blob: e087cfb5980b0e4bdb2217acf45637e451d0b47b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* GSPCA Endpoints (formerly known as AOX) se401 USB Camera sub Driver
*
* Copyright (C) 2011 Hans de Goede <hdegoede@redhat.com>
*
* Based on the v4l1 se401 driver which is:
*
* Copyright (c) 2000 Jeroen B. Vreeken (pe1rxq@amsat.org)
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#define MODULE_NAME "se401"
#define BULK_SIZE 4096
#define PACKET_SIZE 1024
#define READ_REQ_SIZE 64
#define MAX_MODES ((READ_REQ_SIZE - 6) / 4)
/* The se401 compression algorithm uses a fixed quant factor, which
can be configured by setting the high nibble of the SE401_OPERATINGMODE
feature. This needs to exactly match what is in libv4l! */
#define SE401_QUANT_FACT 8
#include <linux/input.h>
#include <linux/slab.h>
#include "gspca.h"
#include "se401.h"
MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
MODULE_DESCRIPTION("Endpoints se401");
MODULE_LICENSE("GPL");
/* exposure change state machine states */
enum {
EXPO_CHANGED,
EXPO_DROP_FRAME,
EXPO_NO_CHANGE,
};
/* specific webcam descriptor */
struct sd {
struct gspca_dev gspca_dev; /* !! must be the first item */
struct { /* exposure/freq control cluster */
struct v4l2_ctrl *exposure;
struct v4l2_ctrl *freq;
};
bool has_brightness;
struct v4l2_pix_format fmts[MAX_MODES];
int pixels_read;
int packet_read;
u8 packet[PACKET_SIZE];
u8 restart_stream;
u8 button_state;
u8 resetlevel;
u8 resetlevel_frame_count;
int resetlevel_adjust_dir;
int expo_change_state;
};
static void se401_write_req(struct gspca_dev *gspca_dev, u16 req, u16 value,
int silent)
{
int err;
if (gspca_dev->usb_err < 0)
return;
err = usb_control_msg(gspca_dev->dev,
usb_sndctrlpipe(gspca_dev->dev, 0), req,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
value, 0, NULL, 0, 1000);
if (err < 0) {
if (!silent)
pr_err("write req failed req %#04x val %#04x error %d\n",
req, value, err);
gspca_dev->usb_err = err;
}
}
static void se401_read_req(struct gspca_dev *gspca_dev, u16 req, int silent)
{
int err;
if (gspca_dev->usb_err < 0)
return;
if (USB_BUF_SZ < READ_REQ_SIZE) {
pr_err("USB_BUF_SZ too small!!\n");
gspca_dev->usb_err = -ENOBUFS;
return;
}
err = usb_control_msg(gspca_dev->dev,
usb_rcvctrlpipe(gspca_dev->dev, 0), req,
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0, 0, gspca_dev->usb_buf, READ_REQ_SIZE, 1000);
if (err < 0) {
if (!silent)
pr_err("read req failed req %#04x error %d\n",
req, err);
gspca_dev->usb_err = err;
/*
* Make sure the buffer is zeroed to avoid uninitialized
* values.
