such as Ensoniq EPS 16plus) it is 0 (represented as 0x01<<2).
* For Amstrad CPC disks it is 0xC1 (represented as 0xC0<<2).
*
* Other parameters should be self-explanatory (see also setfdprm(8)).
*/
/*
Size
| Sectors per track
| | Head
| | | Tracks
| | | | Stretch
| | | | | Gap 1 size
| | | | | | Data rate, | 0x40 for perp
| | | | | | | Spec1 (stepping rate, head unload
| | | | | | | | /fmt gap (gap2) */
static struct floppy_struct floppy_type[32] = {
{ 0, 0,0, 0,0,0x00,0x00,0x00,0x00,NULL }, /* 0 no testing */
{ 720, 9,2,40,0,0x2A,0x02,0xDF,0x50,"d360" }, /* 1 360KB PC */
{ 2400,15,2,80,0,0x1B,0x00,0xDF,0x54,"h1200" }, /* 2 1.2MB AT */
{ 720, 9,1,80,0,0x2A,0x02,0xDF,0x50,"D360" }, /* 3 360KB SS 3.5" */
{ 1440, 9,2,80,0,0x2A,0x02,0xDF,0x50,"D720" }, /* 4 720KB 3.5" */
{ 720, 9,2,40,1,0x23,0x01,0xDF,0x50,"h360" }, /* 5 360KB AT */
{ 1440, 9,2,80,0,0x23,0x01,0xDF,0x50,"h720" }, /* 6 720KB AT */
{ 2880,18,2,80,0,0x1B,0x00,0xCF,0x6C,"H1440" }, /* 7 1.44MB 3.5" */
{ 5760,36,2,80,0,0x1B,0x43,0xAF,0x54,"E2880" }, /* 8 2.88MB 3.5" */
{ 6240,39,2,80,0,0x1B,0x43,0xAF,0x28,"E3120" }, /* 9 3.12MB 3.5" */
{ 2880,18,2,80,0,0x25,0x00,0xDF,0x02,"h1440" }, /* 10 1.44MB 5.25" */
{ 3360,21,2,80,0,0x1C,0x00,0xCF,0x0C,"H1680" }, /* 11 1.68MB 3.5" */
{ 820,10,2,41,1,0x25,0x01,0xDF,0x2E,"h410" }, /* 12 410KB 5.25" */
{ 1640,10,2,82,0,0x25,0x02,0xDF,0x2E,"H820" }, /* 13 820KB 3.5" */
{ 2952,18,2,82,0,0x25,0x00,0xDF,0x02,"h1476" }, /* 14 1.48MB 5.25" */
{ 3444,21,2,82,0,0x25,0x00,0xDF,0x0C,"H1722" }, /* 15 1.72MB 3.5" */
{ 840,10,2,42,1,0x25,0x01,0xDF,0x2E,"h420" }, /* 16 420KB 5.25" */
{ 1660,10,2,83,0,0x25,0x02,0xDF,0x2E,"H830" }, /* 17 830KB 3.5" */
{ 2988,18,2,83,0,0x25,0x00,0xDF,0x02,"h1494" }, /* 18 1.49MB 5.25" */
{ 3486,21,2,83,0,0x25,0x00,0xDF,0x0C,"H1743" }, /* 19 1.74 MB 3.5" */
{ 1760,11,2,80,0,0x1C,0x09,0xCF,0x00,"h880" }, /* 20 880KB 5.25" */
{ 2080,13,2,80,0,0x1C,0x01,0xCF,0x00,"D1040" }, /* 21 1.04MB 3.5" */
{ 2240,14,2,80,0,0x1C,0x19,0xCF,0x00,"D1120" }, /* 22 1.12MB 3.5" */
{ 3200,20,2,80,0,0x1C,0x20,0xCF,0x2C,"h1600" }, /* 23 1.6MB 5.25" */
{ 3520,22,2,80,0,0x1C,0x08,0xCF,0x2e,"H1760" }, /* 24 1.76MB 3.5" */
{ 3840,24,2,80,0,0x1C,0x20,0xCF,0x00,"H1920" }, /* 25 1.92MB 3.5" */
{ 6400,40,2,80,0,0x25,0x5B,0xCF,0x00,"E3200" }, /* 26 3.20MB 3.5" */
{ 7040,44,2,80,0,0x25,0x5B,0xCF,0x00,"E3520" }, /* 27 3.52MB 3.5" */
{ 7680,48,2,80,0,0x25,0x63,0xCF,0x00,"E3840" }, /* 28 3.84MB 3.5" */
{ 3680,23,2,80,0,0x1C,0x10,0xCF,0x00,"H1840" }, /* 29 1.84MB 3.5" */
{ 1600,10,2,80,0,0x25,0x02,0xDF,0x2E,"D800" }, /* 30 800KB 3.5" */
{ 3200,20,2,80,0,0x1C,0x00,0xCF,0x2C,"H1600" }, /* 31 1.6MB 3.5" */
};
static struct gendisk *disks[N_DRIVE][ARRAY_SIZE(floppy_type)];
#define SECTSIZE (_FD_SECTSIZE(*floppy))
/* Auto-detection: Disk type used until the next media change occurs. */
static struct floppy_struct *current_type[N_DRIVE];
/*
* User-provided type information. current_type points to
* the respective entry of this array.
*/
static struct floppy_struct user_params[N_DRIVE];
static sector_t floppy_sizes[256];
static char floppy_device_name[] = "floppy";
/*
* The driver is trying to determine the correct media format
* while probing is set. rw_interrupt() clears it after a
* successful access.
*/
static int probing;
/* Synchronization of FDC access. */
#define FD_COMMAND_NONE -1
#define FD_COMMAND_ERROR 2
#define FD_COMMAND_OKAY 3
static volatile int command_status = FD_COMMAND_NONE;
static unsigned long fdc_busy;
static DECLARE_WAIT_QUEUE_HEAD(fdc_wait);
static DECLARE_WAIT_QUEUE_HEAD(command_done);
/* errors encountered on the current (or last) request */
static int floppy_errors;
/* Format request descriptor. */
static struct format_descr format_req;
/*
* Rate is 0 for 500kb/s, 1 for 300kbps, 2 for 250kbps
* Spec1 is 0xSH, where S is stepping rate (F=1ms, E=2ms, D=3ms etc),
* H is head unload time (1=16ms, 2=32ms, etc)
*/
/*
* Track buffer
* Because these are written to by the DMA controller, they must
* not contain a 64k byte boundary crossing, or data will be
* corrupted/lost.
*/
static char *floppy_track_buffer;
static int max_buffer_sectors;
typedef void (*done_f)(int);
static const struct cont_t {
void (*interrupt)(void);
/* this is called after the interrupt of the
* main command */
void (*redo)(void); /* this is called to retry the operation */
void (*error)(void); /* this is called to tally an error */
done_f done; /* this is called to say if the operation has
* succeeded/failed */
} *cont;
static void floppy_ready(void);
static void floppy_start(void);
static void process_fd_request(void);
static void recalibrate_floppy(void);
static void floppy_shutdown(struct work_struct *);
static int floppy_request_regions(int);
static void floppy_release_regions(int);
static int floppy_grab_irq_and_dma(void);
static void floppy_release_irq_and_dma(void);
/*
* The "reset" variable should be tested whenever an interrupt is scheduled,
* after the commands have been sent. This is to ensure that the driver doesn't
* get wedged when the interrupt doesn't come because of a failed command.
* reset doesn't need to be tested before sending commands, because
* output_byte is automatically disabled when reset is set.
*/
static void reset_fdc(void);
static int floppy_revalidate(struct gendisk *disk);
/*
* These are global variables, as that's the easiest way to give
* information to interrupts. They are the data used for the current
* request.
*/
#define NO_TRACK -1
#define NEED_1_RECAL -2
#define NEED_2_RECAL -3
static atomic_t usage_count = ATOMIC_INIT(0);
/* buffer related variables */
static int buffer_track = -1;
static int buffer_drive = -1;
static int buffer_min = -1;
static int buffer_max = -1;
/* fdc related variables, should end up in a struct */
static struct floppy_fdc_state fdc_state[N_FDC];
static int current_fdc; /* current fdc */
static struct workqueue_struct *floppy_wq;
static struct floppy_struct *_floppy = floppy_type;
static unsigned char current_drive;
static long current_count_sectors;
static unsigned char fsector_t; /* sector in track */
static unsigned char in_sector_offset; /* offset within physical sector,
* expressed in units of 512 bytes */
static inline unsigned char fdc_inb(int fdc, int reg)
{
return fd_inb(fdc_state[fdc].address, reg);
}
static inline void fdc_outb(unsigned char value, int fdc, int reg)
{
fd_outb(value, fdc_state[fdc].address, reg);
}
static inline bool drive_no_geom(int drive)
{
return !current_type[drive] && !ITYPE(drive_state[drive].fd_device);
}
#ifndef fd_eject
static inline int fd_eject(int drive)
{
return -EINVAL;
}
#endif
/*
* Debugging
* =========
*/
#ifdef DEBUGT
static long unsigned debugtimer;
static inline void set_debugt(void)
{
debugtimer = jiffies;
}
static inline void debugt(const char *func, const char *msg)
{
if (drive_params[current_drive].flags & DEBUGT)
pr_info("%s:%s dtime=%lu\n", func, msg, jiffies - debugtimer);
}
#else
static inline void set_debugt(void) { }
static inline void debugt(const char *func, const char *msg) { }
#endif /* DEBUGT */
static DECLARE_DELAYED_WORK(fd_timeout, floppy_shutdown);
static const char *timeout_message;
static void is_alive(const char *func, const char *message)
{
/* this routine checks whether the floppy driver is "alive" */
if (test_bit(0, &fdc_busy) && command_status < 2 &&
!delayed_work_pending(&fd_timeout)) {
DPRINT("%s: timeout handler died. %s\n", func, message);
}
}
static void (*do_floppy)(void) = NULL;
#define OLOGSIZE 20
static void (*lasthandler)(void);
static unsigned long interruptjiffies;
static unsigned long resultjiffies;
static int resultsize;
static unsigned long lastredo;
static struct output_log {
unsigned char data;
unsigned char status;
unsigned long jiffies;
} output_log[OLOGSIZE];
static int output_log_pos;
#define MAXTIMEOUT -2
static void __reschedule_timeout(int drive, const char *message)
{
unsigned long delay;
if (drive < 0 || drive >= N_DRIVE) {
delay = 20UL * HZ;
drive = 0;
} else
delay = drive_params[drive].timeout;
mod_delayed_work(floppy_wq, &fd_timeout, delay);
if (drive_params[drive].flags & FD_DEBUG)
DPRINT("reschedule timeout %s\n", message);
timeout_message = message;
}
static void reschedule_timeout(int drive, const char *message)
{
unsigned long flags;
spin_lock_irqsave(&floppy_lock, flags);
__reschedule_timeout(drive, message);
spin_unlock_irqrestore(&floppy_lock, flags);
}
#define INFBOUND(a, b) (a) = max_t(int, a, b)
#define SUPBOUND(a, b) (a) = min_t(int, a, b)
/*
* Bottom half floppy driver.
* ==========================
*
* This part of the file contains the code talking directly to the hardware,
* and also the main service loop (seek-configure-spinup-command)
*/
/*
* disk change.
* This routine is responsible for maintaining the FD_DISK_CHANGE flag,
* and the last_checked date.
*
* last_checked is the date of the last check which showed 'no disk change'
* FD_DISK_CHANGE is set under two conditions:
* 1. The floppy has been changed after some i/o to that floppy already
* took place.
* 2. No floppy disk is in the drive. This is done in order to ensure that
* requests are quickly flushed in case there is no disk in the drive. It
* follows that FD_DISK_CHANGE can only be cleared if there is a disk in
* the drive.
*
* For 1., maxblock is observed. Maxblock is 0 if no i/o has taken place yet.
* For 2., FD_DISK_NEWCHANGE is watched. FD_DISK_NEWCHANGE is cleared on
* each seek. If a disk is present, the disk change line should also be
* cleared on each seek. Thus, if FD_DISK_NEWCHANGE is clear, but the disk
* change line is set, this means either that no disk is in the drive, or
* that it has been removed since the last seek.
*
* This means that we really have a third possibility too:
* The floppy has been changed after the last seek.
*/
static int disk_change(int drive)
{
int fdc = FDC(drive);
if (time_before(jiffies, drive_state[drive].select_date + drive_params[drive].select_delay))
DPRINT("WARNING disk change called early\n");
if (!(fdc_state[fdc].dor & (0x10 << UNIT(drive))) ||
(fdc_state[fdc].dor & 3) != UNIT(drive) || fdc != FDC(drive)) {
DPRINT("probing disk change on unselected drive\n");
DPRINT("drive=%d fdc=%d dor=%x\n", drive, FDC(drive),
(unsigned int)fdc_state[fdc].dor);
}
debug_dcl(drive_params[drive].flags,
"checking disk change line for drive %d\n", drive);
debug_dcl(drive_params[drive].flags, "jiffies=%lu\n", jiffies);
debug_dcl(drive_params[drive].flags, "disk change line=%x\n",
fdc_inb(fdc, FD_DIR) & 0x80);
debug_dcl(drive_params[drive].flags, "flags=%lx\n",
drive_state[drive].flags);
if (drive_params[drive].flags & FD_BROKEN_DCL)
return test_bit(FD_DISK_CHANGED_BIT,
&drive_state[drive].flags);
if ((fdc_inb(fdc, FD_DIR) ^ drive_params[drive].flags) & 0x80) {
set_bit(FD_VERIFY_BIT, &drive_state[drive].flags);
/* verify write protection */
if (drive_state[drive].maxblock) /* mark it changed */
set_bit(FD_DISK_CHANGED_BIT,
&drive_state[drive].flags);
/* invalidate its geometry */
if (drive_state[drive].keep_data >= 0) {
if ((drive_params[drive].flags & FTD_MSG) &&
current_type[drive] != NULL)
DPRINT("Disk type is undefined after disk change\n");
current_type[drive] = NULL;
floppy_sizes[TOMINOR(drive)] = MAX_DISK_SIZE << 1;
}
return 1;
} else {
drive_state[drive].last_checked = jiffies;
clear_bit(FD_DISK_NEWCHANGE_BIT, &drive_state[drive].flags);
}
return 0;
}
static inline int is_selected(int dor, int unit)
{
return ((dor & (0x10 << unit)) && (dor & 3) == unit);
}
static bool is_ready_state(int status)
{
int state = status & (STATUS_READY | STATUS_DIR | STATUS_DMA);
return state == STATUS_READY;
}
static int set_dor(int fdc, char mask, char data)
{
unsigned char unit;
unsigned char drive;
unsigned char newdor;
unsigned char olddor;
if (fdc_state[fdc].address == -1)
return -1;
olddor = fdc_state[fdc].dor;
newdor = (olddor & mask) | data;
if (newdor != olddor) {
unit = olddor & 0x3;
if (is_selected(olddor, unit) && !is_selected(newdor, unit)) {
drive = REVDRIVE(fdc, unit);
debug_dcl(drive_params[drive].flags,
"calling disk change from set_dor\n");
disk_change(drive);
}
fdc_state[fdc].dor = newdor;
fdc_outb(newdor, fdc, FD_DOR);
unit = newdor & 0x3;
if (!is_selected(olddor, unit) && is_selected(newdor, unit)) {
drive = REVDRIVE(fdc, unit);
drive_state[drive].select_date = jiffies;
}
}
return olddor;
}
static void twaddle(int fdc, int drive)
{
if (drive_params[drive].select_delay)
return;
fdc_outb(fdc_state[fdc].dor & ~(0x10 << UNIT(drive)),
fdc, FD_DOR);
fdc_outb(fdc_state[fdc].dor, fdc, FD_DOR);
drive_state[drive].select_date = jiffies;
}
/*
* Reset all driver information about the specified fdc.
* This is needed after a reset, and after a raw command.
*/
static void reset_fdc_info(int fdc, int mode)
{
int drive;
fdc_state[fdc].spec1 = fdc_state[fdc].spec2 = -1;
fdc_state[fdc].need_configure = 1;
fdc_state[fdc].perp_mode = 1;
fdc_state[fdc].rawcmd = 0;
for (drive = 0; drive < N_DRIVE; drive++)
if (FDC(drive) == fdc &&
(mode || drive_state[drive].track != NEED_1_RECAL))
drive_state[drive].track = NEED_2_RECAL;
}
/*
* selects the fdc and drive, and enables the fdc's input/dma.
* Both current_drive and current_fdc are changed to match the new drive.
*/
static void set_fdc(int drive)
{
unsigned int fdc;
if (drive < 0 || drive >= N_DRIVE) {
pr_info("bad drive value %d\n", drive);
return;
}
fdc = FDC(drive);
if (fdc >= N_FDC) {
pr_info("bad fdc value\n");
return;
}
set_dor(fdc, ~0, 8);
#if N_FDC > 1
set_dor(1 - fdc, ~8, 0);
#endif
if (fdc_state[fdc].rawcmd == 2)
reset_fdc_info(fdc, 1);
if (fdc_inb(fdc, FD_STATUS) != STATUS_READY)
fdc_state[fdc].reset = 1;
current_drive = drive;
current_fdc = fdc;
}
/*
* locks the driver.
* Both current_drive and current_fdc are changed to match the new drive.
*/
static int lock_fdc(int drive)
{
if (WARN(atomic_read(&usage_count) == 0,
"Trying to lock fdc while usage count=0\n"))
return -1;
if (wait_event_interruptible(fdc_wait, !test_and_set_bit(0, &fdc_busy)))
return -EINTR;
command_status = FD_COMMAND_NONE;
reschedule_timeout(drive, "lock fdc");
set_fdc(drive);
return 0;
}
/* unlocks the driver */
static void unlock_fdc(void)
{
if (!test_bit(0, &fdc_busy))
DPRINT("FDC access conflict!\n");
raw_cmd = NULL;
command_status = FD_COMMAND_NONE;
cancel_delayed_work(&fd_timeout);
do_floppy = NULL;
cont = NULL;
clear_bit(0, &fdc_busy);
wake_up(&fdc_wait);
}
/* switches the motor off after a given timeout */
static void motor_off_callback(struct timer_list *t)
{
unsigned long nr = t - motor_off_timer;
unsigned char mask = ~(0x10 << UNIT(nr));
if (WARN_ON_ONCE(nr >= N_DRIVE))
return;
set_dor(FDC(nr), mask, 0);
}
/* schedules motor off */
static void floppy_off(unsigned int drive)
{
unsigned long volatile delta;
int fdc = FDC(drive);
if (!(fdc_state[fdc].dor & (0x10 << UNIT(drive))))
return;
del_timer(motor_off_timer + drive);
/* make spindle stop in a position which minimizes spinup time
* next time */
if (drive_params[drive].rps) {
delta = jiffies - drive_state[drive].first_read_date + HZ -
drive_params[drive].spindown_offset;
delta = ((delta * drive_params[drive].rps) % HZ) / drive_params[drive].rps;
motor_off_timer[drive].expires =
jiffies + drive_params[drive].spindown - delta;
}
add_timer(motor_off_timer + drive);
}
/*
* cycle through all N_DRIVE floppy drives, for disk change testing.
