blob: 189a7438b29c46166cc80985d04a4dc9efb830d9 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Freescale FSL CAAM support for crypto API over QI backend.
* Based on caamalg.c
*
* Copyright 2013-2016 Freescale Semiconductor, Inc.
* Copyright 2016-2019 NXP
*/
#include "compat.h"
#include "ctrl.h"
#include "regs.h"
#include "intern.h"
#include "desc_constr.h"
#include "error.h"
#include "sg_sw_qm.h"
#include "key_gen.h"
#include "qi.h"
#include "jr.h"
#include "caamalg_desc.h"
#include <crypto/xts.h>
#include <asm/unaligned.h>
/*
* crypto alg
*/
#define CAAM_CRA_PRIORITY 2000
/* max key is sum of AES_MAX_KEY_SIZE, max split key size */
#define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + \
SHA512_DIGEST_SIZE * 2)
#define DESC_MAX_USED_BYTES (DESC_QI_AEAD_GIVENC_LEN + \
CAAM_MAX_KEY_SIZE)
#define DESC_MAX_USED_LEN (DESC_MAX_USED_BYTES / CAAM_CMD_SZ)
struct caam_alg_entry {
int class1_alg_type;
int class2_alg_type;
bool rfc3686;
bool geniv;
bool nodkp;
};
struct caam_aead_alg {
struct aead_alg aead;
struct caam_alg_entry caam;
bool registered;
};
struct caam_skcipher_alg {
struct skcipher_alg skcipher;
struct caam_alg_entry caam;
bool registered;
};
/*
* per-session context
*/
struct caam_ctx {
struct device *jrdev;
u32 sh_desc_enc[DESC_MAX_USED_LEN];
u32 sh_desc_dec[DESC_MAX_USED_LEN];
u8 key[CAAM_MAX_KEY_SIZE];
dma_addr_t key_dma;
enum dma_data_direction dir;
struct alginfo adata;
struct alginfo cdata;
unsigned int authsize;
struct device *qidev;
spinlock_t lock; /* Protects multiple init of driver context */
struct caam_drv_ctx *drv_ctx[NUM_OP];
bool xts_key_fallback;
struct crypto_skcipher *fallback;
};
struct caam_skcipher_req_ctx {
struct skcipher_request fallback_req;
};
static int aead_set_sh_desc(struct crypto_aead *aead)
{
struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead),
typeof(*alg), aead);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
u32 ctx1_iv_off = 0;
u32 *nonce = NULL;
unsigned int data_len[2];
u32 inl_mask;
const bool ctr_mode = ((ctx->cdata.algtype & OP_ALG_AAI_MASK) ==
OP_ALG_AAI_CTR_MOD128);
const bool is_rfc3686 = alg->caam.rfc3686;
struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctx->jrdev->parent);
if (!ctx->cdata.keylen || !ctx->authsize)
return 0;
/*
* AES-CTR needs to load IV in CONTEXT1 reg
* at an offset of 128bits (16bytes)
* CONTEXT1[255:128] = IV
*/
if (ctr_mode)
ctx1_iv_off = 16;
/*
* RFC3686 specific:
* CONTEXT1[255:128] = {NONCE, IV, COUNTER}
*/
if (is_rfc3686) {
ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE;
nonce = (u32 *)((void *)ctx->key + ctx->adata.keylen_pad +
ctx->cdata.keylen - CTR_RFC3686_NONCE_SIZE);
}
/*
* In case |user key| > |derived key|, using DKP<imm,imm> would result
* in invalid opcodes (last bytes of user key) in the resulting
* descriptor. Use DKP<ptr,imm> instead => both virtual and dma key
* addresses are needed.
*/
ctx->adata.key_virt = ctx->key;
ctx->adata.key_dma = ctx->key_dma;
ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad;
ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad;
data_len[0] = ctx->adata.keylen_pad;
data_len[1] = ctx->cdata.keylen;
if (alg->caam.geniv)
goto skip_enc;
/* aead_encrypt shared descriptor */
if (desc_inline_query(DESC_QI_AEAD_ENC_LEN +
(is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
DESC_JOB_IO_LEN, data_len, &inl_mask,
ARRAY_SIZE(data_len)) < 0)
return -EINVAL;
ctx->adata.key_inline = !!(inl_mask & 1);
ctx->cdata.key_inline = !!(inl_mask & 2);
cnstr_shdsc_aead_encap(ctx->sh_desc_enc, &ctx->cdata, &ctx->adata,
ivsize, ctx->authsize, is_rfc3686, nonce,
ctx1_iv_off, true, ctrlpriv->era);
skip_enc:
/* aead_decrypt shared descriptor */
if (desc_inline_query(DESC_QI_AEAD_DEC_LEN +
(is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
DESC_JOB_IO_LEN, data_len, &inl_mask,
ARRAY_SIZE(data_len)) < 0)
return -EINVAL;
ctx->adata.key_inline = !!(inl_mask & 1);
ctx->cdata.key_inline = !!(inl_mask & 2);
cnstr_shdsc_aead_decap(ctx->sh_desc_dec, &ctx->cdata, &ctx->adata,
ivsize, ctx->authsize, alg->caam.geniv,
is_rfc3686, nonce, ctx1_iv_off, true,
ctrlpriv->era);
if (!alg->caam.geniv)
goto skip_givenc;
/* aead_givencrypt shared descriptor */
if (desc_inline_query(DESC_QI_AEAD_GIVENC_LEN +
(is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
DESC_JOB_IO_LEN, data_len, &inl_mask,
ARRAY_SIZE(data_len)) < 0)
return -EINVAL;
ctx->adata.key_inline = !!(inl_mask & 1);
ctx->cdata.key_inline = !!(inl_mask & 2);
cnstr_shdsc_aead_givencap(ctx->sh_desc_enc, &ctx->cdata, &ctx->adata,
ivsize, ctx->authsize, is_rfc3686, nonce,
ctx1_iv_off, true, ctrlpriv->era);
skip_givenc:
return 0;
}
static int aead_setauthsize(struct crypto_aead *authenc, unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
ctx->authsize = authsize;
aead_set_sh_desc(authenc);
return 0;
}
static int aead_setkey(struct crypto_aead *aead, const u8 *key,
unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
struct caam_drv_private *ctrlpriv = dev_get_drvdata(jrdev->parent);
struct crypto_authenc_keys keys;
int ret = 0;
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
goto badkey;
dev_dbg(jrdev, "keylen %d enckeylen %d authkeylen %d\n",
keys.authkeylen + keys.enckeylen, keys.enckeylen,
keys.authkeylen);
print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
/*
* If DKP is supported, use it in the shared descriptor to generate
* the split key.