*/
memset(gspca_dev->usb_buf, 0, READ_REQ_SIZE);
}
}
static void se401_set_feature(struct gspca_dev *gspca_dev,
u16 selector, u16 param)
{
int err;
if (gspca_dev->usb_err < 0)
return;
err = usb_control_msg(gspca_dev->dev,
usb_sndctrlpipe(gspca_dev->dev, 0),
SE401_REQ_SET_EXT_FEATURE,
USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
param, selector, NULL, 0, 1000);
if (err < 0) {
pr_err("set feature failed sel %#04x param %#04x error %d\n",
selector, param, err);
gspca_dev->usb_err = err;
}
}
static int se401_get_feature(struct gspca_dev *gspca_dev, u16 selector)
{
int err;
if (gspca_dev->usb_err < 0)
return gspca_dev->usb_err;
if (USB_BUF_SZ < 2) {
pr_err("USB_BUF_SZ too small!!\n");
gspca_dev->usb_err = -ENOBUFS;
return gspca_dev->usb_err;
}
err = usb_control_msg(gspca_dev->dev,
usb_rcvctrlpipe(gspca_dev->dev, 0),
SE401_REQ_GET_EXT_FEATURE,
USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0, selector, gspca_dev->usb_buf, 2, 1000);
if (err < 0) {
pr_err("get feature failed sel %#04x error %d\n",
selector, err);
gspca_dev->usb_err = err;
return err;
}
return gspca_dev->usb_buf[0] | (gspca_dev->usb_buf[1] << 8);
}
static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
{
/* HDG: this does not seem to do anything on my cam */
se401_write_req(gspca_dev, SE401_REQ_SET_BRT, val, 0);
}
static void setgain(struct gspca_dev *gspca_dev, s32 val)
{
u16 gain = 63 - val;
/* red color gain */
se401_set_feature(gspca_dev, HV7131_REG_ARCG, gain);
/* green color gain */
se401_set_feature(gspca_dev, HV7131_REG_AGCG, gain);
/* blue color gain */
se401_set_feature(gspca_dev, HV7131_REG_ABCG, gain);
}
static void setexposure(struct gspca_dev *gspca_dev, s32 val, s32 freq)
{
struct sd *sd = (struct sd *) gspca_dev;
int integration = val << 6;
u8 expose_h, expose_m, expose_l;
/* Do this before the set_feature calls, for proper timing wrt
the interrupt driven pkt_scan. Note we may still race but that
is not a big issue, the expo change state machine is merely for
avoiding underexposed frames getting send out, if one sneaks
through so be it */
sd->expo_change_state = EXPO_CHANGED;
if (freq == V4L2_CID_POWER_LINE_FREQUENCY_50HZ)
integration = integration - integration % 106667;
if (freq == V4L2_CID_POWER_LINE_FREQUENCY_60HZ)
integration = integration - integration % 88889;
expose_h = (integration >> 16);
expose_m = (integration >> 8);
expose_l = integration;
/* integration time low */
se401_set_feature(gspca_dev, HV7131_REG_TITL, expose_l);
/* integration time mid */
se401_set_feature(gspca_dev, HV7131_REG_TITM, expose_m);
/* integration time high */
se401_set_feature(gspca_dev, HV7131_REG_TITU, expose_h);
}
static int sd_config(struct gspca_dev *gspca_dev,
const struct usb_device_id *id)
{
struct sd *sd = (struct sd *)gspca_dev;
struct cam *cam = &gspca_dev->cam;
u8 *cd = gspca_dev->usb_buf;
int i, j, n;
int widths[MAX_MODES], heights[MAX_MODES];
/* Read the camera descriptor */
se401_read_req(gspca_dev, SE401_REQ_GET_CAMERA_DESCRIPTOR, 1);
if (gspca_dev->usb_err) {
/* Sometimes after being idle for a while the se401 won't
respond and needs a good kicking */
usb_reset_device(gspca_dev->dev);
gspca_dev->usb_err = 0;
se401_read_req(gspca_dev, SE401_REQ_GET_CAMERA_DESCRIPTOR, 0);
}
/* Some cameras start with their LED on */
