| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * quatech_daqp_cs.c |
| * Quatech DAQP PCMCIA data capture cards COMEDI client driver |
| * Copyright (C) 2000, 2003 Brent Baccala <baccala@freesoft.org> |
| * The DAQP interface code in this file is released into the public domain. |
| * |
| * COMEDI - Linux Control and Measurement Device Interface |
| * Copyright (C) 1998 David A. Schleef <ds@schleef.org> |
| * https://www.comedi.org/ |
| * |
| * Documentation for the DAQP PCMCIA cards can be found on Quatech's site: |
| * ftp://ftp.quatech.com/Manuals/daqp-208.pdf |
| * |
| * This manual is for both the DAQP-208 and the DAQP-308. |
| * |
| * What works: |
| * - A/D conversion |
| * - 8 channels |
| * - 4 gain ranges |
| * - ground ref or differential |
| * - single-shot and timed both supported |
| * - D/A conversion, single-shot |
| * - digital I/O |
| * |
| * What doesn't: |
| * - any kind of triggering - external or D/A channel 1 |
| * - the card's optional expansion board |
| * - the card's timer (for anything other than A/D conversion) |
| * - D/A update modes other than immediate (i.e, timed) |
| * - fancier timing modes |
| * - setting card's FIFO buffer thresholds to anything but default |
| */ |
| |
| /* |
| * Driver: quatech_daqp_cs |
| * Description: Quatech DAQP PCMCIA data capture cards |
| * Devices: [Quatech] DAQP-208 (daqp), DAQP-308 |
| * Author: Brent Baccala <baccala@freesoft.org> |
| * Status: works |
| */ |
| |
| #include <linux/module.h> |
| |
| #include "../comedi_pcmcia.h" |
| |
| /* |
| * Register I/O map |
| * |
| * The D/A and timer registers can be accessed with 16-bit or 8-bit I/O |
| * instructions. All other registers can only use 8-bit instructions. |
| * |
| * The FIFO and scanlist registers require two 8-bit instructions to |
| * access the 16-bit data. Data is transferred LSB then MSB. |
| */ |
| #define DAQP_AI_FIFO_REG 0x00 |
| |
| #define DAQP_SCANLIST_REG 0x01 |
| #define DAQP_SCANLIST_DIFFERENTIAL BIT(14) |
| #define DAQP_SCANLIST_GAIN(x) (((x) & 0x3) << 12) |
| #define DAQP_SCANLIST_CHANNEL(x) (((x) & 0xf) << 8) |
| #define DAQP_SCANLIST_START BIT(7) |
| #define DAQP_SCANLIST_EXT_GAIN(x) (((x) & 0x3) << 4) |
| #define DAQP_SCANLIST_EXT_CHANNEL(x) (((x) & 0xf) << 0) |
| |
| #define DAQP_CTRL_REG 0x02 |
| #define DAQP_CTRL_PACER_CLK(x) (((x) & 0x3) << 6) |
| #define DAQP_CTRL_PACER_CLK_EXT DAQP_CTRL_PACER_CLK(0) |
| #define DAQP_CTRL_PACER_CLK_5MHZ DAQP_CTRL_PACER_CLK(1) |
| #define DAQP_CTRL_PACER_CLK_1MHZ DAQP_CTRL_PACER_CLK(2) |
| #define DAQP_CTRL_PACER_CLK_100KHZ DAQP_CTRL_PACER_CLK(3) |
| #define DAQP_CTRL_EXPANSION BIT(5) |
| #define DAQP_CTRL_EOS_INT_ENA BIT(4) |
| #define DAQP_CTRL_FIFO_INT_ENA BIT(3) |
| #define DAQP_CTRL_TRIG_MODE BIT(2) /* 0=one-shot; 1=continuous */ |
| #define DAQP_CTRL_TRIG_SRC BIT(1) /* 0=internal; 1=external */ |
| #define DAQP_CTRL_TRIG_EDGE BIT(0) /* 0=rising; 1=falling */ |
| |
| #define DAQP_STATUS_REG 0x02 |
| #define DAQP_STATUS_IDLE BIT(7) |
| #define DAQP_STATUS_RUNNING BIT(6) |
| #define DAQP_STATUS_DATA_LOST BIT(5) |
| #define DAQP_STATUS_END_OF_SCAN BIT(4) |
| #define DAQP_STATUS_FIFO_THRESHOLD BIT(3) |
| #define DAQP_STATUS_FIFO_FULL BIT(2) |
| #define DAQP_STATUS_FIFO_NEARFULL BIT(1) |
| #define DAQP_STATUS_FIFO_EMPTY BIT(0) |
| /* these bits clear when the status register is read */ |