* stopping at current drive. This is done before any long operation, to
* be sure to have up to date disk change information.
*/
static void scandrives(void)
{
int i;
int drive;
int saved_drive;
if (drive_params[current_drive].select_delay)
return;
saved_drive = current_drive;
for (i = 0; i < N_DRIVE; i++) {
drive = (saved_drive + i + 1) % N_DRIVE;
if (drive_state[drive].fd_ref == 0 || drive_params[drive].select_delay != 0)
continue; /* skip closed drives */
set_fdc(drive);
if (!(set_dor(current_fdc, ~3, UNIT(drive) | (0x10 << UNIT(drive))) &
(0x10 << UNIT(drive))))
/* switch the motor off again, if it was off to
* begin with */
set_dor(current_fdc, ~(0x10 << UNIT(drive)), 0);
}
set_fdc(saved_drive);
}
static void empty(void)
{
}
static void (*floppy_work_fn)(void);
static void floppy_work_workfn(struct work_struct *work)
{
floppy_work_fn();
}
static DECLARE_WORK(floppy_work, floppy_work_workfn);
static void schedule_bh(void (*handler)(void))
{
WARN_ON(work_pending(&floppy_work));
floppy_work_fn = handler;
queue_work(floppy_wq, &floppy_work);
}
static void (*fd_timer_fn)(void) = NULL;
static void fd_timer_workfn(struct work_struct *work)
{
fd_timer_fn();
}
static DECLARE_DELAYED_WORK(fd_timer, fd_timer_workfn);
static void cancel_activity(void)
{
do_floppy = NULL;
cancel_delayed_work(&fd_timer);
cancel_work_sync(&floppy_work);
}
/* this function makes sure that the disk stays in the drive during the
* transfer */
static void fd_watchdog(void)
{
debug_dcl(drive_params[current_drive].flags,
"calling disk change from watchdog\n");
if (disk_change(current_drive)) {
DPRINT("disk removed during i/o\n");
cancel_activity();
cont->done(0);
reset_fdc();
} else {
cancel_delayed_work(&fd_timer);
fd_timer_fn = fd_watchdog;
queue_delayed_work(floppy_wq, &fd_timer, HZ / 10);
}
}
static void main_command_interrupt(void)
{
cancel_delayed_work(&fd_timer);
cont->interrupt();
}
/* waits for a delay (spinup or select) to pass */
static int fd_wait_for_completion(unsigned long expires,
void (*function)(void))
{
if (fdc_state[current_fdc].reset) {
reset_fdc(); /* do the reset during sleep to win time
* if we don't need to sleep, it's a good
* occasion anyways */
return 1;
}
if (time_before(jiffies, expires)) {
cancel_delayed_work(&fd_timer);
fd_timer_fn = function;
queue_delayed_work(floppy_wq, &fd_timer, expires - jiffies);
return 1;
}
return 0;
}
static void setup_DMA(void)
{
unsigned long f;
if (raw_cmd->length == 0) {
print_hex_dump(KERN_INFO, "zero dma transfer size: ",
DUMP_PREFIX_NONE, 16, 1,
raw_cmd->fullcmd, raw_cmd->cmd_count, false);
cont->done(0);
fdc_state[current_fdc].reset = 1;
return;
}
if (((unsigned long)raw_cmd->kernel_data) % 512) {
pr_info("non aligned address: %p\n", raw_cmd->kernel_data);
cont->done(0);
fdc_state[current_fdc].reset = 1;
return;
}
f = claim_dma_lock();
fd_disable_dma();
#ifdef fd_dma_setup
if (fd_dma_setup(raw_cmd->kernel_data, raw_cmd->length,
(raw_cmd->flags & FD_RAW_READ) ?
DMA_MODE_READ : DMA_MODE_WRITE,
fdc_state[current_fdc].address) < 0) {
release_dma_lock(f);
cont->done(0);
fdc_state[current_fdc].reset = 1;
return;
}
release_dma_lock(f);
#else
fd_clear_dma_ff();
fd_cacheflush(raw_cmd->kernel_data, raw_cmd->length);
fd_set_dma_mode((raw_cmd->flags & FD_RAW_READ) ?
DMA_MODE_READ : DMA_MODE_WRITE);
fd_set_dma_addr(raw_cmd->kernel_data);
fd_set_dma_count(raw_cmd->length);
virtual_dma_port = fdc_state[current_fdc].address;
fd_enable_dma();
release_dma_lock(f);
#endif
}
static void show_floppy(int fdc);
/* waits until the fdc becomes ready */
static int wait_til_ready(int fdc)
{
int status;
int counter;
if (fdc_state[fdc].reset)
return -1;
for (counter = 0; counter < 10000; counter++) {
status = fdc_inb(fdc, FD_STATUS);
if (status & STATUS_READY)
return status;
}
if (initialized) {
DPRINT("Getstatus times out (%x) on fdc %d\n", status, fdc);
show_floppy(fdc);
}
fdc_state[fdc].reset = 1;
return -1;
}
/* sends a command byte to the fdc */
static int output_byte(int fdc, char byte)
{
int status = wait_til_ready(fdc);
if (status < 0)
return -1;
if (is_ready_state(status)) {
fdc_outb(byte, fdc, FD_DATA);
output_log[output_log_pos].data = byte;
output_log[output_log_pos].status = status;
output_log[output_log_pos].jiffies = jiffies;
output_log_pos = (output_log_pos + 1) % OLOGSIZE;
return 0;
}
fdc_state[fdc].reset = 1;
if (initialized) {
DPRINT("Unable to send byte %x to FDC. Fdc=%x Status=%x\n",
byte, fdc, status);
show_floppy(fdc);
}
return -1;
}
/* gets the response from the fdc */
static int result(int fdc)
{
int i;
int status = 0;
for (i = 0; i < FD_RAW_REPLY_SIZE; i++) {
status = wait_til_ready(fdc);
if (status < 0)
break;
status &= STATUS_DIR | STATUS_READY | STATUS_BUSY | STATUS_DMA;
if ((status & ~STATUS_BUSY) == STATUS_READY) {
resultjiffies = jiffies;
resultsize = i;
return i;
}
if (status == (STATUS_DIR | STATUS_READY | STATUS_BUSY))
reply_buffer[i] = fdc_inb(fdc, FD_DATA);
else
break;
}
if (initialized) {
DPRINT("get result error. Fdc=%d Last status=%x Read bytes=%d\n",
fdc, status, i);
show_floppy(fdc);
}
fdc_state[fdc].reset = 1;
return -1;
}
#define MORE_OUTPUT -2
/* does the fdc need more output? */
static int need_more_output(int fdc)
{
int status = wait_til_ready(fdc);
if (status < 0)
return -1;
if (is_ready_state(status))
return MORE_OUTPUT;
return result(fdc);
}
/* Set perpendicular mode as required, based on data rate, if supported.
* 82077 Now tested. 1Mbps data rate only possible with 82077-1.
*/
static void perpendicular_mode(int fdc)
{
unsigned char perp_mode;
if (raw_cmd->rate & 0x40) {
switch (raw_cmd->rate & 3) {
case 0:
perp_mode = 2;
break;
case 3:
perp_mode = 3;
break;
default:
DPRINT("Invalid data rate for perpendicular mode!\n");
cont->done(0);
fdc_state[fdc].reset = 1;
/*
* convenient way to return to
* redo without too much hassle
* (deep stack et al.)
*/
return;
}
} else
perp_mode = 0;
if (fdc_state[fdc].perp_mode == perp_mode)
return;
if (fdc_state[fdc].version >= FDC_82077_ORIG) {
output_byte(fdc, FD_PERPENDICULAR);
output_byte(fdc, perp_mode);
fdc_state[fdc].perp_mode = perp_mode;
} else if (perp_mode) {
DPRINT("perpendicular mode not supported by this FDC.\n");
}
} /* perpendicular_mode */
static int fifo_depth = 0xa;
static int no_fifo;
static int fdc_configure(int fdc)
{
/* Turn on FIFO */
output_byte(fdc, FD_CONFIGURE);
if (need_more_output(fdc) != MORE_OUTPUT)
return 0;
output_byte(fdc, 0);
output_byte(fdc, 0x10 | (no_fifo & 0x20) | (fifo_depth & 0xf));
output_byte(fdc, 0); /* pre-compensation from track 0 upwards */
return 1;
}
#define NOMINAL_DTR 500
/* Issue a "SPECIFY" command to set the step rate time, head unload time,
* head load time, and DMA disable flag to values needed by floppy.
*
* The value "dtr" is the data transfer rate in Kbps. It is needed
* to account for the data rate-based scaling done by the 82072 and 82077
* FDC types. This parameter is ignored for other types of FDCs (i.e.
* 8272a).
*
* Note that changing the data transfer rate has a (probably deleterious)
* effect on the parameters subject to scaling for 82072/82077 FDCs, so
* fdc_specify is called again after each data transfer rate
* change.
*
* srt: 1000 to 16000 in microseconds
* hut: 16 to 240 milliseconds
* hlt: 2 to 254 milliseconds
*
* These values are rounded up to the next highest available delay time.
*/
static void fdc_specify(int fdc, int drive)
{
unsigned char spec1;
unsigned char spec2;
unsigned long srt;
unsigned long hlt;
unsigned long hut;
unsigned long dtr = NOMINAL_DTR;
unsigned long scale_dtr = NOMINAL_DTR;
int hlt_max_code = 0x7f;
int hut_max_code = 0xf;
if (fdc_state[fdc].need_configure &&
fdc_state[fdc].version >= FDC_82072A) {
fdc_configure(fdc);
fdc_state[fdc].need_configure = 0;
}
switch (raw_cmd->rate & 0x03) {
case 3:
dtr = 1000;
break;
case 1:
dtr = 300;
if (fdc_state[fdc].version >= FDC_82078) {
/* chose the default rate table, not the one
* where 1 = 2 Mbps */
output_byte(fdc, FD_DRIVESPEC);
if (need_more_output(fdc) == MORE_OUTPUT) {
output_byte(fdc, UNIT(drive));
output_byte(fdc, 0xc0);
}
}
break;
case 2:
dtr = 250;
break;
}
if (fdc_state[fdc].version >= FDC_82072) {
scale_dtr = dtr;
hlt_max_code = 0x00; /* 0==256msec*dtr0/dtr (not linear!) */
hut_max_code = 0x0; /* 0==256msec*dtr0/dtr (not linear!) */
}
/* Convert step rate from microseconds to milliseconds and 4 bits */
srt = 16 - DIV_ROUND_UP(drive_params[drive].srt * scale_dtr / 1000,
NOMINAL_DTR);
if (slow_floppy)
srt = srt / 4;
SUPBOUND(srt, 0xf);
INFBOUND(srt, 0);
hlt = DIV_ROUND_UP(drive_params[drive].hlt * scale_dtr / 2,
NOMINAL_DTR);
if (hlt < 0x01)
hlt = 0x01;
else if (hlt > 0x7f)
hlt = hlt_max_code;
hut = DIV_ROUND_UP(drive_params[drive].hut * scale_dtr / 16,
NOMINAL_DTR);
if (hut < 0x1)
hut = 0x1;
else if (hut > 0xf)
hut = hut_max_code;
spec1 = (srt << 4) | hut;
spec2 = (hlt << 1) | (use_virtual_dma & 1);
/* If these parameters did not change, just return with success */
if (fdc_state[fdc].spec1 != spec1 ||
fdc_state[fdc].spec2 != spec2) {
/* Go ahead and set spec1 and spec2 */
output_byte(fdc, FD_SPECIFY);
output_byte(fdc, fdc_state[fdc].spec1 = spec1);
output_byte(fdc, fdc_state[fdc].spec2 = spec2);
}
} /* fdc_specify */
/* Set the FDC's data transfer rate on behalf of the specified drive.
* NOTE: with 82072/82077 FDCs, changing the data rate requires a reissue
* of the specify command (i.e. using the fdc_specify function).
*/
static int fdc_dtr(void)
{
/* If data rate not already set to desired value, set it. */
if ((raw_cmd->rate & 3) == fdc_state[current_fdc].dtr)
return 0;
/* Set dtr */
fdc_outb(raw_cmd->rate & 3, current_fdc, FD_DCR);
/* TODO: some FDC/drive combinations (C&T 82C711 with TEAC 1.2MB)
* need a stabilization period of several milliseconds to be
* enforced after data rate changes before R/W operations.
* Pause 5 msec to avoid trouble. (Needs to be 2 jiffies)
*/
fdc_state[current_fdc].dtr = raw_cmd->rate & 3;
return fd_wait_for_completion(jiffies + 2UL * HZ / 100, floppy_ready);
} /* fdc_dtr */
static void tell_sector(void)
{
pr_cont(": track %d, head %d, sector %d, size %d",
reply_buffer[R_TRACK], reply_buffer[R_HEAD],
reply_buffer[R_SECTOR],
reply_buffer[R_SIZECODE]);
} /* tell_sector */
static void print_errors(void)
{
DPRINT("");
if (reply_buffer[ST0] & ST0_ECE) {
pr_cont("Recalibrate failed!");
} else if (reply_buffer[ST2] & ST2_CRC) {
pr_cont("data CRC error");
tell_sector();
} else if (reply_buffer[ST1] & ST1_CRC) {
pr_cont("CRC error");
tell_sector();
} else if ((reply_buffer[ST1] & (ST1_MAM | ST1_ND)) ||
(reply_buffer[ST2] & ST2_MAM)) {
if (!probing) {
pr_cont("sector not found");
tell_sector();
} else
pr_cont("probe failed...");
} else if (reply_buffer[ST2] & ST2_WC) { /* seek error */
pr_cont("wrong cylinder");
} else if (reply_buffer[ST2] & ST2_BC) { /* cylinder marked as bad */
pr_cont("bad cylinder");
} else {
pr_cont("unknown error. ST[0..2] are: 0x%x 0x%x 0x%x",
reply_buffer[ST0], reply_buffer[ST1],
reply_buffer[ST2]);
tell_sector();
}
pr_cont("\n");
}
/*
* OK, this error interpreting routine is called after a
* DMA read/write has succeeded
* or failed, so we check the results, and copy any buffers.
* hhb: Added better error reporting.
* ak: Made this into a separate routine.
*/
static int interpret_errors(void)
{
char bad;
if (inr != 7) {
DPRINT("-- FDC reply error\n");
fdc_state[current_fdc].reset = 1;
return 1;
}
/* check IC to find cause of interrupt */
switch (reply_buffer[ST0] & ST0_INTR) {
case 0x40: /* error occurred during command execution */
if (reply_buffer[ST1] & ST1_EOC)
return 0; /* occurs with pseudo-DMA */
bad = 1;
if (reply_buffer[ST1] & ST1_WP) {
DPRINT("Drive is write protected\n");
clear_bit(FD_DISK_WRITABLE_BIT,
&drive_state[current_drive].flags);
cont->done(0);
bad = 2;
} else if (reply_buffer[ST1] & ST1_ND) {
set_bit(FD_NEED_TWADDLE_BIT,
&drive_state[current_drive].flags);
} else if (reply_buffer[ST1] & ST1_OR) {
if (drive_params[current_drive].flags & FTD_MSG)
DPRINT("Over/Underrun - retrying\n");
bad = 0;
} else if (floppy_errors >= drive_params[current_drive].max_errors.reporting) {
print_errors();
}
if (reply_buffer[ST2] & ST2_WC || reply_buffer[ST2] & ST2_BC)
/* wrong cylinder => recal */
drive_state[current_drive].track = NEED_2_RECAL;
return bad;
case 0x80: /* invalid command given */
DPRINT("Invalid FDC command given!\n");
cont->done(0);
return 2;
case 0xc0:
DPRINT("Abnormal termination caused by polling\n");
cont->error();
return 2;
default: /* (0) Normal command termination */
return 0;
}
}
/*
* This routine is called when everything should be correctly set up
* for the transfer (i.e. floppy motor is on, the correct floppy is
* selected, and the head is sitting on the right track).
*/
static void setup_rw_floppy(void)
{
int i;
int r;
int flags;
unsigned long ready_date;
void (*function)(void);
flags = raw_cmd->flags;
if (flags & (FD_RAW_READ | FD_RAW_WRITE))
flags |= FD_RAW_INTR;
if ((flags & FD_RAW_SPIN) && !(flags & FD_RAW_NO_MOTOR)) {
ready_date = drive_state[current_drive].spinup_date + drive_params[current_drive].spinup;
/* If spinup will take a long time, rerun scandrives
* again just before spinup completion. Beware that
* after scandrives, we must again wait for selection.
*/
if (time_after(ready_date, jiffies + drive_params[current_drive].select_delay)) {
ready_date -= drive_params[current_drive].select_delay;
function = floppy_start;
} else
function = setup_rw_floppy;
/* wait until the floppy is spinning fast enough */
if (fd_wait_for_completion(ready_date, function))
return;
}
if ((flags & FD_RAW_READ) || (flags & FD_RAW_WRITE))
setup_DMA();
if (flags & FD_RAW_INTR)
do_floppy = main_command_interrupt;
r = 0;
for (i = 0; i < raw_cmd->cmd_count; i++)
r |= output_byte(current_fdc, raw_cmd->fullcmd[i]);
debugt(__func__, "rw_command");
if (r) {
cont->error();
reset_fdc();
return;
}
if (!(flags & FD_RAW_INTR)) {
inr = result(current_fdc);
cont->interrupt();
} else if (flags & FD_RAW_NEED_DISK)
fd_watchdog();
}
static int blind_seek;
/*
* This is the routine called after every seek (or recalibrate) interrupt
* from the floppy controller.
