| /* SPDX-License-Identifier: GPL-2.0+ */ |
| /* |
| * Task-based RCU implementations. |
| * |
| * Copyright (C) 2020 Paul E. McKenney |
| */ |
| |
| #ifdef CONFIG_TASKS_RCU_GENERIC |
| #include "rcu_segcblist.h" |
| |
| //////////////////////////////////////////////////////////////////////// |
| // |
| // Generic data structures. |
| |
| struct rcu_tasks; |
| typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); |
| typedef void (*pregp_func_t)(struct list_head *hop); |
| typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); |
| typedef void (*postscan_func_t)(struct list_head *hop); |
| typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); |
| typedef void (*postgp_func_t)(struct rcu_tasks *rtp); |
| |
| /** |
| * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism. |
| * @cblist: Callback list. |
| * @lock: Lock protecting per-CPU callback list. |
| * @rtp_jiffies: Jiffies counter value for statistics. |
| * @lazy_timer: Timer to unlazify callbacks. |
| * @urgent_gp: Number of additional non-lazy grace periods. |
| * @rtp_n_lock_retries: Rough lock-contention statistic. |
| * @rtp_work: Work queue for invoking callbacks. |
| * @rtp_irq_work: IRQ work queue for deferred wakeups. |
| * @barrier_q_head: RCU callback for barrier operation. |
| * @rtp_blkd_tasks: List of tasks blocked as readers. |
| * @cpu: CPU number corresponding to this entry. |
| * @rtpp: Pointer to the rcu_tasks structure. |
| */ |
| struct rcu_tasks_percpu { |
| struct rcu_segcblist cblist; |
| raw_spinlock_t __private lock; |
| unsigned long rtp_jiffies; |
| unsigned long rtp_n_lock_retries; |
| struct timer_list lazy_timer; |
| unsigned int urgent_gp; |
| struct work_struct rtp_work; |
| struct irq_work rtp_irq_work; |
| struct rcu_head barrier_q_head; |
| struct list_head rtp_blkd_tasks; |
| int cpu; |
| struct rcu_tasks *rtpp; |
| }; |
| |
| /** |
| * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism. |
| * @cbs_wait: RCU wait allowing a new callback to get kthread's attention. |
| * @cbs_gbl_lock: Lock protecting callback list. |
| * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone. |
| * @gp_func: This flavor's grace-period-wait function. |
| * @gp_state: Grace period's most recent state transition (debugging). |
| * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping. |
| * @init_fract: Initial backoff sleep interval. |
| * @gp_jiffies: Time of last @gp_state transition. |
| * @gp_start: Most recent grace-period start in jiffies. |
| * @tasks_gp_seq: Number of grace periods completed since boot. |
| * @n_ipis: Number of IPIs sent to encourage grace periods to end. |
| * @n_ipis_fails: Number of IPI-send failures. |
| * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. |
| * @lazy_jiffies: Number of jiffies to allow callbacks to be lazy. |
| * @pregp_func: This flavor's pre-grace-period function (optional). |
| * @pertask_func: This flavor's per-task scan function (optional). |
| * @postscan_func: This flavor's post-task scan function (optional). |
| * @holdouts_func: This flavor's holdout-list scan function (optional). |
| * @postgp_func: This flavor's post-grace-period function (optional). |
| * @call_func: This flavor's call_rcu()-equivalent function. |
| * @rtpcpu: This flavor's rcu_tasks_percpu structure. |
| * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks. |
| * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing. |
| * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing. |
| * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers. |
| * @barrier_q_mutex: Serialize barrier operations. |
| * @barrier_q_count: Number of queues being waited on. |
| * @barrier_q_completion: Barrier wait/wakeup mechanism. |
| * @barrier_q_seq: Sequence number for barrier operations. |
| * @name: This flavor's textual name. |
| * @kname: This flavor's kthread name. |
| */ |
| struct rcu_tasks { |
| struct rcuwait cbs_wait; |
| raw_spinlock_t cbs_gbl_lock; |
| struct mutex tasks_gp_mutex; |
| int gp_state; |
| int gp_sleep; |
| int init_fract; |
| unsigned long gp_jiffies; |
| unsigned long gp_start; |
| unsigned long tasks_gp_seq; |
| unsigned long n_ipis; |
| unsigned long n_ipis_fails; |
| struct task_struct *kthread_ptr; |
| unsigned long lazy_jiffies; |
| rcu_tasks_gp_func_t gp_func; |
| pregp_func_t pregp_func; |
| pertask_func_t pertask_func; |
| postscan_func_t postscan_func; |
| holdouts_func_t holdouts_func; |
| postgp_func_t postgp_func; |
| call_rcu_func_t call_func; |
| struct rcu_tasks_percpu __percpu *rtpcpu; |
| int percpu_enqueue_shift; |
| int percpu_enqueue_lim; |
| int percpu_dequeue_lim; |
| unsigned long percpu_dequeue_gpseq; |
| struct mutex barrier_q_mutex; |
| atomic_t barrier_q_count; |
| struct completion barrier_q_completion; |
| unsigned long barrier_q_seq; |
| char *name; |
| char *kname; |
| }; |
| |
| static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp); |
| |
| #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ |
| static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \ |
| .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \ |
| .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \ |
| }; \ |
| static struct rcu_tasks rt_name = \ |
| { \ |
| .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \ |
| .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \ |
| .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \ |
| .gp_func = gp, \ |
| .call_func = call, \ |
| .rtpcpu = &rt_name ## __percpu, \ |
| .lazy_jiffies = DIV_ROUND_UP(HZ, 4), \ |
| .name = n, \ |
| .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \ |
| .percpu_enqueue_lim = 1, \ |
| .percpu_dequeue_lim = 1, \ |
| .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \ |
| .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \ |
| .kname = #rt_name, \ |
| } |
| |
| #ifdef CONFIG_TASKS_RCU |
| /* Track exiting tasks in order to allow them to be waited for. */ |
| DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); |
| |
| /* Report delay in synchronize_srcu() completion in rcu_tasks_postscan(). */ |
| static void tasks_rcu_exit_srcu_stall(struct timer_list *unused); |
| static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall); |
| #endif |
| |
| /* Avoid IPIing CPUs early in the grace period. */ |
| #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0) |
| static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; |
| module_param(rcu_task_ipi_delay, int, 0644); |
| |
| /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ |
| #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30) |
| #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) |
| static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; |
| module_param(rcu_task_stall_timeout, int, 0644); |
| #define RCU_TASK_STALL_INFO (HZ * 10) |
| static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO; |
| module_param(rcu_task_stall_info, int, 0644); |
| static int rcu_task_stall_info_mult __read_mostly = 3; |
| module_param(rcu_task_stall_info_mult, int, 0444); |
| |
| static int rcu_task_enqueue_lim __read_mostly = -1; |
| module_param(rcu_task_enqueue_lim, int, 0444); |
| |
| static bool rcu_task_cb_adjust; |
| static int rcu_task_contend_lim __read_mostly = 100; |
| module_param(rcu_task_contend_lim, int, 0444); |
| static int rcu_task_collapse_lim __read_mostly = 10; |
| module_param(rcu_task_collapse_lim, int, 0444); |
| static int rcu_task_lazy_lim __read_mostly = 32; |
| module_param(rcu_task_lazy_lim, int, 0444); |
| |
| /* RCU tasks grace-period state for debugging. */ |
| #define RTGS_INIT 0 |
| #define RTGS_WAIT_WAIT_CBS 1 |
| #define RTGS_WAIT_GP 2 |
| #define RTGS_PRE_WAIT_GP 3 |
| #define RTGS_SCAN_TASKLIST 4 |
| #define RTGS_POST_SCAN_TASKLIST 5 |
| #define RTGS_WAIT_SCAN_HOLDOUTS 6 |
| #define RTGS_SCAN_HOLDOUTS 7 |
| #define RTGS_POST_GP 8 |
| #define RTGS_WAIT_READERS 9 |
| #define RTGS_INVOKE_CBS 10 |
| #define RTGS_WAIT_CBS 11 |
| #ifndef CONFIG_TINY_RCU |
| static const char * const rcu_tasks_gp_state_names[] = { |
| "RTGS_INIT", |
| "RTGS_WAIT_WAIT_CBS", |
| "RTGS_WAIT_GP", |
| "RTGS_PRE_WAIT_GP", |
| "RTGS_SCAN_TASKLIST", |
| "RTGS_POST_SCAN_TASKLIST", |
| "RTGS_WAIT_SCAN_HOLDOUTS", |
| "RTGS_SCAN_HOLDOUTS", |
| "RTGS_POST_GP", |
| "RTGS_WAIT_READERS", |
| "RTGS_INVOKE_CBS", |
| "RTGS_WAIT_CBS", |
| }; |
| #endif /* #ifndef CONFIG_TINY_RCU */ |
| |
| //////////////////////////////////////////////////////////////////////// |
| // |
| // Generic code. |
| |
| static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp); |
| |
| /* Record grace-period phase and time. */ |
| static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) |
| { |
| rtp->gp_state = newstate; |
| rtp->gp_jiffies = jiffies; |
| } |
| |
| #ifndef CONFIG_TINY_RCU |
| /* Return state name. */ |
| static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) |
| { |
| int i = data_race(rtp->gp_state); // Let KCSAN detect update races |
| int j = READ_ONCE(i); // Prevent the compiler from reading twice |
| |
| if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) |
| return "???"; |
| return rcu_tasks_gp_state_names[j]; |
| } |
| #endif /* #ifndef CONFIG_TINY_RCU */ |
| |
| // Initialize per-CPU callback lists for the specified flavor of |
| // Tasks RCU. Do not enqueue callbacks before this function is invoked. |
| static void cblist_init_generic(struct rcu_tasks *rtp) |
| { |
| int cpu; |
| unsigned long flags; |
| int lim; |
| int shift; |
| |
| if (rcu_task_enqueue_lim < 0) { |
| rcu_task_enqueue_lim = 1; |