| #define DAQP_STATUS_EVENTS (DAQP_STATUS_DATA_LOST | \ |
| DAQP_STATUS_END_OF_SCAN | \ |
| DAQP_STATUS_FIFO_THRESHOLD) |
| |
| #define DAQP_DI_REG 0x03 |
| #define DAQP_DO_REG 0x03 |
| |
| #define DAQP_PACER_LOW_REG 0x04 |
| #define DAQP_PACER_MID_REG 0x05 |
| #define DAQP_PACER_HIGH_REG 0x06 |
| |
| #define DAQP_CMD_REG 0x07 |
| /* the monostable bits are self-clearing after the function is complete */ |
| #define DAQP_CMD_ARM BIT(7) /* monostable */ |
| #define DAQP_CMD_RSTF BIT(6) /* monostable */ |
| #define DAQP_CMD_RSTQ BIT(5) /* monostable */ |
| #define DAQP_CMD_STOP BIT(4) /* monostable */ |
| #define DAQP_CMD_LATCH BIT(3) /* monostable */ |
| #define DAQP_CMD_SCANRATE(x) (((x) & 0x3) << 1) |
| #define DAQP_CMD_SCANRATE_100KHZ DAQP_CMD_SCANRATE(0) |
| #define DAQP_CMD_SCANRATE_50KHZ DAQP_CMD_SCANRATE(1) |
| #define DAQP_CMD_SCANRATE_25KHZ DAQP_CMD_SCANRATE(2) |
| #define DAQP_CMD_FIFO_DATA BIT(0) |
| |
| #define DAQP_AO_REG 0x08 /* and 0x09 (16-bit) */ |
| |
| #define DAQP_TIMER_REG 0x0a /* and 0x0b (16-bit) */ |
| |
| #define DAQP_AUX_REG 0x0f |
| /* Auxiliary Control register bits (write) */ |
| #define DAQP_AUX_EXT_ANALOG_TRIG BIT(7) |
| #define DAQP_AUX_PRETRIG BIT(6) |
| #define DAQP_AUX_TIMER_INT_ENA BIT(5) |
| #define DAQP_AUX_TIMER_MODE(x) (((x) & 0x3) << 3) |
| #define DAQP_AUX_TIMER_MODE_RELOAD DAQP_AUX_TIMER_MODE(0) |
| #define DAQP_AUX_TIMER_MODE_PAUSE DAQP_AUX_TIMER_MODE(1) |
| #define DAQP_AUX_TIMER_MODE_GO DAQP_AUX_TIMER_MODE(2) |
| #define DAQP_AUX_TIMER_MODE_EXT DAQP_AUX_TIMER_MODE(3) |
| #define DAQP_AUX_TIMER_CLK_SRC_EXT BIT(2) |
| #define DAQP_AUX_DA_UPDATE(x) (((x) & 0x3) << 0) |
| #define DAQP_AUX_DA_UPDATE_DIRECT DAQP_AUX_DA_UPDATE(0) |
| #define DAQP_AUX_DA_UPDATE_OVERFLOW DAQP_AUX_DA_UPDATE(1) |
| #define DAQP_AUX_DA_UPDATE_EXTERNAL DAQP_AUX_DA_UPDATE(2) |
| #define DAQP_AUX_DA_UPDATE_PACER DAQP_AUX_DA_UPDATE(3) |
| /* Auxiliary Status register bits (read) */ |
| #define DAQP_AUX_RUNNING BIT(7) |
| #define DAQP_AUX_TRIGGERED BIT(6) |
| #define DAQP_AUX_DA_BUFFER BIT(5) |
| #define DAQP_AUX_TIMER_OVERFLOW BIT(4) |
| #define DAQP_AUX_CONVERSION BIT(3) |
| #define DAQP_AUX_DATA_LOST BIT(2) |
| #define DAQP_AUX_FIFO_NEARFULL BIT(1) |
| #define DAQP_AUX_FIFO_EMPTY BIT(0) |
| |
| #define DAQP_FIFO_SIZE 4096 |
| |
| #define DAQP_MAX_TIMER_SPEED 10000 /* 100 kHz in nanoseconds */ |
| |
| struct daqp_private { |
| unsigned int pacer_div; |
| int stop; |
| }; |
| |
| static const struct comedi_lrange range_daqp_ai = { |
| 4, { |
| BIP_RANGE(10), |
| BIP_RANGE(5), |
| BIP_RANGE(2.5), |
| BIP_RANGE(1.25) |
| } |
| }; |
| |
| static int daqp_clear_events(struct comedi_device *dev, int loops) |
| { |
| unsigned int status; |
| |
| /* |
| * Reset any pending interrupts (my card has a tendency to require |
| * multiple reads on the status register to achieve this). |
| */ |
| while (--loops) { |
| status = inb(dev->iobase + DAQP_STATUS_REG); |
| if ((status & DAQP_STATUS_EVENTS) == 0) |
| return 0; |
| } |
| dev_err(dev->class_dev, "couldn't clear events in status register\n"); |
| return -EBUSY; |
| } |
| |
| static int daqp_ai_cancel(struct comedi_device *dev, |
| struct comedi_subdevice *s) |
| { |
| struct daqp_private *devpriv = dev->private; |
| |
| if (devpriv->stop) |
| return -EIO; |
| |
| /* |
| * Stop any conversions, disable interrupts, and clear |