*/
static void seek_interrupt(void)
{
debugt(__func__, "");
if (inr != 2 || (reply_buffer[ST0] & 0xF8) != 0x20) {
DPRINT("seek failed\n");
drive_state[current_drive].track = NEED_2_RECAL;
cont->error();
cont->redo();
return;
}
if (drive_state[current_drive].track >= 0 &&
drive_state[current_drive].track != reply_buffer[ST1] &&
!blind_seek) {
debug_dcl(drive_params[current_drive].flags,
"clearing NEWCHANGE flag because of effective seek\n");
debug_dcl(drive_params[current_drive].flags, "jiffies=%lu\n",
jiffies);
clear_bit(FD_DISK_NEWCHANGE_BIT,
&drive_state[current_drive].flags);
/* effective seek */
drive_state[current_drive].select_date = jiffies;
}
drive_state[current_drive].track = reply_buffer[ST1];
floppy_ready();
}
static void check_wp(int fdc, int drive)
{
if (test_bit(FD_VERIFY_BIT, &drive_state[drive].flags)) {
/* check write protection */
output_byte(fdc, FD_GETSTATUS);
output_byte(fdc, UNIT(drive));
if (result(fdc) != 1) {
fdc_state[fdc].reset = 1;
return;
}
clear_bit(FD_VERIFY_BIT, &drive_state[drive].flags);
clear_bit(FD_NEED_TWADDLE_BIT,
&drive_state[drive].flags);
debug_dcl(drive_params[drive].flags,
"checking whether disk is write protected\n");
debug_dcl(drive_params[drive].flags, "wp=%x\n",
reply_buffer[ST3] & 0x40);
if (!(reply_buffer[ST3] & 0x40))
set_bit(FD_DISK_WRITABLE_BIT,
&drive_state[drive].flags);
else
clear_bit(FD_DISK_WRITABLE_BIT,
&drive_state[drive].flags);
}
}
static void seek_floppy(void)
{
int track;
blind_seek = 0;
debug_dcl(drive_params[current_drive].flags,
"calling disk change from %s\n", __func__);
if (!test_bit(FD_DISK_NEWCHANGE_BIT, &drive_state[current_drive].flags) &&
disk_change(current_drive) && (raw_cmd->flags & FD_RAW_NEED_DISK)) {
/* the media changed flag should be cleared after the seek.
* If it isn't, this means that there is really no disk in
* the drive.
*/
set_bit(FD_DISK_CHANGED_BIT,
&drive_state[current_drive].flags);
cont->done(0);
cont->redo();
return;
}
if (drive_state[current_drive].track <= NEED_1_RECAL) {
recalibrate_floppy();
return;
} else if (test_bit(FD_DISK_NEWCHANGE_BIT, &drive_state[current_drive].flags) &&
(raw_cmd->flags & FD_RAW_NEED_DISK) &&
(drive_state[current_drive].track <= NO_TRACK || drive_state[current_drive].track == raw_cmd->track)) {
/* we seek to clear the media-changed condition. Does anybody
* know a more elegant way, which works on all drives? */
if (raw_cmd->track)
track = raw_cmd->track - 1;
else {
if (drive_params[current_drive].flags & FD_SILENT_DCL_CLEAR) {
set_dor(current_fdc, ~(0x10 << UNIT(current_drive)), 0);
blind_seek = 1;
raw_cmd->flags |= FD_RAW_NEED_SEEK;
}
track = 1;
}
} else {
check_wp(current_fdc, current_drive);
if (raw_cmd->track != drive_state[current_drive].track &&
(raw_cmd->flags & FD_RAW_NEED_SEEK))
track = raw_cmd->track;
else {
setup_rw_floppy();
return;
}
}
do_floppy = seek_interrupt;
output_byte(current_fdc, FD_SEEK);
output_byte(current_fdc, UNIT(current_drive));
if (output_byte(current_fdc, track) < 0) {
reset_fdc();
return;
}
debugt(__func__, "");
}
static void recal_interrupt(void)
{
debugt(__func__, "");
if (inr != 2)
fdc_state[current_fdc].reset = 1;
else if (reply_buffer[ST0] & ST0_ECE) {
switch (drive_state[current_drive].track) {
case NEED_1_RECAL:
debugt(__func__, "need 1 recal");
/* after a second recalibrate, we still haven't
* reached track 0. Probably no drive. Raise an
* error, as failing immediately might upset
* computers possessed by the Devil :-) */
cont->error();
cont->redo();
return;
case NEED_2_RECAL:
debugt(__func__, "need 2 recal");
/* If we already did a recalibrate,
* and we are not at track 0, this
* means we have moved. (The only way
* not to move at recalibration is to
* be already at track 0.) Clear the
* new change flag */
debug_dcl(drive_params[current_drive].flags,
"clearing NEWCHANGE flag because of second recalibrate\n");
clear_bit(FD_DISK_NEWCHANGE_BIT,
&drive_state[current_drive].flags);
drive_state[current_drive].select_date = jiffies;
fallthrough;
default:
debugt(__func__, "default");
/* Recalibrate moves the head by at
* most 80 steps. If after one
* recalibrate we don't have reached
* track 0, this might mean that we
* started beyond track 80. Try
* again. */
drive_state[current_drive].track = NEED_1_RECAL;
break;
}
} else
drive_state[current_drive].track = reply_buffer[ST1];
floppy_ready();
}
static void print_result(char *message, int inr)
{
int i;
DPRINT("%s ", message);
if (inr >= 0)
for (i = 0; i < inr; i++)
pr_cont("repl[%d]=%x ", i, reply_buffer[i]);
pr_cont("\n");
}
/* interrupt handler. Note that this can be called externally on the Sparc */
irqreturn_t floppy_interrupt(int irq, void *dev_id)
{
int do_print;
unsigned long f;
void (*handler)(void) = do_floppy;
lasthandler = handler;
interruptjiffies = jiffies;
f = claim_dma_lock();
fd_disable_dma();
release_dma_lock(f);
do_floppy = NULL;
if (current_fdc >= N_FDC || fdc_state[current_fdc].address == -1) {
/* we don't even know which FDC is the culprit */
pr_info("DOR0=%x\n", fdc_state[0].dor);
pr_info("floppy interrupt on bizarre fdc %d\n", current_fdc);
pr_info("handler=%ps\n", handler);
is_alive(__func__, "bizarre fdc");
return IRQ_NONE;
}
fdc_state[current_fdc].reset = 0;
/* We have to clear the reset flag here, because apparently on boxes
* with level triggered interrupts (PS/2, Sparc, ...), it is needed to
* emit SENSEI's to clear the interrupt line. And fdc_state[fdc].reset
* blocks the emission of the SENSEI's.
* It is OK to emit floppy commands because we are in an interrupt
* handler here, and thus we have to fear no interference of other
* activity.
*/
do_print = !handler && print_unex && initialized;
inr = result(current_fdc);
if (do_print)
print_result("unexpected interrupt", inr);
if (inr == 0) {
int max_sensei = 4;
do {
output_byte(current_fdc, FD_SENSEI);
inr = result(current_fdc);
if (do_print)
print_result("sensei", inr);
max_sensei--;
} while ((reply_buffer[ST0] & 0x83) != UNIT(current_drive) &&
inr == 2 && max_sensei);
}
if (!handler) {
fdc_state[current_fdc].reset = 1;
return IRQ_NONE;
}
schedule_bh(handler);
is_alive(__func__, "normal interrupt end");
/* FIXME! Was it really for us? */
return IRQ_HANDLED;
}
static void recalibrate_floppy(void)
{
debugt(__func__, "");
do_floppy = recal_interrupt;
output_byte(current_fdc, FD_RECALIBRATE);
if (output_byte(current_fdc, UNIT(current_drive)) < 0)
reset_fdc();
}
/*
* Must do 4 FD_SENSEIs after reset because of ``drive polling''.
*/
static void reset_interrupt(void)
{
debugt(__func__, "");
result(current_fdc); /* get the status ready for set_fdc */
if (fdc_state[current_fdc].reset) {
pr_info("reset set in interrupt, calling %ps\n", cont->error);
cont->error(); /* a reset just after a reset. BAD! */
}
cont->redo();
}
/*
* reset is done by pulling bit 2 of DOR low for a while (old FDCs),
* or by setting the self clearing bit 7 of STATUS (newer FDCs).
* This WILL trigger an interrupt, causing the handlers in the current
* cont's ->redo() to be called via reset_interrupt().
*/
static void reset_fdc(void)
{
unsigned long flags;
do_floppy = reset_interrupt;
fdc_state[current_fdc].reset = 0;
reset_fdc_info(current_fdc, 0);
/* Pseudo-DMA may intercept 'reset finished' interrupt. */
/* Irrelevant for systems with true DMA (i386). */
flags = claim_dma_lock();
fd_disable_dma();
release_dma_lock(flags);
if (fdc_state[current_fdc].version >= FDC_82072A)
fdc_outb(0x80 | (fdc_state[current_fdc].dtr & 3),
current_fdc, FD_STATUS);
else {
fdc_outb(fdc_state[current_fdc].dor & ~0x04, current_fdc, FD_DOR);
udelay(FD_RESET_DELAY);
fdc_outb(fdc_state[current_fdc].dor, current_fdc, FD_DOR);
}
}
static void show_floppy(int fdc)
{
int i;
pr_info("\n");
pr_info("floppy driver state\n");
pr_info("-------------------\n");
pr_info("now=%lu last interrupt=%lu diff=%lu last called handler=%ps\n",
jiffies, interruptjiffies, jiffies - interruptjiffies,
lasthandler);
pr_info("timeout_message=%s\n", timeout_message);
pr_info("last output bytes:\n");
for (i = 0; i < OLOGSIZE; i++)
pr_info("%2x %2x %lu\n",
output_log[(i + output_log_pos) % OLOGSIZE].data,
output_log[(i + output_log_pos) % OLOGSIZE].status,
output_log[(i + output_log_pos) % OLOGSIZE].jiffies);
pr_info("last result at %lu\n", resultjiffies);
pr_info("last redo_fd_request at %lu\n", lastredo);
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_NONE, 16, 1,
reply_buffer, resultsize, true);
pr_info("status=%x\n", fdc_inb(fdc, FD_STATUS));
pr_info("fdc_busy=%lu\n", fdc_busy);
if (do_floppy)
pr_info("do_floppy=%ps\n", do_floppy);
if (work_pending(&floppy_work))
pr_info("floppy_work.func=%ps\n", floppy_work.func);
if (delayed_work_pending(&fd_timer))
pr_info("delayed work.function=%p expires=%ld\n",
fd_timer.work.func,
fd_timer.timer.expires - jiffies);
if (delayed_work_pending(&fd_timeout))
pr_info("timer_function=%p expires=%ld\n",
fd_timeout.work.func,
fd_timeout.timer.expires - jiffies);
pr_info("cont=%p\n", cont);
pr_info("current_req=%p\n", current_req);
pr_info("command_status=%d\n", command_status);
pr_info("\n");
}
static void floppy_shutdown(struct work_struct *arg)
{
unsigned long flags;
if (initialized)
show_floppy(current_fdc);
cancel_activity();
flags = claim_dma_lock();
fd_disable_dma();
release_dma_lock(flags);
/* avoid dma going to a random drive after shutdown */
if (initialized)
DPRINT("floppy timeout called\n");
fdc_state[current_fdc].reset = 1;
if (cont) {
cont->done(0);
cont->redo(); /* this will recall reset when needed */
} else {
pr_info("no cont in shutdown!\n");
process_fd_request();
}
is_alive(__func__, "");
}
/* start motor, check media-changed condition and write protection */
static int start_motor(void (*function)(void))
{
int mask;
int data;
mask = 0xfc;
data = UNIT(current_drive);
if (!(raw_cmd->flags & FD_RAW_NO_MOTOR)) {
if (!(fdc_state[current_fdc].dor & (0x10 << UNIT(current_drive)))) {
set_debugt();
/* no read since this drive is running */
drive_state[current_drive].first_read_date = 0;
/* note motor start time if motor is not yet running */
drive_state[current_drive].spinup_date = jiffies;
data |= (0x10 << UNIT(current_drive));
}
} else if (fdc_state[current_fdc].dor & (0x10 << UNIT(current_drive)))
mask &= ~(0x10 << UNIT(current_drive));
/* starts motor and selects floppy */
del_timer(motor_off_timer + current_drive);
set_dor(current_fdc, mask, data);
/* wait_for_completion also schedules reset if needed. */
return fd_wait_for_completion(drive_state[current_drive].select_date + drive_params[current_drive].select_delay,
function);
}
static void floppy_ready(void)
{
if (fdc_state[current_fdc].reset) {
reset_fdc();
return;
}
if (start_motor(floppy_ready))
return;
if (fdc_dtr())
return;
debug_dcl(drive_params[current_drive].flags,
"calling disk change from floppy_ready\n");
if (!(raw_cmd->flags & FD_RAW_NO_MOTOR) &&
disk_change(current_drive) && !drive_params[current_drive].select_delay)
twaddle(current_fdc, current_drive); /* this clears the dcl on certain
* drive/controller combinations */
#ifdef fd_chose_dma_mode
if ((raw_cmd->flags & FD_RAW_READ) || (raw_cmd->flags & FD_RAW_WRITE)) {
unsigned long flags = claim_dma_lock();
fd_chose_dma_mode(raw_cmd->kernel_data, raw_cmd->length);
release_dma_lock(flags);
}
#endif
if (raw_cmd->flags & (FD_RAW_NEED_SEEK | FD_RAW_NEED_DISK)) {
perpendicular_mode(current_fdc);
fdc_specify(current_fdc, current_drive); /* must be done here because of hut, hlt ... */
seek_floppy();
} else {
if ((raw_cmd->flags & FD_RAW_READ) ||
(raw_cmd->flags & FD_RAW_WRITE))
fdc_specify(current_fdc, current_drive);
setup_rw_floppy();
}
}
static void floppy_start(void)
{
reschedule_timeout(current_drive, "floppy start");
scandrives();
debug_dcl(drive_params[current_drive].flags,
"setting NEWCHANGE in floppy_start\n");
set_bit(FD_DISK_NEWCHANGE_BIT, &drive_state[current_drive].flags);
floppy_ready();
}
/*
* ========================================================================
* here ends the bottom half. Exported routines are:
* floppy_start, floppy_off, floppy_ready, lock_fdc, unlock_fdc, set_fdc,
* start_motor, reset_fdc, reset_fdc_info, interpret_errors.
* Initialization also uses output_byte, result, set_dor, floppy_interrupt
* and set_dor.
* ========================================================================
*/
/*
* General purpose continuations.
* ==============================
*/
static void do_wakeup(void)
{
reschedule_timeout(MAXTIMEOUT, "do wakeup");
cont = NULL;
command_status += 2;
wake_up(&command_done);
}
static const struct cont_t wakeup_cont = {
.interrupt = empty,
.redo = do_wakeup,
.error = empty,
.done = (done_f)empty
};
static const struct cont_t intr_cont = {
.interrupt = empty,
.redo = process_fd_request,
.error = empty,
.done = (done_f)empty
};
/* schedules handler, waiting for completion. May be interrupted, will then
* return -EINTR, in which case the driver will automatically be unlocked.
*/
static int wait_til_done(void (*handler)(void), bool interruptible)
{
int ret;
schedule_bh(handler);
if (interruptible)
wait_event_interruptible(command_done, command_status >= 2);
else
wait_event(command_done, command_status >= 2);
if (command_status < 2) {
cancel_activity();
cont = &intr_cont;
reset_fdc();
return -EINTR;
}
if (fdc_state[current_fdc].reset)
command_status = FD_COMMAND_ERROR;
if (command_status == FD_COMMAND_OKAY)
ret = 0;
else
ret = -EIO;
command_status = FD_COMMAND_NONE;
return ret;
}
static void generic_done(int result)
{
command_status = result;
cont = &wakeup_cont;
}
static void generic_success(void)
{
cont->done(1);
}
static void generic_failure(void)
{
cont->done(0);
}
static void success_and_wakeup(void)
{
generic_success();
cont->redo();
}
/*
* formatting and rw support.
* ==========================
*/
static int next_valid_format(int drive)
{
int probed_format;
probed_format = drive_state[drive].probed_format;
while (1) {
if (probed_format >= FD_AUTODETECT_SIZE ||
!drive_params[drive].autodetect[probed_format]) {
drive_state[drive].probed_format = 0;
return 1;
}
if (floppy_type[drive_params[drive].autodetect[probed_format]].sect) {
drive_state[drive].probed_format = probed_format;
return 0;
}
probed_format++;
}
}
static void bad_flp_intr(void)
{
int err_count;
if (probing) {
drive_state[current_drive].probed_format++;
if (!next_valid_format(current_drive))
return;
}
err_count = ++floppy_errors;
INFBOUND(write_errors[current_drive].badness, err_count);
if (err_count > drive_params[current_drive].max_errors.abort)
cont->done(0);
if (err_count > drive_params[current_drive].max_errors.reset)
fdc_state[current_fdc].reset = 1;
else if (err_count > drive_params[current_drive].max_errors.recal)
drive_state[current_drive].track = NEED_2_RECAL;
}
static void set_floppy(int drive)
{
int type = ITYPE(drive_state[drive].fd_device);
if (type)
_floppy = floppy_type + type;
else
_floppy = current_type[drive];
}
/*
* formatting support.
