blob: 7db8066b19fd50651a62c19a67621273cc5324ec [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
* Copyright (C) 2015 Linaro Ltd.
*/
#include <linux/platform_device.h>
#include <linux/init.h>
#include <linux/cpumask.h>
#include <linux/export.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/qcom_scm.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/clk.h>
#include <linux/reset-controller.h>
#include <linux/arm-smccc.h>
#include "qcom_scm.h"
static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
module_param(download_mode, bool, 0);
#define SCM_HAS_CORE_CLK BIT(0)
#define SCM_HAS_IFACE_CLK BIT(1)
#define SCM_HAS_BUS_CLK BIT(2)
struct qcom_scm {
struct device *dev;
struct clk *core_clk;
struct clk *iface_clk;
struct clk *bus_clk;
struct reset_controller_dev reset;
u64 dload_mode_addr;
};
struct qcom_scm_current_perm_info {
__le32 vmid;
__le32 perm;
__le64 ctx;
__le32 ctx_size;
__le32 unused;
};
struct qcom_scm_mem_map_info {
__le64 mem_addr;
__le64 mem_size;
};
#define QCOM_SCM_FLAG_COLDBOOT_CPU0 0x00
#define QCOM_SCM_FLAG_COLDBOOT_CPU1 0x01
#define QCOM_SCM_FLAG_COLDBOOT_CPU2 0x08
#define QCOM_SCM_FLAG_COLDBOOT_CPU3 0x20
#define QCOM_SCM_FLAG_WARMBOOT_CPU0 0x04
#define QCOM_SCM_FLAG_WARMBOOT_CPU1 0x02
#define QCOM_SCM_FLAG_WARMBOOT_CPU2 0x10
#define QCOM_SCM_FLAG_WARMBOOT_CPU3 0x40
struct qcom_scm_wb_entry {
int flag;
void *entry;
};
static struct qcom_scm_wb_entry qcom_scm_wb[] = {
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 },
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 },
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 },
{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 },
};
static const char * const qcom_scm_convention_names[] = {
[SMC_CONVENTION_UNKNOWN] = "unknown",
[SMC_CONVENTION_ARM_32] = "smc arm 32",
[SMC_CONVENTION_ARM_64] = "smc arm 64",
[SMC_CONVENTION_LEGACY] = "smc legacy",
};
static struct qcom_scm *__scm;
static int qcom_scm_clk_enable(void)
{
int ret;
ret = clk_prepare_enable(__scm->core_clk);
if (ret)
goto bail;
ret = clk_prepare_enable(__scm->iface_clk);
if (ret)
goto disable_core;
ret = clk_prepare_enable(__scm->bus_clk);
if (ret)
goto disable_iface;
return 0;
disable_iface:
clk_disable_unprepare(__scm->iface_clk);
disable_core:
clk_disable_unprepare(__scm->core_clk);
bail:
return ret;
}
static void qcom_scm_clk_disable(void)
{
clk_disable_unprepare(__scm->core_clk);
clk_disable_unprepare(__scm->iface_clk);
clk_disable_unprepare(__scm->bus_clk);
}
enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
static DEFINE_SPINLOCK(scm_query_lock);
static enum qcom_scm_convention __get_convention(void)
{
unsigned long flags;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_INFO,
.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
.args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
QCOM_SCM_INFO_IS_CALL_AVAIL) |
(ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
.arginfo = QCOM_SCM_ARGS(1),
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
enum qcom_scm_convention probed_convention;
int ret;
bool forced = false;
if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
return qcom_scm_convention;
/*
* Device isn't required as there is only one argument - no device
* needed to dma_map_single to secure world
*/
probed_convention = SMC_CONVENTION_ARM_64;
ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
if (!ret && res.result[0] == 1)
goto found;
/*
* Some SC7180 firmwares didn't implement the
* QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
* calling conventions on these firmwares. Luckily we don't make any
* early calls into the firmware on these SoCs so the device pointer
* will be valid here to check if the compatible matches.