| rcu_task_cb_adjust = true; |
| } else if (rcu_task_enqueue_lim == 0) { |
| rcu_task_enqueue_lim = 1; |
| } |
| lim = rcu_task_enqueue_lim; |
| |
| if (lim > nr_cpu_ids) |
| lim = nr_cpu_ids; |
| shift = ilog2(nr_cpu_ids / lim); |
| if (((nr_cpu_ids - 1) >> shift) >= lim) |
| shift++; |
| WRITE_ONCE(rtp->percpu_enqueue_shift, shift); |
| WRITE_ONCE(rtp->percpu_dequeue_lim, lim); |
| smp_store_release(&rtp->percpu_enqueue_lim, lim); |
| for_each_possible_cpu(cpu) { |
| struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); |
| |
| WARN_ON_ONCE(!rtpcp); |
| if (cpu) |
| raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock)); |
| local_irq_save(flags); // serialize initialization |
| if (rcu_segcblist_empty(&rtpcp->cblist)) |
| rcu_segcblist_init(&rtpcp->cblist); |
| local_irq_restore(flags); |
| INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq); |
| rtpcp->cpu = cpu; |
| rtpcp->rtpp = rtp; |
| if (!rtpcp->rtp_blkd_tasks.next) |
| INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); |
| } |
| |
| pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d.\n", rtp->name, |
| data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim), rcu_task_cb_adjust); |
| } |
| |
| // Compute wakeup time for lazy callback timer. |
| static unsigned long rcu_tasks_lazy_time(struct rcu_tasks *rtp) |
| { |
| return jiffies + rtp->lazy_jiffies; |
| } |
| |
| // Timer handler that unlazifies lazy callbacks. |
| static void call_rcu_tasks_generic_timer(struct timer_list *tlp) |
| { |
| unsigned long flags; |
| bool needwake = false; |
| struct rcu_tasks *rtp; |
| struct rcu_tasks_percpu *rtpcp = from_timer(rtpcp, tlp, lazy_timer); |
| |
| rtp = rtpcp->rtpp; |
| raw_spin_lock_irqsave_rcu_node(rtpcp, flags); |
| if (!rcu_segcblist_empty(&rtpcp->cblist) && rtp->lazy_jiffies) { |
| if (!rtpcp->urgent_gp) |
| rtpcp->urgent_gp = 1; |
| needwake = true; |
| mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); |
| } |
| raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| if (needwake) |
| rcuwait_wake_up(&rtp->cbs_wait); |
| } |
| |
| // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic(). |
| static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp) |
| { |
| struct rcu_tasks *rtp; |
| struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work); |
| |
| rtp = rtpcp->rtpp; |
| rcuwait_wake_up(&rtp->cbs_wait); |
| } |
| |
| // Enqueue a callback for the specified flavor of Tasks RCU. |
| static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, |
| struct rcu_tasks *rtp) |
| { |
| int chosen_cpu; |
| unsigned long flags; |
| bool havekthread = smp_load_acquire(&rtp->kthread_ptr); |
| int ideal_cpu; |
| unsigned long j; |
| bool needadjust = false; |
| bool needwake; |
| struct rcu_tasks_percpu *rtpcp; |
| |
| rhp->next = NULL; |
| rhp->func = func; |
| local_irq_save(flags); |
| rcu_read_lock(); |
| ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift); |
| chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask); |
| rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu); |
| if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled. |
| raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. |
| j = jiffies; |
| if (rtpcp->rtp_jiffies != j) { |
| rtpcp->rtp_jiffies = j; |
| rtpcp->rtp_n_lock_retries = 0; |
| } |
| if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim && |
| READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids) |
| needadjust = true; // Defer adjustment to avoid deadlock. |
| } |
| // Queuing callbacks before initialization not yet supported. |
| if (WARN_ON_ONCE(!rcu_segcblist_is_enabled(&rtpcp->cblist))) |
| rcu_segcblist_init(&rtpcp->cblist); |
| needwake = (func == wakeme_after_rcu) || |
| (rcu_segcblist_n_cbs(&rtpcp->cblist) == rcu_task_lazy_lim); |
| if (havekthread && !needwake && !timer_pending(&rtpcp->lazy_timer)) { |
| if (rtp->lazy_jiffies) |
| mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); |
| else |
| needwake = rcu_segcblist_empty(&rtpcp->cblist); |
| } |
| if (needwake) |
| rtpcp->urgent_gp = 3; |
| rcu_segcblist_enqueue(&rtpcp->cblist, rhp); |
| raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| if (unlikely(needadjust)) { |
| raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); |
| if (rtp->percpu_enqueue_lim != nr_cpu_ids) { |
| WRITE_ONCE(rtp->percpu_enqueue_shift, 0); |
| WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids); |
| smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids); |
| pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name); |
| } |
| raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); |
| } |
| rcu_read_unlock(); |
| /* We can't create the thread unless interrupts are enabled. */ |
| if (needwake && READ_ONCE(rtp->kthread_ptr)) |
| irq_work_queue(&rtpcp->rtp_irq_work); |
| } |
| |
| // RCU callback function for rcu_barrier_tasks_generic(). |
| static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp) |
| { |
| struct rcu_tasks *rtp; |
| struct rcu_tasks_percpu *rtpcp; |
| |
| rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head); |
| rtp = rtpcp->rtpp; |
| if (atomic_dec_and_test(&rtp->barrier_q_count)) |
| complete(&rtp->barrier_q_completion); |
| } |
| |
| // Wait for all in-flight callbacks for the specified RCU Tasks flavor. |
| // Operates in a manner similar to rcu_barrier(). |
| static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp) |
| { |
| int cpu; |
| unsigned long flags; |
| struct rcu_tasks_percpu *rtpcp; |
| unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq); |
| |
| mutex_lock(&rtp->barrier_q_mutex); |
| if (rcu_seq_done(&rtp->barrier_q_seq, s)) { |
| smp_mb(); |
| mutex_unlock(&rtp->barrier_q_mutex); |
| return; |
| } |
| rcu_seq_start(&rtp->barrier_q_seq); |
| init_completion(&rtp->barrier_q_completion); |
| atomic_set(&rtp->barrier_q_count, 2); |
| for_each_possible_cpu(cpu) { |
| if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim)) |
| break; |
| rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); |
| rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb; |
| raw_spin_lock_irqsave_rcu_node(rtpcp, flags); |
| if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head)) |
| atomic_inc(&rtp->barrier_q_count); |
| raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| } |
| if (atomic_sub_and_test(2, &rtp->barrier_q_count)) |
| complete(&rtp->barrier_q_completion); |
| wait_for_completion(&rtp->barrier_q_completion); |
| rcu_seq_end(&rtp->barrier_q_seq); |
| mutex_unlock(&rtp->barrier_q_mutex); |
| } |
| |
| // Advance callbacks and indicate whether either a grace period or |
| // callback invocation is needed. |
| static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp) |
| { |
| int cpu; |
| unsigned long flags; |
| bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq); |
| long n; |
| long ncbs = 0; |
| long ncbsnz = 0; |
| int needgpcb = 0; |
| |
| for (cpu = 0; cpu < smp_load_acquire(&rtp->percpu_dequeue_lim); cpu++) { |
| struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); |
| |
| /* Advance and accelerate any new callbacks. */ |
| if (!rcu_segcblist_n_cbs(&rtpcp->cblist)) |
| continue; |
| raw_spin_lock_irqsave_rcu_node(rtpcp, flags); |
| // Should we shrink down to a single callback queue? |
| n = rcu_segcblist_n_cbs(&rtpcp->cblist); |
| if (n) { |
| ncbs += n; |
| if (cpu > 0) |
| ncbsnz += n; |
| } |
| rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); |
| (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); |
| if (rtpcp->urgent_gp > 0 && rcu_segcblist_pend_cbs(&rtpcp->cblist)) { |
| if (rtp->lazy_jiffies) |
| rtpcp->urgent_gp--; |
| needgpcb |= 0x3; |
| } else if (rcu_segcblist_empty(&rtpcp->cblist)) { |
| rtpcp->urgent_gp = 0; |
| } |
| if (rcu_segcblist_ready_cbs(&rtpcp->cblist)) |
| needgpcb |= 0x1; |
| raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| } |
| |
| // Shrink down to a single callback queue if appropriate. |
| // This is done in two stages: (1) If there are no more than |
| // rcu_task_collapse_lim callbacks on CPU 0 and none on any other |
| // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period, |
| // if there has not been an increase in callbacks, limit dequeuing |
| // to CPU 0. Note the matching RCU read-side critical section in |
| // call_rcu_tasks_generic(). |
| if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) { |
| raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); |
| if (rtp->percpu_enqueue_lim > 1) { |
| WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids)); |
| smp_store_release(&rtp->percpu_enqueue_lim, 1); |
| rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu(); |
| gpdone = false; |
| pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name); |
| } |
| raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); |
| } |
| if (rcu_task_cb_adjust && !ncbsnz && gpdone) { |
| raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); |
| if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) { |
| WRITE_ONCE(rtp->percpu_dequeue_lim, 1); |
| pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name); |
| } |
| if (rtp->percpu_dequeue_lim == 1) { |
| for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) { |
| struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); |
| |
| WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist)); |
| } |
| } |
| raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); |
| } |
| |
| return needgpcb; |
| } |
| |
| // Advance callbacks and invoke any that are ready. |
| static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp) |