| * the status event flags. |
| */ |
| outb(DAQP_CMD_STOP, dev->iobase + DAQP_CMD_REG); |
| outb(0, dev->iobase + DAQP_CTRL_REG); |
| inb(dev->iobase + DAQP_STATUS_REG); |
| |
| return 0; |
| } |
| |
| static unsigned int daqp_ai_get_sample(struct comedi_device *dev, |
| struct comedi_subdevice *s) |
| { |
| unsigned int val; |
| |
| /* |
| * Get a two's complement sample from the FIFO and |
| * return the munged offset binary value. |
| */ |
| val = inb(dev->iobase + DAQP_AI_FIFO_REG); |
| val |= inb(dev->iobase + DAQP_AI_FIFO_REG) << 8; |
| return comedi_offset_munge(s, val); |
| } |
| |
| static irqreturn_t daqp_interrupt(int irq, void *dev_id) |
| { |
| struct comedi_device *dev = dev_id; |
| struct comedi_subdevice *s = dev->read_subdev; |
| struct comedi_cmd *cmd = &s->async->cmd; |
| int loop_limit = 10000; |
| int status; |
| |
| if (!dev->attached) |
| return IRQ_NONE; |
| |
| status = inb(dev->iobase + DAQP_STATUS_REG); |
| if (!(status & DAQP_STATUS_EVENTS)) |
| return IRQ_NONE; |
| |
| while (!(status & DAQP_STATUS_FIFO_EMPTY)) { |
| unsigned short data; |
| |
| if (status & DAQP_STATUS_DATA_LOST) { |
| s->async->events |= COMEDI_CB_OVERFLOW; |
| dev_warn(dev->class_dev, "data lost\n"); |
| break; |
| } |
| |
| data = daqp_ai_get_sample(dev, s); |
| comedi_buf_write_samples(s, &data, 1); |
| |
| if (cmd->stop_src == TRIG_COUNT && |
| s->async->scans_done >= cmd->stop_arg) { |
| s->async->events |= COMEDI_CB_EOA; |
| break; |
| } |
| |
| if ((loop_limit--) <= 0) |
| break; |
| |
| status = inb(dev->iobase + DAQP_STATUS_REG); |
| } |
| |
| if (loop_limit <= 0) { |
| dev_warn(dev->class_dev, |
| "loop_limit reached in %s()\n", __func__); |
| s->async->events |= COMEDI_CB_ERROR; |
| } |
| |
| comedi_handle_events(dev, s); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void daqp_ai_set_one_scanlist_entry(struct comedi_device *dev, |
| unsigned int chanspec, |
| int start) |
| { |
| unsigned int chan = CR_CHAN(chanspec); |
| unsigned int range = CR_RANGE(chanspec); |
| unsigned int aref = CR_AREF(chanspec); |
| unsigned int val; |
| |
| val = DAQP_SCANLIST_CHANNEL(chan) | DAQP_SCANLIST_GAIN(range); |
| |
| if (aref == AREF_DIFF) |
| val |= DAQP_SCANLIST_DIFFERENTIAL; |
| |
| if (start) |
| val |= DAQP_SCANLIST_START; |
| |
| outb(val & 0xff, dev->iobase + DAQP_SCANLIST_REG); |
| outb((val >> 8) & 0xff, dev->iobase + DAQP_SCANLIST_REG); |
| } |
| |
| static int daqp_ai_eos(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, |
| unsigned long context) |
| { |
| unsigned int status; |
| |
| status = inb(dev->iobase + DAQP_AUX_REG); |
| if (status & DAQP_AUX_CONVERSION) |
| return 0; |
| return -EBUSY; |
| } |
| |
| static int daqp_ai_insn_read(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, |
| unsigned int *data) |
| { |
| struct daqp_private *devpriv = dev->private; |
| int ret = 0; |
| int i; |
| |
| if (devpriv->stop) |
| return -EIO; |
| |
| outb(0, dev->iobase + DAQP_AUX_REG); |
| |
| /* Reset scan list queue */ |
| outb(DAQP_CMD_RSTQ, dev->iobase + DAQP_CMD_REG); |
| |
| /* Program one scan list entry */ |
| daqp_ai_set_one_scanlist_entry(dev, insn->chanspec, 1); |
| |
| /* Reset data FIFO (see page 28 of DAQP User's Manual) */ |
| outb(DAQP_CMD_RSTF, dev->iobase + DAQP_CMD_REG); |
| |