* ===================
*/
static void format_interrupt(void)
{
switch (interpret_errors()) {
case 1:
cont->error();
break;
case 2:
break;
case 0:
cont->done(1);
}
cont->redo();
}
#define FM_MODE(x, y) ((y) & ~(((x)->rate & 0x80) >> 1))
#define CT(x) ((x) | 0xc0)
static void setup_format_params(int track)
{
int n;
int il;
int count;
int head_shift;
int track_shift;
struct fparm {
unsigned char track, head, sect, size;
} *here = (struct fparm *)floppy_track_buffer;
raw_cmd = &default_raw_cmd;
raw_cmd->track = track;
raw_cmd->flags = (FD_RAW_WRITE | FD_RAW_INTR | FD_RAW_SPIN |
FD_RAW_NEED_DISK | FD_RAW_NEED_SEEK);
raw_cmd->rate = _floppy->rate & 0x43;
raw_cmd->cmd_count = NR_F;
raw_cmd->cmd[COMMAND] = FM_MODE(_floppy, FD_FORMAT);
raw_cmd->cmd[DR_SELECT] = UNIT(current_drive) + PH_HEAD(_floppy, format_req.head);
raw_cmd->cmd[F_SIZECODE] = FD_SIZECODE(_floppy);
raw_cmd->cmd[F_SECT_PER_TRACK] = _floppy->sect << 2 >> raw_cmd->cmd[F_SIZECODE];
raw_cmd->cmd[F_GAP] = _floppy->fmt_gap;
raw_cmd->cmd[F_FILL] = FD_FILL_BYTE;
raw_cmd->kernel_data = floppy_track_buffer;
raw_cmd->length = 4 * raw_cmd->cmd[F_SECT_PER_TRACK];
if (!raw_cmd->cmd[F_SECT_PER_TRACK])
return;
/* allow for about 30ms for data transport per track */
head_shift = (raw_cmd->cmd[F_SECT_PER_TRACK] + 5) / 6;
/* a ``cylinder'' is two tracks plus a little stepping time */
track_shift = 2 * head_shift + 3;
/* position of logical sector 1 on this track */
n = (track_shift * format_req.track + head_shift * format_req.head)
% raw_cmd->cmd[F_SECT_PER_TRACK];
/* determine interleave */
il = 1;
if (_floppy->fmt_gap < 0x22)
il++;
/* initialize field */
for (count = 0; count < raw_cmd->cmd[F_SECT_PER_TRACK]; ++count) {
here[count].track = format_req.track;
here[count].head = format_req.head;
here[count].sect = 0;
here[count].size = raw_cmd->cmd[F_SIZECODE];
}
/* place logical sectors */
for (count = 1; count <= raw_cmd->cmd[F_SECT_PER_TRACK]; ++count) {
here[n].sect = count;
n = (n + il) % raw_cmd->cmd[F_SECT_PER_TRACK];
if (here[n].sect) { /* sector busy, find next free sector */
++n;
if (n >= raw_cmd->cmd[F_SECT_PER_TRACK]) {
n -= raw_cmd->cmd[F_SECT_PER_TRACK];
while (here[n].sect)
++n;
}
}
}
if (_floppy->stretch & FD_SECTBASEMASK) {
for (count = 0; count < raw_cmd->cmd[F_SECT_PER_TRACK]; count++)
here[count].sect += FD_SECTBASE(_floppy) - 1;
}
}
static void redo_format(void)
{
buffer_track = -1;
setup_format_params(format_req.track << STRETCH(_floppy));
floppy_start();
debugt(__func__, "queue format request");
}
static const struct cont_t format_cont = {
.interrupt = format_interrupt,
.redo = redo_format,
.error = bad_flp_intr,
.done = generic_done
};
static int do_format(int drive, struct format_descr *tmp_format_req)
{
int ret;
if (lock_fdc(drive))
return -EINTR;
set_floppy(drive);
if (!_floppy ||
_floppy->track > drive_params[current_drive].tracks ||
tmp_format_req->track >= _floppy->track ||
tmp_format_req->head >= _floppy->head ||
(_floppy->sect << 2) % (1 << FD_SIZECODE(_floppy)) ||
!_floppy->fmt_gap) {
process_fd_request();
return -EINVAL;
}
format_req = *tmp_format_req;
cont = &format_cont;
floppy_errors = 0;
ret = wait_til_done(redo_format, true);
if (ret == -EINTR)
return -EINTR;
process_fd_request();
return ret;
}
/*
* Buffer read/write and support
* =============================
*/
static void floppy_end_request(struct request *req, blk_status_t error)
{
unsigned int nr_sectors = current_count_sectors;
unsigned int drive = (unsigned long)req->q->disk->private_data;
/* current_count_sectors can be zero if transfer failed */
if (error)
nr_sectors = blk_rq_cur_sectors(req);
if (blk_update_request(req, error, nr_sectors << 9))
return;
__blk_mq_end_request(req, error);
/* We're done with the request */
floppy_off(drive);
current_req = NULL;
}
/* new request_done. Can handle physical sectors which are smaller than a
* logical buffer */
static void request_done(int uptodate)
{
struct request *req = current_req;
int block;
char msg[sizeof("request done ") + sizeof(int) * 3];
probing = 0;
snprintf(msg, sizeof(msg), "request done %d", uptodate);
reschedule_timeout(MAXTIMEOUT, msg);
if (!req) {
pr_info("floppy.c: no request in request_done\n");
return;
}
if (uptodate) {
/* maintain values for invalidation on geometry
* change */
block = current_count_sectors + blk_rq_pos(req);
INFBOUND(drive_state[current_drive].maxblock, block);
if (block > _floppy->sect)
drive_state[current_drive].maxtrack = 1;
floppy_end_request(req, 0);
} else {
if (rq_data_dir(req) == WRITE) {
/* record write error information */
write_errors[current_drive].write_errors++;
if (write_errors[current_drive].write_errors == 1) {
write_errors[current_drive].first_error_sector = blk_rq_pos(req);
write_errors[current_drive].first_error_generation = drive_state[current_drive].generation;
}
write_errors[current_drive].last_error_sector = blk_rq_pos(req);
write_errors[current_drive].last_error_generation = drive_state[current_drive].generation;
}
floppy_end_request(req, BLK_STS_IOERR);
}
}
/* Interrupt handler evaluating the result of the r/w operation */
static void rw_interrupt(void)
{
int eoc;
int ssize;
int heads;
int nr_sectors;
if (reply_buffer[R_HEAD] >= 2) {
/* some Toshiba floppy controllers occasionnally seem to
* return bogus interrupts after read/write operations, which
* can be recognized by a bad head number (>= 2) */
return;
}
if (!drive_state[current_drive].first_read_date)
drive_state[current_drive].first_read_date = jiffies;
ssize = DIV_ROUND_UP(1 << raw_cmd->cmd[SIZECODE], 4);
if (reply_buffer[ST1] & ST1_EOC)
eoc = 1;
else
eoc = 0;
if (raw_cmd->cmd[COMMAND] & 0x80)
heads = 2;
else
heads = 1;
nr_sectors = (((reply_buffer[R_TRACK] - raw_cmd->cmd[TRACK]) * heads +
reply_buffer[R_HEAD] - raw_cmd->cmd[HEAD]) * raw_cmd->cmd[SECT_PER_TRACK] +
reply_buffer[R_SECTOR] - raw_cmd->cmd[SECTOR] + eoc) << raw_cmd->cmd[SIZECODE] >> 2;
if (nr_sectors / ssize >
DIV_ROUND_UP(in_sector_offset + current_count_sectors, ssize)) {
DPRINT("long rw: %x instead of %lx\n",
nr_sectors, current_count_sectors);
pr_info("rs=%d s=%d\n", reply_buffer[R_SECTOR],
raw_cmd->cmd[SECTOR]);
pr_info("rh=%d h=%d\n", reply_buffer[R_HEAD],
raw_cmd->cmd[HEAD]);
pr_info("rt=%d t=%d\n", reply_buffer[R_TRACK],
raw_cmd->cmd[TRACK]);
pr_info("heads=%d eoc=%d\n", heads, eoc);
pr_info("spt=%d st=%d ss=%d\n",
raw_cmd->cmd[SECT_PER_TRACK], fsector_t, ssize);
pr_info("in_sector_offset=%d\n", in_sector_offset);
}
nr_sectors -= in_sector_offset;
INFBOUND(nr_sectors, 0);
SUPBOUND(current_count_sectors, nr_sectors);
switch (interpret_errors()) {
case 2:
cont->redo();
return;
case 1:
if (!current_count_sectors) {
cont->error();
cont->redo();
return;
}
break;
case 0:
if (!current_count_sectors) {
cont->redo();
return;
}
current_type[current_drive] = _floppy;
floppy_sizes[TOMINOR(current_drive)] = _floppy->size;
break;
}
if (probing) {
if (drive_params[current_drive].flags & FTD_MSG)
DPRINT("Auto-detected floppy type %s in fd%d\n",
_floppy->name, current_drive);
current_type[current_drive] = _floppy;
floppy_sizes[TOMINOR(current_drive)] = _floppy->size;
probing = 0;
}
if (CT(raw_cmd->cmd[COMMAND]) != FD_READ) {
/* transfer directly from buffer */
cont->done(1);
} else {
buffer_track = raw_cmd->track;
buffer_drive = current_drive;
INFBOUND(buffer_max, nr_sectors + fsector_t);
}
cont->redo();
}
/* Compute the maximal transfer size */
static int transfer_size(int ssize, int max_sector, int max_size)
{
SUPBOUND(max_sector, fsector_t + max_size);
/* alignment */
max_sector -= (max_sector % _floppy->sect) % ssize;
/* transfer size, beginning not aligned */
current_count_sectors = max_sector - fsector_t;
return max_sector;
}
/*
* Move data from/to the track buffer to/from the buffer cache.
*/
static void copy_buffer(int ssize, int max_sector, int max_sector_2)
{
int remaining; /* number of transferred 512-byte sectors */
struct bio_vec bv;
char *dma_buffer;
int size;
struct req_iterator iter;
max_sector = transfer_size(ssize,
min(max_sector, max_sector_2),
blk_rq_sectors(current_req));
if (current_count_sectors <= 0 && CT(raw_cmd->cmd[COMMAND]) == FD_WRITE &&
buffer_max > fsector_t + blk_rq_sectors(current_req))
current_count_sectors = min_t(int, buffer_max - fsector_t,
blk_rq_sectors(current_req));
remaining = current_count_sectors << 9;
if (remaining > blk_rq_bytes(current_req) && CT(raw_cmd->cmd[COMMAND]) == FD_WRITE) {
DPRINT("in copy buffer\n");
pr_info("current_count_sectors=%ld\n", current_count_sectors);
pr_info("remaining=%d\n", remaining >> 9);
pr_info("current_req->nr_sectors=%u\n",
blk_rq_sectors(current_req));
pr_info("current_req->current_nr_sectors=%u\n",
blk_rq_cur_sectors(current_req));
pr_info("max_sector=%d\n", max_sector);
pr_info("ssize=%d\n", ssize);
}
buffer_max = max(max_sector, buffer_max);
dma_buffer = floppy_track_buffer + ((fsector_t - buffer_min) << 9);
size = blk_rq_cur_bytes(current_req);
rq_for_each_segment(bv, current_req, iter) {
if (!remaining)
break;
size = bv.bv_len;
SUPBOUND(size, remaining);
if (dma_buffer + size >
floppy_track_buffer + (max_buffer_sectors << 10) ||
dma_buffer < floppy_track_buffer) {
DPRINT("buffer overrun in copy buffer %d\n",
(int)((floppy_track_buffer - dma_buffer) >> 9));
pr_info("fsector_t=%d buffer_min=%d\n",
fsector_t, buffer_min);
pr_info("current_count_sectors=%ld\n",
current_count_sectors);
if (CT(raw_cmd->cmd[COMMAND]) == FD_READ)
pr_info("read\n");
if (CT(raw_cmd->cmd[COMMAND]) == FD_WRITE)
pr_info("write\n");
break;
}
if (CT(raw_cmd->cmd[COMMAND]) == FD_READ)
memcpy_to_bvec(&bv, dma_buffer);
else
memcpy_from_bvec(dma_buffer, &bv);
remaining -= size;
dma_buffer += size;
}
if (remaining) {
if (remaining > 0)
max_sector -= remaining >> 9;
DPRINT("weirdness: remaining %d\n", remaining >> 9);
}
}
/* work around a bug in pseudo DMA
* (on some FDCs) pseudo DMA does not stop when the CPU stops
* sending data. Hence we need a different way to signal the
* transfer length: We use raw_cmd->cmd[SECT_PER_TRACK]. Unfortunately, this
* does not work with MT, hence we can only transfer one head at
* a time
*/
static void virtualdmabug_workaround(void)
{
int hard_sectors;
int end_sector;
if (CT(raw_cmd->cmd[COMMAND]) == FD_WRITE) {
raw_cmd->cmd[COMMAND] &= ~0x80; /* switch off multiple track mode */
hard_sectors = raw_cmd->length >> (7 + raw_cmd->cmd[SIZECODE]);
end_sector = raw_cmd->cmd[SECTOR] + hard_sectors - 1;
if (end_sector > raw_cmd->cmd[SECT_PER_TRACK]) {
pr_info("too many sectors %d > %d\n",
end_sector, raw_cmd->cmd[SECT_PER_TRACK]);
return;
}
raw_cmd->cmd[SECT_PER_TRACK] = end_sector;
/* make sure raw_cmd->cmd[SECT_PER_TRACK]
* points to end of transfer */
}
}
/*
* Formulate a read/write request.
* this routine decides where to load the data (directly to buffer, or to
* tmp floppy area), how much data to load (the size of the buffer, the whole
* track, or a single sector)
* All floppy_track_buffer handling goes in here. If we ever add track buffer
* allocation on the fly, it should be done here. No other part should need
* modification.
*/
static int make_raw_rw_request(void)
{
int aligned_sector_t;
int max_sector;
int max_size;
int tracksize;
int ssize;
if (WARN(max_buffer_sectors == 0, "VFS: Block I/O scheduled on unopened device\n"))
return 0;
set_fdc((long)current_req->q->disk->private_data);
raw_cmd = &default_raw_cmd;
raw_cmd->flags = FD_RAW_SPIN | FD_RAW_NEED_DISK | FD_RAW_NEED_SEEK;
raw_cmd->cmd_count = NR_RW;
if (rq_data_dir(current_req) == READ) {
raw_cmd->flags |= FD_RAW_READ;
raw_cmd->cmd[COMMAND] = FM_MODE(_floppy, FD_READ);
} else if (rq_data_dir(current_req) == WRITE) {
raw_cmd->flags |= FD_RAW_WRITE;
raw_cmd->cmd[COMMAND] = FM_MODE(_floppy, FD_WRITE);
} else {
DPRINT("%s: unknown command\n", __func__);
return 0;
}
max_sector = _floppy->sect * _floppy->head;
raw_cmd->cmd[TRACK] = (int)blk_rq_pos(current_req) / max_sector;
fsector_t = (int)blk_rq_pos(current_req) % max_sector;
if (_floppy->track && raw_cmd->cmd[TRACK] >= _floppy->track) {
if (blk_rq_cur_sectors(current_req) & 1) {
current_count_sectors = 1;
return 1;
} else
return 0;
}
raw_cmd->cmd[HEAD] = fsector_t / _floppy->sect;
if (((_floppy->stretch & (FD_SWAPSIDES | FD_SECTBASEMASK)) ||
test_bit(FD_NEED_TWADDLE_BIT, &drive_state[current_drive].flags)) &&
fsector_t < _floppy->sect)
max_sector = _floppy->sect;
/* 2M disks have phantom sectors on the first track */
if ((_floppy->rate & FD_2M) && (!raw_cmd->cmd[TRACK]) && (!raw_cmd->cmd[HEAD])) {
max_sector = 2 * _floppy->sect / 3;
if (fsector_t >= max_sector) {
current_count_sectors =
min_t(int, _floppy->sect - fsector_t,
blk_rq_sectors(current_req));
return 1;
}
raw_cmd->cmd[SIZECODE] = 2;
} else
raw_cmd->cmd[SIZECODE] = FD_SIZECODE(_floppy);
raw_cmd->rate = _floppy->rate & 0x43;
if ((_floppy->rate & FD_2M) &&
(raw_cmd->cmd[TRACK] || raw_cmd->cmd[HEAD]) && raw_cmd->rate == 2)
raw_cmd->rate = 1;
if (raw_cmd->cmd[SIZECODE])
raw_cmd->cmd[SIZECODE2] = 0xff;
else
raw_cmd->cmd[SIZECODE2] = 0x80;
raw_cmd->track = raw_cmd->cmd[TRACK] << STRETCH(_floppy);
raw_cmd->cmd[DR_SELECT] = UNIT(current_drive) + PH_HEAD(_floppy, raw_cmd->cmd[HEAD]);
raw_cmd->cmd[GAP] = _floppy->gap;
ssize = DIV_ROUND_UP(1 << raw_cmd->cmd[SIZECODE], 4);
raw_cmd->cmd[SECT_PER_TRACK] = _floppy->sect << 2 >> raw_cmd->cmd[SIZECODE];
raw_cmd->cmd[SECTOR] = ((fsector_t % _floppy->sect) << 2 >> raw_cmd->cmd[SIZECODE]) +
FD_SECTBASE(_floppy);
/* tracksize describes the size which can be filled up with sectors
* of size ssize.
*/
tracksize = _floppy->sect - _floppy->sect % ssize;
if (tracksize < _floppy->sect) {
raw_cmd->cmd[SECT_PER_TRACK]++;
if (tracksize <= fsector_t % _floppy->sect)
raw_cmd->cmd[SECTOR]--;
/* if we are beyond tracksize, fill up using smaller sectors */
while (tracksize <= fsector_t % _floppy->sect) {
while (tracksize + ssize > _floppy->sect) {
raw_cmd->cmd[SIZECODE]--;
ssize >>= 1;
}
raw_cmd->cmd[SECTOR]++;
raw_cmd->cmd[SECT_PER_TRACK]++;
tracksize += ssize;
}
max_sector = raw_cmd->cmd[HEAD] * _floppy->sect + tracksize;
} else if (!raw_cmd->cmd[TRACK] && !raw_cmd->cmd[HEAD] && !(_floppy->rate & FD_2M) && probing) {
max_sector = _floppy->sect;
} else if (!raw_cmd->cmd[HEAD] && CT(raw_cmd->cmd[COMMAND]) == FD_WRITE) {
/* for virtual DMA bug workaround */
max_sector = _floppy->sect;
}
in_sector_offset = (fsector_t % _floppy->sect) % ssize;
aligned_sector_t = fsector_t - in_sector_offset;
max_size = blk_rq_sectors(current_req);
if ((raw_cmd->track == buffer_track) &&
(current_drive == buffer_drive) &&
(fsector_t >= buffer_min) && (fsector_t < buffer_max)) {
/* data already in track buffer */
if (CT(raw_cmd->cmd[COMMAND]) == FD_READ) {
copy_buffer(1, max_sector, buffer_max);
return 1;
}
} else if (in_sector_offset || blk_rq_sectors(current_req) < ssize) {
if (CT(raw_cmd->cmd[COMMAND]) == FD_WRITE) {
unsigned int sectors;
sectors = fsector_t + blk_rq_sectors(current_req);
if (sectors > ssize && sectors < ssize + ssize)
max_size = ssize + ssize;
else
max_size = ssize;
}
raw_cmd->flags &= ~FD_RAW_WRITE;
raw_cmd->flags |= FD_RAW_READ;
raw_cmd->cmd[COMMAND] = FM_MODE(_floppy, FD_READ);
}
if (CT(raw_cmd->cmd[COMMAND]) == FD_READ)
max_size = max_sector; /* unbounded */
/* claim buffer track if needed */
if (buffer_track != raw_cmd->track || /* bad track */
buffer_drive != current_drive || /* bad drive */
fsector_t > buffer_max ||
fsector_t < buffer_min ||
((CT(raw_cmd->cmd[COMMAND]) == FD_READ ||
(!in_sector_offset && blk_rq_sectors(current_req) >= ssize)) &&
max_sector > 2 * max_buffer_sectors + buffer_min &&
max_size + fsector_t > 2 * max_buffer_sectors + buffer_min)) {
/* not enough space */
buffer_track = -1;
buffer_drive = current_drive;
buffer_max = buffer_min = aligned_sector_t;
}
raw_cmd->kernel_data = floppy_track_buffer +
((aligned_sector_t - buffer_min) << 9);
if (CT(raw_cmd->cmd[COMMAND]) == FD_WRITE) {
/* copy write buffer to track buffer.
