blob: 08559ace0ada709b39784235a0e9862560726f7b [file] [log] [blame]
/* SPDX-License-Identifier: MIT */
#include <asm/cacheflush.h>
#include <drm/drm_util.h>
#include <linux/hashtable.h>
#include <linux/irq_work.h>
#include <linux/random.h>
#include <linux/seqlock.h>
#include "i915_pmu.h"
#include "i915_reg.h"
#include "i915_request.h"
#include "i915_selftest.h"
#include "intel_engine_types.h"
#include "intel_gt_types.h"
#include "intel_timeline.h"
#include "intel_workarounds.h"
struct drm_printer;
struct intel_context;
struct intel_gt;
struct lock_class_key;
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
* but keeps the logic simple. Indeed, the whole purpose of this macro is just
* to give some inclination as to some of the magic values used in the various
* workarounds!
#define ENGINE_TRACE(e, fmt, ...) do { \
const struct intel_engine_cs *e__ __maybe_unused = (e); \
GEM_TRACE("%s %s: " fmt, \
dev_name(e__->i915->, e__->name, \
##__VA_ARGS__); \
} while (0)
* The register defines to be used with the following macros need to accept a
* base param, e.g:
* REG_FOO(base) _MMIO((base) + <relative offset>)
* register arrays are to be defined and accessed as follows:
* REG_BAR(base, i) _MMIO((base) + <relative offset> + (i) * <shift>)
#define __ENGINE_REG_OP(op__, engine__, ...) \
intel_uncore_##op__((engine__)->uncore, __VA_ARGS__)
#define __ENGINE_READ_OP(op__, engine__, reg__) \
__ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base))
#define ENGINE_READ16(...) __ENGINE_READ_OP(read16, __VA_ARGS__)
#define ENGINE_READ(...) __ENGINE_READ_OP(read, __VA_ARGS__)
#define ENGINE_READ_FW(...) __ENGINE_READ_OP(read_fw, __VA_ARGS__)
#define ENGINE_POSTING_READ(...) __ENGINE_READ_OP(posting_read_fw, __VA_ARGS__)
#define ENGINE_POSTING_READ16(...) __ENGINE_READ_OP(posting_read16, __VA_ARGS__)
#define ENGINE_READ64(engine__, lower_reg__, upper_reg__) \
__ENGINE_REG_OP(read64_2x32, (engine__), \
lower_reg__((engine__)->mmio_base), \
#define ENGINE_READ_IDX(engine__, reg__, idx__) \
__ENGINE_REG_OP(read, (engine__), reg__((engine__)->mmio_base, (idx__)))
#define __ENGINE_WRITE_OP(op__, engine__, reg__, val__) \
__ENGINE_REG_OP(op__, (engine__), reg__((engine__)->mmio_base), (val__))
#define ENGINE_WRITE16(...) __ENGINE_WRITE_OP(write16, __VA_ARGS__)
#define ENGINE_WRITE(...) __ENGINE_WRITE_OP(write, __VA_ARGS__)
#define ENGINE_WRITE_FW(...) __ENGINE_WRITE_OP(write_fw, __VA_ARGS__)
#define GEN6_RING_FAULT_REG_READ(engine__) \
intel_uncore_read((engine__)->uncore, RING_FAULT_REG(engine__))
#define GEN6_RING_FAULT_REG_POSTING_READ(engine__) \
intel_uncore_posting_read((engine__)->uncore, RING_FAULT_REG(engine__))
#define GEN6_RING_FAULT_REG_RMW(engine__, clear__, set__) \
({ \
u32 __val; \
__val = intel_uncore_read((engine__)->uncore, \
RING_FAULT_REG(engine__)); \
__val &= ~(clear__); \
__val |= (set__); \
intel_uncore_write((engine__)->uncore, RING_FAULT_REG(engine__), \
__val); \
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
* do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
static inline unsigned int
execlists_num_ports(const struct intel_engine_execlists * const execlists)
return execlists->port_mask + 1;
static inline struct i915_request *
execlists_active(const struct intel_engine_execlists *execlists)
struct i915_request * const *cur, * const *old, *active;
cur = READ_ONCE(execlists->active);
smp_rmb(); /* pairs with overwrite protection in process_csb() */
do {
old = cur;
active = READ_ONCE(*cur);
cur = READ_ONCE(execlists->active);
smp_rmb(); /* and complete the seqlock retry */
} while (unlikely(cur != old));
return active;
struct i915_request *
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists);
static inline u32
intel_read_status_page(const struct intel_engine_cs *engine, int reg)
/* Ensure that the compiler doesn't optimize away the load. */
return READ_ONCE(engine->status_page.addr[reg]);
static inline void
intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
/* Writing into the status page should be done sparingly. Since
* we do when we are uncertain of the device state, we take a bit
* of extra paranoia to try and ensure that the HWS takes the value
* we give and that it doesn't end up trapped inside the CPU!
if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
engine->status_page.addr[reg] = value;
} else {
WRITE_ONCE(engine->status_page.addr[reg], value);
* Reads a dword out of the status page, which is written to from the command
* queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
* The following dwords have a reserved meaning:
* 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
* 0x04: ring 0 head pointer
* 0x05: ring 1 head pointer (915-class)
* 0x06: ring 2 head pointer (915-class)
* 0x10-0x1b: Context status DWords (GM45)
* 0x1f: Last written status offset. (GM45)
* 0x20-0x2f: Reserved (Gen6+)
* The area from dword 0x30 to 0x3ff is available for driver usage.