| { |
| int cpu; |
| int cpunext; |
| int cpuwq; |
| unsigned long flags; |
| int len; |
| struct rcu_head *rhp; |
| struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); |
| struct rcu_tasks_percpu *rtpcp_next; |
| |
| cpu = rtpcp->cpu; |
| cpunext = cpu * 2 + 1; |
| if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { |
| rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); |
| cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND; |
| queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); |
| cpunext++; |
| if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { |
| rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); |
| cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND; |
| queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); |
| } |
| } |
| |
| if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu)) |
| return; |
| raw_spin_lock_irqsave_rcu_node(rtpcp, flags); |
| rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); |
| rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl); |
| raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| len = rcl.len; |
| for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) { |
| local_bh_disable(); |
| rhp->func(rhp); |
| local_bh_enable(); |
| cond_resched(); |
| } |
| raw_spin_lock_irqsave_rcu_node(rtpcp, flags); |
| rcu_segcblist_add_len(&rtpcp->cblist, -len); |
| (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); |
| raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| } |
| |
| // Workqueue flood to advance callbacks and invoke any that are ready. |
| static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp) |
| { |
| struct rcu_tasks *rtp; |
| struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work); |
| |
| rtp = rtpcp->rtpp; |
| rcu_tasks_invoke_cbs(rtp, rtpcp); |
| } |
| |
| // Wait for one grace period. |
| static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot) |
| { |
| int needgpcb; |
| |
| mutex_lock(&rtp->tasks_gp_mutex); |
| |
| // If there were none, wait a bit and start over. |
| if (unlikely(midboot)) { |
| needgpcb = 0x2; |
| } else { |
| mutex_unlock(&rtp->tasks_gp_mutex); |
| set_tasks_gp_state(rtp, RTGS_WAIT_CBS); |
| rcuwait_wait_event(&rtp->cbs_wait, |
| (needgpcb = rcu_tasks_need_gpcb(rtp)), |
| TASK_IDLE); |
| mutex_lock(&rtp->tasks_gp_mutex); |
| } |
| |
| if (needgpcb & 0x2) { |
| // Wait for one grace period. |
| set_tasks_gp_state(rtp, RTGS_WAIT_GP); |
| rtp->gp_start = jiffies; |
| rcu_seq_start(&rtp->tasks_gp_seq); |
| rtp->gp_func(rtp); |
| rcu_seq_end(&rtp->tasks_gp_seq); |
| } |
| |
| // Invoke callbacks. |
| set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); |
| rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0)); |
| mutex_unlock(&rtp->tasks_gp_mutex); |
| } |
| |
| // RCU-tasks kthread that detects grace periods and invokes callbacks. |
| static int __noreturn rcu_tasks_kthread(void *arg) |
| { |
| int cpu; |
| struct rcu_tasks *rtp = arg; |
| |
| for_each_possible_cpu(cpu) { |
| struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); |
| |
| timer_setup(&rtpcp->lazy_timer, call_rcu_tasks_generic_timer, 0); |
| rtpcp->urgent_gp = 1; |
| } |
| |
| /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ |
| housekeeping_affine(current, HK_TYPE_RCU); |
| smp_store_release(&rtp->kthread_ptr, current); // Let GPs start! |
| |
| /* |
| * Each pass through the following loop makes one check for |
| * newly arrived callbacks, and, if there are some, waits for |
| * one RCU-tasks grace period and then invokes the callbacks. |
| * This loop is terminated by the system going down. ;-) |
| */ |
| for (;;) { |
| // Wait for one grace period and invoke any callbacks |
| // that are ready. |
| rcu_tasks_one_gp(rtp, false); |
| |
| // Paranoid sleep to keep this from entering a tight loop. |
| schedule_timeout_idle(rtp->gp_sleep); |
| } |
| } |
| |
| // Wait for a grace period for the specified flavor of Tasks RCU. |
| static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) |
| { |
| /* Complain if the scheduler has not started. */ |
| if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, |
| "synchronize_%s() called too soon", rtp->name)) |
| return; |
| |
| // If the grace-period kthread is running, use it. |
| if (READ_ONCE(rtp->kthread_ptr)) { |
| wait_rcu_gp(rtp->call_func); |
| return; |
| } |
| rcu_tasks_one_gp(rtp, true); |
| } |
| |
| /* Spawn RCU-tasks grace-period kthread. */ |
| static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) |
| { |
| struct task_struct *t; |
| |
| t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); |
| if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) |
| return; |
| smp_mb(); /* Ensure others see full kthread. */ |
| } |
| |
| #ifndef CONFIG_TINY_RCU |
| |
| /* |
| * Print any non-default Tasks RCU settings. |
| */ |
| static void __init rcu_tasks_bootup_oddness(void) |
| { |
| #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) |
| int rtsimc; |
| |
| if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) |
| pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); |
| rtsimc = clamp(rcu_task_stall_info_mult, 1, 10); |
| if (rtsimc != rcu_task_stall_info_mult) { |
| pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc); |
| rcu_task_stall_info_mult = rtsimc; |
| } |
| #endif /* #ifdef CONFIG_TASKS_RCU */ |
| #ifdef CONFIG_TASKS_RCU |
| pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); |
| #endif /* #ifdef CONFIG_TASKS_RCU */ |
| #ifdef CONFIG_TASKS_RUDE_RCU |
| pr_info("\tRude variant of Tasks RCU enabled.\n"); |
| #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ |
| #ifdef CONFIG_TASKS_TRACE_RCU |
| pr_info("\tTracing variant of Tasks RCU enabled.\n"); |
| #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ |
| } |
| |
| #endif /* #ifndef CONFIG_TINY_RCU */ |
| |
| #ifndef CONFIG_TINY_RCU |
| /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ |
| static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) |
| { |
| int cpu; |
| bool havecbs = false; |
| bool haveurgent = false; |
| bool haveurgentcbs = false; |
| |
| for_each_possible_cpu(cpu) { |
| struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); |
| |
| if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) |
| havecbs = true; |
| if (data_race(rtpcp->urgent_gp)) |
| haveurgent = true; |
| if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)) && data_race(rtpcp->urgent_gp)) |
| haveurgentcbs = true; |
| if (havecbs && haveurgent && haveurgentcbs) |
| break; |
| } |
| pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c%c%c l:%lu %s\n", |
| rtp->kname, |
| tasks_gp_state_getname(rtp), data_race(rtp->gp_state), |
| jiffies - data_race(rtp->gp_jiffies), |
| data_race(rcu_seq_current(&rtp->tasks_gp_seq)), |
| data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), |
| ".k"[!!data_race(rtp->kthread_ptr)], |
| ".C"[havecbs], |
| ".u"[haveurgent], |
| ".U"[haveurgentcbs], |
| rtp->lazy_jiffies, |
| s); |
| } |
| #endif // #ifndef CONFIG_TINY_RCU |
| |
| static void exit_tasks_rcu_finish_trace(struct task_struct *t); |
| |
| #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) |
| |
| //////////////////////////////////////////////////////////////////////// |
| // |
| // Shared code between task-list-scanning variants of Tasks RCU. |
| |
| /* Wait for one RCU-tasks grace period. */ |
| static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) |
| { |
| struct task_struct *g; |
| int fract; |
| LIST_HEAD(holdouts); |
| unsigned long j; |
| unsigned long lastinfo; |
| unsigned long lastreport; |
| bool reported = false; |
| int rtsi; |
| struct task_struct *t; |
| |
| set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); |
| rtp->pregp_func(&holdouts); |
| |
| /* |
| * There were callbacks, so we need to wait for an RCU-tasks |
| * grace period. Start off by scanning the task list for tasks |
| * that are not already voluntarily blocked. Mark these tasks |
| * and make a list of them in holdouts. |
| */ |
| set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); |
| if (rtp->pertask_func) { |
| rcu_read_lock(); |
| for_each_process_thread(g, t) |
| rtp->pertask_func(t, &holdouts); |
| rcu_read_unlock(); |
| } |
| |
| set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); |
| rtp->postscan_func(&holdouts); |
| |
| /* |
| * Each pass through the following loop scans the list of holdout |
| * tasks, removing any that are no longer holdouts. When the list |
| * is empty, we are done. |
| */ |
| lastreport = jiffies; |
| lastinfo = lastreport; |
| rtsi = READ_ONCE(rcu_task_stall_info); |
| |
| // Start off with initial wait and slowly back off to 1 HZ wait. |
| fract = rtp->init_fract; |
| |
| while (!list_empty(&holdouts)) { |
| ktime_t exp; |
| bool firstreport; |
| bool needreport; |
| int rtst; |
| |
| // Slowly back off waiting for holdouts |
| set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); |
| if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { |
| schedule_timeout_idle(fract); |
| } else { |
| exp = jiffies_to_nsecs(fract); |
| __set_current_state(TASK_IDLE); |
| schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD); |
| } |
| |
| if (fract < HZ) |
| fract++; |
| |
| rtst = READ_ONCE(rcu_task_stall_timeout); |
| needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); |
| if (needreport) { |
| lastreport = jiffies; |
| reported = true; |
| } |
| firstreport = true; |
| WARN_ON(signal_pending(current)); |
| set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); |