* if we get here, we know that the write
* is either aligned or the data already in the buffer
* (buffer will be overwritten) */
if (in_sector_offset && buffer_track == -1)
DPRINT("internal error offset !=0 on write\n");
buffer_track = raw_cmd->track;
buffer_drive = current_drive;
copy_buffer(ssize, max_sector,
2 * max_buffer_sectors + buffer_min);
} else
transfer_size(ssize, max_sector,
2 * max_buffer_sectors + buffer_min -
aligned_sector_t);
/* round up current_count_sectors to get dma xfer size */
raw_cmd->length = in_sector_offset + current_count_sectors;
raw_cmd->length = ((raw_cmd->length - 1) | (ssize - 1)) + 1;
raw_cmd->length <<= 9;
if ((raw_cmd->length < current_count_sectors << 9) ||
(CT(raw_cmd->cmd[COMMAND]) == FD_WRITE &&
(aligned_sector_t + (raw_cmd->length >> 9) > buffer_max ||
aligned_sector_t < buffer_min)) ||
raw_cmd->length % (128 << raw_cmd->cmd[SIZECODE]) ||
raw_cmd->length <= 0 || current_count_sectors <= 0) {
DPRINT("fractionary current count b=%lx s=%lx\n",
raw_cmd->length, current_count_sectors);
pr_info("addr=%d, length=%ld\n",
(int)((raw_cmd->kernel_data -
floppy_track_buffer) >> 9),
current_count_sectors);
pr_info("st=%d ast=%d mse=%d msi=%d\n",
fsector_t, aligned_sector_t, max_sector, max_size);
pr_info("ssize=%x SIZECODE=%d\n", ssize, raw_cmd->cmd[SIZECODE]);
pr_info("command=%x SECTOR=%d HEAD=%d, TRACK=%d\n",
raw_cmd->cmd[COMMAND], raw_cmd->cmd[SECTOR],
raw_cmd->cmd[HEAD], raw_cmd->cmd[TRACK]);
pr_info("buffer drive=%d\n", buffer_drive);
pr_info("buffer track=%d\n", buffer_track);
pr_info("buffer_min=%d\n", buffer_min);
pr_info("buffer_max=%d\n", buffer_max);
return 0;
}
if (raw_cmd->kernel_data < floppy_track_buffer ||
current_count_sectors < 0 ||
raw_cmd->length < 0 ||
raw_cmd->kernel_data + raw_cmd->length >
floppy_track_buffer + (max_buffer_sectors << 10)) {
DPRINT("buffer overrun in schedule dma\n");
pr_info("fsector_t=%d buffer_min=%d current_count=%ld\n",
fsector_t, buffer_min, raw_cmd->length >> 9);
pr_info("current_count_sectors=%ld\n",
current_count_sectors);
if (CT(raw_cmd->cmd[COMMAND]) == FD_READ)
pr_info("read\n");
if (CT(raw_cmd->cmd[COMMAND]) == FD_WRITE)
pr_info("write\n");
return 0;
}
if (raw_cmd->length == 0) {
DPRINT("zero dma transfer attempted from make_raw_request\n");
return 0;
}
virtualdmabug_workaround();
return 2;
}
static int set_next_request(void)
{
current_req = list_first_entry_or_null(&floppy_reqs, struct request,
queuelist);
if (current_req) {
floppy_errors = 0;
list_del_init(&current_req->queuelist);
return 1;
}
return 0;
}
/* Starts or continues processing request. Will automatically unlock the
* driver at end of request.
*/
static void redo_fd_request(void)
{
int drive;
int tmp;
lastredo = jiffies;
if (current_drive < N_DRIVE)
floppy_off(current_drive);
do_request:
if (!current_req) {
int pending;
spin_lock_irq(&floppy_lock);
pending = set_next_request();
spin_unlock_irq(&floppy_lock);
if (!pending) {
do_floppy = NULL;
unlock_fdc();
return;
}
}
drive = (long)current_req->q->disk->private_data;
set_fdc(drive);
reschedule_timeout(current_drive, "redo fd request");
set_floppy(drive);
raw_cmd = &default_raw_cmd;
raw_cmd->flags = 0;
if (start_motor(redo_fd_request))
return;
disk_change(current_drive);
if (test_bit(current_drive, &fake_change) ||
test_bit(FD_DISK_CHANGED_BIT, &drive_state[current_drive].flags)) {
DPRINT("disk absent or changed during operation\n");
request_done(0);
goto do_request;
}
if (!_floppy) { /* Autodetection */
if (!probing) {
drive_state[current_drive].probed_format = 0;
if (next_valid_format(current_drive)) {
DPRINT("no autodetectable formats\n");
_floppy = NULL;
request_done(0);
goto do_request;
}
}
probing = 1;
_floppy = floppy_type + drive_params[current_drive].autodetect[drive_state[current_drive].probed_format];
} else
probing = 0;
tmp = make_raw_rw_request();
if (tmp < 2) {
request_done(tmp);
goto do_request;
}
if (test_bit(FD_NEED_TWADDLE_BIT, &drive_state[current_drive].flags))
twaddle(current_fdc, current_drive);
schedule_bh(floppy_start);
debugt(__func__, "queue fd request");
return;
}
static const struct cont_t rw_cont = {
.interrupt = rw_interrupt,
.redo = redo_fd_request,
.error = bad_flp_intr,
.done = request_done
};
/* schedule the request and automatically unlock the driver on completion */
static void process_fd_request(void)
{
cont = &rw_cont;
schedule_bh(redo_fd_request);
}
static blk_status_t floppy_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
blk_mq_start_request(bd->rq);
if (WARN(max_buffer_sectors == 0,
"VFS: %s called on non-open device\n", __func__))
return BLK_STS_IOERR;
if (WARN(atomic_read(&usage_count) == 0,
"warning: usage count=0, current_req=%p sect=%ld flags=%llx\n",
current_req, (long)blk_rq_pos(current_req),
(__force unsigned long long) current_req->cmd_flags))
return BLK_STS_IOERR;
if (test_and_set_bit(0, &fdc_busy)) {
/* fdc busy, this new request will be treated when the
current one is done */
is_alive(__func__, "old request running");
return BLK_STS_RESOURCE;
}
spin_lock_irq(&floppy_lock);
list_add_tail(&bd->rq->queuelist, &floppy_reqs);
spin_unlock_irq(&floppy_lock);
command_status = FD_COMMAND_NONE;
__reschedule_timeout(MAXTIMEOUT, "fd_request");
set_fdc(0);
process_fd_request();
is_alive(__func__, "");
return BLK_STS_OK;
}
static const struct cont_t poll_cont = {
.interrupt = success_and_wakeup,
.redo = floppy_ready,
.error = generic_failure,
.done = generic_done
};
static int poll_drive(bool interruptible, int flag)
{
/* no auto-sense, just clear dcl */
raw_cmd = &default_raw_cmd;
raw_cmd->flags = flag;
raw_cmd->track = 0;
raw_cmd->cmd_count = 0;
cont = &poll_cont;
debug_dcl(drive_params[current_drive].flags,
"setting NEWCHANGE in poll_drive\n");
set_bit(FD_DISK_NEWCHANGE_BIT, &drive_state[current_drive].flags);
return wait_til_done(floppy_ready, interruptible);
}
/*
* User triggered reset
* ====================
*/
static void reset_intr(void)
{
pr_info("weird, reset interrupt called\n");
}
static const struct cont_t reset_cont = {
.interrupt = reset_intr,
.redo = success_and_wakeup,
.error = generic_failure,
.done = generic_done
};
/*
* Resets the FDC connected to drive <drive>.
* Both current_drive and current_fdc are changed to match the new drive.
*/
static int user_reset_fdc(int drive, int arg, bool interruptible)
{
int ret;
if (lock_fdc(drive))
return -EINTR;
if (arg == FD_RESET_ALWAYS)
fdc_state[current_fdc].reset = 1;
if (fdc_state[current_fdc].reset) {
/* note: reset_fdc will take care of unlocking the driver
* on completion.
*/
cont = &reset_cont;
ret = wait_til_done(reset_fdc, interruptible);
if (ret == -EINTR)
return -EINTR;
}
process_fd_request();
return 0;
}
/*
* Misc Ioctl's and support
* ========================
*/
static inline int fd_copyout(void __user *param, const void *address,
unsigned long size)
{
return copy_to_user(param, address, size) ? -EFAULT : 0;
}
static inline int fd_copyin(void __user *param, void *address,
unsigned long size)
{
return copy_from_user(address, param, size) ? -EFAULT : 0;
}
static const char *drive_name(int type, int drive)
{
struct floppy_struct *floppy;
if (type)
floppy = floppy_type + type;
else {
if (drive_params[drive].native_format)
floppy = floppy_type + drive_params[drive].native_format;
else
return "(null)";
}
if (floppy->name)
return floppy->name;
else
return "(null)";
}
#ifdef CONFIG_BLK_DEV_FD_RAWCMD
/* raw commands */
static void raw_cmd_done(int flag)
{
if (!flag) {
raw_cmd->flags |= FD_RAW_FAILURE;
raw_cmd->flags |= FD_RAW_HARDFAILURE;
} else {
raw_cmd->reply_count = inr;
if (raw_cmd->reply_count > FD_RAW_REPLY_SIZE)
raw_cmd->reply_count = 0;
memcpy(raw_cmd->reply, reply_buffer, raw_cmd->reply_count);
if (raw_cmd->flags & (FD_RAW_READ | FD_RAW_WRITE)) {
unsigned long flags;
flags = claim_dma_lock();
raw_cmd->length = fd_get_dma_residue();
release_dma_lock(flags);
}
if ((raw_cmd->flags & FD_RAW_SOFTFAILURE) &&
(!raw_cmd->reply_count || (raw_cmd->reply[0] & 0xc0)))
raw_cmd->flags |= FD_RAW_FAILURE;
if (disk_change(current_drive))
raw_cmd->flags |= FD_RAW_DISK_CHANGE;
else
raw_cmd->flags &= ~FD_RAW_DISK_CHANGE;
if (raw_cmd->flags & FD_RAW_NO_MOTOR_AFTER)
motor_off_callback(&motor_off_timer[current_drive]);
if (raw_cmd->next &&
(!(raw_cmd->flags & FD_RAW_FAILURE) ||
!(raw_cmd->flags & FD_RAW_STOP_IF_FAILURE)) &&
((raw_cmd->flags & FD_RAW_FAILURE) ||
!(raw_cmd->flags & FD_RAW_STOP_IF_SUCCESS))) {
raw_cmd = raw_cmd->next;
return;
}
}
generic_done(flag);
}
static const struct cont_t raw_cmd_cont = {
.interrupt = success_and_wakeup,
.redo = floppy_start,
.error = generic_failure,
.done = raw_cmd_done
};
static int raw_cmd_copyout(int cmd, void __user *param,
struct floppy_raw_cmd *ptr)
{
int ret;
while (ptr) {
struct floppy_raw_cmd cmd = *ptr;
cmd.next = NULL;
cmd.kernel_data = NULL;
ret = copy_to_user(param, &cmd, sizeof(cmd));
if (ret)
return -EFAULT;
param += sizeof(struct floppy_raw_cmd);
if ((ptr->flags & FD_RAW_READ) && ptr->buffer_length) {
if (ptr->length >= 0 &&
ptr->length <= ptr->buffer_length) {
long length = ptr->buffer_length - ptr->length;
ret = fd_copyout(ptr->data, ptr->kernel_data,
length);
if (ret)
return ret;
}
}
ptr = ptr->next;
}
return 0;
}
static void raw_cmd_free(struct floppy_raw_cmd **ptr)
{
struct floppy_raw_cmd *next;
struct floppy_raw_cmd *this;
this = *ptr;
*ptr = NULL;
while (this) {
if (this->buffer_length) {
fd_dma_mem_free((unsigned long)this->kernel_data,
this->buffer_length);
this->buffer_length = 0;
}
next = this->next;
kfree(this);
this = next;
}
}
#define MAX_LEN (1UL << MAX_ORDER << PAGE_SHIFT)
static int raw_cmd_copyin(int cmd, void __user *param,
struct floppy_raw_cmd **rcmd)
{
struct floppy_raw_cmd *ptr;
int ret;
*rcmd = NULL;
loop:
ptr = kmalloc(sizeof(struct floppy_raw_cmd), GFP_KERNEL);
if (!ptr)
return -ENOMEM;
*rcmd = ptr;
ret = copy_from_user(ptr, param, sizeof(*ptr));
ptr->next = NULL;
ptr->buffer_length = 0;
ptr->kernel_data = NULL;
if (ret)
return -EFAULT;
param += sizeof(struct floppy_raw_cmd);
if (ptr->cmd_count > FD_RAW_CMD_FULLSIZE)
return -EINVAL;
memset(ptr->reply, 0, FD_RAW_REPLY_SIZE);
ptr->resultcode = 0;
if (ptr->flags & (FD_RAW_READ | FD_RAW_WRITE)) {
if (ptr->length <= 0 || ptr->length > MAX_LEN)
return -EINVAL;
ptr->kernel_data = (char *)fd_dma_mem_alloc(ptr->length);
fallback_on_nodma_alloc(&ptr->kernel_data, ptr->length);
if (!ptr->kernel_data)
return -ENOMEM;
ptr->buffer_length = ptr->length;
}
if (ptr->flags & FD_RAW_WRITE) {
ret = fd_copyin(ptr->data, ptr->kernel_data, ptr->length);
if (ret)
return ret;
}
if (ptr->flags & FD_RAW_MORE) {
rcmd = &(ptr->next);
ptr->rate &= 0x43;
goto loop;
}
return 0;
}
static int raw_cmd_ioctl(int cmd, void __user *param)
{
struct floppy_raw_cmd *my_raw_cmd;
int drive;
int ret2;
int ret;
if (fdc_state[current_fdc].rawcmd <= 1)
fdc_state[current_fdc].rawcmd = 1;
for (drive = 0; drive < N_DRIVE; drive++) {
if (FDC(drive) != current_fdc)
continue;
if (drive == current_drive) {
if (drive_state[drive].fd_ref > 1) {
fdc_state[current_fdc].rawcmd = 2;
break;
}
} else if (drive_state[drive].fd_ref) {
fdc_state[current_fdc].rawcmd = 2;
break;
}
}
if (fdc_state[current_fdc].reset)
return -EIO;
ret = raw_cmd_copyin(cmd, param, &my_raw_cmd);
if (ret) {
raw_cmd_free(&my_raw_cmd);
return ret;
}
raw_cmd = my_raw_cmd;
cont = &raw_cmd_cont;
ret = wait_til_done(floppy_start, true);
debug_dcl(drive_params[current_drive].flags,
"calling disk change from raw_cmd ioctl\n");
if (ret != -EINTR && fdc_state[current_fdc].reset)
ret = -EIO;
drive_state[current_drive].track = NO_TRACK;
ret2 = raw_cmd_copyout(cmd, param, my_raw_cmd);
if (!ret)
ret = ret2;
raw_cmd_free(&my_raw_cmd);
return ret;
}
static int floppy_raw_cmd_ioctl(int type, int drive, int cmd,
void __user *param)
{
int ret;
pr_warn_once("Note: FDRAWCMD is deprecated and will be removed from the kernel in the near future.\n");
if (type)
return -EINVAL;
if (lock_fdc(drive))
return -EINTR;
set_floppy(drive);
ret = raw_cmd_ioctl(cmd, param);
if (ret == -EINTR)
return -EINTR;
process_fd_request();
return ret;
}
#else /* CONFIG_BLK_DEV_FD_RAWCMD */
static int floppy_raw_cmd_ioctl(int type, int drive, int cmd,
void __user *param)
{
return -EOPNOTSUPP;
}
#endif
static int invalidate_drive(struct gendisk *disk)
{
/* invalidate the buffer track to force a reread */
set_bit((long)disk->private_data, &fake_change);
process_fd_request();
if (disk_check_media_change(disk))
floppy_revalidate(disk);
return 0;
}
static int set_geometry(unsigned int cmd, struct floppy_struct *g,
int drive, int type, struct block_device *bdev)
{
int cnt;
/* sanity checking for parameters. */
if ((int)g->sect <= 0 ||
(int)g->head <= 0 ||
/* check for overflow in max_sector */
(int)(g->sect * g->head) <= 0 ||
/* check for zero in raw_cmd->cmd[F_SECT_PER_TRACK] */
(unsigned char)((g->sect << 2) >> FD_SIZECODE(g)) == 0 ||
g->track <= 0 || g->track > drive_params[drive].tracks >> STRETCH(g) ||
/* check if reserved bits are set */
(g->stretch & ~(FD_STRETCH | FD_SWAPSIDES | FD_SECTBASEMASK)) != 0)
return -EINVAL;
if (type) {
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
mutex_lock(&open_lock);
if (lock_fdc(drive)) {
mutex_unlock(&open_lock);
return -EINTR;
}
floppy_type[type] = *g;
floppy_type[type].name = "user format";
for (cnt = type << 2; cnt < (type << 2) + 4; cnt++)
floppy_sizes[cnt] = floppy_sizes[cnt + 0x80] =
floppy_type[type].size + 1;
process_fd_request();
for (cnt = 0; cnt < N_DRIVE; cnt++) {
struct gendisk *disk = opened_disk[cnt];
if (!disk || ITYPE(drive_state[cnt].fd_device) != type)
continue;
disk_force_media_change(disk);
}
mutex_unlock(&open_lock);
} else {
int oldStretch;
if (lock_fdc(drive))
return -EINTR;
if (cmd != FDDEFPRM) {
/* notice a disk change immediately, else
* we lose our settings immediately*/
if (poll_drive(true, FD_RAW_NEED_DISK) == -EINTR)
return -EINTR;
}
oldStretch = g->stretch;
user_params[drive] = *g;
if (buffer_drive == drive)
SUPBOUND(buffer_max, user_params[drive].sect);
current_type[drive] = &user_params[drive];
floppy_sizes[drive] = user_params[drive].size;
if (cmd == FDDEFPRM)
drive_state[current_drive].keep_data = -1;
else
drive_state[current_drive].keep_data = 1;
/* invalidation. Invalidate only when needed, i.e.