| /* Set trigger - one-shot, internal, no interrupts */ |
| outb(DAQP_CTRL_PACER_CLK_100KHZ, dev->iobase + DAQP_CTRL_REG); |
| |
| ret = daqp_clear_events(dev, 10000); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < insn->n; i++) { |
| /* Start conversion */ |
| outb(DAQP_CMD_ARM | DAQP_CMD_FIFO_DATA, |
| dev->iobase + DAQP_CMD_REG); |
| |
| ret = comedi_timeout(dev, s, insn, daqp_ai_eos, 0); |
| if (ret) |
| break; |
| |
| /* clear the status event flags */ |
| inb(dev->iobase + DAQP_STATUS_REG); |
| |
| data[i] = daqp_ai_get_sample(dev, s); |
| } |
| |
| /* stop any conversions and clear the status event flags */ |
| outb(DAQP_CMD_STOP, dev->iobase + DAQP_CMD_REG); |
| inb(dev->iobase + DAQP_STATUS_REG); |
| |
| return ret ? ret : insn->n; |
| } |
| |
| /* This function converts ns nanoseconds to a counter value suitable |
| * for programming the device. We always use the DAQP's 5 MHz clock, |
| * which with its 24-bit counter, allows values up to 84 seconds. |
| * Also, the function adjusts ns so that it cooresponds to the actual |
| * time that the device will use. |
| */ |
| |
| static int daqp_ns_to_timer(unsigned int *ns, unsigned int flags) |
| { |
| int timer; |
| |
| timer = *ns / 200; |
| *ns = timer * 200; |
| |
| return timer; |
| } |
| |
| static void daqp_set_pacer(struct comedi_device *dev, unsigned int val) |
| { |
| outb(val & 0xff, dev->iobase + DAQP_PACER_LOW_REG); |
| outb((val >> 8) & 0xff, dev->iobase + DAQP_PACER_MID_REG); |
| outb((val >> 16) & 0xff, dev->iobase + DAQP_PACER_HIGH_REG); |
| } |
| |
| static int daqp_ai_cmdtest(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_cmd *cmd) |
| { |
| struct daqp_private *devpriv = dev->private; |
| int err = 0; |
| unsigned int arg; |
| |
| /* Step 1 : check if triggers are trivially valid */ |
| |
| err |= comedi_check_trigger_src(&cmd->start_src, TRIG_NOW); |
| err |= comedi_check_trigger_src(&cmd->scan_begin_src, |
| TRIG_TIMER | TRIG_FOLLOW); |
| err |= comedi_check_trigger_src(&cmd->convert_src, |
| TRIG_TIMER | TRIG_NOW); |
| err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT); |
| err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE); |
| |
| if (err) |
| return 1; |
| |
| /* Step 2a : make sure trigger sources are unique */ |
| |
| err |= comedi_check_trigger_is_unique(cmd->scan_begin_src); |
| err |= comedi_check_trigger_is_unique(cmd->convert_src); |
| err |= comedi_check_trigger_is_unique(cmd->stop_src); |
| |
| /* Step 2b : and mutually compatible */ |
| |
| /* the async command requires a pacer */ |
| if (cmd->scan_begin_src != TRIG_TIMER && cmd->convert_src != TRIG_TIMER) |
| err |= -EINVAL; |
| |
| if (err) |
| return 2; |
| |
| /* Step 3: check if arguments are trivially valid */ |
| |
| err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0); |
| |
| err |= comedi_check_trigger_arg_min(&cmd->chanlist_len, 1); |
| err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg, |
| cmd->chanlist_len); |
| |
| if (cmd->scan_begin_src == TRIG_TIMER) |
| err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg, |
| DAQP_MAX_TIMER_SPEED); |
| |
| if (cmd->convert_src == TRIG_TIMER) { |
| err |= comedi_check_trigger_arg_min(&cmd->convert_arg, |
| DAQP_MAX_TIMER_SPEED); |
| |
| if (cmd->scan_begin_src == TRIG_TIMER) { |
| /* |
| * If both scan_begin and convert are both timer |
