blob: 7b93e1fd8ffa902f3cdbba84afe87297fc1accd1 [file] [log] [blame]
#ifndef _M68K_BITOPS_H
#define _M68K_BITOPS_H
/*
* Copyright 1992, Linus Torvalds.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive
* for more details.
*/
#ifndef _LINUX_BITOPS_H
#error only <linux/bitops.h> can be included directly
#endif
#include <linux/compiler.h>
#include <asm/barrier.h>
/*
* Bit access functions vary across the ColdFire and 68k families.
* So we will break them out here, and then macro in the ones we want.
*
* ColdFire - supports standard bset/bclr/bchg with register operand only
* 68000 - supports standard bset/bclr/bchg with memory operand
* >= 68020 - also supports the bfset/bfclr/bfchg instructions
*
* Although it is possible to use only the bset/bclr/bchg with register
* operands on all platforms you end up with larger generated code.
* So we use the best form possible on a given platform.
*/
static inline void bset_reg_set_bit(int nr, volatile unsigned long *vaddr)
{
char *p = (char *)vaddr + (nr ^ 31) / 8;
__asm__ __volatile__ ("bset %1,(%0)"
:
: "a" (p), "di" (nr & 7)
: "memory");
}
static inline void bset_mem_set_bit(int nr, volatile unsigned long *vaddr)
{
char *p = (char *)vaddr + (nr ^ 31) / 8;
__asm__ __volatile__ ("bset %1,%0"
: "+m" (*p)
: "di" (nr & 7));
}
static inline void bfset_mem_set_bit(int nr, volatile unsigned long *vaddr)
{
__asm__ __volatile__ ("bfset %1{%0:#1}"
:
: "d" (nr ^ 31), "o" (*vaddr)
: "memory");
}
#if defined(CONFIG_COLDFIRE)
#define set_bit(nr, vaddr) bset_reg_set_bit(nr, vaddr)
#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
#define set_bit(nr, vaddr) bset_mem_set_bit(nr, vaddr)
#else
#define set_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
bset_mem_set_bit(nr, vaddr) : \
bfset_mem_set_bit(nr, vaddr))
#endif
#define __set_bit(nr, vaddr) set_bit(nr, vaddr)
static inline void bclr_reg_clear_bit(int nr, volatile unsigned long *vaddr)
{
char *p = (char *)vaddr + (nr ^ 31) / 8;
__asm__ __volatile__ ("bclr %1,(%0)"
:
: "a" (p), "di" (nr & 7)
: "memory");
}
static inline void bclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
{
char *p = (char *)vaddr + (nr ^ 31) / 8;
__asm__ __volatile__ ("bclr %1,%0"
: "+m" (*p)
: "di" (nr & 7));
}
static inline void bfclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
{
__asm__ __volatile__ ("bfclr %1{%0:#1}"
:
: "d" (nr ^ 31), "o" (*vaddr)
: "memory");
}
#if defined(CONFIG_COLDFIRE)
#define clear_bit(nr, vaddr) bclr_reg_clear_bit(nr, vaddr)
#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
#define clear_bit(nr, vaddr) bclr_mem_clear_bit(nr, vaddr)
#else
#define clear_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
bclr_mem_clear_bit(nr, vaddr) : \
bfclr_mem_clear_bit(nr, vaddr))
#endif
#define __clear_bit(nr, vaddr) clear_bit(nr, vaddr)
static inline void bchg_reg_change_bit(int nr, volatile unsigned long *vaddr)
{
char *p = (char *)vaddr + (nr ^ 31) / 8;
__asm__ __volatile__ ("bchg %1,(%0)"
:
: "a" (p), "di" (nr & 7)
: "memory");
}
static inline void bchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
{
char *p = (char *)vaddr + (nr ^ 31) / 8;
__asm__ __volatile__ ("bchg %1,%0"
: "+m" (*p)
: "di" (nr & 7));
}
static inline void bfchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
{
__asm__ __volatile__ ("bfchg %1{%0:#1}"
:
: "d" (nr ^ 31), "o" (*vaddr)
: "memory");
}
#if defined(CONFIG_COLDFIRE)
#define change_bit(nr, vaddr) bchg_reg_change_bit(nr, vaddr)
#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
#define change_bit(nr, vaddr) bchg_mem_change_bit(nr, vaddr)
#else
#define change_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
bchg_mem_change_bit(nr, vaddr) : \
bfchg_mem_change_bit(nr, vaddr))
#endif
#define __change_bit(nr, vaddr) change_bit(nr, vaddr)
static inline int test_bit(int nr, const volatile unsigned long *vaddr)
{
return (vaddr[nr >> 5] & (1UL << (nr & 31))) != 0;