* when there are already sectors in the buffer cache
* whose number will change. This is useful, because
* mtools often changes the geometry of the disk after
* looking at the boot block */
if (drive_state[current_drive].maxblock > user_params[drive].sect ||
drive_state[current_drive].maxtrack ||
((user_params[drive].sect ^ oldStretch) &
(FD_SWAPSIDES | FD_SECTBASEMASK)))
invalidate_drive(bdev->bd_disk);
else
process_fd_request();
}
return 0;
}
/* handle obsolete ioctl's */
static unsigned int ioctl_table[] = {
FDCLRPRM,
FDSETPRM,
FDDEFPRM,
FDGETPRM,
FDMSGON,
FDMSGOFF,
FDFMTBEG,
FDFMTTRK,
FDFMTEND,
FDSETEMSGTRESH,
FDFLUSH,
FDSETMAXERRS,
FDGETMAXERRS,
FDGETDRVTYP,
FDSETDRVPRM,
FDGETDRVPRM,
FDGETDRVSTAT,
FDPOLLDRVSTAT,
FDRESET,
FDGETFDCSTAT,
FDWERRORCLR,
FDWERRORGET,
FDRAWCMD,
FDEJECT,
FDTWADDLE
};
static int normalize_ioctl(unsigned int *cmd, int *size)
{
int i;
for (i = 0; i < ARRAY_SIZE(ioctl_table); i++) {
if ((*cmd & 0xffff) == (ioctl_table[i] & 0xffff)) {
*size = _IOC_SIZE(*cmd);
*cmd = ioctl_table[i];
if (*size > _IOC_SIZE(*cmd)) {
pr_info("ioctl not yet supported\n");
return -EFAULT;
}
return 0;
}
}
return -EINVAL;
}
static int get_floppy_geometry(int drive, int type, struct floppy_struct **g)
{
if (type)
*g = &floppy_type[type];
else {
if (lock_fdc(drive))
return -EINTR;
if (poll_drive(false, 0) == -EINTR)
return -EINTR;
process_fd_request();
*g = current_type[drive];
}
if (!*g)
return -ENODEV;
return 0;
}
static int fd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
int drive = (long)bdev->bd_disk->private_data;
int type = ITYPE(drive_state[drive].fd_device);
struct floppy_struct *g;
int ret;
ret = get_floppy_geometry(drive, type, &g);
if (ret)
return ret;
geo->heads = g->head;
geo->sectors = g->sect;
geo->cylinders = g->track;
return 0;
}
static bool valid_floppy_drive_params(const short autodetect[FD_AUTODETECT_SIZE],
int native_format)
{
size_t floppy_type_size = ARRAY_SIZE(floppy_type);
size_t i = 0;
for (i = 0; i < FD_AUTODETECT_SIZE; ++i) {
if (autodetect[i] < 0 ||
autodetect[i] >= floppy_type_size)
return false;
}
if (native_format < 0 || native_format >= floppy_type_size)
return false;
return true;
}
static int fd_locked_ioctl(struct block_device *bdev, blk_mode_t mode,
unsigned int cmd, unsigned long param)
{
int drive = (long)bdev->bd_disk->private_data;
int type = ITYPE(drive_state[drive].fd_device);
int ret;
int size;
union inparam {
struct floppy_struct g; /* geometry */
struct format_descr f;
struct floppy_max_errors max_errors;
struct floppy_drive_params dp;
} inparam; /* parameters coming from user space */
const void *outparam; /* parameters passed back to user space */
/* convert compatibility eject ioctls into floppy eject ioctl.
* We do this in order to provide a means to eject floppy disks before
* installing the new fdutils package */
if (cmd == CDROMEJECT || /* CD-ROM eject */
cmd == 0x6470) { /* SunOS floppy eject */
DPRINT("obsolete eject ioctl\n");
DPRINT("please use floppycontrol --eject\n");
cmd = FDEJECT;
}
if (!((cmd & 0xff00) == 0x0200))
return -EINVAL;
/* convert the old style command into a new style command */
ret = normalize_ioctl(&cmd, &size);
if (ret)
return ret;
/* permission checks */
if (((cmd & 0x40) &&
!(mode & (BLK_OPEN_WRITE | BLK_OPEN_WRITE_IOCTL))) ||
((cmd & 0x80) && !capable(CAP_SYS_ADMIN)))
return -EPERM;
if (WARN_ON(size < 0 || size > sizeof(inparam)))
return -EINVAL;
/* copyin */
memset(&inparam, 0, sizeof(inparam));
if (_IOC_DIR(cmd) & _IOC_WRITE) {
ret = fd_copyin((void __user *)param, &inparam, size);
if (ret)
return ret;
}
switch (cmd) {
case FDEJECT:
if (drive_state[drive].fd_ref != 1)
/* somebody else has this drive open */
return -EBUSY;
if (lock_fdc(drive))
return -EINTR;
/* do the actual eject. Fails on
* non-Sparc architectures */
ret = fd_eject(UNIT(drive));
set_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags);
set_bit(FD_VERIFY_BIT, &drive_state[drive].flags);
process_fd_request();
return ret;
case FDCLRPRM:
if (lock_fdc(drive))
return -EINTR;
current_type[drive] = NULL;
floppy_sizes[drive] = MAX_DISK_SIZE << 1;
drive_state[drive].keep_data = 0;
return invalidate_drive(bdev->bd_disk);
case FDSETPRM:
case FDDEFPRM:
return set_geometry(cmd, &inparam.g, drive, type, bdev);
case FDGETPRM:
ret = get_floppy_geometry(drive, type,
(struct floppy_struct **)&outparam);
if (ret)
return ret;
memcpy(&inparam.g, outparam,
offsetof(struct floppy_struct, name));
outparam = &inparam.g;
break;
case FDMSGON:
drive_params[drive].flags |= FTD_MSG;
return 0;
case FDMSGOFF:
drive_params[drive].flags &= ~FTD_MSG;
return 0;
case FDFMTBEG:
if (lock_fdc(drive))
return -EINTR;
if (poll_drive(true, FD_RAW_NEED_DISK) == -EINTR)
return -EINTR;
ret = drive_state[drive].flags;
process_fd_request();
if (ret & FD_VERIFY)
return -ENODEV;
if (!(ret & FD_DISK_WRITABLE))
return -EROFS;
return 0;
case FDFMTTRK:
if (drive_state[drive].fd_ref != 1)
return -EBUSY;
return do_format(drive, &inparam.f);
case FDFMTEND:
case FDFLUSH:
if (lock_fdc(drive))
return -EINTR;
return invalidate_drive(bdev->bd_disk);
case FDSETEMSGTRESH:
drive_params[drive].max_errors.reporting = (unsigned short)(param & 0x0f);
return 0;
case FDGETMAXERRS:
outparam = &drive_params[drive].max_errors;
break;
case FDSETMAXERRS:
drive_params[drive].max_errors = inparam.max_errors;
break;
case FDGETDRVTYP:
outparam = drive_name(type, drive);
SUPBOUND(size, strlen((const char *)outparam) + 1);
break;
case FDSETDRVPRM:
if (!valid_floppy_drive_params(inparam.dp.autodetect,
inparam.dp.native_format))
return -EINVAL;
drive_params[drive] = inparam.dp;
break;
case FDGETDRVPRM:
outparam = &drive_params[drive];
break;
case FDPOLLDRVSTAT:
if (lock_fdc(drive))
return -EINTR;
if (poll_drive(true, FD_RAW_NEED_DISK) == -EINTR)
return -EINTR;
process_fd_request();
fallthrough;
case FDGETDRVSTAT:
outparam = &drive_state[drive];
break;
case FDRESET:
return user_reset_fdc(drive, (int)param, true);
case FDGETFDCSTAT:
outparam = &fdc_state[FDC(drive)];
break;
case FDWERRORCLR:
memset(&write_errors[drive], 0, sizeof(write_errors[drive]));
return 0;
case FDWERRORGET:
outparam = &write_errors[drive];
break;
case FDRAWCMD:
return floppy_raw_cmd_ioctl(type, drive, cmd, (void __user *)param);
case FDTWADDLE:
if (lock_fdc(drive))
return -EINTR;
twaddle(current_fdc, current_drive);
process_fd_request();
return 0;
default:
return -EINVAL;
}
if (_IOC_DIR(cmd) & _IOC_READ)
return fd_copyout((void __user *)param, outparam, size);
return 0;
}
static int fd_ioctl(struct block_device *bdev, blk_mode_t mode,
unsigned int cmd, unsigned long param)
{
int ret;
mutex_lock(&floppy_mutex);
ret = fd_locked_ioctl(bdev, mode, cmd, param);
mutex_unlock(&floppy_mutex);
return ret;
}
#ifdef CONFIG_COMPAT
struct compat_floppy_drive_params {
char cmos;
compat_ulong_t max_dtr;
compat_ulong_t hlt;
compat_ulong_t hut;
compat_ulong_t srt;
compat_ulong_t spinup;
compat_ulong_t spindown;
unsigned char spindown_offset;
unsigned char select_delay;
unsigned char rps;
unsigned char tracks;
compat_ulong_t timeout;
unsigned char interleave_sect;
struct floppy_max_errors max_errors;
char flags;
char read_track;
short autodetect[FD_AUTODETECT_SIZE];
compat_int_t checkfreq;
compat_int_t native_format;
};
struct compat_floppy_drive_struct {
signed char flags;
compat_ulong_t spinup_date;
compat_ulong_t select_date;
compat_ulong_t first_read_date;
short probed_format;
short track;
short maxblock;
short maxtrack;
compat_int_t generation;
compat_int_t keep_data;
compat_int_t fd_ref;
compat_int_t fd_device;
compat_int_t last_checked;
compat_caddr_t dmabuf;
compat_int_t bufblocks;
};
struct compat_floppy_fdc_state {
compat_int_t spec1;
compat_int_t spec2;
compat_int_t dtr;
unsigned char version;
unsigned char dor;
compat_ulong_t address;
unsigned int rawcmd:2;
unsigned int reset:1;
unsigned int need_configure:1;
unsigned int perp_mode:2;
unsigned int has_fifo:1;
unsigned int driver_version;
unsigned char track[4];
};
struct compat_floppy_write_errors {
unsigned int write_errors;
compat_ulong_t first_error_sector;
compat_int_t first_error_generation;
compat_ulong_t last_error_sector;
compat_int_t last_error_generation;
compat_uint_t badness;
};
#define FDSETPRM32 _IOW(2, 0x42, struct compat_floppy_struct)
#define FDDEFPRM32 _IOW(2, 0x43, struct compat_floppy_struct)
#define FDSETDRVPRM32 _IOW(2, 0x90, struct compat_floppy_drive_params)
#define FDGETDRVPRM32 _IOR(2, 0x11, struct compat_floppy_drive_params)
#define FDGETDRVSTAT32 _IOR(2, 0x12, struct compat_floppy_drive_struct)
#define FDPOLLDRVSTAT32 _IOR(2, 0x13, struct compat_floppy_drive_struct)
#define FDGETFDCSTAT32 _IOR(2, 0x15, struct compat_floppy_fdc_state)
#define FDWERRORGET32 _IOR(2, 0x17, struct compat_floppy_write_errors)
static int compat_set_geometry(struct block_device *bdev, blk_mode_t mode,
unsigned int cmd, struct compat_floppy_struct __user *arg)
{
struct floppy_struct v;
int drive, type;
int err;
BUILD_BUG_ON(offsetof(struct floppy_struct, name) !=
offsetof(struct compat_floppy_struct, name));
if (!(mode & (BLK_OPEN_WRITE | BLK_OPEN_WRITE_IOCTL)))
return -EPERM;
memset(&v, 0, sizeof(struct floppy_struct));
if (copy_from_user(&v, arg, offsetof(struct floppy_struct, name)))
return -EFAULT;
mutex_lock(&floppy_mutex);
drive = (long)bdev->bd_disk->private_data;
type = ITYPE(drive_state[drive].fd_device);
err = set_geometry(cmd == FDSETPRM32 ? FDSETPRM : FDDEFPRM,
&v, drive, type, bdev);
mutex_unlock(&floppy_mutex);
return err;
}
static int compat_get_prm(int drive,
struct compat_floppy_struct __user *arg)
{
struct compat_floppy_struct v;
struct floppy_struct *p;
int err;
memset(&v, 0, sizeof(v));
mutex_lock(&floppy_mutex);
err = get_floppy_geometry(drive, ITYPE(drive_state[drive].fd_device),
&p);
if (err) {
mutex_unlock(&floppy_mutex);
return err;
}
memcpy(&v, p, offsetof(struct floppy_struct, name));
mutex_unlock(&floppy_mutex);
if (copy_to_user(arg, &v, sizeof(struct compat_floppy_struct)))
return -EFAULT;
return 0;
}
static int compat_setdrvprm(int drive,
struct compat_floppy_drive_params __user *arg)
{
struct compat_floppy_drive_params v;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&v, arg, sizeof(struct compat_floppy_drive_params)))
return -EFAULT;
if (!valid_floppy_drive_params(v.autodetect, v.native_format))
return -EINVAL;
mutex_lock(&floppy_mutex);
drive_params[drive].cmos = v.cmos;
drive_params[drive].max_dtr = v.max_dtr;
drive_params[drive].hlt = v.hlt;
drive_params[drive].hut = v.hut;
drive_params[drive].srt = v.srt;
drive_params[drive].spinup = v.spinup;
drive_params[drive].spindown = v.spindown;
drive_params[drive].spindown_offset = v.spindown_offset;
drive_params[drive].select_delay = v.select_delay;
drive_params[drive].rps = v.rps;
drive_params[drive].tracks = v.tracks;
drive_params[drive].timeout = v.timeout;
drive_params[drive].interleave_sect = v.interleave_sect;
drive_params[drive].max_errors = v.max_errors;
drive_params[drive].flags = v.flags;
drive_params[drive].read_track = v.read_track;
memcpy(drive_params[drive].autodetect, v.autodetect,
sizeof(v.autodetect));
drive_params[drive].checkfreq = v.checkfreq;
drive_params[drive].native_format = v.native_format;
mutex_unlock(&floppy_mutex);
return 0;
}
static int compat_getdrvprm(int drive,
struct compat_floppy_drive_params __user *arg)
{
struct compat_floppy_drive_params v;
memset(&v, 0, sizeof(struct compat_floppy_drive_params));
mutex_lock(&floppy_mutex);
v.cmos = drive_params[drive].cmos;
v.max_dtr = drive_params[drive].max_dtr;
v.hlt = drive_params[drive].hlt;
v.hut = drive_params[drive].hut;
v.srt = drive_params[drive].srt;
v.spinup = drive_params[drive].spinup;
v.spindown = drive_params[drive].spindown;
v.spindown_offset = drive_params[drive].spindown_offset;
v.select_delay = drive_params[drive].select_delay;
v.rps = drive_params[drive].rps;
v.tracks = drive_params[drive].tracks;
v.timeout = drive_params[drive].timeout;
v.interleave_sect = drive_params[drive].interleave_sect;
v.max_errors = drive_params[drive].max_errors;
v.flags = drive_params[drive].flags;
v.read_track = drive_params[drive].read_track;
memcpy(v.autodetect, drive_params[drive].autodetect,
sizeof(v.autodetect));
v.checkfreq = drive_params[drive].checkfreq;
v.native_format = drive_params[drive].native_format;
mutex_unlock(&floppy_mutex);
if (copy_to_user(arg, &v, sizeof(struct compat_floppy_drive_params)))
return -EFAULT;
return 0;
}
static int compat_getdrvstat(int drive, bool poll,
struct compat_floppy_drive_struct __user *arg)
{
struct compat_floppy_drive_struct v;
memset(&v, 0, sizeof(struct compat_floppy_drive_struct));
mutex_lock(&floppy_mutex);
if (poll) {
if (lock_fdc(drive))
goto Eintr;
if (poll_drive(true, FD_RAW_NEED_DISK) == -EINTR)
goto Eintr;
process_fd_request();
}
v.spinup_date = drive_state[drive].spinup_date;
v.select_date = drive_state[drive].select_date;
v.first_read_date = drive_state[drive].first_read_date;
v.probed_format = drive_state[drive].probed_format;
v.track = drive_state[drive].track;
v.maxblock = drive_state[drive].maxblock;
v.maxtrack = drive_state[drive].maxtrack;
v.generation = drive_state[drive].generation;
v.keep_data = drive_state[drive].keep_data;
v.fd_ref = drive_state[drive].fd_ref;
v.fd_device = drive_state[drive].fd_device;
v.last_checked = drive_state[drive].last_checked;
v.dmabuf = (uintptr_t) drive_state[drive].dmabuf;
v.bufblocks = drive_state[drive].bufblocks;
mutex_unlock(&floppy_mutex);
if (copy_to_user(arg, &v, sizeof(struct compat_floppy_drive_struct)))
return -EFAULT;
return 0;
Eintr:
mutex_unlock(&floppy_mutex);
return -EINTR;
}
static int compat_getfdcstat(int drive,
struct compat_floppy_fdc_state __user *arg)
{
struct compat_floppy_fdc_state v32;
struct floppy_fdc_state v;
mutex_lock(&floppy_mutex);
v = fdc_state[FDC(drive)];
mutex_unlock(&floppy_mutex);
memset(&v32, 0, sizeof(struct compat_floppy_fdc_state));
v32.spec1 = v.spec1;
v32.spec2 = v.spec2;
v32.dtr = v.dtr;
v32.version = v.version;
v32.dor = v.dor;
v32.address = v.address;
v32.rawcmd = v.rawcmd;
v32.reset = v.reset;
v32.need_configure = v.need_configure;
v32.perp_mode = v.perp_mode;
v32.has_fifo = v.has_fifo;
v32.driver_version = v.driver_version;
memcpy(v32.track, v.track, 4);
if (copy_to_user(arg, &v32, sizeof(struct compat_floppy_fdc_state)))
return -EFAULT;
return 0;
}
static int compat_werrorget(int drive,
struct compat_floppy_write_errors __user *arg)
{
struct compat_floppy_write_errors v32;
struct floppy_write_errors v;
memset(&v32, 0, sizeof(struct compat_floppy_write_errors));
mutex_lock(&floppy_mutex);
v = write_errors[drive];
mutex_unlock(&floppy_mutex);
v32.write_errors = v.write_errors;
v32.first_error_sector = v.first_error_sector;
v32.first_error_generation = v.first_error_generation;
v32.last_error_sector = v.last_error_sector;
v32.last_error_generation = v.last_error_generation;
v32.badness = v.badness;
if (copy_to_user(arg, &v32, sizeof(struct compat_floppy_write_errors)))
return -EFAULT;
return 0;
}
static int fd_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
unsigned int cmd, unsigned long param)
{
int drive = (long)bdev->bd_disk->private_data;
switch (cmd) {
case CDROMEJECT: /* CD-ROM eject */
case 0x6470: /* SunOS floppy eject */
case FDMSGON:
case FDMSGOFF:
case FDSETEMSGTRESH:
case FDFLUSH:
case FDWERRORCLR:
case FDEJECT:
case FDCLRPRM:
case FDFMTBEG:
case FDRESET:
case FDTWADDLE:
return fd_ioctl(bdev, mode, cmd, param);
case FDSETMAXERRS:
case FDGETMAXERRS:
case FDGETDRVTYP:
case FDFMTEND:
case FDFMTTRK:
case FDRAWCMD:
return fd_ioctl(bdev, mode, cmd,
(unsigned long)compat_ptr(param));
case FDSETPRM32:
case FDDEFPRM32:
return compat_set_geometry(bdev, mode, cmd, compat_ptr(param));
case FDGETPRM32:
return compat_get_prm(drive, compat_ptr(param));
case FDSETDRVPRM32:
return compat_setdrvprm(drive, compat_ptr(param));
case FDGETDRVPRM32:
return compat_getdrvprm(drive, compat_ptr(param));
case FDPOLLDRVSTAT32:
return compat_getdrvstat(drive, true, compat_ptr(param));
case FDGETDRVSTAT32:
return compat_getdrvstat(drive, false, compat_ptr(param));
case FDGETFDCSTAT32:
return compat_getfdcstat(drive, compat_ptr(param));
case FDWERRORGET32:
return compat_werrorget(drive, compat_ptr(param));
}
return -EINVAL;
}
#endif
static void __init config_types(void)
{
bool has_drive = false;
int drive;
/* read drive info out of physical CMOS */
drive = 0;
if (!drive_params[drive].cmos)
drive_params[drive].cmos = FLOPPY0_TYPE;
drive = 1;
if (!drive_params[drive].cmos)
drive_params[drive].cmos = FLOPPY1_TYPE;
/* FIXME: additional physical CMOS drive detection should go here */
for (drive = 0; drive < N_DRIVE; drive++) {
unsigned int type = drive_params[drive].cmos;
struct floppy_drive_params *params;
const char *name = NULL;
char temparea[32];
if (type < ARRAY_SIZE(default_drive_params)) {
params = &default_drive_params[type].params;
if (type) {
name = default_drive_params[type].name;
allowed_drive_mask |= 1 << drive;
} else
allowed_drive_mask &= ~(1 << drive);
} else {
params = &default_drive_params[0].params;
snprintf(temparea, sizeof(temparea),
"unknown type %d (usb?)", type);
name = temparea;
}
if (name) {
const char *prepend;
if (!has_drive) {
prepend = "";
has_drive = true;
pr_info("Floppy drive(s):");
} else {
prepend = ",";
}
pr_cont("%s fd%d is %s", prepend, drive, name);
}
drive_params[drive] = *params;
}
if (has_drive)
pr_cont("\n");
}
static void floppy_release(struct gendisk *disk)
{
int drive = (long)disk->private_data;
mutex_lock(&floppy_mutex);
mutex_lock(&open_lock);
if (!drive_state[drive].fd_ref--) {
DPRINT("floppy_release with fd_ref == 0");
drive_state[drive].fd_ref = 0;
}
if (!drive_state[drive].fd_ref)
opened_disk[drive] = NULL;
mutex_unlock(&open_lock);
mutex_unlock(&floppy_mutex);
}
/*
* floppy_open check for aliasing (/dev/fd0 can be the same as
* /dev/PS0 etc), and disallows simultaneous access to the same
* drive with different device numbers.