*/
if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
forced = true;
goto found;
}
probed_convention = SMC_CONVENTION_ARM_32;
ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
if (!ret && res.result[0] == 1)
goto found;
probed_convention = SMC_CONVENTION_LEGACY;
found:
spin_lock_irqsave(&scm_query_lock, flags);
if (probed_convention != qcom_scm_convention) {
qcom_scm_convention = probed_convention;
pr_info("qcom_scm: convention: %s%s\n",
qcom_scm_convention_names[qcom_scm_convention],
forced ? " (forced)" : "");
}
spin_unlock_irqrestore(&scm_query_lock, flags);
return qcom_scm_convention;
}
/**
* qcom_scm_call() - Invoke a syscall in the secure world
* @dev: device
* @svc_id: service identifier
* @cmd_id: command identifier
* @desc: Descriptor structure containing arguments and return values
*
* Sends a command to the SCM and waits for the command to finish processing.
* This should *only* be called in pre-emptible context.
*/
static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
struct qcom_scm_res *res)
{
might_sleep();
switch (__get_convention()) {
case SMC_CONVENTION_ARM_32:
case SMC_CONVENTION_ARM_64:
return scm_smc_call(dev, desc, res, false);
case SMC_CONVENTION_LEGACY:
return scm_legacy_call(dev, desc, res);
default:
pr_err("Unknown current SCM calling convention.\n");
return -EINVAL;
}
}
/**
* qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
* @dev: device
* @svc_id: service identifier
* @cmd_id: command identifier
* @desc: Descriptor structure containing arguments and return values
* @res: Structure containing results from SMC/HVC call
*
* Sends a command to the SCM and waits for the command to finish processing.
* This can be called in atomic context.
*/
static int qcom_scm_call_atomic(struct device *dev,
const struct qcom_scm_desc *desc,
struct qcom_scm_res *res)
{
switch (__get_convention()) {
case SMC_CONVENTION_ARM_32:
case SMC_CONVENTION_ARM_64:
return scm_smc_call(dev, desc, res, true);
case SMC_CONVENTION_LEGACY:
return scm_legacy_call_atomic(dev, desc, res);
default:
pr_err("Unknown current SCM calling convention.\n");
return -EINVAL;
}
}
static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
u32 cmd_id)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_INFO,
.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
desc.arginfo = QCOM_SCM_ARGS(1);
switch (__get_convention()) {
case SMC_CONVENTION_ARM_32:
case SMC_CONVENTION_ARM_64:
desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
(ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
break;
case SMC_CONVENTION_LEGACY:
desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
break;
default:
pr_err("Unknown SMC convention being used\n");
return false;
}
ret = qcom_scm_call(dev, &desc, &res);
return ret ? false : !!res.result[0];
}
/**
* qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
* @entry: Entry point function for the cpus
* @cpus: The cpumask of cpus that will use the entry point
*
* Set the Linux entry point for the SCM to transfer control to when coming
* out of a power down. CPU power down may be executed on cpuidle or hotplug.
*/
int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus)
{
int ret;
int flags = 0;
int cpu;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_BOOT,
.cmd = QCOM_SCM_BOOT_SET_ADDR,
.arginfo = QCOM_SCM_ARGS(2),
};
/*
* Reassign only if we are switching from hotplug entry point
* to cpuidle entry point or vice versa.
*/
for_each_cpu(cpu, cpus) {
if (entry == qcom_scm_wb[cpu].entry)
continue;
flags |= qcom_scm_wb[cpu].flag;
}
/* No change in entry function */
if (!flags)
return 0;
desc.args[0] = flags;
desc.args[1] = virt_to_phys(entry);
ret = qcom_scm_call(__scm->dev, &desc, NULL);
if (!ret) {
for_each_cpu(cpu, cpus)
qcom_scm_wb[cpu].entry = entry;
}
return ret;
}
EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
/**
* qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
* @entry: Entry point function for the cpus
* @cpus: The cpumask of cpus that will use the entry point
*
* Set the cold boot address of the cpus. Any cpu outside the supported
* range would be removed from the cpu present mask.