| rtp->holdouts_func(&holdouts, needreport, &firstreport); |
| |
| // Print pre-stall informational messages if needed. |
| j = jiffies; |
| if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) { |
| lastinfo = j; |
| rtsi = rtsi * rcu_task_stall_info_mult; |
| pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n", |
| __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start); |
| } |
| } |
| |
| set_tasks_gp_state(rtp, RTGS_POST_GP); |
| rtp->postgp_func(rtp); |
| } |
| |
| #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */ |
| |
| #ifdef CONFIG_TASKS_RCU |
| |
| //////////////////////////////////////////////////////////////////////// |
| // |
| // Simple variant of RCU whose quiescent states are voluntary context |
| // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle. |
| // As such, grace periods can take one good long time. There are no |
| // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() |
| // because this implementation is intended to get the system into a safe |
| // state for some of the manipulations involved in tracing and the like. |
| // Finally, this implementation does not support high call_rcu_tasks() |
| // rates from multiple CPUs. If this is required, per-CPU callback lists |
| // will be needed. |
| // |
| // The implementation uses rcu_tasks_wait_gp(), which relies on function |
| // pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread() |
| // function sets these function pointers up so that rcu_tasks_wait_gp() |
| // invokes these functions in this order: |
| // |
| // rcu_tasks_pregp_step(): |
| // Invokes synchronize_rcu() in order to wait for all in-flight |
| // t->on_rq and t->nvcsw transitions to complete. This works because |
| // all such transitions are carried out with interrupts disabled. |
| // rcu_tasks_pertask(), invoked on every non-idle task: |
| // For every runnable non-idle task other than the current one, use |
| // get_task_struct() to pin down that task, snapshot that task's |
| // number of voluntary context switches, and add that task to the |
| // holdout list. |
| // rcu_tasks_postscan(): |
| // Invoke synchronize_srcu() to ensure that all tasks that were |
| // in the process of exiting (and which thus might not know to |
| // synchronize with this RCU Tasks grace period) have completed |
| // exiting. |
| // check_all_holdout_tasks(), repeatedly until holdout list is empty: |
| // Scans the holdout list, attempting to identify a quiescent state |
| // for each task on the list. If there is a quiescent state, the |
| // corresponding task is removed from the holdout list. |
| // rcu_tasks_postgp(): |
| // Invokes synchronize_rcu() in order to ensure that all prior |
| // t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks |
| // to have happened before the end of this RCU Tasks grace period. |
| // Again, this works because all such transitions are carried out |
| // with interrupts disabled. |
| // |
| // For each exiting task, the exit_tasks_rcu_start() and |
| // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU |
| // read-side critical sections waited for by rcu_tasks_postscan(). |
| // |
| // Pre-grace-period update-side code is ordered before the grace |
| // via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code |
| // is ordered before the grace period via synchronize_rcu() call in |
| // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt |
| // disabling. |
| |
| /* Pre-grace-period preparation. */ |
| static void rcu_tasks_pregp_step(struct list_head *hop) |
| { |
| /* |
| * Wait for all pre-existing t->on_rq and t->nvcsw transitions |
| * to complete. Invoking synchronize_rcu() suffices because all |
| * these transitions occur with interrupts disabled. Without this |
| * synchronize_rcu(), a read-side critical section that started |
| * before the grace period might be incorrectly seen as having |
| * started after the grace period. |
| * |
| * This synchronize_rcu() also dispenses with the need for a |
| * memory barrier on the first store to t->rcu_tasks_holdout, |
| * as it forces the store to happen after the beginning of the |
| * grace period. |
| */ |
| synchronize_rcu(); |
| } |
| |
| /* Per-task initial processing. */ |
| static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) |
| { |
| if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) { |
| get_task_struct(t); |
| t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); |
| WRITE_ONCE(t->rcu_tasks_holdout, true); |
| list_add(&t->rcu_tasks_holdout_list, hop); |
| } |
| } |
| |
| /* Processing between scanning taskslist and draining the holdout list. */ |
| static void rcu_tasks_postscan(struct list_head *hop) |
| { |
| int rtsi = READ_ONCE(rcu_task_stall_info); |
| |
| if (!IS_ENABLED(CONFIG_TINY_RCU)) { |
| tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; |
| add_timer(&tasks_rcu_exit_srcu_stall_timer); |
| } |
| |
| /* |
| * Exiting tasks may escape the tasklist scan. Those are vulnerable |
| * until their final schedule() with TASK_DEAD state. To cope with |
| * this, divide the fragile exit path part in two intersecting |
| * read side critical sections: |
| * |
| * 1) An _SRCU_ read side starting before calling exit_notify(), |
| * which may remove the task from the tasklist, and ending after |
| * the final preempt_disable() call in do_exit(). |
| * |
| * 2) An _RCU_ read side starting with the final preempt_disable() |
| * call in do_exit() and ending with the final call to schedule() |
| * with TASK_DEAD state. |
| * |
| * This handles the part 1). And postgp will handle part 2) with a |
| * call to synchronize_rcu(). |
| */ |
| synchronize_srcu(&tasks_rcu_exit_srcu); |
| |
| if (!IS_ENABLED(CONFIG_TINY_RCU)) |
| del_timer_sync(&tasks_rcu_exit_srcu_stall_timer); |
| } |
| |
| /* See if tasks are still holding out, complain if so. */ |
| static void check_holdout_task(struct task_struct *t, |
| bool needreport, bool *firstreport) |
| { |
| int cpu; |
| |
| if (!READ_ONCE(t->rcu_tasks_holdout) || |
| t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || |
| !READ_ONCE(t->on_rq) || |
| (IS_ENABLED(CONFIG_NO_HZ_FULL) && |
| !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { |
| WRITE_ONCE(t->rcu_tasks_holdout, false); |
| list_del_init(&t->rcu_tasks_holdout_list); |
| put_task_struct(t); |
| return; |
| } |
| rcu_request_urgent_qs_task(t); |
| if (!needreport) |
| return; |
| if (*firstreport) { |
| pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); |
| *firstreport = false; |
| } |
| cpu = task_cpu(t); |
| pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", |
| t, ".I"[is_idle_task(t)], |
| "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], |
| t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, |
| t->rcu_tasks_idle_cpu, cpu); |
| sched_show_task(t); |
| } |
| |
| /* Scan the holdout lists for tasks no longer holding out. */ |
| static void check_all_holdout_tasks(struct list_head *hop, |
| bool needreport, bool *firstreport) |
| { |
| struct task_struct *t, *t1; |
| |
| list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { |
| check_holdout_task(t, needreport, firstreport); |
| cond_resched(); |
| } |
| } |
| |
| /* Finish off the Tasks-RCU grace period. */ |
| static void rcu_tasks_postgp(struct rcu_tasks *rtp) |
| { |
| /* |
| * Because ->on_rq and ->nvcsw are not guaranteed to have a full |
| * memory barriers prior to them in the schedule() path, memory |
| * reordering on other CPUs could cause their RCU-tasks read-side |
| * critical sections to extend past the end of the grace period. |
| * However, because these ->nvcsw updates are carried out with |
| * interrupts disabled, we can use synchronize_rcu() to force the |
| * needed ordering on all such CPUs. |
| * |
| * This synchronize_rcu() also confines all ->rcu_tasks_holdout |
| * accesses to be within the grace period, avoiding the need for |
| * memory barriers for ->rcu_tasks_holdout accesses. |
| * |
| * In addition, this synchronize_rcu() waits for exiting tasks |
| * to complete their final preempt_disable() region of execution, |
| * cleaning up after synchronize_srcu(&tasks_rcu_exit_srcu), |
| * enforcing the whole region before tasklist removal until |
| * the final schedule() with TASK_DEAD state to be an RCU TASKS |
| * read side critical section. |
| */ |
| synchronize_rcu(); |
| } |
| |
| void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); |
| DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); |
| |
| static void tasks_rcu_exit_srcu_stall(struct timer_list *unused) |
| { |
| #ifndef CONFIG_TINY_RCU |
| int rtsi; |
| |
| rtsi = READ_ONCE(rcu_task_stall_info); |
| pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n", |
| __func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq, |
| tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies); |
| pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n"); |
| tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; |
| add_timer(&tasks_rcu_exit_srcu_stall_timer); |
| #endif // #ifndef CONFIG_TINY_RCU |
| } |
| |
| /** |
| * call_rcu_tasks() - Queue an RCU for invocation task-based grace period |
| * @rhp: structure to be used for queueing the RCU updates. |
| * @func: actual callback function to be invoked after the grace period |
| * |
| * The callback function will be invoked some time after a full grace |
| * period elapses, in other words after all currently executing RCU |
| * read-side critical sections have completed. call_rcu_tasks() assumes |