*/
if (ctrlpriv->era >= 6) {
ctx->adata.keylen = keys.authkeylen;
ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype &
OP_ALG_ALGSEL_MASK);
if (ctx->adata.keylen_pad + keys.enckeylen > CAAM_MAX_KEY_SIZE)
goto badkey;
memcpy(ctx->key, keys.authkey, keys.authkeylen);
memcpy(ctx->key + ctx->adata.keylen_pad, keys.enckey,
keys.enckeylen);
dma_sync_single_for_device(jrdev->parent, ctx->key_dma,
ctx->adata.keylen_pad +
keys.enckeylen, ctx->dir);
goto skip_split_key;
}
ret = gen_split_key(jrdev, ctx->key, &ctx->adata, keys.authkey,
keys.authkeylen, CAAM_MAX_KEY_SIZE -
keys.enckeylen);
if (ret)
goto badkey;
/* postpend encryption key to auth split key */
memcpy(ctx->key + ctx->adata.keylen_pad, keys.enckey, keys.enckeylen);
dma_sync_single_for_device(jrdev->parent, ctx->key_dma,
ctx->adata.keylen_pad + keys.enckeylen,
ctx->dir);
print_hex_dump_debug("ctx.key@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
ctx->adata.keylen_pad + keys.enckeylen, 1);
skip_split_key:
ctx->cdata.keylen = keys.enckeylen;
ret = aead_set_sh_desc(aead);
if (ret)
goto badkey;
/* Now update the driver contexts with the new shared descriptor */
if (ctx->drv_ctx[ENCRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
ctx->sh_desc_enc);
if (ret) {
dev_err(jrdev, "driver enc context update failed\n");
goto badkey;
}
}
if (ctx->drv_ctx[DECRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
ctx->sh_desc_dec);
if (ret) {
dev_err(jrdev, "driver dec context update failed\n");
goto badkey;
}
}
memzero_explicit(&keys, sizeof(keys));
return ret;
badkey:
memzero_explicit(&keys, sizeof(keys));
return -EINVAL;
}
static int des3_aead_setkey(struct crypto_aead *aead, const u8 *key,
unsigned int keylen)
{
struct crypto_authenc_keys keys;
int err;
err = crypto_authenc_extractkeys(&keys, key, keylen);
if (unlikely(err))
return err;
err = verify_aead_des3_key(aead, keys.enckey, keys.enckeylen) ?:
aead_setkey(aead, key, keylen);
memzero_explicit(&keys, sizeof(keys));
return err;
}
static int gcm_set_sh_desc(struct crypto_aead *aead)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
ctx->cdata.keylen;
if (!ctx->cdata.keylen || !ctx->authsize)
return 0;
/*
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_GCM_ENC_LEN) {
ctx->cdata.key_inline = true;
ctx->cdata.key_virt = ctx->key;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
cnstr_shdsc_gcm_encap(ctx->sh_desc_enc, &ctx->cdata, ivsize,
ctx->authsize, true);
/*
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_GCM_DEC_LEN) {
ctx->cdata.key_inline = true;
ctx->cdata.key_virt = ctx->key;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
cnstr_shdsc_gcm_decap(ctx->sh_desc_dec, &ctx->cdata, ivsize,
ctx->authsize, true);
return 0;
}
static int gcm_setauthsize(struct crypto_aead *authenc, unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
int err;
err = crypto_gcm_check_authsize(authsize);
if (err)
return err;
ctx->authsize = authsize;
gcm_set_sh_desc(authenc);
return 0;
}
static int gcm_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
int ret;
ret = aes_check_keylen(keylen);
if (ret)
return ret;
print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
memcpy(ctx->key, key, keylen);
dma_sync_single_for_device(jrdev->parent, ctx->key_dma, keylen,
ctx->dir);
ctx->cdata.keylen = keylen;
ret = gcm_set_sh_desc(aead);
if (ret)
return ret;
/* Now update the driver contexts with the new shared descriptor */
if (ctx->drv_ctx[ENCRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
ctx->sh_desc_enc);
if (ret) {
dev_err(jrdev, "driver enc context update failed\n");
return ret;
}
}
if (ctx->drv_ctx[DECRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
ctx->sh_desc_dec);
if (ret) {
dev_err(jrdev, "driver dec context update failed\n");
return ret;
}
}
return 0;
}
static int rfc4106_set_sh_desc(struct crypto_aead *aead)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
ctx->cdata.keylen;
if (!ctx->cdata.keylen || !ctx->authsize)
return 0;
ctx->cdata.key_virt = ctx->key;
/*
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_RFC4106_ENC_LEN) {
ctx->cdata.key_inline = true;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
cnstr_shdsc_rfc4106_encap(ctx->sh_desc_enc, &ctx->cdata, ivsize,
ctx->authsize, true);
/*
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_RFC4106_DEC_LEN) {
ctx->cdata.key_inline = true;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
cnstr_shdsc_rfc4106_decap(ctx->sh_desc_dec, &ctx->cdata, ivsize,
ctx->authsize, true);
return 0;
}
static int rfc4106_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
int err;
err = crypto_rfc4106_check_authsize(authsize);
if (err)
return err;
ctx->authsize = authsize;
rfc4106_set_sh_desc(authenc);
return 0;
}
static int rfc4106_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
int ret;
ret = aes_check_keylen(keylen - 4);
if (ret)
return ret;
print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
memcpy(ctx->key, key, keylen);
/*
* The last four bytes of the key material are used as the salt value
* in the nonce. Update the AES key length.
*/
ctx->cdata.keylen = keylen - 4;
dma_sync_single_for_device(jrdev->parent, ctx->key_dma,
ctx->cdata.keylen, ctx->dir);
ret = rfc4106_set_sh_desc(aead);
if (ret)
return ret;
/* Now update the driver contexts with the new shared descriptor */
if (ctx->drv_ctx[ENCRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
ctx->sh_desc_enc);
if (ret) {
dev_err(jrdev, "driver enc context update failed\n");
return ret;
}
}
if (ctx->drv_ctx[DECRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
ctx->sh_desc_dec);
if (ret) {
dev_err(jrdev, "driver dec context update failed\n");
return ret;
}
}
return 0;
}
static int rfc4543_set_sh_desc(struct crypto_aead *aead)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
unsigned int ivsize = crypto_aead_ivsize(aead);
int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
ctx->cdata.keylen;
if (!ctx->cdata.keylen || !ctx->authsize)
return 0;
ctx->cdata.key_virt = ctx->key;
/*
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_RFC4543_ENC_LEN) {
ctx->cdata.key_inline = true;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
cnstr_shdsc_rfc4543_encap(ctx->sh_desc_enc, &ctx->cdata, ivsize,
ctx->authsize, true);
/*
* Job Descriptor and Shared Descriptor
* must fit into the 64-word Descriptor h/w Buffer
*/
if (rem_bytes >= DESC_QI_RFC4543_DEC_LEN) {
ctx->cdata.key_inline = true;
} else {
ctx->cdata.key_inline = false;
ctx->cdata.key_dma = ctx->key_dma;
}
cnstr_shdsc_rfc4543_decap(ctx->sh_desc_dec, &ctx->cdata, ivsize,
ctx->authsize, true);
return 0;
}
static int rfc4543_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
if (authsize != 16)
return -EINVAL;
ctx->authsize = authsize;
rfc4543_set_sh_desc(authenc);
return 0;
}
static int rfc4543_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
int ret;
ret = aes_check_keylen(keylen - 4);
if (ret)
return ret;
print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
memcpy(ctx->key, key, keylen);
/*
* The last four bytes of the key material are used as the salt value
* in the nonce. Update the AES key length.