| * values, the only way that can make sense is if |
| * the scan time is the number of conversions times |
| * the convert time. |
| */ |
| arg = cmd->convert_arg * cmd->scan_end_arg; |
| err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, |
| arg); |
| } |
| } |
| |
| if (cmd->stop_src == TRIG_COUNT) |
| err |= comedi_check_trigger_arg_max(&cmd->stop_arg, 0x00ffffff); |
| else /* TRIG_NONE */ |
| err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0); |
| |
| if (err) |
| return 3; |
| |
| /* step 4: fix up any arguments */ |
| |
| if (cmd->convert_src == TRIG_TIMER) { |
| arg = cmd->convert_arg; |
| devpriv->pacer_div = daqp_ns_to_timer(&arg, cmd->flags); |
| err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg); |
| } else if (cmd->scan_begin_src == TRIG_TIMER) { |
| arg = cmd->scan_begin_arg; |
| devpriv->pacer_div = daqp_ns_to_timer(&arg, cmd->flags); |
| err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg); |
| } |
| |
| if (err) |
| return 4; |
| |
| return 0; |
| } |
| |
| static int daqp_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s) |
| { |
| struct daqp_private *devpriv = dev->private; |
| struct comedi_cmd *cmd = &s->async->cmd; |
| int scanlist_start_on_every_entry; |
| int threshold; |
| int ret; |
| int i; |
| |
| if (devpriv->stop) |
| return -EIO; |
| |
| outb(0, dev->iobase + DAQP_AUX_REG); |
| |
| /* Reset scan list queue */ |
| outb(DAQP_CMD_RSTQ, dev->iobase + DAQP_CMD_REG); |
| |
| /* Program pacer clock |
| * |
| * There's two modes we can operate in. If convert_src is |
| * TRIG_TIMER, then convert_arg specifies the time between |
| * each conversion, so we program the pacer clock to that |
| * frequency and set the SCANLIST_START bit on every scanlist |
| * entry. Otherwise, convert_src is TRIG_NOW, which means |
| * we want the fastest possible conversions, scan_begin_src |
| * is TRIG_TIMER, and scan_begin_arg specifies the time between |
| * each scan, so we program the pacer clock to this frequency |
| * and only set the SCANLIST_START bit on the first entry. |
| */ |
| daqp_set_pacer(dev, devpriv->pacer_div); |
| |
| if (cmd->convert_src == TRIG_TIMER) |
| scanlist_start_on_every_entry = 1; |
| else |
| scanlist_start_on_every_entry = 0; |
| |
| /* Program scan list */ |
| for (i = 0; i < cmd->chanlist_len; i++) { |
| int start = (i == 0 || scanlist_start_on_every_entry); |
| |
| daqp_ai_set_one_scanlist_entry(dev, cmd->chanlist[i], start); |
| } |
| |
| /* Now it's time to program the FIFO threshold, basically the |
| * number of samples the card will buffer before it interrupts |
| * the CPU. |
| * |
| * If we don't have a stop count, then use half the size of |
| * the FIFO (the manufacturer's recommendation). Consider |
| * that the FIFO can hold 2K samples (4K bytes). With the |
| * threshold set at half the FIFO size, we have a margin of |
| * error of 1024 samples. At the chip's maximum sample rate |
| * of 100,000 Hz, the CPU would have to delay interrupt |
| * service for a full 10 milliseconds in order to lose data |
| * here (as opposed to higher up in the kernel). I've never |
| * seen it happen. However, for slow sample rates it may |
| * buffer too much data and introduce too much delay for the |
| * user application. |
| * |
| * If we have a stop count, then things get more interesting. |