| * that the read-side critical sections end at a voluntary context |
| * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle, |
| * or transition to usermode execution. As such, there are no read-side |
| * primitives analogous to rcu_read_lock() and rcu_read_unlock() because |
| * this primitive is intended to determine that all tasks have passed |
| * through a safe state, not so much for data-structure synchronization. |
| * |
| * See the description of call_rcu() for more detailed information on |
| * memory ordering guarantees. |
| */ |
| void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) |
| { |
| call_rcu_tasks_generic(rhp, func, &rcu_tasks); |
| } |
| EXPORT_SYMBOL_GPL(call_rcu_tasks); |
| |
| /** |
| * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. |
| * |
| * Control will return to the caller some time after a full rcu-tasks |
| * grace period has elapsed, in other words after all currently |
| * executing rcu-tasks read-side critical sections have elapsed. These |
| * read-side critical sections are delimited by calls to schedule(), |
| * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls |
| * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). |
| * |
| * This is a very specialized primitive, intended only for a few uses in |
| * tracing and other situations requiring manipulation of function |
| * preambles and profiling hooks. The synchronize_rcu_tasks() function |
| * is not (yet) intended for heavy use from multiple CPUs. |
| * |
| * See the description of synchronize_rcu() for more detailed information |
| * on memory ordering guarantees. |
| */ |
| void synchronize_rcu_tasks(void) |
| { |
| synchronize_rcu_tasks_generic(&rcu_tasks); |
| } |
| EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); |
| |
| /** |
| * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. |
| * |
| * Although the current implementation is guaranteed to wait, it is not |
| * obligated to, for example, if there are no pending callbacks. |
| */ |
| void rcu_barrier_tasks(void) |
| { |
| rcu_barrier_tasks_generic(&rcu_tasks); |
| } |
| EXPORT_SYMBOL_GPL(rcu_barrier_tasks); |
| |
| int rcu_tasks_lazy_ms = -1; |
| module_param(rcu_tasks_lazy_ms, int, 0444); |
| |
| static int __init rcu_spawn_tasks_kthread(void) |
| { |
| cblist_init_generic(&rcu_tasks); |
| rcu_tasks.gp_sleep = HZ / 10; |
| rcu_tasks.init_fract = HZ / 10; |
| if (rcu_tasks_lazy_ms >= 0) |
| rcu_tasks.lazy_jiffies = msecs_to_jiffies(rcu_tasks_lazy_ms); |
| rcu_tasks.pregp_func = rcu_tasks_pregp_step; |
| rcu_tasks.pertask_func = rcu_tasks_pertask; |
| rcu_tasks.postscan_func = rcu_tasks_postscan; |
| rcu_tasks.holdouts_func = check_all_holdout_tasks; |
| rcu_tasks.postgp_func = rcu_tasks_postgp; |
| rcu_spawn_tasks_kthread_generic(&rcu_tasks); |
| return 0; |
| } |
| |
| #if !defined(CONFIG_TINY_RCU) |
| void show_rcu_tasks_classic_gp_kthread(void) |
| { |
| show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); |
| } |
| EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread); |
| #endif // !defined(CONFIG_TINY_RCU) |
| |
| struct task_struct *get_rcu_tasks_gp_kthread(void) |
| { |
| return rcu_tasks.kthread_ptr; |
| } |
| EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread); |
| |
| /* |
| * Contribute to protect against tasklist scan blind spot while the |
| * task is exiting and may be removed from the tasklist. See |
| * corresponding synchronize_srcu() for further details. |
| */ |
| void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) |
| { |
| current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); |
| } |
| |
| /* |
| * Contribute to protect against tasklist scan blind spot while the |
| * task is exiting and may be removed from the tasklist. See |
| * corresponding synchronize_srcu() for further details. |
| */ |
| void exit_tasks_rcu_stop(void) __releases(&tasks_rcu_exit_srcu) |
| { |
| struct task_struct *t = current; |
| |
| __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx); |
| } |
| |
| /* |
| * Contribute to protect against tasklist scan blind spot while the |
| * task is exiting and may be removed from the tasklist. See |
| * corresponding synchronize_srcu() for further details. |
| */ |
| void exit_tasks_rcu_finish(void) |
| { |
| exit_tasks_rcu_stop(); |
| exit_tasks_rcu_finish_trace(current); |
| } |
| |
| #else /* #ifdef CONFIG_TASKS_RCU */ |
| void exit_tasks_rcu_start(void) { } |
| void exit_tasks_rcu_stop(void) { } |
| void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } |
| #endif /* #else #ifdef CONFIG_TASKS_RCU */ |
| |
| #ifdef CONFIG_TASKS_RUDE_RCU |
| |
| //////////////////////////////////////////////////////////////////////// |
| // |
| // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of |
| // passing an empty function to schedule_on_each_cpu(). This approach |
| // provides an asynchronous call_rcu_tasks_rude() API and batching of |
| // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API. |
| // This invokes schedule_on_each_cpu() in order to send IPIs far and wide |
| // and induces otherwise unnecessary context switches on all online CPUs, |
| // whether idle or not. |
| // |
| // Callback handling is provided by the rcu_tasks_kthread() function. |
| // |
| // Ordering is provided by the scheduler's context-switch code. |
| |
| // Empty function to allow workqueues to force a context switch. |
| static void rcu_tasks_be_rude(struct work_struct *work) |
| { |
| } |
| |
| // Wait for one rude RCU-tasks grace period. |
| static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) |
| { |
| rtp->n_ipis += cpumask_weight(cpu_online_mask); |
| schedule_on_each_cpu(rcu_tasks_be_rude); |
| } |
| |
| void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); |
| DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, |
| "RCU Tasks Rude"); |
| |
| /** |
| * call_rcu_tasks_rude() - Queue a callback rude task-based grace period |
| * @rhp: structure to be used for queueing the RCU updates. |
| * @func: actual callback function to be invoked after the grace period |
| * |
| * The callback function will be invoked some time after a full grace |
| * period elapses, in other words after all currently executing RCU |
| * read-side critical sections have completed. call_rcu_tasks_rude() |
| * assumes that the read-side critical sections end at context switch, |
| * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as |
| * usermode execution is schedulable). As such, there are no read-side |
| * primitives analogous to rcu_read_lock() and rcu_read_unlock() because |
| * this primitive is intended to determine that all tasks have passed |
| * through a safe state, not so much for data-structure synchronization. |
| * |
| * See the description of call_rcu() for more detailed information on |
| * memory ordering guarantees. |
| */ |
| void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) |
| { |
| call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); |
| } |
| EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); |
| |
| /** |
| * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period |
| * |
| * Control will return to the caller some time after a rude rcu-tasks |
| * grace period has elapsed, in other words after all currently |
| * executing rcu-tasks read-side critical sections have elapsed. These |
| * read-side critical sections are delimited by calls to schedule(), |
| * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable |
| * context), and (in theory, anyway) cond_resched(). |
| * |
| * This is a very specialized primitive, intended only for a few uses in |
| * tracing and other situations requiring manipulation of function preambles |
| * and profiling hooks. The synchronize_rcu_tasks_rude() function is not |
| * (yet) intended for heavy use from multiple CPUs. |
| * |
| * See the description of synchronize_rcu() for more detailed information |
| * on memory ordering guarantees. |
| */ |
| void synchronize_rcu_tasks_rude(void) |
| { |
| synchronize_rcu_tasks_generic(&rcu_tasks_rude); |
| } |
| EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); |
| |
| /** |
| * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks. |
| * |
| * Although the current implementation is guaranteed to wait, it is not |
| * obligated to, for example, if there are no pending callbacks. |
| */ |
| void rcu_barrier_tasks_rude(void) |
| { |
| rcu_barrier_tasks_generic(&rcu_tasks_rude); |
| } |
| EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude); |
| |
| int rcu_tasks_rude_lazy_ms = -1; |
| module_param(rcu_tasks_rude_lazy_ms, int, 0444); |
| |
| static int __init rcu_spawn_tasks_rude_kthread(void) |
| { |
| cblist_init_generic(&rcu_tasks_rude); |
| rcu_tasks_rude.gp_sleep = HZ / 10; |
| if (rcu_tasks_rude_lazy_ms >= 0) |
| rcu_tasks_rude.lazy_jiffies = msecs_to_jiffies(rcu_tasks_rude_lazy_ms); |
| rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); |
| return 0; |
| } |
| |
| #if !defined(CONFIG_TINY_RCU) |
| void show_rcu_tasks_rude_gp_kthread(void) |
| { |
| show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); |
| } |
| EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread); |
| #endif // !defined(CONFIG_TINY_RCU) |
| |
| struct task_struct *get_rcu_tasks_rude_gp_kthread(void) |
| { |
| return rcu_tasks_rude.kthread_ptr; |
| } |
| EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread); |
| |
| #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ |
| |
| //////////////////////////////////////////////////////////////////////// |
| // |