*/
ctx->cdata.keylen = keylen - 4;
dma_sync_single_for_device(jrdev->parent, ctx->key_dma,
ctx->cdata.keylen, ctx->dir);
ret = rfc4543_set_sh_desc(aead);
if (ret)
return ret;
/* Now update the driver contexts with the new shared descriptor */
if (ctx->drv_ctx[ENCRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
ctx->sh_desc_enc);
if (ret) {
dev_err(jrdev, "driver enc context update failed\n");
return ret;
}
}
if (ctx->drv_ctx[DECRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
ctx->sh_desc_dec);
if (ret) {
dev_err(jrdev, "driver dec context update failed\n");
return ret;
}
}
return 0;
}
static int skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key,
unsigned int keylen, const u32 ctx1_iv_off)
{
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct caam_skcipher_alg *alg =
container_of(crypto_skcipher_alg(skcipher), typeof(*alg),
skcipher);
struct device *jrdev = ctx->jrdev;
unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
const bool is_rfc3686 = alg->caam.rfc3686;
int ret = 0;
print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
ctx->cdata.keylen = keylen;
ctx->cdata.key_virt = key;
ctx->cdata.key_inline = true;
/* skcipher encrypt, decrypt shared descriptors */
cnstr_shdsc_skcipher_encap(ctx->sh_desc_enc, &ctx->cdata, ivsize,
is_rfc3686, ctx1_iv_off);
cnstr_shdsc_skcipher_decap(ctx->sh_desc_dec, &ctx->cdata, ivsize,
is_rfc3686, ctx1_iv_off);
/* Now update the driver contexts with the new shared descriptor */
if (ctx->drv_ctx[ENCRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
ctx->sh_desc_enc);
if (ret) {
dev_err(jrdev, "driver enc context update failed\n");
return -EINVAL;
}
}
if (ctx->drv_ctx[DECRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
ctx->sh_desc_dec);
if (ret) {
dev_err(jrdev, "driver dec context update failed\n");
return -EINVAL;
}
}
return ret;
}
static int aes_skcipher_setkey(struct crypto_skcipher *skcipher,
const u8 *key, unsigned int keylen)
{
int err;
err = aes_check_keylen(keylen);
if (err)
return err;
return skcipher_setkey(skcipher, key, keylen, 0);
}
static int rfc3686_skcipher_setkey(struct crypto_skcipher *skcipher,
const u8 *key, unsigned int keylen)
{
u32 ctx1_iv_off;
int err;
/*
* RFC3686 specific:
* | CONTEXT1[255:128] = {NONCE, IV, COUNTER}
* | *key = {KEY, NONCE}
*/
ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE;
keylen -= CTR_RFC3686_NONCE_SIZE;
err = aes_check_keylen(keylen);
if (err)
return err;
return skcipher_setkey(skcipher, key, keylen, ctx1_iv_off);
}
static int ctr_skcipher_setkey(struct crypto_skcipher *skcipher,
const u8 *key, unsigned int keylen)
{
u32 ctx1_iv_off;
int err;
/*
* AES-CTR needs to load IV in CONTEXT1 reg
* at an offset of 128bits (16bytes)
* CONTEXT1[255:128] = IV
*/
ctx1_iv_off = 16;
err = aes_check_keylen(keylen);
if (err)
return err;
return skcipher_setkey(skcipher, key, keylen, ctx1_iv_off);
}
static int des3_skcipher_setkey(struct crypto_skcipher *skcipher,
const u8 *key, unsigned int keylen)
{
return verify_skcipher_des3_key(skcipher, key) ?:
skcipher_setkey(skcipher, key, keylen, 0);
}
static int des_skcipher_setkey(struct crypto_skcipher *skcipher,
const u8 *key, unsigned int keylen)
{
return verify_skcipher_des_key(skcipher, key) ?:
skcipher_setkey(skcipher, key, keylen, 0);
}
static int xts_skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key,
unsigned int keylen)
{
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct device *jrdev = ctx->jrdev;
struct caam_drv_private *ctrlpriv = dev_get_drvdata(jrdev->parent);
int ret = 0;
int err;
err = xts_verify_key(skcipher, key, keylen);
if (err) {
dev_dbg(jrdev, "key size mismatch\n");
return err;
}
if (keylen != 2 * AES_KEYSIZE_128 && keylen != 2 * AES_KEYSIZE_256)
ctx->xts_key_fallback = true;
if (ctrlpriv->era <= 8 || ctx->xts_key_fallback) {
err = crypto_skcipher_setkey(ctx->fallback, key, keylen);
if (err)
return err;
}
ctx->cdata.keylen = keylen;
ctx->cdata.key_virt = key;
ctx->cdata.key_inline = true;
/* xts skcipher encrypt, decrypt shared descriptors */
cnstr_shdsc_xts_skcipher_encap(ctx->sh_desc_enc, &ctx->cdata);
cnstr_shdsc_xts_skcipher_decap(ctx->sh_desc_dec, &ctx->cdata);
/* Now update the driver contexts with the new shared descriptor */
if (ctx->drv_ctx[ENCRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT],
ctx->sh_desc_enc);
if (ret) {
dev_err(jrdev, "driver enc context update failed\n");
return -EINVAL;
}
}
if (ctx->drv_ctx[DECRYPT]) {
ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT],
ctx->sh_desc_dec);
if (ret) {
dev_err(jrdev, "driver dec context update failed\n");
return -EINVAL;
}
}
return ret;
}
/*
* aead_edesc - s/w-extended aead descriptor
* @src_nents: number of segments in input scatterlist
* @dst_nents: number of segments in output scatterlist
* @iv_dma: dma address of iv for checking continuity and link table
* @qm_sg_bytes: length of dma mapped h/w link table
* @qm_sg_dma: bus physical mapped address of h/w link table
* @assoclen: associated data length, in CAAM endianness
* @assoclen_dma: bus physical mapped address of req->assoclen
* @drv_req: driver-specific request structure
* @sgt: the h/w link table, followed by IV
*/
struct aead_edesc {
int src_nents;
int dst_nents;
dma_addr_t iv_dma;
int qm_sg_bytes;
dma_addr_t qm_sg_dma;
unsigned int assoclen;
dma_addr_t assoclen_dma;
struct caam_drv_req drv_req;
struct qm_sg_entry sgt[];
};
/*
* skcipher_edesc - s/w-extended skcipher descriptor
* @src_nents: number of segments in input scatterlist
* @dst_nents: number of segments in output scatterlist
* @iv_dma: dma address of iv for checking continuity and link table
* @qm_sg_bytes: length of dma mapped h/w link table
* @qm_sg_dma: bus physical mapped address of h/w link table
* @drv_req: driver-specific request structure
* @sgt: the h/w link table, followed by IV
*/
struct skcipher_edesc {
int src_nents;
int dst_nents;
dma_addr_t iv_dma;
int qm_sg_bytes;
dma_addr_t qm_sg_dma;
struct caam_drv_req drv_req;
struct qm_sg_entry sgt[];
};
static struct caam_drv_ctx *get_drv_ctx(struct caam_ctx *ctx,
enum optype type)
{
/*
* This function is called on the fast path with values of 'type'
* known at compile time. Invalid arguments are not expected and
* thus no checks are made.