| * If the stop count is less than the FIFO size (actually |
| * three-quarters of the FIFO size - see below), we just use |
| * the stop count itself as the threshold, the card interrupts |
| * us when that many samples have been taken, and we kill the |
| * acquisition at that point and are done. If the stop count |
| * is larger than that, then we divide it by 2 until it's less |
| * than three quarters of the FIFO size (we always leave the |
| * top quarter of the FIFO as protection against sluggish CPU |
| * interrupt response) and use that as the threshold. So, if |
| * the stop count is 4000 samples, we divide by two twice to |
| * get 1000 samples, use that as the threshold, take four |
| * interrupts to get our 4000 samples and are done. |
| * |
| * The algorithm could be more clever. For example, if 81000 |
| * samples are requested, we could set the threshold to 1500 |
| * samples and take 54 interrupts to get 81000. But 54 isn't |
| * a power of two, so this algorithm won't find that option. |
| * Instead, it'll set the threshold at 1266 and take 64 |
| * interrupts to get 81024 samples, of which the last 24 will |
| * be discarded... but we won't get the last interrupt until |
| * they've been collected. To find the first option, the |
| * computer could look at the prime decomposition of the |
| * sample count (81000 = 3^4 * 5^3 * 2^3) and factor it into a |
| * threshold (1500 = 3 * 5^3 * 2^2) and an interrupt count (54 |
| * = 3^3 * 2). Hmmm... a one-line while loop or prime |
| * decomposition of integers... I'll leave it the way it is. |
| * |
| * I'll also note a mini-race condition before ignoring it in |
| * the code. Let's say we're taking 4000 samples, as before. |
| * After 1000 samples, we get an interrupt. But before that |
| * interrupt is completely serviced, another sample is taken |
| * and loaded into the FIFO. Since the interrupt handler |
| * empties the FIFO before returning, it will read 1001 samples. |
| * If that happens four times, we'll end up taking 4004 samples, |
| * not 4000. The interrupt handler will discard the extra four |
| * samples (by halting the acquisition with four samples still |
| * in the FIFO), but we will have to wait for them. |
| * |
| * In short, this code works pretty well, but for either of |
| * the two reasons noted, might end up waiting for a few more |
| * samples than actually requested. Shouldn't make too much |
| * of a difference. |
| */ |
| |
| /* Save away the number of conversions we should perform, and |
| * compute the FIFO threshold (in bytes, not samples - that's |
| * why we multiple devpriv->count by 2 = sizeof(sample)) |
| */ |
| |
| if (cmd->stop_src == TRIG_COUNT) { |
| unsigned long long nsamples; |
| unsigned long long nbytes; |
| |
| nsamples = (unsigned long long)cmd->stop_arg * |
| cmd->scan_end_arg; |
| nbytes = nsamples * comedi_bytes_per_sample(s); |
| while (nbytes > DAQP_FIFO_SIZE * 3 / 4) |
| nbytes /= 2; |
| threshold = nbytes; |
| } else { |
| threshold = DAQP_FIFO_SIZE / 2; |
| } |
| |
| /* Reset data FIFO (see page 28 of DAQP User's Manual) */ |
| |
| outb(DAQP_CMD_RSTF, dev->iobase + DAQP_CMD_REG); |
| |
| /* Set FIFO threshold. First two bytes are near-empty |
| * threshold, which is unused; next two bytes are near-full |
| * threshold. We computed the number of bytes we want in the |