#define I915_GEM_HWS_PREEMPT 0x32
#define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT * sizeof(u32))
#define I915_GEM_HWS_SEQNO 0x40
#define I915_GEM_HWS_SEQNO_ADDR (I915_GEM_HWS_SEQNO * sizeof(u32))
#define I915_GEM_HWS_MIGRATE (0x42 * sizeof(u32))
#define I915_GEM_HWS_PXP 0x60
#define I915_GEM_HWS_PXP_ADDR (I915_GEM_HWS_PXP * sizeof(u32))
#define I915_GEM_HWS_SCRATCH 0x80
#define I915_HWS_CSB_BUF0_INDEX 0x10
#define I915_HWS_CSB_WRITE_INDEX 0x1f
void intel_engine_stop(struct intel_engine_cs *engine);
void intel_engine_cleanup(struct intel_engine_cs *engine);
int intel_engines_init_mmio(struct intel_gt *gt);
int intel_engines_init(struct intel_gt *gt);
void intel_engine_free_request_pool(struct intel_engine_cs *engine);
void intel_engines_release(struct intel_gt *gt);
void intel_engines_free(struct intel_gt *gt);
int intel_engine_init_common(struct intel_engine_cs *engine);
void intel_engine_cleanup_common(struct intel_engine_cs *engine);
int intel_engine_resume(struct intel_engine_cs *engine);
int intel_ring_submission_setup(struct intel_engine_cs *engine);
int intel_engine_stop_cs(struct intel_engine_cs *engine);
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine);
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask);
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine);
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine);
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
struct intel_instdone *instdone);
void intel_engine_init_execlists(struct intel_engine_cs *engine);
bool intel_engine_irq_enable(struct intel_engine_cs *engine);
void intel_engine_irq_disable(struct intel_engine_cs *engine);
static inline void __intel_engine_reset(struct intel_engine_cs *engine,
bool stalled)
if (engine->reset.rewind)
engine->reset.rewind(engine, stalled);
engine->serial++; /* contexts lost */
bool intel_engines_are_idle(struct intel_gt *gt);
bool intel_engine_is_idle(struct intel_engine_cs *engine);
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync);
static inline void intel_engine_flush_submission(struct intel_engine_cs *engine)
__intel_engine_flush_submission(engine, true);
void intel_engines_reset_default_submission(struct intel_gt *gt);
bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
__printf(3, 4)
void intel_engine_dump(struct intel_engine_cs *engine,
struct drm_printer *m,
const char *header, ...);
void intel_engine_dump_active_requests(struct list_head *requests,
struct i915_request *hung_rq,
struct drm_printer *m);
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine,
ktime_t *now);
struct i915_request *
intel_engine_execlist_find_hung_request(struct intel_engine_cs *engine);
u32 intel_engine_context_size(struct intel_gt *gt, u8 class);
struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs *engine,
struct i915_address_space *vm,
unsigned int ring_size,
unsigned int hwsp,
struct lock_class_key *key,
const char *name);
void intel_engine_destroy_pinned_context(struct intel_context *ce);
#define ENGINE_MOCK 1
static inline bool intel_engine_uses_guc(const struct intel_engine_cs *engine)
return engine->gt->submission_method >= INTEL_SUBMISSION_GUC;
static inline bool
intel_engine_has_preempt_reset(const struct intel_engine_cs *engine)
return false;
return intel_engine_has_preemption(engine);
struct intel_context *
intel_engine_create_virtual(struct intel_engine_cs **siblings,
unsigned int count, unsigned long flags);
static inline struct intel_context *
intel_engine_create_parallel(struct intel_engine_cs **engines,
unsigned int num_engines,
unsigned int width)
return engines[0]->cops->create_parallel(engines, num_engines, width);
static inline bool
intel_virtual_engine_has_heartbeat(const struct intel_engine_cs *engine)
* For non-GuC submission we expect the back-end to look at the
* heartbeat status of the actual physical engine that the work
* has been (or is being) scheduled on, so we should only reach
* here with GuC submission enabled.
return intel_guc_virtual_engine_has_heartbeat(engine);
static inline bool
intel_engine_has_heartbeat(const struct intel_engine_cs *engine)
return false;
if (intel_engine_is_virtual(engine))
return intel_virtual_engine_has_heartbeat(engine);
return READ_ONCE(engine->props.heartbeat_interval_ms);
static inline struct intel_engine_cs *
intel_engine_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
return engine->cops->get_sibling(engine, sibling);
static inline void
intel_engine_set_hung_context(struct intel_engine_cs *engine,
struct intel_context *ce)
engine->hung_ce = ce;
static inline void
intel_engine_clear_hung_context(struct intel_engine_cs *engine)
intel_engine_set_hung_context(engine, NULL);
static inline struct intel_context *
intel_engine_get_hung_context(struct intel_engine_cs *engine)
return engine->hung_ce;
#endif /* _INTEL_RINGBUFFER_H_ */