*/
static int floppy_open(struct gendisk *disk, blk_mode_t mode)
{
int drive = (long)disk->private_data;
int old_dev, new_dev;
int try;
int res = -EBUSY;
char *tmp;
mutex_lock(&floppy_mutex);
mutex_lock(&open_lock);
old_dev = drive_state[drive].fd_device;
if (opened_disk[drive] && opened_disk[drive] != disk)
goto out2;
if (!drive_state[drive].fd_ref && (drive_params[drive].flags & FD_BROKEN_DCL)) {
set_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags);
set_bit(FD_VERIFY_BIT, &drive_state[drive].flags);
}
drive_state[drive].fd_ref++;
opened_disk[drive] = disk;
res = -ENXIO;
if (!floppy_track_buffer) {
/* if opening an ED drive, reserve a big buffer,
* else reserve a small one */
if ((drive_params[drive].cmos == 6) || (drive_params[drive].cmos == 5))
try = 64; /* Only 48 actually useful */
else
try = 32; /* Only 24 actually useful */
tmp = (char *)fd_dma_mem_alloc(1024 * try);
if (!tmp && !floppy_track_buffer) {
try >>= 1; /* buffer only one side */
INFBOUND(try, 16);
tmp = (char *)fd_dma_mem_alloc(1024 * try);
}
if (!tmp && !floppy_track_buffer)
fallback_on_nodma_alloc(&tmp, 2048 * try);
if (!tmp && !floppy_track_buffer) {
DPRINT("Unable to allocate DMA memory\n");
goto out;
}
if (floppy_track_buffer) {
if (tmp)
fd_dma_mem_free((unsigned long)tmp, try * 1024);
} else {
buffer_min = buffer_max = -1;
floppy_track_buffer = tmp;
max_buffer_sectors = try;
}
}
new_dev = disk->first_minor;
drive_state[drive].fd_device = new_dev;
set_capacity(disks[drive][ITYPE(new_dev)], floppy_sizes[new_dev]);
if (old_dev != -1 && old_dev != new_dev) {
if (buffer_drive == drive)
buffer_track = -1;
}
if (fdc_state[FDC(drive)].rawcmd == 1)
fdc_state[FDC(drive)].rawcmd = 2;
if (!(mode & BLK_OPEN_NDELAY)) {
if (mode & (BLK_OPEN_READ | BLK_OPEN_WRITE)) {
drive_state[drive].last_checked = 0;
clear_bit(FD_OPEN_SHOULD_FAIL_BIT,
&drive_state[drive].flags);
if (disk_check_media_change(disk))
floppy_revalidate(disk);
if (test_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags))
goto out;
if (test_bit(FD_OPEN_SHOULD_FAIL_BIT, &drive_state[drive].flags))
goto out;
}
res = -EROFS;
if ((mode & BLK_OPEN_WRITE) &&
!test_bit(FD_DISK_WRITABLE_BIT, &drive_state[drive].flags))
goto out;
}
mutex_unlock(&open_lock);
mutex_unlock(&floppy_mutex);
return 0;
out:
drive_state[drive].fd_ref--;
if (!drive_state[drive].fd_ref)
opened_disk[drive] = NULL;
out2:
mutex_unlock(&open_lock);
mutex_unlock(&floppy_mutex);
return res;
}
/*
* Check if the disk has been changed or if a change has been faked.
*/
static unsigned int floppy_check_events(struct gendisk *disk,
unsigned int clearing)
{
int drive = (long)disk->private_data;
if (test_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags) ||
test_bit(FD_VERIFY_BIT, &drive_state[drive].flags))
return DISK_EVENT_MEDIA_CHANGE;
if (time_after(jiffies, drive_state[drive].last_checked + drive_params[drive].checkfreq)) {
if (lock_fdc(drive))
return 0;
poll_drive(false, 0);
process_fd_request();
}
if (test_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags) ||
test_bit(FD_VERIFY_BIT, &drive_state[drive].flags) ||
test_bit(drive, &fake_change) ||
drive_no_geom(drive))
return DISK_EVENT_MEDIA_CHANGE;
return 0;
}
/*
* This implements "read block 0" for floppy_revalidate().
* Needed for format autodetection, checking whether there is
* a disk in the drive, and whether that disk is writable.
*/
struct rb0_cbdata {
int drive;
struct completion complete;
};
static void floppy_rb0_cb(struct bio *bio)
{
struct rb0_cbdata *cbdata = (struct rb0_cbdata *)bio->bi_private;
int drive = cbdata->drive;
if (bio->bi_status) {
pr_info("floppy: error %d while reading block 0\n",
bio->bi_status);
set_bit(FD_OPEN_SHOULD_FAIL_BIT, &drive_state[drive].flags);
}
complete(&cbdata->complete);
}
static int __floppy_read_block_0(struct block_device *bdev, int drive)
{
struct bio bio;
struct bio_vec bio_vec;
struct page *page;
struct rb0_cbdata cbdata;
page = alloc_page(GFP_NOIO);
if (!page) {
process_fd_request();
return -ENOMEM;
}
cbdata.drive = drive;
bio_init(&bio, bdev, &bio_vec, 1, REQ_OP_READ);
__bio_add_page(&bio, page, block_size(bdev), 0);
bio.bi_iter.bi_sector = 0;
bio.bi_flags |= (1 << BIO_QUIET);
bio.bi_private = &cbdata;
bio.bi_end_io = floppy_rb0_cb;
init_completion(&cbdata.complete);
submit_bio(&bio);
process_fd_request();
wait_for_completion(&cbdata.complete);
__free_page(page);
return 0;
}
/* revalidate the floppy disk, i.e. trigger format autodetection by reading
* the bootblock (block 0). "Autodetection" is also needed to check whether
* there is a disk in the drive at all... Thus we also do it for fixed
* geometry formats */
static int floppy_revalidate(struct gendisk *disk)
{
int drive = (long)disk->private_data;
int cf;
int res = 0;
if (test_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags) ||
test_bit(FD_VERIFY_BIT, &drive_state[drive].flags) ||
test_bit(drive, &fake_change) ||
drive_no_geom(drive)) {
if (WARN(atomic_read(&usage_count) == 0,
"VFS: revalidate called on non-open device.\n"))
return -EFAULT;
res = lock_fdc(drive);
if (res)
return res;
cf = (test_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags) ||
test_bit(FD_VERIFY_BIT, &drive_state[drive].flags));
if (!(cf || test_bit(drive, &fake_change) || drive_no_geom(drive))) {
process_fd_request(); /*already done by another thread */
return 0;
}
drive_state[drive].maxblock = 0;
drive_state[drive].maxtrack = 0;
if (buffer_drive == drive)
buffer_track = -1;
clear_bit(drive, &fake_change);
clear_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags);
if (cf)
drive_state[drive].generation++;
if (drive_no_geom(drive)) {
/* auto-sensing */
res = __floppy_read_block_0(opened_disk[drive]->part0,
drive);
} else {
if (cf)
poll_drive(false, FD_RAW_NEED_DISK);
process_fd_request();
}
}
set_capacity(disk, floppy_sizes[drive_state[drive].fd_device]);
return res;
}
static const struct block_device_operations floppy_fops = {
.owner = THIS_MODULE,
.open = floppy_open,
.release = floppy_release,
.ioctl = fd_ioctl,
.getgeo = fd_getgeo,
.check_events = floppy_check_events,
#ifdef CONFIG_COMPAT
.compat_ioctl = fd_compat_ioctl,
#endif
};
/*
* Floppy Driver initialization
* =============================
*/
/* Determine the floppy disk controller type */
/* This routine was written by David C. Niemi */
static char __init get_fdc_version(int fdc)
{
int r;
output_byte(fdc, FD_DUMPREGS); /* 82072 and better know DUMPREGS */
if (fdc_state[fdc].reset)
return FDC_NONE;
r = result(fdc);
if (r <= 0x00)
return FDC_NONE; /* No FDC present ??? */
if ((r == 1) && (reply_buffer[ST0] == 0x80)) {
pr_info("FDC %d is an 8272A\n", fdc);
return FDC_8272A; /* 8272a/765 don't know DUMPREGS */
}
if (r != 10) {
pr_info("FDC %d init: DUMPREGS: unexpected return of %d bytes.\n",
fdc, r);
return FDC_UNKNOWN;
}
if (!fdc_configure(fdc)) {
pr_info("FDC %d is an 82072\n", fdc);
return FDC_82072; /* 82072 doesn't know CONFIGURE */
}
output_byte(fdc, FD_PERPENDICULAR);
if (need_more_output(fdc) == MORE_OUTPUT) {
output_byte(fdc, 0);
} else {
pr_info("FDC %d is an 82072A\n", fdc);
return FDC_82072A; /* 82072A as found on Sparcs. */
}
output_byte(fdc, FD_UNLOCK);
r = result(fdc);
if ((r == 1) && (reply_buffer[ST0] == 0x80)) {
pr_info("FDC %d is a pre-1991 82077\n", fdc);
return FDC_82077_ORIG; /* Pre-1991 82077, doesn't know
* LOCK/UNLOCK */
}
if ((r != 1) || (reply_buffer[ST0] != 0x00)) {
pr_info("FDC %d init: UNLOCK: unexpected return of %d bytes.\n",
fdc, r);
return FDC_UNKNOWN;
}
output_byte(fdc, FD_PARTID);
r = result(fdc);
if (r != 1) {
pr_info("FDC %d init: PARTID: unexpected return of %d bytes.\n",
fdc, r);
return FDC_UNKNOWN;
}
if (reply_buffer[ST0] == 0x80) {
pr_info("FDC %d is a post-1991 82077\n", fdc);
return FDC_82077; /* Revised 82077AA passes all the tests */
}
switch (reply_buffer[ST0] >> 5) {
case 0x0:
/* Either a 82078-1 or a 82078SL running at 5Volt */
pr_info("FDC %d is an 82078.\n", fdc);
return FDC_82078;
case 0x1:
pr_info("FDC %d is a 44pin 82078\n", fdc);
return FDC_82078;
case 0x2:
pr_info("FDC %d is a S82078B\n", fdc);
return FDC_S82078B;
case 0x3:
pr_info("FDC %d is a National Semiconductor PC87306\n", fdc);
return FDC_87306;
default:
pr_info("FDC %d init: 82078 variant with unknown PARTID=%d.\n",
fdc, reply_buffer[ST0] >> 5);
return FDC_82078_UNKN;
}
} /* get_fdc_version */
/* lilo configuration */
static void __init floppy_set_flags(int *ints, int param, int param2)
{
int i;
for (i = 0; i < ARRAY_SIZE(default_drive_params); i++) {
if (param)
default_drive_params[i].params.flags |= param2;
else
default_drive_params[i].params.flags &= ~param2;
}
DPRINT("%s flag 0x%x\n", param2 ? "Setting" : "Clearing", param);
}
static void __init daring(int *ints, int param, int param2)
{
int i;
for (i = 0; i < ARRAY_SIZE(default_drive_params); i++) {
if (param) {
default_drive_params[i].params.select_delay = 0;
default_drive_params[i].params.flags |=
FD_SILENT_DCL_CLEAR;
} else {
default_drive_params[i].params.select_delay =
2 * HZ / 100;
default_drive_params[i].params.flags &=
~FD_SILENT_DCL_CLEAR;
}
}
DPRINT("Assuming %s floppy hardware\n", param ? "standard" : "broken");
}
static void __init set_cmos(int *ints, int dummy, int dummy2)
{
int current_drive = 0;
if (ints[0] != 2) {
DPRINT("wrong number of parameters for CMOS\n");
return;
}
current_drive = ints[1];
if (current_drive < 0 || current_drive >= 8) {
DPRINT("bad drive for set_cmos\n");
return;
}
#if N_FDC > 1
if (current_drive >= 4 && !FDC2)
FDC2 = 0x370;
#endif
drive_params[current_drive].cmos = ints[2];
DPRINT("setting CMOS code to %d\n", ints[2]);
}
static struct param_table {
const char *name;
void (*fn) (int *ints, int param, int param2);
int *var;
int def_param;
int param2;
} config_params[] __initdata = {
{"allowed_drive_mask", NULL, &allowed_drive_mask, 0xff, 0}, /* obsolete */
{"all_drives", NULL, &allowed_drive_mask, 0xff, 0}, /* obsolete */
{"asus_pci", NULL, &allowed_drive_mask, 0x33, 0},
{"irq", NULL, &FLOPPY_IRQ, 6, 0},
{"dma", NULL, &FLOPPY_DMA, 2, 0},
{"daring", daring, NULL, 1, 0},
#if N_FDC > 1
{"two_fdc", NULL, &FDC2, 0x370, 0},
{"one_fdc", NULL, &FDC2, 0, 0},
#endif
{"thinkpad", floppy_set_flags, NULL, 1, FD_INVERTED_DCL},
{"broken_dcl", floppy_set_flags, NULL, 1, FD_BROKEN_DCL},
{"messages", floppy_set_flags, NULL, 1, FTD_MSG},
{"silent_dcl_clear", floppy_set_flags, NULL, 1, FD_SILENT_DCL_CLEAR},
{"debug", floppy_set_flags, NULL, 1, FD_DEBUG},
{"nodma", NULL, &can_use_virtual_dma, 1, 0},
{"omnibook", NULL, &can_use_virtual_dma, 1, 0},
{"yesdma", NULL, &can_use_virtual_dma, 0, 0},
{"fifo_depth", NULL, &fifo_depth, 0xa, 0},
{"nofifo", NULL, &no_fifo, 0x20, 0},
{"usefifo", NULL, &no_fifo, 0, 0},
{"cmos", set_cmos, NULL, 0, 0},
{"slow", NULL, &slow_floppy, 1, 0},
{"unexpected_interrupts", NULL, &print_unex, 1, 0},
{"no_unexpected_interrupts", NULL, &print_unex, 0, 0},
{"L40SX", NULL, &print_unex, 0, 0}
EXTRA_FLOPPY_PARAMS
};
static int __init floppy_setup(char *str)
{
int i;
int param;
int ints[11];
str = get_options(str, ARRAY_SIZE(ints), ints);
if (str) {
for (i = 0; i < ARRAY_SIZE(config_params); i++) {
if (strcmp(str, config_params[i].name) == 0) {
if (ints[0])
param = ints[1];
else
param = config_params[i].def_param;
if (config_params[i].fn)
config_params[i].fn(ints, param,
config_params[i].