*/
struct caam_drv_ctx *drv_ctx = ctx->drv_ctx[type];
u32 *desc;
if (unlikely(!drv_ctx)) {
spin_lock(&ctx->lock);
/* Read again to check if some other core init drv_ctx */
drv_ctx = ctx->drv_ctx[type];
if (!drv_ctx) {
int cpu;
if (type == ENCRYPT)
desc = ctx->sh_desc_enc;
else /* (type == DECRYPT) */
desc = ctx->sh_desc_dec;
cpu = smp_processor_id();
drv_ctx = caam_drv_ctx_init(ctx->qidev, &cpu, desc);
if (!IS_ERR(drv_ctx))
drv_ctx->op_type = type;
ctx->drv_ctx[type] = drv_ctx;
}
spin_unlock(&ctx->lock);
}
return drv_ctx;
}
static void caam_unmap(struct device *dev, struct scatterlist *src,
struct scatterlist *dst, int src_nents,
int dst_nents, dma_addr_t iv_dma, int ivsize,
enum dma_data_direction iv_dir, dma_addr_t qm_sg_dma,
int qm_sg_bytes)
{
if (dst != src) {
if (src_nents)
dma_unmap_sg(dev, src, src_nents, DMA_TO_DEVICE);
if (dst_nents)
dma_unmap_sg(dev, dst, dst_nents, DMA_FROM_DEVICE);
} else {
dma_unmap_sg(dev, src, src_nents, DMA_BIDIRECTIONAL);
}
if (iv_dma)
dma_unmap_single(dev, iv_dma, ivsize, iv_dir);
if (qm_sg_bytes)
dma_unmap_single(dev, qm_sg_dma, qm_sg_bytes, DMA_TO_DEVICE);
}
static void aead_unmap(struct device *dev,
struct aead_edesc *edesc,
struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
int ivsize = crypto_aead_ivsize(aead);
caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents,
edesc->iv_dma, ivsize, DMA_TO_DEVICE, edesc->qm_sg_dma,
edesc->qm_sg_bytes);
dma_unmap_single(dev, edesc->assoclen_dma, 4, DMA_TO_DEVICE);
}
static void skcipher_unmap(struct device *dev, struct skcipher_edesc *edesc,
struct skcipher_request *req)
{
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
int ivsize = crypto_skcipher_ivsize(skcipher);
caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents,
edesc->iv_dma, ivsize, DMA_BIDIRECTIONAL, edesc->qm_sg_dma,
edesc->qm_sg_bytes);
}
static void aead_done(struct caam_drv_req *drv_req, u32 status)
{
struct device *qidev;
struct aead_edesc *edesc;
struct aead_request *aead_req = drv_req->app_ctx;
struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
struct caam_ctx *caam_ctx = crypto_aead_ctx(aead);
int ecode = 0;
qidev = caam_ctx->qidev;
if (unlikely(status))
ecode = caam_jr_strstatus(qidev, status);
edesc = container_of(drv_req, typeof(*edesc), drv_req);
aead_unmap(qidev, edesc, aead_req);
aead_request_complete(aead_req, ecode);
qi_cache_free(edesc);
}
/*
* allocate and map the aead extended descriptor
*/
static struct aead_edesc *aead_edesc_alloc(struct aead_request *req,
bool encrypt)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead),
typeof(*alg), aead);
struct device *qidev = ctx->qidev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0;
int src_len, dst_len = 0;
struct aead_edesc *edesc;
dma_addr_t qm_sg_dma, iv_dma = 0;
int ivsize = 0;
unsigned int authsize = ctx->authsize;
int qm_sg_index = 0, qm_sg_ents = 0, qm_sg_bytes;
int in_len, out_len;
struct qm_sg_entry *sg_table, *fd_sgt;
struct caam_drv_ctx *drv_ctx;
drv_ctx = get_drv_ctx(ctx, encrypt ? ENCRYPT : DECRYPT);
if (IS_ERR(drv_ctx))
return (struct aead_edesc *)drv_ctx;
/* allocate space for base edesc and hw desc commands, link tables */
edesc = qi_cache_alloc(GFP_DMA | flags);
if (unlikely(!edesc)) {
dev_err(qidev, "could not allocate extended descriptor\n");
return ERR_PTR(-ENOMEM);
}
if (likely(req->src == req->dst)) {
src_len = req->assoclen + req->cryptlen +
(encrypt ? authsize : 0);
src_nents = sg_nents_for_len(req->src, src_len);
if (unlikely(src_nents < 0)) {
dev_err(qidev, "Insufficient bytes (%d) in src S/G\n",
src_len);
qi_cache_free(edesc);
return ERR_PTR(src_nents);
}
mapped_src_nents = dma_map_sg(qidev, req->src, src_nents,
DMA_BIDIRECTIONAL);
if (unlikely(!mapped_src_nents)) {
dev_err(qidev, "unable to map source\n");
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
} else {
src_len = req->assoclen + req->cryptlen;
dst_len = src_len + (encrypt ? authsize : (-authsize));
src_nents = sg_nents_for_len(req->src, src_len);
if (unlikely(src_nents < 0)) {
dev_err(qidev, "Insufficient bytes (%d) in src S/G\n",
src_len);
qi_cache_free(edesc);
return ERR_PTR(src_nents);
}
dst_nents = sg_nents_for_len(req->dst, dst_len);
if (unlikely(dst_nents < 0)) {
dev_err(qidev, "Insufficient bytes (%d) in dst S/G\n",
dst_len);
qi_cache_free(edesc);
return ERR_PTR(dst_nents);
}
if (src_nents) {
mapped_src_nents = dma_map_sg(qidev, req->src,
src_nents, DMA_TO_DEVICE);
if (unlikely(!mapped_src_nents)) {
dev_err(qidev, "unable to map source\n");
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
} else {
mapped_src_nents = 0;
}
if (dst_nents) {
mapped_dst_nents = dma_map_sg(qidev, req->dst,
dst_nents,
DMA_FROM_DEVICE);
if (unlikely(!mapped_dst_nents)) {
dev_err(qidev, "unable to map destination\n");
dma_unmap_sg(qidev, req->src, src_nents,
DMA_TO_DEVICE);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
} else {
mapped_dst_nents = 0;
}
}
if ((alg->caam.rfc3686 && encrypt) || !alg->caam.geniv)
ivsize = crypto_aead_ivsize(aead);
/*
* Create S/G table: req->assoclen, [IV,] req->src [, req->dst].
* Input is not contiguous.
* HW reads 4 S/G entries at a time; make sure the reads don't go beyond
* the end of the table by allocating more S/G entries. Logic:
* if (src != dst && output S/G)
* pad output S/G, if needed
* else if (src == dst && S/G)
* overlapping S/Gs; pad one of them
* else if (input S/G) ...