}
static inline int bset_reg_test_and_set_bit(int nr,
volatile unsigned long *vaddr)
{
char *p = (char *)vaddr + (nr ^ 31) / 8;
char retval;
__asm__ __volatile__ ("bset %2,(%1); sne %0"
: "=d" (retval)
: "a" (p), "di" (nr & 7)
: "memory");
return retval;
}
static inline int bset_mem_test_and_set_bit(int nr,
volatile unsigned long *vaddr)
{
char *p = (char *)vaddr + (nr ^ 31) / 8;
char retval;
__asm__ __volatile__ ("bset %2,%1; sne %0"
: "=d" (retval), "+m" (*p)
: "di" (nr & 7));
return retval;
}
static inline int bfset_mem_test_and_set_bit(int nr,
volatile unsigned long *vaddr)
{
char retval;
__asm__ __volatile__ ("bfset %2{%1:#1}; sne %0"
: "=d" (retval)
: "d" (nr ^ 31), "o" (*vaddr)
: "memory");
return retval;
}
#if defined(CONFIG_COLDFIRE)
#define test_and_set_bit(nr, vaddr) bset_reg_test_and_set_bit(nr, vaddr)
#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
#define test_and_set_bit(nr, vaddr) bset_mem_test_and_set_bit(nr, vaddr)
#else
#define test_and_set_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
bset_mem_test_and_set_bit(nr, vaddr) : \
bfset_mem_test_and_set_bit(nr, vaddr))
#endif
#define __test_and_set_bit(nr, vaddr) test_and_set_bit(nr, vaddr)
static inline int bclr_reg_test_and_clear_bit(int nr,
volatile unsigned long *vaddr)
{
char *p = (char *)vaddr + (nr ^ 31) / 8;
char retval;
__asm__ __volatile__ ("bclr %2,(%1); sne %0"
: "=d" (retval)
: "a" (p), "di" (nr & 7)
: "memory");
return retval;
}
static inline int bclr_mem_test_and_clear_bit(int nr,
volatile unsigned long *vaddr)
{
char *p = (char *)vaddr + (nr ^ 31) / 8;
char retval;
__asm__ __volatile__ ("bclr %2,%1; sne %0"
: "=d" (retval), "+m" (*p)
: "di" (nr & 7));
return retval;
}
static inline int bfclr_mem_test_and_clear_bit(int nr,
volatile unsigned long *vaddr)
{
char retval;
__asm__ __volatile__ ("bfclr %2{%1:#1}; sne %0"
: "=d" (retval)
: "d" (nr ^ 31), "o" (*vaddr)
: "memory");
return retval;
}
#if defined(CONFIG_COLDFIRE)
#define test_and_clear_bit(nr, vaddr) bclr_reg_test_and_clear_bit(nr, vaddr)
#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
#define test_and_clear_bit(nr, vaddr) bclr_mem_test_and_clear_bit(nr, vaddr)
#else
#define test_and_clear_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
bclr_mem_test_and_clear_bit(nr, vaddr) : \
bfclr_mem_test_and_clear_bit(nr, vaddr))
#endif
#define __test_and_clear_bit(nr, vaddr) test_and_clear_bit(nr, vaddr)
static inline int bchg_reg_test_and_change_bit(int nr,
volatile unsigned long *vaddr)
{
char *p = (char *)vaddr + (nr ^ 31) / 8;
char retval;
__asm__ __volatile__ ("bchg %2,(%1); sne %0"
: "=d" (retval)
: "a" (p), "di" (nr & 7)
: "memory");
return retval;
}
static inline int bchg_mem_test_and_change_bit(int nr,
volatile unsigned long *vaddr)
{
char *p = (char *)vaddr + (nr ^ 31) / 8;
char retval;
__asm__ __volatile__ ("bchg %2,%1; sne %0"
: "=d" (retval), "+m" (*p)
: "di" (nr & 7));
return retval;
}
static inline int bfchg_mem_test_and_change_bit(int nr,
volatile unsigned long *vaddr)
{
char retval;
__asm__ __volatile__ ("bfchg %2{%1:#1}; sne %0"
: "=d" (retval)
: "d" (nr ^ 31), "o" (*vaddr)
: "memory");
return retval;
}
#if defined(CONFIG_COLDFIRE)
#define test_and_change_bit(nr, vaddr) bchg_reg_test_and_change_bit(nr, vaddr)
#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
#define test_and_change_bit(nr, vaddr) bchg_mem_test_and_change_bit(nr, vaddr)
#else
#define test_and_change_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
bchg_mem_test_and_change_bit(nr, vaddr) : \
bfchg_mem_test_and_change_bit(nr, vaddr))
#endif
#define __test_and_change_bit(nr, vaddr) test_and_change_bit(nr, vaddr)
/*
* The true 68020 and more advanced processors support the "bfffo"
* instruction for finding bits. ColdFire and simple 68000 parts
* (including CPU32) do not support this. They simply use the generic
* functions.