param2);
if (config_params[i].var) {
DPRINT("%s=%d\n", str, param);
*config_params[i].var = param;
}
return 1;
}
}
}
if (str) {
DPRINT("unknown floppy option [%s]\n", str);
DPRINT("allowed options are:");
for (i = 0; i < ARRAY_SIZE(config_params); i++)
pr_cont(" %s", config_params[i].name);
pr_cont("\n");
} else
DPRINT("botched floppy option\n");
DPRINT("Read Documentation/admin-guide/blockdev/floppy.rst\n");
return 0;
}
static int have_no_fdc = -ENODEV;
static ssize_t floppy_cmos_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *p = to_platform_device(dev);
int drive;
drive = p->id;
return sprintf(buf, "%X\n", drive_params[drive].cmos);
}
static DEVICE_ATTR(cmos, 0444, floppy_cmos_show, NULL);
static struct attribute *floppy_dev_attrs[] = {
&dev_attr_cmos.attr,
NULL
};
ATTRIBUTE_GROUPS(floppy_dev);
static void floppy_device_release(struct device *dev)
{
}
static int floppy_resume(struct device *dev)
{
int fdc;
int saved_drive;
saved_drive = current_drive;
for (fdc = 0; fdc < N_FDC; fdc++)
if (fdc_state[fdc].address != -1)
user_reset_fdc(REVDRIVE(fdc, 0), FD_RESET_ALWAYS, false);
set_fdc(saved_drive);
return 0;
}
static const struct dev_pm_ops floppy_pm_ops = {
.resume = floppy_resume,
.restore = floppy_resume,
};
static struct platform_driver floppy_driver = {
.driver = {
.name = "floppy",
.pm = &floppy_pm_ops,
},
};
static const struct blk_mq_ops floppy_mq_ops = {
.queue_rq = floppy_queue_rq,
};
static struct platform_device floppy_device[N_DRIVE];
static bool registered[N_DRIVE];
static bool floppy_available(int drive)
{
if (!(allowed_drive_mask & (1 << drive)))
return false;
if (fdc_state[FDC(drive)].version == FDC_NONE)
return false;
return true;
}
static int floppy_alloc_disk(unsigned int drive, unsigned int type)
{
struct gendisk *disk;
disk = blk_mq_alloc_disk(&tag_sets[drive], NULL);
if (IS_ERR(disk))
return PTR_ERR(disk);
blk_queue_max_hw_sectors(disk->queue, 64);
disk->major = FLOPPY_MAJOR;
disk->first_minor = TOMINOR(drive) | (type << 2);
disk->minors = 1;
disk->fops = &floppy_fops;
disk->flags |= GENHD_FL_NO_PART;
disk->events = DISK_EVENT_MEDIA_CHANGE;
if (type)
sprintf(disk->disk_name, "fd%d_type%d", drive, type);
else
sprintf(disk->disk_name, "fd%d", drive);
/* to be cleaned up... */
disk->private_data = (void *)(long)drive;
disk->flags |= GENHD_FL_REMOVABLE;
disks[drive][type] = disk;
return 0;
}
static DEFINE_MUTEX(floppy_probe_lock);
static void floppy_probe(dev_t dev)
{
unsigned int drive = (MINOR(dev) & 3) | ((MINOR(dev) & 0x80) >> 5);
unsigned int type = (MINOR(dev) >> 2) & 0x1f;
if (drive >= N_DRIVE || !floppy_available(drive) ||
type >= ARRAY_SIZE(floppy_type))
return;
mutex_lock(&floppy_probe_lock);
if (disks[drive][type])
goto out;
if (floppy_alloc_disk(drive, type))
goto out;
if (add_disk(disks[drive][type]))
goto cleanup_disk;
out:
mutex_unlock(&floppy_probe_lock);
return;
cleanup_disk:
put_disk(disks[drive][type]);
disks[drive][type] = NULL;
mutex_unlock(&floppy_probe_lock);
}
static int __init do_floppy_init(void)
{
int i, unit, drive, err;
set_debugt();
interruptjiffies = resultjiffies = jiffies;
#if defined(CONFIG_PPC)
if (check_legacy_ioport(FDC1))
return -ENODEV;
#endif
raw_cmd = NULL;
floppy_wq = alloc_ordered_workqueue("floppy", 0);
if (!floppy_wq)
return -ENOMEM;
for (drive = 0; drive < N_DRIVE; drive++) {
memset(&tag_sets[drive], 0, sizeof(tag_sets[drive]));
tag_sets[drive].ops = &floppy_mq_ops;
tag_sets[drive].nr_hw_queues = 1;
tag_sets[drive].nr_maps = 1;
tag_sets[drive].queue_depth = 2;
tag_sets[drive].numa_node = NUMA_NO_NODE;
tag_sets[drive].flags = BLK_MQ_F_SHOULD_MERGE;
err = blk_mq_alloc_tag_set(&tag_sets[drive]);
if (err)
goto out_put_disk;
err = floppy_alloc_disk(drive, 0);
if (err) {
blk_mq_free_tag_set(&tag_sets[drive]);
goto out_put_disk;
}
timer_setup(&motor_off_timer[drive], motor_off_callback, 0);
}
err = __register_blkdev(FLOPPY_MAJOR, "fd", floppy_probe);
if (err)
goto out_put_disk;
err = platform_driver_register(&floppy_driver);
if (err)
goto out_unreg_blkdev;
for (i = 0; i < 256; i++)
if (ITYPE(i))
floppy_sizes[i] = floppy_type[ITYPE(i)].size;
else
floppy_sizes[i] = MAX_DISK_SIZE << 1;
reschedule_timeout(MAXTIMEOUT, "floppy init");
config_types();
for (i = 0; i < N_FDC; i++) {
memset(&fdc_state[i], 0, sizeof(*fdc_state));
fdc_state[i].dtr = -1;
fdc_state[i].dor = 0x4;
#if defined(__sparc__) || defined(__mc68000__)
/*sparcs/sun3x don't have a DOR reset which we can fall back on to */
#ifdef __mc68000__
if (MACH_IS_SUN3X)
#endif
fdc_state[i].version = FDC_82072A;
#endif
}
use_virtual_dma = can_use_virtual_dma & 1;
fdc_state[0].address = FDC1;
if (fdc_state[0].address == -1) {
cancel_delayed_work(&fd_timeout);
err = -ENODEV;
goto out_unreg_driver;
}
#if N_FDC > 1
fdc_state[1].address = FDC2;
#endif
current_fdc = 0; /* reset fdc in case of unexpected interrupt */
err = floppy_grab_irq_and_dma();
if (err) {
cancel_delayed_work(&fd_timeout);
err = -EBUSY;
goto out_unreg_driver;
}
/* initialise drive state */
for (drive = 0; drive < N_DRIVE; drive++) {
memset(&drive_state[drive], 0, sizeof(drive_state[drive]));
memset(&write_errors[drive], 0, sizeof(write_errors[drive]));
set_bit(FD_DISK_NEWCHANGE_BIT, &drive_state[drive].flags);
set_bit(FD_DISK_CHANGED_BIT, &drive_state[drive].flags);
set_bit(FD_VERIFY_BIT, &drive_state[drive].flags);
drive_state[drive].fd_device = -1;
floppy_track_buffer = NULL;
max_buffer_sectors = 0;
}
/*
* Small 10 msec delay to let through any interrupt that
* initialization might have triggered, to not
* confuse detection:
*/
msleep(10);
for (i = 0; i < N_FDC; i++) {
fdc_state[i].driver_version = FD_DRIVER_VERSION;
for (unit = 0; unit < 4; unit++)
fdc_state[i].track[unit] = 0;
if (fdc_state[i].address == -1)
continue;
fdc_state[i].rawcmd = 2;
if (user_reset_fdc(REVDRIVE(i, 0), FD_RESET_ALWAYS, false)) {
/* free ioports reserved by floppy_grab_irq_and_dma() */
floppy_release_regions(i);
fdc_state[i].address = -1;
fdc_state[i].version = FDC_NONE;
continue;
}
/* Try to determine the floppy controller type */
fdc_state[i].version = get_fdc_version(i);
if (fdc_state[i].version == FDC_NONE) {
/* free ioports reserved by floppy_grab_irq_and_dma() */
floppy_release_regions(i);
fdc_state[i].address = -1;
continue;
}
if (can_use_virtual_dma == 2 &&
fdc_state[i].version < FDC_82072A)
can_use_virtual_dma = 0;
have_no_fdc = 0;
/* Not all FDCs seem to be able to handle the version command
* properly, so force a reset for the standard FDC clones,
* to avoid interrupt garbage.
*/
user_reset_fdc(REVDRIVE(i, 0), FD_RESET_ALWAYS, false);
}
current_fdc = 0;
cancel_delayed_work(&fd_timeout);
current_drive = 0;
initialized = true;
if (have_no_fdc) {
DPRINT("no floppy controllers found\n");
err = have_no_fdc;
goto out_release_dma;
}
for (drive = 0; drive < N_DRIVE; drive++) {
if (!floppy_available(drive))
continue;
floppy_device[drive].name = floppy_device_name;
floppy_device[drive].id = drive;
floppy_device[drive].dev.release = floppy_device_release;
floppy_device[drive].dev.groups = floppy_dev_groups;
err = platform_device_register(&floppy_device[drive]);
if (err)
goto out_remove_drives;
registered[drive] = true;
err = device_add_disk(&floppy_device[drive].dev,
disks[drive][0], NULL);
if (err)
goto out_remove_drives;
}
return 0;
out_remove_drives:
while (drive--) {
if (floppy_available(drive)) {
del_gendisk(disks[drive][0]);
if (registered[drive])
platform_device_unregister(&floppy_device[drive]);
}
}
out_release_dma:
if (atomic_read(&usage_count))
floppy_release_irq_and_dma();
out_unreg_driver:
platform_driver_unregister(&floppy_driver);
out_unreg_blkdev:
unregister_blkdev(FLOPPY_MAJOR, "fd");
out_put_disk:
destroy_workqueue(floppy_wq);
for (drive = 0; drive < N_DRIVE; drive++) {
if (!disks[drive][0])
break;
del_timer_sync(&motor_off_timer[drive]);
put_disk(disks[drive][0]);
blk_mq_free_tag_set(&tag_sets[drive]);
}
return err;
}
#ifndef MODULE
static __init void floppy_async_init(void *data, async_cookie_t cookie)
{
do_floppy_init();
}
#endif
static int __init floppy_init(void)
{
#ifdef MODULE
return do_floppy_init();
#else
/* Don't hold up the bootup by the floppy initialization */
async_schedule(floppy_async_init, NULL);
return 0;
#endif
}
static const struct io_region {
int offset;
int size;
} io_regions[] = {
{ 2, 1 },
/* address + 3 is sometimes reserved by pnp bios for motherboard */
{ 4, 2 },
/* address + 6 is reserved, and may be taken by IDE.
* Unfortunately, Adaptec doesn't know this :-(, */
{ 7, 1 },
};
static void floppy_release_allocated_regions(int fdc, const struct io_region *p)
{
while (p != io_regions) {
p--;
release_region(fdc_state[fdc].address + p->offset, p->size);
}
}
#define ARRAY_END(X) (&((X)[ARRAY_SIZE(X)]))
static int floppy_request_regions(int fdc)
{
const struct io_region *p;
for (p = io_regions; p < ARRAY_END(io_regions); p++) {
if (!request_region(fdc_state[fdc].address + p->offset,
p->size, "floppy")) {
DPRINT("Floppy io-port 0x%04lx in use\n",
fdc_state[fdc].address + p->offset);
floppy_release_allocated_regions(fdc, p);
return -EBUSY;
}
}
return 0;
}
static void floppy_release_regions(int fdc)
{
floppy_release_allocated_regions(fdc, ARRAY_END(io_regions));
}
static int floppy_grab_irq_and_dma(void)
{
int fdc;
if (atomic_inc_return(&usage_count) > 1)
return 0;
/*
* We might have scheduled a free_irq(), wait it to
* drain first:
*/
flush_workqueue(floppy_wq);
if (fd_request_irq()) {
DPRINT("Unable to grab IRQ%d for the floppy driver\n",
FLOPPY_IRQ);
atomic_dec(&usage_count);
return -1;
}
if (fd_request_dma()) {
DPRINT("Unable to grab DMA%d for the floppy driver\n",
FLOPPY_DMA);
if (can_use_virtual_dma & 2)
use_virtual_dma = can_use_virtual_dma = 1;
if (!(can_use_virtual_dma & 1)) {
fd_free_irq();
atomic_dec(&usage_count);
return -1;
}
}
for (fdc = 0; fdc < N_FDC; fdc++) {
if (fdc_state[fdc].address != -1) {
if (floppy_request_regions(fdc))
goto cleanup;
}
}
for (fdc = 0; fdc < N_FDC; fdc++) {
if (fdc_state[fdc].address != -1) {
reset_fdc_info(fdc, 1);
fdc_outb(fdc_state[fdc].dor, fdc, FD_DOR);
}
}
set_dor(0, ~0, 8); /* avoid immediate interrupt */
for (fdc = 0; fdc < N_FDC; fdc++)
if (fdc_state[fdc].address != -1)
fdc_outb(fdc_state[fdc].dor, fdc, FD_DOR);
/*
* The driver will try and free resources and relies on us
* to know if they were allocated or not.
*/
current_fdc = 0;
irqdma_allocated = 1;
return 0;
cleanup:
fd_free_irq();
fd_free_dma();
while (--fdc >= 0)
floppy_release_regions(fdc);
current_fdc = 0;
atomic_dec(&usage_count);
return -1;
}
static void floppy_release_irq_and_dma(void)
{
int fdc;
#ifndef __sparc__
int drive;
#endif
long tmpsize;
unsigned long tmpaddr;
if (!atomic_dec_and_test(&usage_count))
return;
if (irqdma_allocated) {
fd_disable_dma();
fd_free_dma();
fd_free_irq();
irqdma_allocated = 0;
}
set_dor(0, ~0, 8);
#if N_FDC > 1
set_dor(1, ~8, 0);
#endif
if (floppy_track_buffer && max_buffer_sectors) {
tmpsize = max_buffer_sectors * 1024;
tmpaddr = (unsigned long)floppy_track_buffer;
floppy_track_buffer = NULL;
max_buffer_sectors = 0;
buffer_min = buffer_max = -1;
fd_dma_mem_free(tmpaddr, tmpsize);
}
#ifndef __sparc__
for (drive = 0; drive < N_FDC * 4; drive++)
if (timer_pending(motor_off_timer + drive))
pr_info("motor off timer %d still active\n", drive);
#endif
if (delayed_work_pending(&fd_timeout))
pr_info("floppy timer still active:%s\n", timeout_message);
if (delayed_work_pending(&fd_timer))
pr_info("auxiliary floppy timer still active\n");
if (work_pending(&floppy_work))
pr_info("work still pending\n");
for (fdc = 0; fdc < N_FDC; fdc++)
if (fdc_state[fdc].address != -1)
floppy_release_regions(fdc);
}
#ifdef MODULE
static char *floppy;
static void __init parse_floppy_cfg_string(char *cfg)
{
char *ptr;
while (*cfg) {
ptr = cfg;
while (*cfg && *cfg != ' ' && *cfg != '\t')
cfg++;
if (*cfg) {
*cfg = '\0';
cfg++;
}
if (*ptr)
floppy_setup(ptr);
}
}
static int __init floppy_module_init(void)
{
if (floppy)
parse_floppy_cfg_string(floppy);
return floppy_init();
}
module_init(floppy_module_init);
static void __exit floppy_module_exit(void)
{
int drive, i;
unregister_blkdev(FLOPPY_MAJOR, "fd");
platform_driver_unregister(&floppy_driver);
destroy_workqueue(floppy_wq);
for (drive = 0; drive < N_DRIVE; drive++) {
del_timer_sync(&motor_off_timer[drive]);
if (floppy_available(drive)) {
for (i = 0; i < ARRAY_SIZE(floppy_type); i++) {
if (disks[drive][i])
del_gendisk(disks[drive][i]);
}
if (registered[drive])
platform_device_unregister(&floppy_device[drive]);
}
for (i = 0; i < ARRAY_SIZE(floppy_type); i++) {
if (disks[drive][i])
put_disk(disks[drive][i]);
}
blk_mq_free_tag_set(&tag_sets[drive]);
}
cancel_delayed_work_sync(&fd_timeout);
cancel_delayed_work_sync(&fd_timer);
if (atomic_read(&usage_count))
floppy_release_irq_and_dma();
/* eject disk, if any */
fd_eject(0);
}
module_exit(floppy_module_exit);
module_param(floppy, charp, 0);
module_param(FLOPPY_IRQ, int, 0);
module_param(FLOPPY_DMA, int, 0);
MODULE_AUTHOR("Alain L. Knaff");
MODULE_LICENSE("GPL");
/* This doesn't actually get used other than for module information */
static const struct pnp_device_id floppy_pnpids[] = {
{"PNP0700", 0},
{}
};
MODULE_DEVICE_TABLE(pnp, floppy_pnpids);
#else
__setup("floppy=", floppy_setup);
module_init(floppy_init)
#endif
MODULE_ALIAS_BLOCKDEV_MAJOR(FLOPPY_MAJOR);