| // Tracing variant of Tasks RCU. This variant is designed to be used |
| // to protect tracing hooks, including those of BPF. This variant |
| // therefore: |
| // |
| // 1. Has explicit read-side markers to allow finite grace periods |
| // in the face of in-kernel loops for PREEMPT=n builds. |
| // |
| // 2. Protects code in the idle loop, exception entry/exit, and |
| // CPU-hotplug code paths, similar to the capabilities of SRCU. |
| // |
| // 3. Avoids expensive read-side instructions, having overhead similar |
| // to that of Preemptible RCU. |
| // |
| // There are of course downsides. For example, the grace-period code |
| // can send IPIs to CPUs, even when those CPUs are in the idle loop or |
| // in nohz_full userspace. If needed, these downsides can be at least |
| // partially remedied. |
| // |
| // Perhaps most important, this variant of RCU does not affect the vanilla |
| // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace |
| // readers can operate from idle, offline, and exception entry/exit in no |
| // way allows rcu_preempt and rcu_sched readers to also do so. |
| // |
| // The implementation uses rcu_tasks_wait_gp(), which relies on function |
| // pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread() |
| // function sets these function pointers up so that rcu_tasks_wait_gp() |
| // invokes these functions in this order: |
| // |
| // rcu_tasks_trace_pregp_step(): |
| // Disables CPU hotplug, adds all currently executing tasks to the |
| // holdout list, then checks the state of all tasks that blocked |
| // or were preempted within their current RCU Tasks Trace read-side |
| // critical section, adding them to the holdout list if appropriate. |
| // Finally, this function re-enables CPU hotplug. |
| // The ->pertask_func() pointer is NULL, so there is no per-task processing. |
| // rcu_tasks_trace_postscan(): |
| // Invokes synchronize_rcu() to wait for late-stage exiting tasks |
| // to finish exiting. |
| // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty: |
| // Scans the holdout list, attempting to identify a quiescent state |
| // for each task on the list. If there is a quiescent state, the |
| // corresponding task is removed from the holdout list. Once this |
| // list is empty, the grace period has completed. |
| // rcu_tasks_trace_postgp(): |
| // Provides the needed full memory barrier and does debug checks. |
| // |
| // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks. |
| // |
| // Pre-grace-period update-side code is ordered before the grace period |
| // via the ->cbs_lock and barriers in rcu_tasks_kthread(). Pre-grace-period |
| // read-side code is ordered before the grace period by atomic operations |
| // on .b.need_qs flag of each task involved in this process, or by scheduler |
| // context-switch ordering (for locked-down non-running readers). |
| |
| // The lockdep state must be outside of #ifdef to be useful. |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| static struct lock_class_key rcu_lock_trace_key; |
| struct lockdep_map rcu_trace_lock_map = |
| STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key); |
| EXPORT_SYMBOL_GPL(rcu_trace_lock_map); |
| #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ |
| |
| #ifdef CONFIG_TASKS_TRACE_RCU |
| |
| // Record outstanding IPIs to each CPU. No point in sending two... |
| static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); |
| |
| // The number of detections of task quiescent state relying on |
| // heavyweight readers executing explicit memory barriers. |
| static unsigned long n_heavy_reader_attempts; |
| static unsigned long n_heavy_reader_updates; |
| static unsigned long n_heavy_reader_ofl_updates; |
| static unsigned long n_trc_holdouts; |
| |
| void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); |
| DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, |
| "RCU Tasks Trace"); |
| |
| /* Load from ->trc_reader_special.b.need_qs with proper ordering. */ |
| static u8 rcu_ld_need_qs(struct task_struct *t) |
| { |
| smp_mb(); // Enforce full grace-period ordering. |
| return smp_load_acquire(&t->trc_reader_special.b.need_qs); |
| } |
| |
| /* Store to ->trc_reader_special.b.need_qs with proper ordering. */ |
| static void rcu_st_need_qs(struct task_struct *t, u8 v) |
| { |
| smp_store_release(&t->trc_reader_special.b.need_qs, v); |
| smp_mb(); // Enforce full grace-period ordering. |
| } |
| |
| /* |
| * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for |
| * the four-byte operand-size restriction of some platforms. |
| * Returns the old value, which is often ignored. |
| */ |
| u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new) |
| { |
| union rcu_special ret; |
| union rcu_special trs_old = READ_ONCE(t->trc_reader_special); |
| union rcu_special trs_new = trs_old; |
| |
| if (trs_old.b.need_qs != old) |
| return trs_old.b.need_qs; |
| trs_new.b.need_qs = new; |
| ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s); |
| return ret.b.need_qs; |
| } |
| EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs); |
| |
| /* |
| * If we are the last reader, signal the grace-period kthread. |
| * Also remove from the per-CPU list of blocked tasks. |
| */ |
| void rcu_read_unlock_trace_special(struct task_struct *t) |
| { |
| unsigned long flags; |
| struct rcu_tasks_percpu *rtpcp; |
| union rcu_special trs; |
| |
| // Open-coded full-word version of rcu_ld_need_qs(). |
| smp_mb(); // Enforce full grace-period ordering. |
| trs = smp_load_acquire(&t->trc_reader_special); |
| |
| if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb) |
| smp_mb(); // Pairs with update-side barriers. |
| // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. |
| if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) { |
| u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS, |
| TRC_NEED_QS_CHECKED); |
| |
| WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result); |
| } |
| if (trs.b.blocked) { |
| rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu); |
| raw_spin_lock_irqsave_rcu_node(rtpcp, flags); |
| list_del_init(&t->trc_blkd_node); |
| WRITE_ONCE(t->trc_reader_special.b.blocked, false); |
| raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| } |
| WRITE_ONCE(t->trc_reader_nesting, 0); |
| } |
| EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); |
| |
| /* Add a newly blocked reader task to its CPU's list. */ |
| void rcu_tasks_trace_qs_blkd(struct task_struct *t) |
| { |
| unsigned long flags; |
| struct rcu_tasks_percpu *rtpcp; |
| |
| local_irq_save(flags); |
| rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu); |
| raw_spin_lock_rcu_node(rtpcp); // irqs already disabled |
| t->trc_blkd_cpu = smp_processor_id(); |
| if (!rtpcp->rtp_blkd_tasks.next) |
| INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); |
| list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); |
| WRITE_ONCE(t->trc_reader_special.b.blocked, true); |
| raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| } |
| EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd); |
| |
| /* Add a task to the holdout list, if it is not already on the list. */ |
| static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) |
| { |
| if (list_empty(&t->trc_holdout_list)) { |
| get_task_struct(t); |
| list_add(&t->trc_holdout_list, bhp); |
| n_trc_holdouts++; |
| } |
| } |
| |
| /* Remove a task from the holdout list, if it is in fact present. */ |
| static void trc_del_holdout(struct task_struct *t) |
| { |
| if (!list_empty(&t->trc_holdout_list)) { |
| list_del_init(&t->trc_holdout_list); |
| put_task_struct(t); |
| n_trc_holdouts--; |
| } |
| } |
| |
| /* IPI handler to check task state. */ |
| static void trc_read_check_handler(void *t_in) |
| { |
| int nesting; |
| struct task_struct *t = current; |
| struct task_struct *texp = t_in; |
| |
| // If the task is no longer running on this CPU, leave. |
| if (unlikely(texp != t)) |
| goto reset_ipi; // Already on holdout list, so will check later. |
| |
| // If the task is not in a read-side critical section, and |
| // if this is the last reader, awaken the grace-period kthread. |
| nesting = READ_ONCE(t->trc_reader_nesting); |
| if (likely(!nesting)) { |
| rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); |
| goto reset_ipi; |
| } |
| // If we are racing with an rcu_read_unlock_trace(), try again later. |
| if (unlikely(nesting < 0)) |
| goto reset_ipi; |
| |
| // Get here if the task is in a read-side critical section. |
| // Set its state so that it will update state for the grace-period |
| // kthread upon exit from that critical section. |
| rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED); |
| |
| reset_ipi: |
| // Allow future IPIs to be sent on CPU and for task. |
| // Also order this IPI handler against any later manipulations of |
| // the intended task. |
| smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ |
| smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ |
| } |
| |
| /* Callback function for scheduler to check locked-down task. */ |
| static int trc_inspect_reader(struct task_struct *t, void *bhp_in) |
| { |
| struct list_head *bhp = bhp_in; |
| int cpu = task_cpu(t); |
| int nesting; |
| bool ofl = cpu_is_offline(cpu); |
| |
| if (task_curr(t) && !ofl) { |
| // If no chance of heavyweight readers, do it the hard way. |
| if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) |
| return -EINVAL; |
| |
| // If heavyweight readers are enabled on the remote task, |