| * FIFO when the interrupt is generated, what the card wants |
| * is actually the number of available bytes left in the FIFO |
| * when the interrupt is to happen. |
| */ |
| |
| outb(0x00, dev->iobase + DAQP_AI_FIFO_REG); |
| outb(0x00, dev->iobase + DAQP_AI_FIFO_REG); |
| |
| outb((DAQP_FIFO_SIZE - threshold) & 0xff, |
| dev->iobase + DAQP_AI_FIFO_REG); |
| outb((DAQP_FIFO_SIZE - threshold) >> 8, dev->iobase + DAQP_AI_FIFO_REG); |
| |
| /* Set trigger - continuous, internal */ |
| outb(DAQP_CTRL_TRIG_MODE | DAQP_CTRL_PACER_CLK_5MHZ | |
| DAQP_CTRL_FIFO_INT_ENA, dev->iobase + DAQP_CTRL_REG); |
| |
| ret = daqp_clear_events(dev, 100); |
| if (ret) |
| return ret; |
| |
| /* Start conversion */ |
| outb(DAQP_CMD_ARM | DAQP_CMD_FIFO_DATA, dev->iobase + DAQP_CMD_REG); |
| |
| return 0; |
| } |
| |
| static int daqp_ao_empty(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, |
| unsigned long context) |
| { |
| unsigned int status; |
| |
| status = inb(dev->iobase + DAQP_AUX_REG); |
| if ((status & DAQP_AUX_DA_BUFFER) == 0) |
| return 0; |
| return -EBUSY; |
| } |
| |
| static int daqp_ao_insn_write(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, |
| unsigned int *data) |
| { |
| struct daqp_private *devpriv = dev->private; |
| unsigned int chan = CR_CHAN(insn->chanspec); |
| int i; |
| |
| if (devpriv->stop) |
| return -EIO; |
| |
| /* Make sure D/A update mode is direct update */ |
| outb(0, dev->iobase + DAQP_AUX_REG); |
| |
| for (i = 0; i < insn->n; i++) { |
| unsigned int val = data[i]; |
| int ret; |
| |
| /* D/A transfer rate is about 8ms */ |
| ret = comedi_timeout(dev, s, insn, daqp_ao_empty, 0); |
| if (ret) |
| return ret; |
| |
| /* write the two's complement value to the channel */ |
| outw((chan << 12) | comedi_offset_munge(s, val), |
| dev->iobase + DAQP_AO_REG); |
| |
| s->readback[chan] = val; |
| } |
| |
| return insn->n; |
| } |
| |
| static int daqp_di_insn_bits(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, |
| unsigned int *data) |
| { |
| struct daqp_private *devpriv = dev->private; |
| |
| if (devpriv->stop) |
| return -EIO; |
| |
| data[0] = inb(dev->iobase + DAQP_DI_REG); |
| |
| return insn->n; |
| } |
| |
| static int daqp_do_insn_bits(struct comedi_device *dev, |
| struct comedi_subdevice *s, |
| struct comedi_insn *insn, |
| unsigned int *data) |
| { |
| struct daqp_private *devpriv = dev->private; |
| |
| if (devpriv->stop) |
| return -EIO; |
| |
| if (comedi_dio_update_state(s, data)) |
| outb(s->state, dev->iobase + DAQP_DO_REG); |
| |
| data[1] = s->state; |
| |
| return insn->n; |
| } |
| |
| static int daqp_auto_attach(struct comedi_device *dev, |
| unsigned long context) |
| { |
| struct pcmcia_device *link = comedi_to_pcmcia_dev(dev); |
| struct daqp_private *devpriv; |
| struct comedi_subdevice *s; |
| int ret; |
| |
| devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv)); |
| if (!devpriv) |
| return -ENOMEM; |
| |
| link->config_flags |= CONF_AUTO_SET_IO | CONF_ENABLE_IRQ; |
| ret = comedi_pcmcia_enable(dev, NULL); |
| if (ret) |
| return ret; |
| dev->iobase = link->resource[0]->start; |
| |
| link->priv = dev; |
| ret = pcmcia_request_irq(link, daqp_interrupt); |
| if (ret == 0) |
| dev->irq = link->irq; |
| |
| ret = comedi_alloc_subdevices(dev, 4); |
| if (ret) |
| return ret; |
| |
| s = &dev->subdevices[0]; |
| s->type = COMEDI_SUBD_AI; |
| s->subdev_flags = SDF_READABLE | SDF_GROUND | SDF_DIFF; |
| s->n_chan = 8; |
| s->maxdata = 0xffff; |
| s->range_table = &range_daqp_ai; |
| s->insn_read = daqp_ai_insn_read; |
| if (dev->irq) { |
| dev->read_subdev = s; |
| s->subdev_flags |= SDF_CMD_READ; |
| s->len_chanlist = 2048; |
| s->do_cmdtest = daqp_ai_cmdtest; |
| s->do_cmd = daqp_ai_cmd; |
| s->cancel = daqp_ai_cancel; |
| } |
| |
| s = &dev->subdevices[1]; |
| s->type = COMEDI_SUBD_AO; |
| s->subdev_flags = SDF_WRITABLE; |
| s->n_chan = 2; |
| s->maxdata = 0x0fff; |
| s->range_table = &range_bipolar5; |
| s->insn_write = daqp_ao_insn_write; |
| |
| ret = comedi_alloc_subdev_readback(s); |
| if (ret) |
| return ret; |
| |
| /* |
| * Digital Input subdevice |
| * NOTE: The digital input lines are shared: |
| * |
| * Chan Normal Mode Expansion Mode |
| * ---- ----------------- ---------------------------- |
| * 0 DI0, ext. trigger Same as normal mode |
| * 1 DI1 External gain select, lo bit |
| * 2 DI2, ext. clock Same as normal mode |
| * 3 DI3 External gain select, hi bit |
| */ |
| s = &dev->subdevices[2]; |
| s->type = COMEDI_SUBD_DI; |
| s->subdev_flags = SDF_READABLE; |
| s->n_chan = 4; |
| s->maxdata = 1; |
| s->insn_bits = daqp_di_insn_bits; |
| |
| /* |
| * Digital Output subdevice |
| * NOTE: The digital output lines share the same pins on the |
| * interface connector as the four external channel selection |
| * bits. If expansion mode is used the digital outputs do not |
| * work. |
| */ |
| s = &dev->subdevices[3]; |
| s->type = COMEDI_SUBD_DO; |
| s->subdev_flags = SDF_WRITABLE; |
| s->n_chan = 4; |
| s->maxdata = 1; |
| s->insn_bits = daqp_do_insn_bits; |
| |
| return 0; |
| } |
| |
| static struct comedi_driver driver_daqp = { |
| .driver_name = "quatech_daqp_cs", |
| .module = THIS_MODULE, |
| .auto_attach = daqp_auto_attach, |
| .detach = comedi_pcmcia_disable, |
| }; |
| |
| static int daqp_cs_suspend(struct pcmcia_device *link) |
| { |
| struct comedi_device *dev = link->priv; |
| struct daqp_private *devpriv = dev ? dev->private : NULL; |
| |
| /* Mark the device as stopped, to block IO until later */ |
| if (devpriv) |
| devpriv->stop = 1; |
| |
| return 0; |
| } |
| |
| static int daqp_cs_resume(struct pcmcia_device *link) |
| { |
| struct comedi_device *dev = link->priv; |
| struct daqp_private *devpriv = dev ? dev->private : NULL; |
| |
| if (devpriv) |
| devpriv->stop = 0; |
| |
| return 0; |
| } |
| |
| static int daqp_cs_attach(struct pcmcia_device *link) |
| { |
| return comedi_pcmcia_auto_config(link, &driver_daqp); |
| } |
| |
| static const struct pcmcia_device_id daqp_cs_id_table[] = { |
| PCMCIA_DEVICE_MANF_CARD(0x0137, 0x0027), |
| PCMCIA_DEVICE_NULL |
| }; |
| MODULE_DEVICE_TABLE(pcmcia, daqp_cs_id_table); |
| |
| static struct pcmcia_driver daqp_cs_driver = { |
| .name = "quatech_daqp_cs", |
| .owner = THIS_MODULE, |
| .id_table = daqp_cs_id_table, |
| .probe = daqp_cs_attach, |
| .remove = comedi_pcmcia_auto_unconfig, |
| .suspend = daqp_cs_suspend, |
| .resume = daqp_cs_resume, |
| }; |
| module_comedi_pcmcia_driver(driver_daqp, daqp_cs_driver); |
| |
| MODULE_DESCRIPTION("Comedi driver for Quatech DAQP PCMCIA data capture cards"); |
| MODULE_AUTHOR("Brent Baccala <baccala@freesoft.org>"); |
| MODULE_LICENSE("GPL"); |