*/
#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
#include <asm-generic/bitops/ffz.h>
#else
static inline int find_first_zero_bit(const unsigned long *vaddr,
unsigned size)
{
const unsigned long *p = vaddr;
int res = 32;
unsigned int words;
unsigned long num;
if (!size)
return 0;
words = (size + 31) >> 5;
while (!(num = ~*p++)) {
if (!--words)
goto out;
}
__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
: "=d" (res) : "d" (num & -num));
res ^= 31;
out:
res += ((long)p - (long)vaddr - 4) * 8;
return res < size ? res : size;
}
#define find_first_zero_bit find_first_zero_bit
static inline int find_next_zero_bit(const unsigned long *vaddr, int size,
int offset)
{
const unsigned long *p = vaddr + (offset >> 5);
int bit = offset & 31UL, res;
if (offset >= size)
return size;
if (bit) {
unsigned long num = ~*p++ & (~0UL << bit);
offset -= bit;
/* Look for zero in first longword */
__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
: "=d" (res) : "d" (num & -num));
if (res < 32) {
offset += res ^ 31;
return offset < size ? offset : size;
}
offset += 32;
if (offset >= size)
return size;
}
/* No zero yet, search remaining full bytes for a zero */
return offset + find_first_zero_bit(p, size - offset);
}
#define find_next_zero_bit find_next_zero_bit
static inline int find_first_bit(const unsigned long *vaddr, unsigned size)
{
const unsigned long *p = vaddr;
int res = 32;
unsigned int words;
unsigned long num;
if (!size)
return 0;
words = (size + 31) >> 5;
while (!(num = *p++)) {
if (!--words)
goto out;
}
__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
: "=d" (res) : "d" (num & -num));
res ^= 31;
out:
res += ((long)p - (long)vaddr - 4) * 8;
return res < size ? res : size;
}
#define find_first_bit find_first_bit
static inline int find_next_bit(const unsigned long *vaddr, int size,
int offset)
{
const unsigned long *p = vaddr + (offset >> 5);
int bit = offset & 31UL, res;
if (offset >= size)
return size;
if (bit) {
unsigned long num = *p++ & (~0UL << bit);
offset -= bit;
/* Look for one in first longword */
__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
: "=d" (res) : "d" (num & -num));
if (res < 32) {
offset += res ^ 31;
return offset < size ? offset : size;
}
offset += 32;
if (offset >= size)
return size;
}
/* No one yet, search remaining full bytes for a one */
return offset + find_first_bit(p, size - offset);
}
#define find_next_bit find_next_bit
/*
* ffz = Find First Zero in word. Undefined if no zero exists,
* so code should check against ~0UL first..
*/
static inline unsigned long ffz(unsigned long word)
{
int res;
__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
: "=d" (res) : "d" (~word & -~word));
return res ^ 31;
}
#endif
#ifdef __KERNEL__
#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
/*
* The newer ColdFire family members support a "bitrev" instruction
* and we can use that to implement a fast ffs. Older Coldfire parts,
* and normal 68000 parts don't have anything special, so we use the
* generic functions for those.
*/
#if (defined(__mcfisaaplus__) || defined(__mcfisac__)) && \
!defined(CONFIG_M68000)
static inline unsigned long __ffs(unsigned long x)
{
__asm__ __volatile__ ("bitrev %0; ff1 %0"
: "=d" (x)
: "0" (x));
return x;
}
static inline int ffs(int x)
{
if (!x)
return 0;
return __ffs(x) + 1;
}
#else
#include <asm-generic/bitops/ffs.h>
#include <asm-generic/bitops/__ffs.h>
#endif
#include <asm-generic/bitops/fls.h>
#include <asm-generic/bitops/__fls.h>
#else
/*
* ffs: find first bit set. This is defined the same way as
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above ffz (man ffs).
*/
static inline int ffs(int x)
{
int cnt;
__asm__ ("bfffo %1{#0:#0},%0"
: "=d" (cnt)
: "dm" (x & -x));
return 32 - cnt;
}
static inline unsigned long __ffs(unsigned long x)
{
return ffs(x) - 1;
}
/*
* fls: find last bit set.
*/
static inline int fls(unsigned int x)
{
int cnt;
__asm__ ("bfffo %1{#0,#0},%0"
: "=d" (cnt)
: "dm" (x));
return 32 - cnt;
}
static inline int __fls(int x)
{
return fls(x) - 1;
}
#endif
/* Simple test-and-set bit locks */
#define test_and_set_bit_lock test_and_set_bit
#define clear_bit_unlock clear_bit
#define __clear_bit_unlock clear_bit_unlock
#include <asm-generic/bitops/ext2-atomic.h>
#include <asm-generic/bitops/fls64.h>
#include <asm-generic/bitops/sched.h>
#include <asm-generic/bitops/hweight.h>
#include <asm-generic/bitops/le.h>
#endif /* __KERNEL__ */
#include <asm-generic/bitops/find.h>
#endif /* _M68K_BITOPS_H */