| // we can inspect its state despite its currently running. |
| // However, we cannot safely change its state. |
| n_heavy_reader_attempts++; |
| // Check for "running" idle tasks on offline CPUs. |
| if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting)) |
| return -EINVAL; // No quiescent state, do it the hard way. |
| n_heavy_reader_updates++; |
| nesting = 0; |
| } else { |
| // The task is not running, so C-language access is safe. |
| nesting = t->trc_reader_nesting; |
| WARN_ON_ONCE(ofl && task_curr(t) && !is_idle_task(t)); |
| if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl) |
| n_heavy_reader_ofl_updates++; |
| } |
| |
| // If not exiting a read-side critical section, mark as checked |
| // so that the grace-period kthread will remove it from the |
| // holdout list. |
| if (!nesting) { |
| rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); |
| return 0; // In QS, so done. |
| } |
| if (nesting < 0) |
| return -EINVAL; // Reader transitioning, try again later. |
| |
| // The task is in a read-side critical section, so set up its |
| // state so that it will update state upon exit from that critical |
| // section. |
| if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED)) |
| trc_add_holdout(t, bhp); |
| return 0; |
| } |
| |
| /* Attempt to extract the state for the specified task. */ |
| static void trc_wait_for_one_reader(struct task_struct *t, |
| struct list_head *bhp) |
| { |
| int cpu; |
| |
| // If a previous IPI is still in flight, let it complete. |
| if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI |
| return; |
| |
| // The current task had better be in a quiescent state. |
| if (t == current) { |
| rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); |
| WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); |
| return; |
| } |
| |
| // Attempt to nail down the task for inspection. |
| get_task_struct(t); |
| if (!task_call_func(t, trc_inspect_reader, bhp)) { |
| put_task_struct(t); |
| return; |
| } |
| put_task_struct(t); |
| |
| // If this task is not yet on the holdout list, then we are in |
| // an RCU read-side critical section. Otherwise, the invocation of |
| // trc_add_holdout() that added it to the list did the necessary |
| // get_task_struct(). Either way, the task cannot be freed out |
| // from under this code. |
| |
| // If currently running, send an IPI, either way, add to list. |
| trc_add_holdout(t, bhp); |
| if (task_curr(t) && |
| time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) { |
| // The task is currently running, so try IPIing it. |
| cpu = task_cpu(t); |
| |
| // If there is already an IPI outstanding, let it happen. |
| if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) |
| return; |
| |
| per_cpu(trc_ipi_to_cpu, cpu) = true; |
| t->trc_ipi_to_cpu = cpu; |
| rcu_tasks_trace.n_ipis++; |
| if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) { |
| // Just in case there is some other reason for |
| // failure than the target CPU being offline. |
| WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n", |
| __func__, cpu); |
| rcu_tasks_trace.n_ipis_fails++; |
| per_cpu(trc_ipi_to_cpu, cpu) = false; |
| t->trc_ipi_to_cpu = -1; |
| } |
| } |
| } |
| |
| /* |
| * Initialize for first-round processing for the specified task. |
| * Return false if task is NULL or already taken care of, true otherwise. |
| */ |
| static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself) |
| { |
| // During early boot when there is only the one boot CPU, there |
| // is no idle task for the other CPUs. Also, the grace-period |
| // kthread is always in a quiescent state. In addition, just return |
| // if this task is already on the list. |
| if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list)) |
| return false; |
| |
| rcu_st_need_qs(t, 0); |
| t->trc_ipi_to_cpu = -1; |
| return true; |
| } |
| |
| /* Do first-round processing for the specified task. */ |
| static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop) |
| { |
| if (rcu_tasks_trace_pertask_prep(t, true)) |
| trc_wait_for_one_reader(t, hop); |
| } |
| |
| /* Initialize for a new RCU-tasks-trace grace period. */ |
| static void rcu_tasks_trace_pregp_step(struct list_head *hop) |
| { |
| LIST_HEAD(blkd_tasks); |
| int cpu; |
| unsigned long flags; |
| struct rcu_tasks_percpu *rtpcp; |
| struct task_struct *t; |
| |
| // There shouldn't be any old IPIs, but... |
| for_each_possible_cpu(cpu) |
| WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); |
| |
| // Disable CPU hotplug across the CPU scan for the benefit of |
| // any IPIs that might be needed. This also waits for all readers |
| // in CPU-hotplug code paths. |
| cpus_read_lock(); |
| |
| // These rcu_tasks_trace_pertask_prep() calls are serialized to |
| // allow safe access to the hop list. |
| for_each_online_cpu(cpu) { |
| rcu_read_lock(); |
| t = cpu_curr_snapshot(cpu); |
| if (rcu_tasks_trace_pertask_prep(t, true)) |
| trc_add_holdout(t, hop); |
| rcu_read_unlock(); |
| cond_resched_tasks_rcu_qs(); |
| } |
| |
| // Only after all running tasks have been accounted for is it |
| // safe to take care of the tasks that have blocked within their |
| // current RCU tasks trace read-side critical section. |
| for_each_possible_cpu(cpu) { |
| rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu); |
| raw_spin_lock_irqsave_rcu_node(rtpcp, flags); |
| list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks); |
| while (!list_empty(&blkd_tasks)) { |
| rcu_read_lock(); |
| t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node); |
| list_del_init(&t->trc_blkd_node); |
| list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); |
| raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| rcu_tasks_trace_pertask(t, hop); |
| rcu_read_unlock(); |
| raw_spin_lock_irqsave_rcu_node(rtpcp, flags); |
| } |
| raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); |
| cond_resched_tasks_rcu_qs(); |
| } |
| |
| // Re-enable CPU hotplug now that the holdout list is populated. |
| cpus_read_unlock(); |
| } |
| |
| /* |
| * Do intermediate processing between task and holdout scans. |
| */ |
| static void rcu_tasks_trace_postscan(struct list_head *hop) |
| { |
| // Wait for late-stage exiting tasks to finish exiting. |
| // These might have passed the call to exit_tasks_rcu_finish(). |
| |
| // If you remove the following line, update rcu_trace_implies_rcu_gp()!!! |
| synchronize_rcu(); |
| // Any tasks that exit after this point will set |
| // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs. |
| } |
| |
| /* Communicate task state back to the RCU tasks trace stall warning request. */ |
| struct trc_stall_chk_rdr { |
| int nesting; |
| int ipi_to_cpu; |
| u8 needqs; |
| }; |
| |
| static int trc_check_slow_task(struct task_struct *t, void *arg) |
| { |
| struct trc_stall_chk_rdr *trc_rdrp = arg; |
| |
| if (task_curr(t) && cpu_online(task_cpu(t))) |
| return false; // It is running, so decline to inspect it. |
| trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting); |
| trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu); |
| trc_rdrp->needqs = rcu_ld_need_qs(t); |
| return true; |
| } |
| |
| /* Show the state of a task stalling the current RCU tasks trace GP. */ |
| static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) |
| { |
| int cpu; |
| struct trc_stall_chk_rdr trc_rdr; |
| bool is_idle_tsk = is_idle_task(t); |
| |
| if (*firstreport) { |
| pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); |
| *firstreport = false; |
| } |
| cpu = task_cpu(t); |
| if (!task_call_func(t, trc_check_slow_task, &trc_rdr)) |
| pr_alert("P%d: %c%c\n", |
| t->pid, |
| ".I"[t->trc_ipi_to_cpu >= 0], |
| ".i"[is_idle_tsk]); |
| else |
| pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n", |
| t->pid, |
| ".I"[trc_rdr.ipi_to_cpu >= 0], |
| ".i"[is_idle_tsk], |
| ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)], |
| ".B"[!!data_race(t->trc_reader_special.b.blocked)], |
| trc_rdr.nesting, |
| " !CN"[trc_rdr.needqs & 0x3], |
| " ?"[trc_rdr.needqs > 0x3], |
| cpu, cpu_online(cpu) ? "" : "(offline)"); |
| sched_show_task(t); |
| } |
| |
| /* List stalled IPIs for RCU tasks trace. */ |
| static void show_stalled_ipi_trace(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) |
| if (per_cpu(trc_ipi_to_cpu, cpu)) |
| pr_alert("\tIPI outstanding to CPU %d\n", cpu); |
| } |
| |
| /* Do one scan of the holdout list. */ |
| static void check_all_holdout_tasks_trace(struct list_head *hop, |
| bool needreport, bool *firstreport) |
| { |
| struct task_struct *g, *t; |
| |
| // Disable CPU hotplug across the holdout list scan for IPIs. |
| cpus_read_lock(); |
| |
| list_for_each_entry_safe(t, g, hop, trc_holdout_list) { |
| // If safe and needed, try to check the current task. |
| if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && |
| !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED)) |
| trc_wait_for_one_reader(t, hop); |
| |
| // If check succeeded, remove this task from the list. |
| if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 && |
| rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED) |
| trc_del_holdout(t); |
| else if (needreport) |
| show_stalled_task_trace(t, firstreport); |
| cond_resched_tasks_rcu_qs(); |
| } |
| |
| // Re-enable CPU hotplug now that the holdout list scan has completed. |
| cpus_read_unlock(); |
| |
| if (needreport) { |
| if (*firstreport) |
| pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); |
| show_stalled_ipi_trace(); |
| } |
| } |
| |