se401_write_req(gspca_dev, SE401_REQ_LED_CONTROL, 0, 0);
if (gspca_dev->usb_err)
return gspca_dev->usb_err;
if (cd[1] != 0x41) {
pr_err("Wrong descriptor type\n");
return -ENODEV;
}
if (!(cd[2] & SE401_FORMAT_BAYER)) {
pr_err("Bayer format not supported!\n");
return -ENODEV;
}
if (cd[3])
pr_info("ExtraFeatures: %d\n", cd[3]);
n = cd[4] | (cd[5] << 8);
if (n > MAX_MODES) {
pr_err("Too many frame sizes\n");
return -ENODEV;
}
for (i = 0; i < n ; i++) {
widths[i] = cd[6 + i * 4 + 0] | (cd[6 + i * 4 + 1] << 8);
heights[i] = cd[6 + i * 4 + 2] | (cd[6 + i * 4 + 3] << 8);
}
for (i = 0; i < n ; i++) {
sd->fmts[i].width = widths[i];
sd->fmts[i].height = heights[i];
sd->fmts[i].field = V4L2_FIELD_NONE;
sd->fmts[i].colorspace = V4L2_COLORSPACE_SRGB;
sd->fmts[i].priv = 1;
/* janggu compression only works for 1/4th or 1/16th res */
for (j = 0; j < n; j++) {
if (widths[j] / 2 == widths[i] &&
heights[j] / 2 == heights[i]) {
sd->fmts[i].priv = 2;
break;
}
}
/* 1/16th if available too is better then 1/4th, because
we then use a larger area of the sensor */
for (j = 0; j < n; j++) {
if (widths[j] / 4 == widths[i] &&
heights[j] / 4 == heights[i]) {
sd->fmts[i].priv = 4;
break;
}
}
if (sd->fmts[i].priv == 1) {
/* Not a 1/4th or 1/16th res, use bayer */
sd->fmts[i].pixelformat = V4L2_PIX_FMT_SBGGR8;
sd->fmts[i].bytesperline = widths[i];
sd->fmts[i].sizeimage = widths[i] * heights[i];
pr_info("Frame size: %dx%d bayer\n",
widths[i], heights[i]);
} else {
/* Found a match use janggu compression */
sd->fmts[i].pixelformat = V4L2_PIX_FMT_SE401;
sd->fmts[i].bytesperline = 0;
sd->fmts[i].sizeimage = widths[i] * heights[i] * 3;
pr_info("Frame size: %dx%d 1/%dth janggu\n",
widths[i], heights[i],
sd->fmts[i].priv * sd->fmts[i].priv);
}
}
cam->cam_mode = sd->fmts;
cam->nmodes = n;
cam->bulk = 1;
cam->bulk_size = BULK_SIZE;
cam->bulk_nurbs = 4;
sd->resetlevel = 0x2d; /* Set initial resetlevel */
/* See if the camera supports brightness */
se401_read_req(gspca_dev, SE401_REQ_GET_BRT, 1);
sd->has_brightness = !!gspca_dev->usb_err;
gspca_dev->usb_err = 0;
return 0;
}
/* this function is called at probe and resume time */
static int sd_init(struct gspca_dev *gspca_dev)
{
return 0;
}
/* function called at start time before URB creation */
static int sd_isoc_init(struct gspca_dev *gspca_dev)
{
gspca_dev->alt = 1; /* Ignore the bogus isoc alt settings */
return gspca_dev->usb_err;
}
/* -- start the camera -- */
static int sd_start(struct gspca_dev *gspca_dev)
{
struct sd *sd = (struct sd *)gspca_dev;
int mult = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv;
int mode = 0;
se401_write_req(gspca_dev, SE401_REQ_CAMERA_POWER, 1, 1);
if (gspca_dev->usb_err) {
/* Sometimes after being idle for a while the se401 won't
respond and needs a good kicking */
usb_reset_device(gspca_dev->dev);
gspca_dev->usb_err = 0;
se401_write_req(gspca_dev, SE401_REQ_CAMERA_POWER, 1, 0);
}
se401_write_req(gspca_dev, SE401_REQ_LED_CONTROL, 1, 0);
se401_set_feature(gspca_dev, HV7131_REG_MODE_B, 0x05);
/* set size + mode */
se401_write_req(gspca_dev, SE401_REQ_SET_WIDTH,
gspca_dev->pixfmt.width * mult, 0);
se401_write_req(gspca_dev, SE401_REQ_SET_HEIGHT,
gspca_dev->pixfmt.height * mult, 0);
/*
* HDG: disabled this as it does not seem to do anything