* pad input S/G, if needed
*/
qm_sg_ents = 1 + !!ivsize + mapped_src_nents;
if (mapped_dst_nents > 1)
qm_sg_ents += pad_sg_nents(mapped_dst_nents);
else if ((req->src == req->dst) && (mapped_src_nents > 1))
qm_sg_ents = max(pad_sg_nents(qm_sg_ents),
1 + !!ivsize + pad_sg_nents(mapped_src_nents));
else
qm_sg_ents = pad_sg_nents(qm_sg_ents);
sg_table = &edesc->sgt[0];
qm_sg_bytes = qm_sg_ents * sizeof(*sg_table);
if (unlikely(offsetof(struct aead_edesc, sgt) + qm_sg_bytes + ivsize >
CAAM_QI_MEMCACHE_SIZE)) {
dev_err(qidev, "No space for %d S/G entries and/or %dB IV\n",
qm_sg_ents, ivsize);
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0,
0, DMA_NONE, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
if (ivsize) {
u8 *iv = (u8 *)(sg_table + qm_sg_ents);
/* Make sure IV is located in a DMAable area */
memcpy(iv, req->iv, ivsize);
iv_dma = dma_map_single(qidev, iv, ivsize, DMA_TO_DEVICE);
if (dma_mapping_error(qidev, iv_dma)) {
dev_err(qidev, "unable to map IV\n");
caam_unmap(qidev, req->src, req->dst, src_nents,
dst_nents, 0, 0, DMA_NONE, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
}
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->iv_dma = iv_dma;
edesc->drv_req.app_ctx = req;
edesc->drv_req.cbk = aead_done;
edesc->drv_req.drv_ctx = drv_ctx;
edesc->assoclen = cpu_to_caam32(req->assoclen);
edesc->assoclen_dma = dma_map_single(qidev, &edesc->assoclen, 4,
DMA_TO_DEVICE);
if (dma_mapping_error(qidev, edesc->assoclen_dma)) {
dev_err(qidev, "unable to map assoclen\n");
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, DMA_TO_DEVICE, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
dma_to_qm_sg_one(sg_table, edesc->assoclen_dma, 4, 0);
qm_sg_index++;
if (ivsize) {
dma_to_qm_sg_one(sg_table + qm_sg_index, iv_dma, ivsize, 0);
qm_sg_index++;
}
sg_to_qm_sg_last(req->src, src_len, sg_table + qm_sg_index, 0);
qm_sg_index += mapped_src_nents;
if (mapped_dst_nents > 1)
sg_to_qm_sg_last(req->dst, dst_len, sg_table + qm_sg_index, 0);
qm_sg_dma = dma_map_single(qidev, sg_table, qm_sg_bytes, DMA_TO_DEVICE);
if (dma_mapping_error(qidev, qm_sg_dma)) {
dev_err(qidev, "unable to map S/G table\n");
dma_unmap_single(qidev, edesc->assoclen_dma, 4, DMA_TO_DEVICE);
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, DMA_TO_DEVICE, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
edesc->qm_sg_dma = qm_sg_dma;
edesc->qm_sg_bytes = qm_sg_bytes;
out_len = req->assoclen + req->cryptlen +
(encrypt ? ctx->authsize : (-ctx->authsize));
in_len = 4 + ivsize + req->assoclen + req->cryptlen;
fd_sgt = &edesc->drv_req.fd_sgt[0];
dma_to_qm_sg_one_last_ext(&fd_sgt[1], qm_sg_dma, in_len, 0);
if (req->dst == req->src) {
if (mapped_src_nents == 1)
dma_to_qm_sg_one(&fd_sgt[0], sg_dma_address(req->src),
out_len, 0);
else
dma_to_qm_sg_one_ext(&fd_sgt[0], qm_sg_dma +
(1 + !!ivsize) * sizeof(*sg_table),
out_len, 0);
} else if (mapped_dst_nents <= 1) {
dma_to_qm_sg_one(&fd_sgt[0], sg_dma_address(req->dst), out_len,
0);
} else {
dma_to_qm_sg_one_ext(&fd_sgt[0], qm_sg_dma + sizeof(*sg_table) *
qm_sg_index, out_len, 0);
}
return edesc;
}
static inline int aead_crypt(struct aead_request *req, bool encrypt)
{
struct aead_edesc *edesc;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
int ret;
if (unlikely(caam_congested))
return -EAGAIN;
/* allocate extended descriptor */
edesc = aead_edesc_alloc(req, encrypt);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
/* Create and submit job descriptor */
ret = caam_qi_enqueue(ctx->qidev, &edesc->drv_req);
if (!ret) {
ret = -EINPROGRESS;
} else {
aead_unmap(ctx->qidev, edesc, req);
qi_cache_free(edesc);
}
return ret;
}
static int aead_encrypt(struct aead_request *req)
{
return aead_crypt(req, true);
}
static int aead_decrypt(struct aead_request *req)
{
return aead_crypt(req, false);
}
static int ipsec_gcm_encrypt(struct aead_request *req)
{
return crypto_ipsec_check_assoclen(req->assoclen) ? : aead_crypt(req,
true);
}
static int ipsec_gcm_decrypt(struct aead_request *req)
{
return crypto_ipsec_check_assoclen(req->assoclen) ? : aead_crypt(req,
false);
}
static void skcipher_done(struct caam_drv_req *drv_req, u32 status)
{
struct skcipher_edesc *edesc;
struct skcipher_request *req = drv_req->app_ctx;
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct caam_ctx *caam_ctx = crypto_skcipher_ctx(skcipher);
struct device *qidev = caam_ctx->qidev;
int ivsize = crypto_skcipher_ivsize(skcipher);
int ecode = 0;
dev_dbg(qidev, "%s %d: status 0x%x\n", __func__, __LINE__, status);
edesc = container_of(drv_req, typeof(*edesc), drv_req);
if (status)
ecode = caam_jr_strstatus(qidev, status);
print_hex_dump_debug("dstiv @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->iv,
edesc->src_nents > 1 ? 100 : ivsize, 1);
caam_dump_sg("dst @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
edesc->dst_nents > 1 ? 100 : req->cryptlen, 1);
skcipher_unmap(qidev, edesc, req);
/*
* The crypto API expects us to set the IV (req->iv) to the last
* ciphertext block (CBC mode) or last counter (CTR mode).
* This is used e.g. by the CTS mode.
*/
if (!ecode)
memcpy(req->iv, (u8 *)&edesc->sgt[0] + edesc->qm_sg_bytes,
ivsize);
qi_cache_free(edesc);
skcipher_request_complete(req, ecode);
}
static struct skcipher_edesc *skcipher_edesc_alloc(struct skcipher_request *req,
bool encrypt)
{
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct device *qidev = ctx->qidev;
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0;
struct skcipher_edesc *edesc;
dma_addr_t iv_dma;
u8 *iv;
int ivsize = crypto_skcipher_ivsize(skcipher);
int dst_sg_idx, qm_sg_ents, qm_sg_bytes;
struct qm_sg_entry *sg_table, *fd_sgt;
struct caam_drv_ctx *drv_ctx;
drv_ctx = get_drv_ctx(ctx, encrypt ? ENCRYPT : DECRYPT);
if (IS_ERR(drv_ctx))
return (struct skcipher_edesc *)drv_ctx;
src_nents = sg_nents_for_len(req->src, req->cryptlen);
if (unlikely(src_nents < 0)) {
dev_err(qidev, "Insufficient bytes (%d) in src S/G\n",
req->cryptlen);
return ERR_PTR(src_nents);
}
if (unlikely(req->src != req->dst)) {
dst_nents = sg_nents_for_len(req->dst, req->cryptlen);
if (unlikely(dst_nents < 0)) {
dev_err(qidev, "Insufficient bytes (%d) in dst S/G\n",
req->cryptlen);
return ERR_PTR(dst_nents);
}
mapped_src_nents = dma_map_sg(qidev, req->src, src_nents,
DMA_TO_DEVICE);
if (unlikely(!mapped_src_nents)) {
dev_err(qidev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
mapped_dst_nents = dma_map_sg(qidev, req->dst, dst_nents,
DMA_FROM_DEVICE);
if (unlikely(!mapped_dst_nents)) {
dev_err(qidev, "unable to map destination\n");
dma_unmap_sg(qidev, req->src, src_nents, DMA_TO_DEVICE);
return ERR_PTR(-ENOMEM);
}
} else {
mapped_src_nents = dma_map_sg(qidev, req->src, src_nents,
DMA_BIDIRECTIONAL);
if (unlikely(!mapped_src_nents)) {
dev_err(qidev, "unable to map source\n");
return ERR_PTR(-ENOMEM);
}
}
qm_sg_ents = 1 + mapped_src_nents;
dst_sg_idx = qm_sg_ents;
/*
* Input, output HW S/G tables: [IV, src][dst, IV]
* IV entries point to the same buffer
* If src == dst, S/G entries are reused (S/G tables overlap)
*
* HW reads 4 S/G entries at a time; make sure the reads don't go beyond
* the end of the table by allocating more S/G entries.
*/
if (req->src != req->dst)
qm_sg_ents += pad_sg_nents(mapped_dst_nents + 1);
else
qm_sg_ents = 1 + pad_sg_nents(qm_sg_ents);
qm_sg_bytes = qm_sg_ents * sizeof(struct qm_sg_entry);
if (unlikely(offsetof(struct skcipher_edesc, sgt) + qm_sg_bytes +
ivsize > CAAM_QI_MEMCACHE_SIZE)) {
dev_err(qidev, "No space for %d S/G entries and/or %dB IV\n",
qm_sg_ents, ivsize);
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0,
0, DMA_NONE, 0, 0);
return ERR_PTR(-ENOMEM);
}
/* allocate space for base edesc, link tables and IV */
edesc = qi_cache_alloc(GFP_DMA | flags);
if (unlikely(!edesc)) {
dev_err(qidev, "could not allocate extended descriptor\n");
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0,
0, DMA_NONE, 0, 0);
return ERR_PTR(-ENOMEM);
}
/* Make sure IV is located in a DMAable area */
sg_table = &edesc->sgt[0];
iv = (u8 *)(sg_table + qm_sg_ents);
memcpy(iv, req->iv, ivsize);
iv_dma = dma_map_single(qidev, iv, ivsize, DMA_BIDIRECTIONAL);
if (dma_mapping_error(qidev, iv_dma)) {
dev_err(qidev, "unable to map IV\n");
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents, 0,
0, DMA_NONE, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->iv_dma = iv_dma;
edesc->qm_sg_bytes = qm_sg_bytes;
edesc->drv_req.app_ctx = req;
edesc->drv_req.cbk = skcipher_done;
edesc->drv_req.drv_ctx = drv_ctx;
dma_to_qm_sg_one(sg_table, iv_dma, ivsize, 0);
sg_to_qm_sg(req->src, req->cryptlen, sg_table + 1, 0);
if (req->src != req->dst)
sg_to_qm_sg(req->dst, req->cryptlen, sg_table + dst_sg_idx, 0);
dma_to_qm_sg_one(sg_table + dst_sg_idx + mapped_dst_nents, iv_dma,
ivsize, 0);
edesc->qm_sg_dma = dma_map_single(qidev, sg_table, edesc->qm_sg_bytes,
DMA_TO_DEVICE);
if (dma_mapping_error(qidev, edesc->qm_sg_dma)) {
dev_err(qidev, "unable to map S/G table\n");
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, DMA_BIDIRECTIONAL, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
fd_sgt = &edesc->drv_req.fd_sgt[0];
dma_to_qm_sg_one_last_ext(&fd_sgt[1], edesc->qm_sg_dma,
ivsize + req->cryptlen, 0);
if (req->src == req->dst)
dma_to_qm_sg_one_ext(&fd_sgt[0], edesc->qm_sg_dma +
sizeof(*sg_table), req->cryptlen + ivsize,
0);
else
dma_to_qm_sg_one_ext(&fd_sgt[0], edesc->qm_sg_dma + dst_sg_idx *
sizeof(*sg_table), req->cryptlen + ivsize,
0);
return edesc;
}
static inline bool xts_skcipher_ivsize(struct skcipher_request *req)
{
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
return !!get_unaligned((u64 *)(req->iv + (ivsize / 2)));
}
static inline int skcipher_crypt(struct skcipher_request *req, bool encrypt)
{
struct skcipher_edesc *edesc;
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctx->jrdev->parent);
int ret;
/*
* XTS is expected to return an error even for input length = 0
* Note that the case input length < block size will be caught during
* HW offloading and return an error.