| static void rcu_tasks_trace_empty_fn(void *unused) |
| { |
| } |
| |
| /* Wait for grace period to complete and provide ordering. */ |
| static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) |
| { |
| int cpu; |
| |
| // Wait for any lingering IPI handlers to complete. Note that |
| // if a CPU has gone offline or transitioned to userspace in the |
| // meantime, all IPI handlers should have been drained beforehand. |
| // Yes, this assumes that CPUs process IPIs in order. If that ever |
| // changes, there will need to be a recheck and/or timed wait. |
| for_each_online_cpu(cpu) |
| if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu)))) |
| smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1); |
| |
| smp_mb(); // Caller's code must be ordered after wakeup. |
| // Pairs with pretty much every ordering primitive. |
| } |
| |
| /* Report any needed quiescent state for this exiting task. */ |
| static void exit_tasks_rcu_finish_trace(struct task_struct *t) |
| { |
| union rcu_special trs = READ_ONCE(t->trc_reader_special); |
| |
| rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); |
| WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); |
| if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked)) |
| rcu_read_unlock_trace_special(t); |
| else |
| WRITE_ONCE(t->trc_reader_nesting, 0); |
| } |
| |
| /** |
| * call_rcu_tasks_trace() - Queue a callback trace task-based grace period |
| * @rhp: structure to be used for queueing the RCU updates. |
| * @func: actual callback function to be invoked after the grace period |
| * |
| * The callback function will be invoked some time after a trace rcu-tasks |
| * grace period elapses, in other words after all currently executing |
| * trace rcu-tasks read-side critical sections have completed. These |
| * read-side critical sections are delimited by calls to rcu_read_lock_trace() |
| * and rcu_read_unlock_trace(). |
| * |
| * See the description of call_rcu() for more detailed information on |
| * memory ordering guarantees. |
| */ |
| void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func) |
| { |
| call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace); |
| } |
| EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); |
| |
| /** |
| * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period |
| * |
| * Control will return to the caller some time after a trace rcu-tasks |
| * grace period has elapsed, in other words after all currently executing |
| * trace rcu-tasks read-side critical sections have elapsed. These read-side |
| * critical sections are delimited by calls to rcu_read_lock_trace() |
| * and rcu_read_unlock_trace(). |
| * |
| * This is a very specialized primitive, intended only for a few uses in |
| * tracing and other situations requiring manipulation of function preambles |
| * and profiling hooks. The synchronize_rcu_tasks_trace() function is not |
| * (yet) intended for heavy use from multiple CPUs. |
| * |
| * See the description of synchronize_rcu() for more detailed information |
| * on memory ordering guarantees. |
| */ |
| void synchronize_rcu_tasks_trace(void) |
| { |
| RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section"); |
| synchronize_rcu_tasks_generic(&rcu_tasks_trace); |
| } |
| EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); |
| |
| /** |
| * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks. |
| * |
| * Although the current implementation is guaranteed to wait, it is not |
| * obligated to, for example, if there are no pending callbacks. |
| */ |
| void rcu_barrier_tasks_trace(void) |
| { |
| rcu_barrier_tasks_generic(&rcu_tasks_trace); |
| } |
| EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); |
| |
| int rcu_tasks_trace_lazy_ms = -1; |
| module_param(rcu_tasks_trace_lazy_ms, int, 0444); |
| |
| static int __init rcu_spawn_tasks_trace_kthread(void) |
| { |
| cblist_init_generic(&rcu_tasks_trace); |
| if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) { |
| rcu_tasks_trace.gp_sleep = HZ / 10; |
| rcu_tasks_trace.init_fract = HZ / 10; |
| } else { |
| rcu_tasks_trace.gp_sleep = HZ / 200; |
| if (rcu_tasks_trace.gp_sleep <= 0) |
| rcu_tasks_trace.gp_sleep = 1; |
| rcu_tasks_trace.init_fract = HZ / 200; |
| if (rcu_tasks_trace.init_fract <= 0) |
| rcu_tasks_trace.init_fract = 1; |
| } |
| if (rcu_tasks_trace_lazy_ms >= 0) |
| rcu_tasks_trace.lazy_jiffies = msecs_to_jiffies(rcu_tasks_trace_lazy_ms); |
| rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; |
| rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; |
| rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; |
| rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; |
| rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace); |
| return 0; |
| } |
| |
| #if !defined(CONFIG_TINY_RCU) |
| void show_rcu_tasks_trace_gp_kthread(void) |
| { |
| char buf[64]; |
| |
| sprintf(buf, "N%lu h:%lu/%lu/%lu", |
| data_race(n_trc_holdouts), |
| data_race(n_heavy_reader_ofl_updates), |
| data_race(n_heavy_reader_updates), |
| data_race(n_heavy_reader_attempts)); |
| show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); |
| } |
| EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread); |
| #endif // !defined(CONFIG_TINY_RCU) |
| |
| struct task_struct *get_rcu_tasks_trace_gp_kthread(void) |
| { |
| return rcu_tasks_trace.kthread_ptr; |
| } |
| EXPORT_SYMBOL_GPL(get_rcu_tasks_trace_gp_kthread); |
| |
| #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ |
| static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } |
| #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ |
| |
| #ifndef CONFIG_TINY_RCU |
| void show_rcu_tasks_gp_kthreads(void) |
| { |
| show_rcu_tasks_classic_gp_kthread(); |
| show_rcu_tasks_rude_gp_kthread(); |
| show_rcu_tasks_trace_gp_kthread(); |
| } |
| #endif /* #ifndef CONFIG_TINY_RCU */ |
| |
| #ifdef CONFIG_PROVE_RCU |
| struct rcu_tasks_test_desc { |
| struct rcu_head rh; |
| const char *name; |
| bool notrun; |
| unsigned long runstart; |
| }; |
| |
| static struct rcu_tasks_test_desc tests[] = { |
| { |
| .name = "call_rcu_tasks()", |
| /* If not defined, the test is skipped. */ |
| .notrun = IS_ENABLED(CONFIG_TASKS_RCU), |
| }, |
| { |
| .name = "call_rcu_tasks_rude()", |
| /* If not defined, the test is skipped. */ |
| .notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU), |
| }, |
| { |
| .name = "call_rcu_tasks_trace()", |
| /* If not defined, the test is skipped. */ |
| .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU) |
| } |
| }; |
| |
| static void test_rcu_tasks_callback(struct rcu_head *rhp) |
| { |
| struct rcu_tasks_test_desc *rttd = |
| container_of(rhp, struct rcu_tasks_test_desc, rh); |
| |
| pr_info("Callback from %s invoked.\n", rttd->name); |
| |
| rttd->notrun = false; |
| } |
| |
| static void rcu_tasks_initiate_self_tests(void) |
| { |
| pr_info("Running RCU-tasks wait API self tests\n"); |
| #ifdef CONFIG_TASKS_RCU |
| tests[0].runstart = jiffies; |
| synchronize_rcu_tasks(); |
| call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback); |
| #endif |
| |
| #ifdef CONFIG_TASKS_RUDE_RCU |
| tests[1].runstart = jiffies; |
| synchronize_rcu_tasks_rude(); |
| call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback); |
| #endif |
| |
| #ifdef CONFIG_TASKS_TRACE_RCU |
| tests[2].runstart = jiffies; |
| synchronize_rcu_tasks_trace(); |
| call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback); |
| #endif |
| } |
| |
| /* |
| * Return: 0 - test passed |
| * 1 - test failed, but have not timed out yet |
| * -1 - test failed and timed out |
| */ |
| static int rcu_tasks_verify_self_tests(void) |
| { |
| int ret = 0; |
| int i; |
| unsigned long bst = rcu_task_stall_timeout; |
| |
| if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT) |
| bst = RCU_TASK_BOOT_STALL_TIMEOUT; |
| for (i = 0; i < ARRAY_SIZE(tests); i++) { |
| while (tests[i].notrun) { // still hanging. |
| if (time_after(jiffies, tests[i].runstart + bst)) { |
| pr_err("%s has failed boot-time tests.\n", tests[i].name); |
| ret = -1; |
| break; |
| } |
| ret = 1; |
| break; |
| } |
| } |
| WARN_ON(ret < 0); |
| |
| return ret; |
| } |
| |
| /* |
| * Repeat the rcu_tasks_verify_self_tests() call once every second until the |
| * test passes or has timed out. |
| */ |
| static struct delayed_work rcu_tasks_verify_work; |
| static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused) |
| { |
| int ret = rcu_tasks_verify_self_tests(); |
| |
| if (ret <= 0) |
| return; |
| |
| /* Test fails but not timed out yet, reschedule another check */ |
| schedule_delayed_work(&rcu_tasks_verify_work, HZ); |
| } |
| |
| static int rcu_tasks_verify_schedule_work(void) |
| { |
| INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn); |
| rcu_tasks_verify_work_fn(NULL); |
| return 0; |
| } |
| late_initcall(rcu_tasks_verify_schedule_work); |
| #else /* #ifdef CONFIG_PROVE_RCU */ |
| static void rcu_tasks_initiate_self_tests(void) { } |
| #endif /* #else #ifdef CONFIG_PROVE_RCU */ |
| |
| void __init rcu_init_tasks_generic(void) |
| { |
| #ifdef CONFIG_TASKS_RCU |
| rcu_spawn_tasks_kthread(); |
| #endif |
| |
| #ifdef CONFIG_TASKS_RUDE_RCU |
| rcu_spawn_tasks_rude_kthread(); |
| #endif |
| |
| #ifdef CONFIG_TASKS_TRACE_RCU |
| rcu_spawn_tasks_trace_kthread(); |
| #endif |
| |
| // Run the self-tests. |
| rcu_tasks_initiate_self_tests(); |
| } |
| |
| #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ |
| static inline void rcu_tasks_bootup_oddness(void) {} |
| #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ |