blob: 44f39a520bb39cc44e068231a817846c77b8b0a9 [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
//
// This file is provided under a dual BSD/GPLv2 license. When using or
// redistributing this file, you may do so under either license.
//
// Copyright(c) 2018 Intel Corporation. All rights reserved.
//
// Authors: Liam Girdwood <liam.r.girdwood@linux.intel.com>
// Ranjani Sridharan <ranjani.sridharan@linux.intel.com>
// Rander Wang <rander.wang@intel.com>
// Keyon Jie <yang.jie@linux.intel.com>
//
/*
* Hardware interface for generic Intel audio DSP HDA IP
*/
#include <linux/module.h>
#include <sound/hdaudio_ext.h>
#include <sound/hda_register.h>
#include <sound/hda-mlink.h>
#include <trace/events/sof_intel.h>
#include "../sof-audio.h"
#include "../ops.h"
#include "hda.h"
#include "hda-ipc.h"
static bool hda_enable_trace_D0I3_S0;
#if IS_ENABLED(CONFIG_SND_SOC_SOF_DEBUG)
module_param_named(enable_trace_D0I3_S0, hda_enable_trace_D0I3_S0, bool, 0444);
MODULE_PARM_DESC(enable_trace_D0I3_S0,
"SOF HDA enable trace when the DSP is in D0I3 in S0");
#endif
/*
* DSP Core control.
*/
static int hda_dsp_core_reset_enter(struct snd_sof_dev *sdev, unsigned int core_mask)
{
u32 adspcs;
u32 reset;
int ret;
/* set reset bits for cores */
reset = HDA_DSP_ADSPCS_CRST_MASK(core_mask);
snd_sof_dsp_update_bits_unlocked(sdev, HDA_DSP_BAR,
HDA_DSP_REG_ADSPCS,
reset, reset);
/* poll with timeout to check if operation successful */
ret = snd_sof_dsp_read_poll_timeout(sdev, HDA_DSP_BAR,
HDA_DSP_REG_ADSPCS, adspcs,
((adspcs & reset) == reset),
HDA_DSP_REG_POLL_INTERVAL_US,
HDA_DSP_RESET_TIMEOUT_US);
if (ret < 0) {
dev_err(sdev->dev,
"error: %s: timeout on HDA_DSP_REG_ADSPCS read\n",
__func__);
return ret;
}
/* has core entered reset ? */
adspcs = snd_sof_dsp_read(sdev, HDA_DSP_BAR,
HDA_DSP_REG_ADSPCS);
if ((adspcs & HDA_DSP_ADSPCS_CRST_MASK(core_mask)) !=
HDA_DSP_ADSPCS_CRST_MASK(core_mask)) {
dev_err(sdev->dev,
"error: reset enter failed: core_mask %x adspcs 0x%x\n",
core_mask, adspcs);
ret = -EIO;
}
return ret;
}
static int hda_dsp_core_reset_leave(struct snd_sof_dev *sdev, unsigned int core_mask)
{
unsigned int crst;
u32 adspcs;
int ret;
/* clear reset bits for cores */
snd_sof_dsp_update_bits_unlocked(sdev, HDA_DSP_BAR,
HDA_DSP_REG_ADSPCS,
HDA_DSP_ADSPCS_CRST_MASK(core_mask),
0);
/* poll with timeout to check if operation successful */
crst = HDA_DSP_ADSPCS_CRST_MASK(core_mask);
ret = snd_sof_dsp_read_poll_timeout(sdev, HDA_DSP_BAR,
HDA_DSP_REG_ADSPCS, adspcs,
!(adspcs & crst),
HDA_DSP_REG_POLL_INTERVAL_US,
HDA_DSP_RESET_TIMEOUT_US);
if (ret < 0) {
dev_err(sdev->dev,
"error: %s: timeout on HDA_DSP_REG_ADSPCS read\n",
__func__);
return ret;
}
/* has core left reset ? */
adspcs = snd_sof_dsp_read(sdev, HDA_DSP_BAR,
HDA_DSP_REG_ADSPCS);
if ((adspcs & HDA_DSP_ADSPCS_CRST_MASK(core_mask)) != 0) {
dev_err(sdev->dev,
"error: reset leave failed: core_mask %x adspcs 0x%x\n",
core_mask, adspcs);
ret = -EIO;
}
return ret;
}
int hda_dsp_core_stall_reset(struct snd_sof_dev *sdev, unsigned int core_mask)
{
/* stall core */
snd_sof_dsp_update_bits_unlocked(sdev, HDA_DSP_BAR,
HDA_DSP_REG_ADSPCS,
HDA_DSP_ADSPCS_CSTALL_MASK(core_mask),
HDA_DSP_ADSPCS_CSTALL_MASK(core_mask));
/* set reset state */
return hda_dsp_core_reset_enter(sdev, core_mask);
}
bool hda_dsp_core_is_enabled(struct snd_sof_dev *sdev, unsigned int core_mask)
{
int val;
bool is_enable;