*/
if (!req->cryptlen && !ctx->fallback)
return 0;
if (ctx->fallback && ((ctrlpriv->era <= 8 && xts_skcipher_ivsize(req)) ||
ctx->xts_key_fallback)) {
struct caam_skcipher_req_ctx *rctx = skcipher_request_ctx(req);
skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
skcipher_request_set_callback(&rctx->fallback_req,
req->base.flags,
req->base.complete,
req->base.data);
skcipher_request_set_crypt(&rctx->fallback_req, req->src,
req->dst, req->cryptlen, req->iv);
return encrypt ? crypto_skcipher_encrypt(&rctx->fallback_req) :
crypto_skcipher_decrypt(&rctx->fallback_req);
}
if (unlikely(caam_congested))
return -EAGAIN;
/* allocate extended descriptor */
edesc = skcipher_edesc_alloc(req, encrypt);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
ret = caam_qi_enqueue(ctx->qidev, &edesc->drv_req);
if (!ret) {
ret = -EINPROGRESS;
} else {
skcipher_unmap(ctx->qidev, edesc, req);
qi_cache_free(edesc);
}
return ret;
}
static int skcipher_encrypt(struct skcipher_request *req)
{
return skcipher_crypt(req, true);
}
static int skcipher_decrypt(struct skcipher_request *req)
{
return skcipher_crypt(req, false);
}
static struct caam_skcipher_alg driver_algs[] = {
{
.skcipher = {
.base = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aes_skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
},
{
.skcipher = {
.base = {
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "cbc-3des-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
},
.caam.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
},
{
.skcipher = {
.base = {
.cra_name = "cbc(des)",
.cra_driver_name = "cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = des_skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
},
.caam.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
},
{
.skcipher = {
.base = {
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-caam-qi",
.cra_blocksize = 1,
},
.setkey = ctr_skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.chunksize = AES_BLOCK_SIZE,
},
.caam.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
},
{
.skcipher = {
.base = {
.cra_name = "rfc3686(ctr(aes))",
.cra_driver_name = "rfc3686-ctr-aes-caam-qi",
.cra_blocksize = 1,
},
.setkey = rfc3686_skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE +
CTR_RFC3686_NONCE_SIZE,
.max_keysize = AES_MAX_KEY_SIZE +
CTR_RFC3686_NONCE_SIZE,
.ivsize = CTR_RFC3686_IV_SIZE,
.chunksize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES |
OP_ALG_AAI_CTR_MOD128,
.rfc3686 = true,
},
},
{
.skcipher = {
.base = {
.cra_name = "xts(aes)",
.cra_driver_name = "xts-aes-caam-qi",
.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = xts_skcipher_setkey,
.encrypt = skcipher_encrypt,
.decrypt = skcipher_decrypt,
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_XTS,
},
};
static struct caam_aead_alg driver_aeads[] = {
{
.aead = {
.base = {
.cra_name = "rfc4106(gcm(aes))",
.cra_driver_name = "rfc4106-gcm-aes-caam-qi",
.cra_blocksize = 1,
},
.setkey = rfc4106_setkey,
.setauthsize = rfc4106_setauthsize,
.encrypt = ipsec_gcm_encrypt,
.decrypt = ipsec_gcm_decrypt,
.ivsize = 8,
.maxauthsize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
.nodkp = true,
},
},
{
.aead = {
.base = {
.cra_name = "rfc4543(gcm(aes))",
.cra_driver_name = "rfc4543-gcm-aes-caam-qi",
.cra_blocksize = 1,
},
.setkey = rfc4543_setkey,
.setauthsize = rfc4543_setauthsize,
.encrypt = ipsec_gcm_encrypt,
.decrypt = ipsec_gcm_decrypt,
.ivsize = 8,
.maxauthsize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
.nodkp = true,
},
},
/* Galois Counter Mode */
{
.aead = {
.base = {
.cra_name = "gcm(aes)",
.cra_driver_name = "gcm-aes-caam-qi",
.cra_blocksize = 1,
},
.setkey = gcm_setkey,
.setauthsize = gcm_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = 12,
.maxauthsize = AES_BLOCK_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
.nodkp = true,
}
},
/* single-pass ipsec_esp descriptor */
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(aes))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(md5),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-hmac-md5-"
"cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha1),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha1-cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha224),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha224-cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha256),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha256-cbc-aes-"
"caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha384-"
"cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha384),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha384-cbc-aes-"
"caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha512-"
"cbc-aes-caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha512),"
"cbc(aes)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha512-cbc-aes-"
"caam-qi",
.cra_blocksize = AES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(md5),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-hmac-md5-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha1),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha1-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha224),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha224-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha256),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha256-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha384-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha384),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha384-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),"
"cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha512-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha512),"
"cbc(des3_ede)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha512-"
"cbc-des3_ede-caam-qi",
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
},
.setkey = des3_aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(md5),cbc(des))",
.cra_driver_name = "authenc-hmac-md5-"
"cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(md5),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-hmac-md5-"
"cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_MD5 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(des))",
.cra_driver_name = "authenc-hmac-sha1-"
"cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha1),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha1-cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),cbc(des))",
.cra_driver_name = "authenc-hmac-sha224-"
"cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha224),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha224-cbc-des-"
"caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),cbc(des))",
.cra_driver_name = "authenc-hmac-sha256-"
"cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha256),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha256-cbc-des-"
"caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
},
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),cbc(des))",
.cra_driver_name = "authenc-hmac-sha384-"
"cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
},
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha384),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha384-cbc-des-"
"caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
{
.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),cbc(des))",
.cra_driver_name = "authenc-hmac-sha512-"
"cbc-des-caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
}
},
{
.aead = {
.base = {
.cra_name = "echainiv(authenc(hmac(sha512),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha512-cbc-des-"
"caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},
.setkey = aead_setkey,
.setauthsize = aead_setauthsize,
.encrypt = aead_encrypt,
.decrypt = aead_decrypt,
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.caam = {
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.geniv = true,
}
},
};
static int caam_init_common(struct caam_ctx *ctx, struct caam_alg_entry *caam,
bool uses_dkp)
{
struct caam_drv_private *priv;
struct device *dev;
/*
* distribute tfms across job rings to ensure in-order
* crypto request processing per tfm
*/
ctx->jrdev = caam_jr_alloc();
if (IS_ERR(ctx->jrdev)) {
pr_err("Job Ring Device allocation for transform failed\n");
return PTR_ERR(ctx->jrdev);
}
dev = ctx->jrdev->parent;
priv = dev_get_drvdata(dev);
if (priv->era >= 6 && uses_dkp)
ctx->dir = DMA_BIDIRECTIONAL;
else
ctx->dir = DMA_TO_DEVICE;
ctx->key_dma = dma_map_single(dev, ctx->key, sizeof(ctx->key),
ctx->dir);
if (dma_mapping_error(dev, ctx->key_dma)) {
dev_err(dev, "unable to map key\n");
caam_jr_free(ctx->jrdev);
return -ENOMEM;
}
/* copy descriptor header template value */
ctx->cdata.algtype = OP_TYPE_CLASS1_ALG | caam->class1_alg_type;
ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam->class2_alg_type;
ctx->qidev = dev;
spin_lock_init(&ctx->lock);
ctx->drv_ctx[ENCRYPT] = NULL;
ctx->drv_ctx[DECRYPT] = NULL;
return 0;
}
static int caam_cra_init(struct crypto_skcipher *tfm)
{
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct caam_skcipher_alg *caam_alg =
container_of(alg, typeof(*caam_alg), skcipher);
struct caam_ctx *ctx = crypto_skcipher_ctx(tfm);
u32 alg_aai = caam_alg->caam.class1_alg_type & OP_ALG_AAI_MASK;
int ret = 0;
if (alg_aai == OP_ALG_AAI_XTS) {
const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
struct crypto_skcipher *fallback;
fallback = crypto_alloc_skcipher(tfm_name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(fallback)) {
pr_err("Failed to allocate %s fallback: %ld\n",
tfm_name, PTR_ERR(fallback));
return PTR_ERR(fallback);
}
ctx->fallback = fallback;
crypto_skcipher_set_reqsize(tfm, sizeof(struct caam_skcipher_req_ctx) +
crypto_skcipher_reqsize(fallback));
}
ret = caam_init_common(ctx, &caam_alg->caam, false);
if (ret && ctx->fallback)
crypto_free_skcipher(ctx->fallback);
return ret;
}
static int caam_aead_init(struct crypto_aead *tfm)
{
struct aead_alg *alg = crypto_aead_alg(tfm);
struct caam_aead_alg *caam_alg = container_of(alg, typeof(*caam_alg),
aead);
struct caam_ctx *ctx = crypto_aead_ctx(tfm);
return caam_init_common(ctx, &caam_alg->caam, !caam_alg->caam.nodkp);
}
static void caam_exit_common(struct caam_ctx *ctx)
{
caam_drv_ctx_rel(ctx->drv_ctx[ENCRYPT]);
caam_drv_ctx_rel(ctx->drv_ctx[DECRYPT]);
dma_unmap_single(ctx->jrdev->parent, ctx->key_dma, sizeof(ctx->key),
ctx->dir);
caam_jr_free(ctx->jrdev);
}
static void caam_cra_exit(struct crypto_skcipher *tfm)
{
struct caam_ctx *ctx = crypto_skcipher_ctx(tfm);
if (ctx->fallback)
crypto_free_skcipher(ctx->fallback);
caam_exit_common(ctx);
}
static void caam_aead_exit(struct crypto_aead *tfm)
{
caam_exit_common(crypto_aead_ctx(tfm));
}
void caam_qi_algapi_exit(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) {
struct caam_aead_alg *t_alg = driver_aeads + i;
if (t_alg->registered)
crypto_unregister_aead(&t_alg->aead);
}
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
struct caam_skcipher_alg *t_alg = driver_algs + i;
if (t_alg->registered)
crypto_unregister_skcipher(&t_alg->skcipher);
}
}
static void caam_skcipher_alg_init(struct caam_skcipher_alg *t_alg)
{
struct skcipher_alg *alg = &t_alg->skcipher;
alg->base.cra_module = THIS_MODULE;
alg->base.cra_priority = CAAM_CRA_PRIORITY;
alg->base.cra_ctxsize = sizeof(struct caam_ctx);
alg->base.cra_flags |= (CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_KERN_DRIVER_ONLY);
alg->init = caam_cra_init;
alg->exit = caam_cra_exit;
}
static void caam_aead_alg_init(struct caam_aead_alg *t_alg)
{
struct aead_alg *alg = &t_alg->aead;
alg->base.cra_module = THIS_MODULE;
alg->base.cra_priority = CAAM_CRA_PRIORITY;
alg->base.cra_ctxsize = sizeof(struct caam_ctx);
alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_KERN_DRIVER_ONLY;
alg->init = caam_aead_init;
alg->exit = caam_aead_exit;
}
int caam_qi_algapi_init(struct device *ctrldev)
{
struct caam_drv_private *priv = dev_get_drvdata(ctrldev);
int i = 0, err = 0;
u32 aes_vid, aes_inst, des_inst, md_vid, md_inst;
unsigned int md_limit = SHA512_DIGEST_SIZE;
bool registered = false;
/* Make sure this runs only on (DPAA 1.x) QI */
if (!priv->qi_present || caam_dpaa2)
return 0;
/*
* Register crypto algorithms the device supports.
* First, detect presence and attributes of DES, AES, and MD blocks.
*/
if (priv->era < 10) {
u32 cha_vid, cha_inst;
cha_vid = rd_reg32(&priv->ctrl->perfmon.cha_id_ls);
aes_vid = cha_vid & CHA_ID_LS_AES_MASK;
md_vid = (cha_vid & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT;
cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls);
des_inst = (cha_inst & CHA_ID_LS_DES_MASK) >>
CHA_ID_LS_DES_SHIFT;
aes_inst = cha_inst & CHA_ID_LS_AES_MASK;
md_inst = (cha_inst & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT;
} else {
u32 aesa, mdha;
aesa = rd_reg32(&priv->ctrl->vreg.aesa);
mdha = rd_reg32(&priv->ctrl->vreg.mdha);
aes_vid = (aesa & CHA_VER_VID_MASK) >> CHA_VER_VID_SHIFT;
md_vid = (mdha & CHA_VER_VID_MASK) >> CHA_VER_VID_SHIFT;
des_inst = rd_reg32(&priv->ctrl->vreg.desa) & CHA_VER_NUM_MASK;
aes_inst = aesa & CHA_VER_NUM_MASK;
md_inst = mdha & CHA_VER_NUM_MASK;
}
/* If MD is present, limit digest size based on LP256 */
if (md_inst && md_vid == CHA_VER_VID_MD_LP256)
md_limit = SHA256_DIGEST_SIZE;
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
struct caam_skcipher_alg *t_alg = driver_algs + i;
u32 alg_sel = t_alg->caam.class1_alg_type & OP_ALG_ALGSEL_MASK;
/* Skip DES algorithms if not supported by device */
if (!des_inst &&
((alg_sel == OP_ALG_ALGSEL_3DES) ||
(alg_sel == OP_ALG_ALGSEL_DES)))
continue;
/* Skip AES algorithms if not supported by device */
if (!aes_inst && (alg_sel == OP_ALG_ALGSEL_AES))
continue;
caam_skcipher_alg_init(t_alg);
err = crypto_register_skcipher(&t_alg->skcipher);
if (err) {
dev_warn(ctrldev, "%s alg registration failed\n",
t_alg->skcipher.base.cra_driver_name);
continue;
}
t_alg->registered = true;
registered = true;
}
for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) {
struct caam_aead_alg *t_alg = driver_aeads + i;
u32 c1_alg_sel = t_alg->caam.class1_alg_type &
OP_ALG_ALGSEL_MASK;
u32 c2_alg_sel = t_alg->caam.class2_alg_type &
OP_ALG_ALGSEL_MASK;
u32 alg_aai = t_alg->caam.class1_alg_type & OP_ALG_AAI_MASK;
/* Skip DES algorithms if not supported by device */
if (!des_inst &&
((c1_alg_sel == OP_ALG_ALGSEL_3DES) ||
(c1_alg_sel == OP_ALG_ALGSEL_DES)))
continue;
/* Skip AES algorithms if not supported by device */
if (!aes_inst && (c1_alg_sel == OP_ALG_ALGSEL_AES))
continue;
/*
* Check support for AES algorithms not available
* on LP devices.
*/
if (aes_vid == CHA_VER_VID_AES_LP && alg_aai == OP_ALG_AAI_GCM)
continue;
/*
* Skip algorithms requiring message digests
* if MD or MD size is not supported by device.
*/
if (c2_alg_sel &&
(!md_inst || (t_alg->aead.maxauthsize > md_limit)))
continue;
caam_aead_alg_init(t_alg);
err = crypto_register_aead(&t_alg->aead);
if (err) {
pr_warn("%s alg registration failed\n",
t_alg->aead.base.cra_driver_name);
continue;
}
t_alg->registered = true;
registered = true;
}
if (registered)
dev_info(ctrldev, "algorithms registered in /proc/crypto\n");
return err;
}