*/
int qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
{
int flags = 0;
int cpu;
int scm_cb_flags[] = {
QCOM_SCM_FLAG_COLDBOOT_CPU0,
QCOM_SCM_FLAG_COLDBOOT_CPU1,
QCOM_SCM_FLAG_COLDBOOT_CPU2,
QCOM_SCM_FLAG_COLDBOOT_CPU3,
};
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_BOOT,
.cmd = QCOM_SCM_BOOT_SET_ADDR,
.arginfo = QCOM_SCM_ARGS(2),
.owner = ARM_SMCCC_OWNER_SIP,
};
if (!cpus || cpumask_empty(cpus))
return -EINVAL;
for_each_cpu(cpu, cpus) {
if (cpu < ARRAY_SIZE(scm_cb_flags))
flags |= scm_cb_flags[cpu];
else
set_cpu_present(cpu, false);
}
desc.args[0] = flags;
desc.args[1] = virt_to_phys(entry);
return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
/**
* qcom_scm_cpu_power_down() - Power down the cpu
* @flags - Flags to flush cache
*
* This is an end point to power down cpu. If there was a pending interrupt,
* the control would return from this function, otherwise, the cpu jumps to the
* warm boot entry point set for this cpu upon reset.
*/
void qcom_scm_cpu_power_down(u32 flags)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_BOOT,
.cmd = QCOM_SCM_BOOT_TERMINATE_PC,
.args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
.arginfo = QCOM_SCM_ARGS(1),
.owner = ARM_SMCCC_OWNER_SIP,
};
qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_cpu_power_down);
int qcom_scm_set_remote_state(u32 state, u32 id)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_BOOT,
.cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
.arginfo = QCOM_SCM_ARGS(2),
.args[0] = state,
.args[1] = id,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
int ret;
ret = qcom_scm_call(__scm->dev, &desc, &res);
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_set_remote_state);
static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_BOOT,
.cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
.arginfo = QCOM_SCM_ARGS(2),
.args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
.owner = ARM_SMCCC_OWNER_SIP,
};
desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
}
static void qcom_scm_set_download_mode(bool enable)
{
bool avail;
int ret = 0;
avail = __qcom_scm_is_call_available(__scm->dev,
QCOM_SCM_SVC_BOOT,
QCOM_SCM_BOOT_SET_DLOAD_MODE);
if (avail) {
ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
} else if (__scm->dload_mode_addr) {
ret = qcom_scm_io_writel(__scm->dload_mode_addr,
enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
} else {
dev_err(__scm->dev,
"No available mechanism for setting download mode\n");
}
if (ret)
dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
}
/**
* qcom_scm_pas_init_image() - Initialize peripheral authentication service
* state machine for a given peripheral, using the
* metadata
* @peripheral: peripheral id
* @metadata: pointer to memory containing ELF header, program header table
* and optional blob of data used for authenticating the metadata
* and the rest of the firmware
* @size: size of the metadata
*
* Returns 0 on success.
*/
int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size)
{
dma_addr_t mdata_phys;
void *mdata_buf;
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_PIL,
.cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
.args[0] = peripheral,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
/*
* During the scm call memory protection will be enabled for the meta
* data blob, so make sure it's physically contiguous, 4K aligned and
* non-cachable to avoid XPU violations.
*/
mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
GFP_KERNEL);
if (!mdata_buf) {
dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
return -ENOMEM;
}
memcpy(mdata_buf, metadata, size);
ret = qcom_scm_clk_enable();
if (ret)
goto free_metadata;
desc.args[1] = mdata_phys;
ret = qcom_scm_call(__scm->dev, &desc, &res);
qcom_scm_clk_disable();
free_metadata:
dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_pas_init_image);
/**
* qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
* for firmware loading
* @peripheral: peripheral id
* @addr: start address of memory area to prepare
* @size: size of the memory area to prepare
*
* Returns 0 on success.
*/
int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_PIL,
.cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
.arginfo = QCOM_SCM_ARGS(3),
.args[0] = peripheral,
.args[1] = addr,
.args[2] = size,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = qcom_scm_call(__scm->dev, &desc, &res);
qcom_scm_clk_disable();
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
/**
* qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
* and reset the remote processor
* @peripheral: peripheral id
*
* Return 0 on success.
*/
int qcom_scm_pas_auth_and_reset(u32 peripheral)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_PIL,
.cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
.arginfo = QCOM_SCM_ARGS(1),
.args[0] = peripheral,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = qcom_scm_call(__scm->dev, &desc, &res);
qcom_scm_clk_disable();
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
/**
* qcom_scm_pas_shutdown() - Shut down the remote processor
* @peripheral: peripheral id
*
* Returns 0 on success.
*/
int qcom_scm_pas_shutdown(u32 peripheral)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_PIL,
.cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
.arginfo = QCOM_SCM_ARGS(1),
.args[0] = peripheral,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = qcom_scm_call(__scm->dev, &desc, &res);
qcom_scm_clk_disable();
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_pas_shutdown);
/**
* qcom_scm_pas_supported() - Check if the peripheral authentication service is
* available for the given peripherial
* @peripheral: peripheral id
*
* Returns true if PAS is supported for this peripheral, otherwise false.
*/
bool qcom_scm_pas_supported(u32 peripheral)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_PIL,
.cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
.arginfo = QCOM_SCM_ARGS(1),
.args[0] = peripheral,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
QCOM_SCM_PIL_PAS_IS_SUPPORTED))
return false;
ret = qcom_scm_call(__scm->dev, &desc, &res);
return ret ? false : !!res.result[0];
}
EXPORT_SYMBOL(qcom_scm_pas_supported);
static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_PIL,
.cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
.arginfo = QCOM_SCM_ARGS(2),
.args[0] = reset,
.args[1] = 0,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
int ret;
ret = qcom_scm_call(__scm->dev, &desc, &res);
return ret ? : res.result[0];
}
static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
unsigned long idx)
{
if (idx != 0)
return -EINVAL;
return __qcom_scm_pas_mss_reset(__scm->dev, 1);
}
static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
unsigned long idx)
{
if (idx != 0)
return -EINVAL;
return __qcom_scm_pas_mss_reset(__scm->dev, 0);
}
static const struct reset_control_ops qcom_scm_pas_reset_ops = {
.assert = qcom_scm_pas_reset_assert,
.deassert = qcom_scm_pas_reset_deassert,
};
int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_IO,
.cmd = QCOM_SCM_IO_READ,
.arginfo = QCOM_SCM_ARGS(1),
.args[0] = addr,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
int ret;
ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
if (ret >= 0)
*val = res.result[0];
return ret < 0 ? ret : 0;
}
EXPORT_SYMBOL(qcom_scm_io_readl);
int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_IO,
.cmd = QCOM_SCM_IO_WRITE,
.arginfo = QCOM_SCM_ARGS(2),
.args[0] = addr,
.args[1] = val,
.owner = ARM_SMCCC_OWNER_SIP,
};
return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_io_writel);
/**
* qcom_scm_restore_sec_cfg_available() - Check if secure environment
* supports restore security config interface.
*
* Return true if restore-cfg interface is supported, false if not.
*/
bool qcom_scm_restore_sec_cfg_available(void)
{
return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
QCOM_SCM_MP_RESTORE_SEC_CFG);
}
EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available);
int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
.arginfo = QCOM_SCM_ARGS(2),
.args[0] = device_id,
.args[1] = spare,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
int ret;
ret = qcom_scm_call(__scm->dev, &desc, &res);
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_restore_sec_cfg);
int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
.arginfo = QCOM_SCM_ARGS(1),
.args[0] = spare,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
int ret;
ret = qcom_scm_call(__scm->dev, &desc, &res);
if (size)
*size = res.result[0];
return ret ? : res.result[1];
}
EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size);
int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
QCOM_SCM_VAL),
.args[0] = addr,
.args[1] = size,
.args[2] = spare,
.owner = ARM_SMCCC_OWNER_SIP,
};
int ret;
desc.args[0] = addr;
desc.args[1] = size;
desc.args[2] = spare;
desc.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
QCOM_SCM_VAL);
ret = qcom_scm_call(__scm->dev, &desc, NULL);
/* the pg table has been initialized already, ignore the error */
if (ret == -EPERM)
ret = 0;
return ret;
}
EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init);
int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
u32 cp_nonpixel_start,
u32 cp_nonpixel_size)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MP_VIDEO_VAR,
.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
QCOM_SCM_VAL, QCOM_SCM_VAL),
.args[0] = cp_start,
.args[1] = cp_size,
.args[2] = cp_nonpixel_start,
.args[3] = cp_nonpixel_size,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
ret = qcom_scm_call(__scm->dev, &desc, &res);
return ret ? : res.result[0];
}
EXPORT_SYMBOL(qcom_scm_mem_protect_video_var);
static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
size_t mem_sz, phys_addr_t src, size_t src_sz,
phys_addr_t dest, size_t dest_sz)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_MP,
.cmd = QCOM_SCM_MP_ASSIGN,
.arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
QCOM_SCM_VAL, QCOM_SCM_VAL),
.args[0] = mem_region,
.args[1] = mem_sz,
.args[2] = src,
.args[3] = src_sz,
.args[4] = dest,
.args[5] = dest_sz,
.args[6] = 0,
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
ret = qcom_scm_call(dev, &desc, &res);
return ret ? : res.result[0];
}
/**
* qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
* @mem_addr: mem region whose ownership need to be reassigned
* @mem_sz: size of the region.
* @srcvm: vmid for current set of owners, each set bit in
* flag indicate a unique owner
* @newvm: array having new owners and corresponding permission
* flags
* @dest_cnt: number of owners in next set.
*
* Return negative errno on failure or 0 on success with @srcvm updated.
*/
int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
unsigned int *srcvm,
const struct qcom_scm_vmperm *newvm,
unsigned int dest_cnt)
{
struct qcom_scm_current_perm_info *destvm;
struct qcom_scm_mem_map_info *mem_to_map;
phys_addr_t mem_to_map_phys;
phys_addr_t dest_phys;
dma_addr_t ptr_phys;
size_t mem_to_map_sz;
size_t dest_sz;
size_t src_sz;
size_t ptr_sz;
int next_vm;
__le32 *src;
void *ptr;
int ret, i, b;
unsigned long srcvm_bits = *srcvm;
src_sz = hweight_long(srcvm_bits) * sizeof(*src);
mem_to_map_sz = sizeof(*mem_to_map);
dest_sz = dest_cnt * sizeof(*destvm);
ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
ALIGN(dest_sz, SZ_64);
ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
if (!ptr)
return -ENOMEM;
/* Fill source vmid detail */
src = ptr;
i = 0;
for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG)
src[i++] = cpu_to_le32(b);
/* Fill details of mem buff to map */
mem_to_map = ptr + ALIGN(src_sz, SZ_64);
mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
mem_to_map->mem_addr = cpu_to_le64(mem_addr);
mem_to_map->mem_size = cpu_to_le64(mem_sz);
next_vm = 0;
/* Fill details of next vmid detail */
destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
destvm->vmid = cpu_to_le32(newvm->vmid);
destvm->perm = cpu_to_le32(newvm->perm);
destvm->ctx = 0;
destvm->ctx_size = 0;
next_vm |= BIT(newvm->vmid);
}
ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
ptr_phys, src_sz, dest_phys, dest_sz);
dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
if (ret) {
dev_err(__scm->dev,
"Assign memory protection call failed %d\n", ret);
return -EINVAL;
}
*srcvm = next_vm;
return 0;
}
EXPORT_SYMBOL(qcom_scm_assign_mem);
/**
* qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
*/
bool qcom_scm_ocmem_lock_available(void)
{
return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
QCOM_SCM_OCMEM_LOCK_CMD);
}
EXPORT_SYMBOL(qcom_scm_ocmem_lock_available);
/**
* qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
* region to the specified initiator
*
* @id: tz initiator id
* @offset: OCMEM offset
* @size: OCMEM size
* @mode: access mode (WIDE/NARROW)
*/
int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
u32 mode)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_OCMEM,
.cmd = QCOM_SCM_OCMEM_LOCK_CMD,
.args[0] = id,
.args[1] = offset,
.args[2] = size,
.args[3] = mode,
.arginfo = QCOM_SCM_ARGS(4),
};
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_ocmem_lock);
/**
* qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
* region from the specified initiator
*
* @id: tz initiator id
* @offset: OCMEM offset
* @size: OCMEM size
*/
int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_OCMEM,
.cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
.args[0] = id,
.args[1] = offset,
.args[2] = size,
.arginfo = QCOM_SCM_ARGS(3),
};
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_ocmem_unlock);
/**
* qcom_scm_ice_available() - Is the ICE key programming interface available?
*
* Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
* qcom_scm_ice_set_key() are available.
*/
bool qcom_scm_ice_available(void)
{
return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
}
EXPORT_SYMBOL(qcom_scm_ice_available);
/**
* qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
* @index: the keyslot to invalidate
*
* The UFSHCI and eMMC standards define a standard way to do this, but it
* doesn't work on these SoCs; only this SCM call does.
*
* It is assumed that the SoC has only one ICE instance being used, as this SCM
* call doesn't specify which ICE instance the keyslot belongs to.
*
* Return: 0 on success; -errno on failure.
*/
int qcom_scm_ice_invalidate_key(u32 index)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_ES,
.cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
.arginfo = QCOM_SCM_ARGS(1),
.args[0] = index,
.owner = ARM_SMCCC_OWNER_SIP,
};
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_ice_invalidate_key);
/**
* qcom_scm_ice_set_key() - Set an inline encryption key
* @index: the keyslot into which to set the key
* @key: the key to program
* @key_size: the size of the key in bytes
* @cipher: the encryption algorithm the key is for
* @data_unit_size: the encryption data unit size, i.e. the size of each
* individual plaintext and ciphertext. Given in 512-byte
* units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
*
* Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
* can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
*
* The UFSHCI and eMMC standards define a standard way to do this, but it
* doesn't work on these SoCs; only this SCM call does.
*
* It is assumed that the SoC has only one ICE instance being used, as this SCM
* call doesn't specify which ICE instance the keyslot belongs to.
*
* Return: 0 on success; -errno on failure.
*/
int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_ES,
.cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
QCOM_SCM_VAL, QCOM_SCM_VAL,
QCOM_SCM_VAL),
.args[0] = index,
.args[2] = key_size,
.args[3] = cipher,
.args[4] = data_unit_size,
.owner = ARM_SMCCC_OWNER_SIP,
};
void *keybuf;
dma_addr_t key_phys;
int ret;
/*
* 'key' may point to vmalloc()'ed memory, but we need to pass a
* physical address that's been properly flushed. The sanctioned way to
* do this is by using the DMA API. But as is best practice for crypto
* keys, we also must wipe the key after use. This makes kmemdup() +
* dma_map_single() not clearly correct, since the DMA API can use
* bounce buffers. Instead, just use dma_alloc_coherent(). Programming
* keys is normally rare and thus not performance-critical.
*/
keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
GFP_KERNEL);
if (!keybuf)
return -ENOMEM;
memcpy(keybuf, key, key_size);
desc.args[1] = key_phys;
ret = qcom_scm_call(__scm->dev, &desc, NULL);
memzero_explicit(keybuf, key_size);
dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
return ret;
}
EXPORT_SYMBOL(qcom_scm_ice_set_key);
/**
* qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
*
* Return true if HDCP is supported, false if not.
*/
bool qcom_scm_hdcp_available(void)
{
bool avail;
int ret = qcom_scm_clk_enable();
if (ret)
return ret;
avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
QCOM_SCM_HDCP_INVOKE);
qcom_scm_clk_disable();
return avail;
}
EXPORT_SYMBOL(qcom_scm_hdcp_available);
/**
* qcom_scm_hdcp_req() - Send HDCP request.
* @req: HDCP request array
* @req_cnt: HDCP request array count
* @resp: response buffer passed to SCM
*
* Write HDCP register(s) through SCM.
*/
int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
{
int ret;
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_HDCP,
.cmd = QCOM_SCM_HDCP_INVOKE,
.arginfo = QCOM_SCM_ARGS(10),
.args = {
req[0].addr,
req[0].val,
req[1].addr,
req[1].val,
req[2].addr,
req[2].val,
req[3].addr,
req[3].val,
req[4].addr,
req[4].val
},
.owner = ARM_SMCCC_OWNER_SIP,
};
struct qcom_scm_res res;
if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
return -ERANGE;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = qcom_scm_call(__scm->dev, &desc, &res);
*resp = res.result[0];
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qcom_scm_hdcp_req);
int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
.cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
.arginfo = QCOM_SCM_ARGS(2),
.args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
.args[1] = en,
.owner = ARM_SMCCC_OWNER_SIP,
};
return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle);
bool qcom_scm_lmh_dcvsh_available(void)
{
return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH);
}
EXPORT_SYMBOL(qcom_scm_lmh_dcvsh_available);
int qcom_scm_lmh_profile_change(u32 profile_id)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_LMH,
.cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE,
.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
.args[0] = profile_id,
.owner = ARM_SMCCC_OWNER_SIP,
};
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_lmh_profile_change);
int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val,
u64 limit_node, u32 node_id, u64 version)
{
dma_addr_t payload_phys;
u32 *payload_buf;
int ret, payload_size = 5 * sizeof(u32);
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_LMH,
.cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL,
QCOM_SCM_VAL, QCOM_SCM_VAL),
.args[1] = payload_size,
.args[2] = limit_node,
.args[3] = node_id,
.args[4] = version,
.owner = ARM_SMCCC_OWNER_SIP,
};
payload_buf = dma_alloc_coherent(__scm->dev, payload_size, &payload_phys, GFP_KERNEL);
if (!payload_buf)
return -ENOMEM;
payload_buf[0] = payload_fn;
payload_buf[1] = 0;
payload_buf[2] = payload_reg;
payload_buf[3] = 1;
payload_buf[4] = payload_val;
desc.args[0] = payload_phys;
ret = qcom_scm_call(__scm->dev, &desc, NULL);
dma_free_coherent(__scm->dev, payload_size, payload_buf, payload_phys);
return ret;
}
EXPORT_SYMBOL(qcom_scm_lmh_dcvsh);
static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
{
struct device_node *tcsr;
struct device_node *np = dev->of_node;
struct resource res;
u32 offset;
int ret;
tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
if (!tcsr)
return 0;
ret = of_address_to_resource(tcsr, 0, &res);
of_node_put(tcsr);
if (ret)
return ret;
ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
if (ret < 0)
return ret;
*addr = res.start + offset;
return 0;
}
/**
* qcom_scm_is_available() - Checks if SCM is available
*/
bool qcom_scm_is_available(void)
{
return !!__scm;
}
EXPORT_SYMBOL(qcom_scm_is_available);
static int qcom_scm_probe(struct platform_device *pdev)
{
struct qcom_scm *scm;
unsigned long clks;
int ret;
scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
if (!scm)
return -ENOMEM;
ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
if (ret < 0)
return ret;
clks = (unsigned long)of_device_get_match_data(&pdev->dev);
scm->core_clk = devm_clk_get(&pdev->dev, "core");
if (IS_ERR(scm->core_clk)) {
if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER)
return PTR_ERR(scm->core_clk);
if (clks & SCM_HAS_CORE_CLK) {
dev_err(&pdev->dev, "failed to acquire core clk\n");
return PTR_ERR(scm->core_clk);
}
scm->core_clk = NULL;
}
scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
if (IS_ERR(scm->iface_clk)) {
if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER)
return PTR_ERR(scm->iface_clk);
if (clks & SCM_HAS_IFACE_CLK) {
dev_err(&pdev->dev, "failed to acquire iface clk\n");
return PTR_ERR(scm->iface_clk);
}
scm->iface_clk = NULL;
}
scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
if (IS_ERR(scm->bus_clk)) {
if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER)
return PTR_ERR(scm->bus_clk);
if (clks & SCM_HAS_BUS_CLK) {
dev_err(&pdev->dev, "failed to acquire bus clk\n");
return PTR_ERR(scm->bus_clk);
}
scm->bus_clk = NULL;
}
scm->reset.ops = &qcom_scm_pas_reset_ops;
scm->reset.nr_resets = 1;
scm->reset.of_node = pdev->dev.of_node;
ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
if (ret)
return ret;
/* vote for max clk rate for highest performance */
ret = clk_set_rate(scm->core_clk, INT_MAX);
if (ret)
return ret;
__scm = scm;
__scm->dev = &pdev->dev;
__get_convention();
/*
* If requested enable "download mode", from this point on warmboot
* will cause the the boot stages to enter download mode, unless
* disabled below by a clean shutdown/reboot.
*/
if (download_mode)
qcom_scm_set_download_mode(true);
return 0;
}
static void qcom_scm_shutdown(struct platform_device *pdev)
{
/* Clean shutdown, disable download mode to allow normal restart */
if (download_mode)
qcom_scm_set_download_mode(false);
}
static const struct of_device_id qcom_scm_dt_match[] = {
{ .compatible = "qcom,scm-apq8064",
/* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */
},
{ .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK |
SCM_HAS_IFACE_CLK |
SCM_HAS_BUS_CLK)
},
{ .compatible = "qcom,scm-ipq4019" },
{ .compatible = "qcom,scm-mdm9607", .data = (void *)(SCM_HAS_CORE_CLK |
SCM_HAS_IFACE_CLK |
SCM_HAS_BUS_CLK) },
{ .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK },
{ .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK },
{ .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK |
SCM_HAS_IFACE_CLK |
SCM_HAS_BUS_CLK)
},
{ .compatible = "qcom,scm-msm8953", .data = (void *)(SCM_HAS_CORE_CLK |
SCM_HAS_IFACE_CLK |
SCM_HAS_BUS_CLK)
},
{ .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK |
SCM_HAS_IFACE_CLK |
SCM_HAS_BUS_CLK)
},
{ .compatible = "qcom,scm-msm8994" },
{ .compatible = "qcom,scm-msm8996" },
{ .compatible = "qcom,scm" },
{}
};
MODULE_DEVICE_TABLE(of, qcom_scm_dt_match);
static struct platform_driver qcom_scm_driver = {
.driver = {
.name = "qcom_scm",
.of_match_table = qcom_scm_dt_match,
.suppress_bind_attrs = true,
},
.probe = qcom_scm_probe,
.shutdown = qcom_scm_shutdown,
};
static int __init qcom_scm_init(void)
{
return platform_driver_register(&qcom_scm_driver);
}
subsys_initcall(qcom_scm_init);
MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver");
MODULE_LICENSE("GPL v2");