val = snd_sof_dsp_read(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPCS);
#define MASK_IS_EQUAL(v, m, field) ({ \
u32 _m = field(m); \
((v) & _m) == _m; \
})
is_enable = MASK_IS_EQUAL(val, core_mask, HDA_DSP_ADSPCS_CPA_MASK) &&
MASK_IS_EQUAL(val, core_mask, HDA_DSP_ADSPCS_SPA_MASK) &&
!(val & HDA_DSP_ADSPCS_CRST_MASK(core_mask)) &&
!(val & HDA_DSP_ADSPCS_CSTALL_MASK(core_mask));
#undef MASK_IS_EQUAL
dev_dbg(sdev->dev, "DSP core(s) enabled? %d : core_mask %x\n",
is_enable, core_mask);
return is_enable;
}
int hda_dsp_core_run(struct snd_sof_dev *sdev, unsigned int core_mask)
{
int ret;
/* leave reset state */
ret = hda_dsp_core_reset_leave(sdev, core_mask);
if (ret < 0)
return ret;
/* run core */
dev_dbg(sdev->dev, "unstall/run core: core_mask = %x\n", core_mask);
snd_sof_dsp_update_bits_unlocked(sdev, HDA_DSP_BAR,
HDA_DSP_REG_ADSPCS,
HDA_DSP_ADSPCS_CSTALL_MASK(core_mask),
0);
/* is core now running ? */
if (!hda_dsp_core_is_enabled(sdev, core_mask)) {
hda_dsp_core_stall_reset(sdev, core_mask);
dev_err(sdev->dev, "error: DSP start core failed: core_mask %x\n",
core_mask);
ret = -EIO;
}
return ret;
}
/*
* Power Management.
*/
int hda_dsp_core_power_up(struct snd_sof_dev *sdev, unsigned int core_mask)
{
struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata;
const struct sof_intel_dsp_desc *chip = hda->desc;
unsigned int cpa;
u32 adspcs;
int ret;
/* restrict core_mask to host managed cores mask */
core_mask &= chip->host_managed_cores_mask;
/* return if core_mask is not valid */
if (!core_mask)
return 0;
/* update bits */
snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPCS,
HDA_DSP_ADSPCS_SPA_MASK(core_mask),
HDA_DSP_ADSPCS_SPA_MASK(core_mask));
/* poll with timeout to check if operation successful */
cpa = HDA_DSP_ADSPCS_CPA_MASK(core_mask);
ret = snd_sof_dsp_read_poll_timeout(sdev, HDA_DSP_BAR,
HDA_DSP_REG_ADSPCS, adspcs,
(adspcs & cpa) == cpa,
HDA_DSP_REG_POLL_INTERVAL_US,
HDA_DSP_RESET_TIMEOUT_US);
if (ret < 0) {
dev_err(sdev->dev,
"error: %s: timeout on HDA_DSP_REG_ADSPCS read\n",
__func__);
return ret;
}
/* did core power up ? */
adspcs = snd_sof_dsp_read(sdev, HDA_DSP_BAR,
HDA_DSP_REG_ADSPCS);
if ((adspcs & HDA_DSP_ADSPCS_CPA_MASK(core_mask)) !=
HDA_DSP_ADSPCS_CPA_MASK(core_mask)) {
dev_err(sdev->dev,
"error: power up core failed core_mask %xadspcs 0x%x\n",
core_mask, adspcs);
ret = -EIO;
}
return ret;
}
static int hda_dsp_core_power_down(struct snd_sof_dev *sdev, unsigned int core_mask)
{
u32 adspcs;
int ret;
/* update bits */
snd_sof_dsp_update_bits_unlocked(sdev, HDA_DSP_BAR,
HDA_DSP_REG_ADSPCS,
HDA_DSP_ADSPCS_SPA_MASK(core_mask), 0);
ret = snd_sof_dsp_read_poll_timeout(sdev, HDA_DSP_BAR,
HDA_DSP_REG_ADSPCS, adspcs,
!(adspcs & HDA_DSP_ADSPCS_CPA_MASK(core_mask)),
HDA_DSP_REG_POLL_INTERVAL_US,
HDA_DSP_PD_TIMEOUT * USEC_PER_MSEC);
if (ret < 0)
dev_err(sdev->dev,
"error: %s: timeout on HDA_DSP_REG_ADSPCS read\n",
__func__);
return ret;
}
int hda_dsp_enable_core(struct snd_sof_dev *sdev, unsigned int core_mask)
{
struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata;
const struct sof_intel_dsp_desc *chip = hda->desc;
int ret;
/* restrict core_mask to host managed cores mask */
core_mask &= chip->host_managed_cores_mask;
/* return if core_mask is not valid or cores are already enabled */
if (!core_mask || hda_dsp_core_is_enabled(sdev, core_mask))
return 0;
/* power up */
ret = hda_dsp_core_power_up(sdev, core_mask);
if (ret < 0) {
dev_err(sdev->dev, "error: dsp core power up failed: core_mask %x\n",
core_mask);
return ret;
}
return hda_dsp_core_run(sdev, core_mask);
}
int hda_dsp_core_reset_power_down(struct snd_sof_dev *sdev,
unsigned int core_mask)
{
struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata;
const struct sof_intel_dsp_desc *chip = hda->desc;
int ret;
/* restrict core_mask to host managed cores mask */
core_mask &= chip->host_managed_cores_mask;
/* return if core_mask is not valid */
if (!core_mask)
return 0;
/* place core in reset prior to power down */
ret = hda_dsp_core_stall_reset(sdev, core_mask);
if (ret < 0) {
dev_err(sdev->dev, "error: dsp core reset failed: core_mask %x\n",
core_mask);
return ret;
}
/* power down core */
ret = hda_dsp_core_power_down(sdev, core_mask);
if (ret < 0) {
dev_err(sdev->dev, "error: dsp core power down fail mask %x: %d\n",
core_mask, ret);
return ret;
}
/* make sure we are in OFF state */
if (hda_dsp_core_is_enabled(sdev, core_mask)) {
dev_err(sdev->dev, "error: dsp core disable fail mask %x: %d\n",
core_mask, ret);
ret = -EIO;
}
return ret;
}
void hda_dsp_ipc_int_enable(struct snd_sof_dev *sdev)
{
struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata;
const struct sof_intel_dsp_desc *chip = hda->desc;
if (sdev->dspless_mode_selected)
return;
/* enable IPC DONE and BUSY interrupts */
snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, chip->ipc_ctl,
HDA_DSP_REG_HIPCCTL_DONE | HDA_DSP_REG_HIPCCTL_BUSY,
HDA_DSP_REG_HIPCCTL_DONE | HDA_DSP_REG_HIPCCTL_BUSY);
/* enable IPC interrupt */
snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPIC,
HDA_DSP_ADSPIC_IPC, HDA_DSP_ADSPIC_IPC);
}
void hda_dsp_ipc_int_disable(struct snd_sof_dev *sdev)
{
struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata;
const struct sof_intel_dsp_desc *chip = hda->desc;
if (sdev->dspless_mode_selected)
return;
/* disable IPC interrupt */
snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPIC,
HDA_DSP_ADSPIC_IPC, 0);
/* disable IPC BUSY and DONE interrupt */
snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, chip->ipc_ctl,
HDA_DSP_REG_HIPCCTL_BUSY | HDA_DSP_REG_HIPCCTL_DONE, 0);
}
static int hda_dsp_wait_d0i3c_done(struct snd_sof_dev *sdev)
{
int retry = HDA_DSP_REG_POLL_RETRY_COUNT;
struct snd_sof_pdata *pdata = sdev->pdata;
const struct sof_intel_dsp_desc *chip;
chip = get_chip_info(pdata);
while (snd_sof_dsp_read8(sdev, HDA_DSP_HDA_BAR, chip->d0i3_offset) &
SOF_HDA_VS_D0I3C_CIP) {
if (!retry--)
return -ETIMEDOUT;
usleep_range(10, 15);
}
return 0;
}
static int hda_dsp_send_pm_gate_ipc(struct snd_sof_dev *sdev, u32 flags)
{
const struct sof_ipc_pm_ops *pm_ops = sof_ipc_get_ops(sdev, pm);
if (pm_ops && pm_ops->set_pm_gate)
return pm_ops->set_pm_gate(sdev, flags);
return 0;
}
static int hda_dsp_update_d0i3c_register(struct snd_sof_dev *sdev, u8 value)
{
struct snd_sof_pdata *pdata = sdev->pdata;
const struct sof_intel_dsp_desc *chip;
int ret;
u8 reg;
chip = get_chip_info(pdata);
/* Write to D0I3C after Command-In-Progress bit is cleared */
ret = hda_dsp_wait_d0i3c_done(sdev);
if (ret < 0) {
dev_err(sdev->dev, "CIP timeout before D0I3C update!\n");
return ret;
}
/* Update D0I3C register */
snd_sof_dsp_update8(sdev, HDA_DSP_HDA_BAR, chip->d0i3_offset,
SOF_HDA_VS_D0I3C_I3, value);
/*
* The value written to the D0I3C::I3 bit may not be taken into account immediately.
* A delay is recommended before checking if D0I3C::CIP is cleared
*/
usleep_range(30, 40);
/* Wait for cmd in progress to be cleared before exiting the function */
ret = hda_dsp_wait_d0i3c_done(sdev);
if (ret < 0) {
dev_err(sdev->dev, "CIP timeout after D0I3C update!\n");
return ret;
}
reg = snd_sof_dsp_read8(sdev, HDA_DSP_HDA_BAR, chip->d0i3_offset);
/* Confirm d0i3 state changed with paranoia check */
if ((reg ^ value) & SOF_HDA_VS_D0I3C_I3) {
dev_err(sdev->dev, "failed to update D0I3C!\n");
return -EIO;
}
trace_sof_intel_D0I3C_updated(sdev, reg);
return 0;
}
/*
* d0i3 streaming is enabled if all the active streams can
* work in d0i3 state and playback is enabled
*/
static bool hda_dsp_d0i3_streaming_applicable(struct snd_sof_dev *sdev)
{
struct snd_pcm_substream *substream;
struct snd_sof_pcm *spcm;
bool playback_active = false;
int dir;
list_for_each_entry(spcm, &sdev->pcm_list, list) {
for_each_pcm_streams(dir) {
substream = spcm->stream[dir].substream;
if (!substream || !substream->runtime)
continue;
if (!spcm->stream[dir].d0i3_compatible)
return false;
if (dir == SNDRV_PCM_STREAM_PLAYBACK)
playback_active = true;
}
}
return playback_active;
}
static int hda_dsp_set_D0_state(struct snd_sof_dev *sdev,
const struct sof_dsp_power_state *target_state)
{
u32 flags = 0;
int ret;
u8 value = 0;
/*
* Sanity check for illegal state transitions
* The only allowed transitions are:
* 1. D3 -> D0I0
* 2. D0I0 -> D0I3
* 3. D0I3 -> D0I0
*/
switch (sdev->dsp_power_state.state) {
case SOF_DSP_PM_D0:
/* Follow the sequence below for D0 substate transitions */
break;
case SOF_DSP_PM_D3:
/* Follow regular flow for D3 -> D0 transition */
return 0;
default:
dev_err(sdev->dev, "error: transition from %d to %d not allowed\n",
sdev->dsp_power_state.state, target_state->state);
return -EINVAL;
}
/* Set flags and register value for D0 target substate */
if (target_state->substate == SOF_HDA_DSP_PM_D0I3) {
value = SOF_HDA_VS_D0I3C_I3;
/*
* Trace DMA need to be disabled when the DSP enters
* D0I3 for S0Ix suspend, but it can be kept enabled
* when the DSP enters D0I3 while the system is in S0
* for debug purpose.
*/
if (!sdev->fw_trace_is_supported ||
!hda_enable_trace_D0I3_S0 ||
sdev->system_suspend_target != SOF_SUSPEND_NONE)
flags = HDA_PM_NO_DMA_TRACE;
if (hda_dsp_d0i3_streaming_applicable(sdev))
flags |= HDA_PM_PG_STREAMING;
} else {
/* prevent power gating in D0I0 */
flags = HDA_PM_PPG;
}
/* update D0I3C register */
ret = hda_dsp_update_d0i3c_register(sdev, value);
if (ret < 0)
return ret;
/*
* Notify the DSP of the state change.
* If this IPC fails, revert the D0I3C register update in order
* to prevent partial state change.
*/
ret = hda_dsp_send_pm_gate_ipc(sdev, flags);
if (ret < 0) {
dev_err(sdev->dev,
"error: PM_GATE ipc error %d\n", ret);
goto revert;
}
return ret;
revert:
/* fallback to the previous register value */
value = value ? 0 : SOF_HDA_VS_D0I3C_I3;
/*
* This can fail but return the IPC error to signal that
* the state change failed.
*/
hda_dsp_update_d0i3c_register(sdev, value);
return ret;
}
/* helper to log DSP state */
static void hda_dsp_state_log(struct snd_sof_dev *sdev)
{
switch (sdev->dsp_power_state.state) {
case SOF_DSP_PM_D0:
switch (sdev->dsp_power_state.substate) {
case SOF_HDA_DSP_PM_D0I0:
dev_dbg(sdev->dev, "Current DSP power state: D0I0\n");
break;
case SOF_HDA_DSP_PM_D0I3:
dev_dbg(sdev->dev, "Current DSP power state: D0I3\n");
break;
default:
dev_dbg(sdev->dev, "Unknown DSP D0 substate: %d\n",
sdev->dsp_power_state.substate);
break;
}
break;
case SOF_DSP_PM_D1:
dev_dbg(sdev->dev, "Current DSP power state: D1\n");
break;
case SOF_DSP_PM_D2:
dev_dbg(sdev->dev, "Current DSP power state: D2\n");
break;
case SOF_DSP_PM_D3:
dev_dbg(sdev->dev, "Current DSP power state: D3\n");
break;
default:
dev_dbg(sdev->dev, "Unknown DSP power state: %d\n",
sdev->dsp_power_state.state);
break;
}
}
/*
* All DSP power state transitions are initiated by the driver.
* If the requested state change fails, the error is simply returned.
* Further state transitions are attempted only when the set_power_save() op
* is called again either because of a new IPC sent to the DSP or
* during system suspend/resume.
*/
static int hda_dsp_set_power_state(struct snd_sof_dev *sdev,
const struct sof_dsp_power_state *target_state)
{
int ret = 0;
switch (target_state->state) {
case SOF_DSP_PM_D0:
ret = hda_dsp_set_D0_state(sdev, target_state);
break;
case SOF_DSP_PM_D3:
/* The only allowed transition is: D0I0 -> D3 */
if (sdev->dsp_power_state.state == SOF_DSP_PM_D0 &&
sdev->dsp_power_state.substate == SOF_HDA_DSP_PM_D0I0)
break;
dev_err(sdev->dev,
"error: transition from %d to %d not allowed\n",
sdev->dsp_power_state.state, target_state->state);
return -EINVAL;
default:
dev_err(sdev->dev, "error: target state unsupported %d\n",
target_state->state);
return -EINVAL;
}
if (ret < 0) {
dev_err(sdev->dev,
"failed to set requested target DSP state %d substate %d\n",
target_state->state, target_state->substate);
return ret;
}
sdev->dsp_power_state = *target_state;
hda_dsp_state_log(sdev);
return ret;
}
int hda_dsp_set_power_state_ipc3(struct snd_sof_dev *sdev,
const struct sof_dsp_power_state *target_state)
{
/*
* When the DSP is already in D0I3 and the target state is D0I3,
* it could be the case that the DSP is in D0I3 during S0
* and the system is suspending to S0Ix. Therefore,
* hda_dsp_set_D0_state() must be called to disable trace DMA
* by sending the PM_GATE IPC to the FW.
*/
if (target_state->substate == SOF_HDA_DSP_PM_D0I3 &&
sdev->system_suspend_target == SOF_SUSPEND_S0IX)
return hda_dsp_set_power_state(sdev, target_state);
/*
* For all other cases, return without doing anything if
* the DSP is already in the target state.
*/
if (target_state->state == sdev->dsp_power_state.state &&
target_state->substate == sdev->dsp_power_state.substate)
return 0;
return hda_dsp_set_power_state(sdev, target_state);
}
int hda_dsp_set_power_state_ipc4(struct snd_sof_dev *sdev,
const struct sof_dsp_power_state *target_state)
{
/* Return without doing anything if the DSP is already in the target state */
if (target_state->state == sdev->dsp_power_state.state &&
target_state->substate == sdev->dsp_power_state.substate)
return 0;
return hda_dsp_set_power_state(sdev, target_state);
}
/*
* Audio DSP states may transform as below:-
*
* Opportunistic D0I3 in S0
* Runtime +---------------------+ Delayed D0i3 work timeout
* suspend | +--------------------+
* +------------+ D0I0(active) | |
* | | <---------------+ |
* | +--------> | New IPC | |
* | |Runtime +--^--+---------^--+--+ (via mailbox) | |
* | |resume | | | | | |
* | | | | | | | |
* | | System| | | | | |
* | | resume| | S3/S0IX | | | |
* | | | | suspend | | S0IX | |
* | | | | | |suspend | |
* | | | | | | | |
* | | | | | | | |
* +-v---+-----------+--v-------+ | | +------+----v----+
* | | | +-----------> |
* | D3 (suspended) | | | D0I3 |
* | | +--------------+ |
* | | System resume | |
* +----------------------------+ +----------------+
*
* S0IX suspend: The DSP is in D0I3 if any D0I3-compatible streams
* ignored the suspend trigger. Otherwise the DSP
* is in D3.
*/
static int hda_suspend(struct snd_sof_dev *sdev, bool runtime_suspend)
{
struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata;
const struct sof_intel_dsp_desc *chip = hda->desc;
struct hdac_bus *bus = sof_to_bus(sdev);
int ret, j;
/*
* The memory used for IMR boot loses its content in deeper than S3 state
* We must not try IMR boot on next power up (as it will fail).
*
* In case of firmware crash or boot failure set the skip_imr_boot to true
* as well in order to try to re-load the firmware to do a 'cold' boot.
*/
if (sdev->system_suspend_target > SOF_SUSPEND_S3 ||
sdev->fw_state == SOF_FW_CRASHED ||
sdev->fw_state == SOF_FW_BOOT_FAILED)
hda->skip_imr_boot = true;
ret = chip->disable_interrupts(sdev);
if (ret < 0)
return ret;
hda_codec_jack_wake_enable(sdev, runtime_suspend);
/* power down all hda links */
hda_bus_ml_suspend(bus);
if (sdev->dspless_mode_selected)
goto skip_dsp;
ret = chip->power_down_dsp(sdev);
if (ret < 0) {
dev_err(sdev->dev, "failed to power down DSP during suspend\n");
return ret;
}
/* reset ref counts for all cores */
for (j = 0; j < chip->cores_num; j++)
sdev->dsp_core_ref_count[j] = 0;
/* disable ppcap interrupt */
hda_dsp_ctrl_ppcap_enable(sdev, false);
hda_dsp_ctrl_ppcap_int_enable(sdev, false);
skip_dsp:
/* disable hda bus irq and streams */
hda_dsp_ctrl_stop_chip(sdev);
/* disable LP retention mode */
snd_sof_pci_update_bits(sdev, PCI_PGCTL,
PCI_PGCTL_LSRMD_MASK, PCI_PGCTL_LSRMD_MASK);
/* reset controller */
ret = hda_dsp_ctrl_link_reset(sdev, true);
if (ret < 0) {
dev_err(sdev->dev,
"error: failed to reset controller during suspend\n");
return ret;
}
/* display codec can powered off after link reset */
hda_codec_i915_display_power(sdev, false);
return 0;
}
static int hda_resume(struct snd_sof_dev *sdev, bool runtime_resume)
{
int ret;
/* display codec must be powered before link reset */
hda_codec_i915_display_power(sdev, true);
/*
* clear TCSEL to clear playback on some HD Audio
* codecs. PCI TCSEL is defined in the Intel manuals.
*/
snd_sof_pci_update_bits(sdev, PCI_TCSEL, 0x07, 0);
/* reset and start hda controller */
ret = hda_dsp_ctrl_init_chip(sdev);
if (ret < 0) {
dev_err(sdev->dev,
"error: failed to start controller after resume\n");
goto cleanup;
}
/* check jack status */
if (runtime_resume) {
hda_codec_jack_wake_enable(sdev, false);
if (sdev->system_suspend_target == SOF_SUSPEND_NONE)
hda_codec_jack_check(sdev);
}
if (!sdev->dspless_mode_selected) {
/* enable ppcap interrupt */
hda_dsp_ctrl_ppcap_enable(sdev, true);
hda_dsp_ctrl_ppcap_int_enable(sdev, true);
}
cleanup:
/* display codec can powered off after controller init */
hda_codec_i915_display_power(sdev, false);
return 0;
}
int hda_dsp_resume(struct snd_sof_dev *sdev)
{
struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata;
struct hdac_bus *bus = sof_to_bus(sdev);
struct pci_dev *pci = to_pci_dev(sdev->dev);
const struct sof_dsp_power_state target_state = {
.state = SOF_DSP_PM_D0,
.substate = SOF_HDA_DSP_PM_D0I0,
};
int ret;
/* resume from D0I3 */
if (sdev->dsp_power_state.state == SOF_DSP_PM_D0) {
ret = hda_bus_ml_resume(bus);
if (ret < 0) {
dev_err(sdev->dev,
"error %d in %s: failed to power up links",
ret, __func__);
return ret;
}
/* set up CORB/RIRB buffers if was on before suspend */
hda_codec_resume_cmd_io(sdev);
/* Set DSP power state */
ret = snd_sof_dsp_set_power_state(sdev, &target_state);
if (ret < 0) {
dev_err(sdev->dev, "error: setting dsp state %d substate %d\n",
target_state.state, target_state.substate);
return ret;
}
/* restore L1SEN bit */
if (hda->l1_disabled)
snd_sof_dsp_update_bits(sdev, HDA_DSP_HDA_BAR,
HDA_VS_INTEL_EM2,
HDA_VS_INTEL_EM2_L1SEN, 0);
/* restore and disable the system wakeup */
pci_restore_state(pci);
disable_irq_wake(pci->irq);
return 0;
}
/* init hda controller. DSP cores will be powered up during fw boot */
ret = hda_resume(sdev, false);
if (ret < 0)
return ret;
return snd_sof_dsp_set_power_state(sdev, &target_state);
}
int hda_dsp_runtime_resume(struct snd_sof_dev *sdev)
{
const struct sof_dsp_power_state target_state = {
.state = SOF_DSP_PM_D0,
};
int ret;
/* init hda controller. DSP cores will be powered up during fw boot */
ret = hda_resume(sdev, true);
if (ret < 0)
return ret;
return snd_sof_dsp_set_power_state(sdev, &target_state);
}
int hda_dsp_runtime_idle(struct snd_sof_dev *sdev)
{
struct hdac_bus *hbus = sof_to_bus(sdev);
if (hbus->codec_powered) {
dev_dbg(sdev->dev, "some codecs still powered (%08X), not idle\n",
(unsigned int)hbus->codec_powered);
return -EBUSY;
}
return 0;
}
int hda_dsp_runtime_suspend(struct snd_sof_dev *sdev)
{
struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata;
const struct sof_dsp_power_state target_state = {
.state = SOF_DSP_PM_D3,
};
int ret;
if (!sdev->dspless_mode_selected) {
/* cancel any attempt for DSP D0I3 */
cancel_delayed_work_sync(&hda->d0i3_work);
}
/* stop hda controller and power dsp off */
ret = hda_suspend(sdev, true);
if (ret < 0)
return ret;
return snd_sof_dsp_set_power_state(sdev, &target_state);
}
int hda_dsp_suspend(struct snd_sof_dev *sdev, u32 target_state)
{
struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata;
struct hdac_bus *bus = sof_to_bus(sdev);
struct pci_dev *pci = to_pci_dev(sdev->dev);
const struct sof_dsp_power_state target_dsp_state = {
.state = target_state,
.substate = target_state == SOF_DSP_PM_D0 ?
SOF_HDA_DSP_PM_D0I3 : 0,
};
int ret;
if (!sdev->dspless_mode_selected) {
/* cancel any attempt for DSP D0I3 */
cancel_delayed_work_sync(&hda->d0i3_work);
}
if (target_state == SOF_DSP_PM_D0) {
/* Set DSP power state */
ret = snd_sof_dsp_set_power_state(sdev, &target_dsp_state);
if (ret < 0) {
dev_err(sdev->dev, "error: setting dsp state %d substate %d\n",
target_dsp_state.state,
target_dsp_state.substate);
return ret;
}
/* enable L1SEN to make sure the system can enter S0Ix */
if (hda->l1_disabled)
snd_sof_dsp_update_bits(sdev, HDA_DSP_HDA_BAR, HDA_VS_INTEL_EM2,
HDA_VS_INTEL_EM2_L1SEN, HDA_VS_INTEL_EM2_L1SEN);
/* stop the CORB/RIRB DMA if it is On */
hda_codec_suspend_cmd_io(sdev);
/* no link can be powered in s0ix state */
ret = hda_bus_ml_suspend(bus);
if (ret < 0) {
dev_err(sdev->dev,
"error %d in %s: failed to power down links",
ret, __func__);
return ret;
}
/* enable the system waking up via IPC IRQ */
enable_irq_wake(pci->irq);
pci_save_state(pci);
return 0;
}
/* stop hda controller and power dsp off */
ret = hda_suspend(sdev, false);
if (ret < 0) {
dev_err(bus->dev, "error: suspending dsp\n");
return ret;
}
return snd_sof_dsp_set_power_state(sdev, &target_dsp_state);
}
static unsigned int hda_dsp_check_for_dma_streams(struct snd_sof_dev *sdev)
{
struct hdac_bus *bus = sof_to_bus(sdev);
struct hdac_stream *s;
unsigned int active_streams = 0;
int sd_offset;
u32 val;
list_for_each_entry(s, &bus->stream_list, list) {
sd_offset = SOF_STREAM_SD_OFFSET(s);
val = snd_sof_dsp_read(sdev, HDA_DSP_HDA_BAR,
sd_offset);
if (val & SOF_HDA_SD_CTL_DMA_START)
active_streams |= BIT(s->index);
}
return active_streams;
}
static int hda_dsp_s5_quirk(struct snd_sof_dev *sdev)
{
int ret;
/*
* Do not assume a certain timing between the prior
* suspend flow, and running of this quirk function.
* This is needed if the controller was just put
* to reset before calling this function.
*/
usleep_range(500, 1000);
/*
* Take controller out of reset to flush DMA
* transactions.
*/
ret = hda_dsp_ctrl_link_reset(sdev, false);
if (ret < 0)
return ret;
usleep_range(500, 1000);
/* Restore state for shutdown, back to reset */
ret = hda_dsp_ctrl_link_reset(sdev, true);
if (ret < 0)
return ret;
return ret;
}
int hda_dsp_shutdown_dma_flush(struct snd_sof_dev *sdev)
{
unsigned int active_streams;
int ret, ret2;
/* check if DMA cleanup has been successful */
active_streams = hda_dsp_check_for_dma_streams(sdev);
sdev->system_suspend_target = SOF_SUSPEND_S3;
ret = snd_sof_suspend(sdev->dev);
if (active_streams) {
dev_warn(sdev->dev,
"There were active DSP streams (%#x) at shutdown, trying to recover\n",
active_streams);
ret2 = hda_dsp_s5_quirk(sdev);
if (ret2 < 0)
dev_err(sdev->dev, "shutdown recovery failed (%d)\n", ret2);
}
return ret;
}
int hda_dsp_shutdown(struct snd_sof_dev *sdev)
{
sdev->system_suspend_target = SOF_SUSPEND_S3;
return snd_sof_suspend(sdev->dev);
}
int hda_dsp_set_hw_params_upon_resume(struct snd_sof_dev *sdev)
{
int ret;
/* make sure all DAI resources are freed */
ret = hda_dsp_dais_suspend(sdev);
if (ret < 0)
dev_warn(sdev->dev, "%s: failure in hda_dsp_dais_suspend\n", __func__);
return ret;
}
void hda_dsp_d0i3_work(struct work_struct *work)
{
struct sof_intel_hda_dev *hdev = container_of(work,
struct sof_intel_hda_dev,
d0i3_work.work);
struct hdac_bus *bus = &hdev->hbus.core;
struct snd_sof_dev *sdev = dev_get_drvdata(bus->dev);
struct sof_dsp_power_state target_state = {
.state = SOF_DSP_PM_D0,
.substate = SOF_HDA_DSP_PM_D0I3,
};
int ret;
/* DSP can enter D0I3 iff only D0I3-compatible streams are active */
if (!snd_sof_dsp_only_d0i3_compatible_stream_active(sdev))
/* remain in D0I0 */
return;
/* This can fail but error cannot be propagated */
ret = snd_sof_dsp_set_power_state(sdev, &target_state);
if (ret < 0)
dev_err_ratelimited(sdev->dev,
"error: failed to set DSP state %d substate %d\n",
target_state.state, target_state.substate);
}
int hda_dsp_core_get(struct snd_sof_dev *sdev, int core)
{
const struct sof_ipc_pm_ops *pm_ops = sdev->ipc->ops->pm;
int ret, ret1;
/* power up core */
ret = hda_dsp_enable_core(sdev, BIT(core));
if (ret < 0) {
dev_err(sdev->dev, "failed to power up core %d with err: %d\n",
core, ret);
return ret;
}
/* No need to send IPC for primary core or if FW boot is not complete */
if (sdev->fw_state != SOF_FW_BOOT_COMPLETE || core == SOF_DSP_PRIMARY_CORE)
return 0;
/* No need to continue the set_core_state ops is not available */
if (!pm_ops->set_core_state)
return 0;
/* Now notify DSP for secondary cores */
ret = pm_ops->set_core_state(sdev, core, true);
if (ret < 0) {
dev_err(sdev->dev, "failed to enable secondary core '%d' failed with %d\n",
core, ret);
goto power_down;
}
return ret;
power_down:
/* power down core if it is host managed and return the original error if this fails too */
ret1 = hda_dsp_core_reset_power_down(sdev, BIT(core));
if (ret1 < 0)
dev_err(sdev->dev, "failed to power down core: %d with err: %d\n", core, ret1);
return ret;
}
int hda_dsp_disable_interrupts(struct snd_sof_dev *sdev)
{
hda_sdw_int_enable(sdev, false);
hda_dsp_ipc_int_disable(sdev);
return 0;
}