* se401_write_req(gspca_dev, SE401_REQ_SET_OUTPUT_MODE,
* SE401_FORMAT_BAYER, 0);
*/
switch (mult) {
case 1: /* Raw bayer */
mode = 0x03; break;
case 2: /* 1/4th janggu */
mode = SE401_QUANT_FACT << 4; break;
case 4: /* 1/16th janggu */
mode = (SE401_QUANT_FACT << 4) | 0x02; break;
}
se401_set_feature(gspca_dev, SE401_OPERATINGMODE, mode);
se401_set_feature(gspca_dev, HV7131_REG_ARLV, sd->resetlevel);
sd->packet_read = 0;
sd->pixels_read = 0;
sd->restart_stream = 0;
sd->resetlevel_frame_count = 0;
sd->resetlevel_adjust_dir = 0;
sd->expo_change_state = EXPO_NO_CHANGE;
se401_write_req(gspca_dev, SE401_REQ_START_CONTINUOUS_CAPTURE, 0, 0);
return gspca_dev->usb_err;
}
static void sd_stopN(struct gspca_dev *gspca_dev)
{
se401_write_req(gspca_dev, SE401_REQ_STOP_CONTINUOUS_CAPTURE, 0, 0);
se401_write_req(gspca_dev, SE401_REQ_LED_CONTROL, 0, 0);
se401_write_req(gspca_dev, SE401_REQ_CAMERA_POWER, 0, 0);
}
static void sd_dq_callback(struct gspca_dev *gspca_dev)
{
struct sd *sd = (struct sd *)gspca_dev;
unsigned int ahrc, alrc;
int oldreset, adjust_dir;
/* Restart the stream if requested do so by pkt_scan */
if (sd->restart_stream) {
sd_stopN(gspca_dev);
sd_start(gspca_dev);
sd->restart_stream = 0;
}
/* Automatically adjust sensor reset level
Hyundai have some really nice docs about this and other sensor
related stuff on their homepage: www.hei.co.kr */
sd->resetlevel_frame_count++;
if (sd->resetlevel_frame_count < 20)
return;
/* For some reason this normally read-only register doesn't get reset
to zero after reading them just once... */
se401_get_feature(gspca_dev, HV7131_REG_HIREFNOH);
se401_get_feature(gspca_dev, HV7131_REG_HIREFNOL);
se401_get_feature(gspca_dev, HV7131_REG_LOREFNOH);
se401_get_feature(gspca_dev, HV7131_REG_LOREFNOL);
ahrc = 256*se401_get_feature(gspca_dev, HV7131_REG_HIREFNOH) +
se401_get_feature(gspca_dev, HV7131_REG_HIREFNOL);
alrc = 256*se401_get_feature(gspca_dev, HV7131_REG_LOREFNOH) +
se401_get_feature(gspca_dev, HV7131_REG_LOREFNOL);
/* Not an exact science, but it seems to work pretty well... */
oldreset = sd->resetlevel;
if (alrc > 10) {
while (alrc >= 10 && sd->resetlevel < 63) {
sd->resetlevel++;
alrc /= 2;
}
} else if (ahrc > 20) {
while (ahrc >= 20 && sd->resetlevel > 0) {
sd->resetlevel--;
ahrc /= 2;
}
}
/* Detect ping-pong-ing and halve adjustment to avoid overshoot */
if (sd->resetlevel > oldreset)
adjust_dir = 1;
else
adjust_dir = -1;
if (sd->resetlevel_adjust_dir &&
sd->resetlevel_adjust_dir != adjust_dir)
sd->resetlevel = oldreset + (sd->resetlevel - oldreset) / 2;
if (sd->resetlevel != oldreset) {
sd->resetlevel_adjust_dir = adjust_dir;
se401_set_feature(gspca_dev, HV7131_REG_ARLV, sd->resetlevel);
}
sd->resetlevel_frame_count = 0;
}
static void sd_complete_frame(struct gspca_dev *gspca_dev, u8 *data, int len)
{
struct sd *sd = (struct sd *)gspca_dev;
switch (sd->expo_change_state) {
case EXPO_CHANGED:
/* The exposure was changed while this frame
was being send, so this frame is ok */
sd->expo_change_state = EXPO_DROP_FRAME;
break;
case EXPO_DROP_FRAME:
/* The exposure was changed while this frame
was being captured, drop it! */
gspca_dev->last_packet_type = DISCARD_PACKET;
sd->expo_change_state = EXPO_NO_CHANGE;
break;
case EXPO_NO_CHANGE:
break;
}
gspca_frame_add(gspca_dev, LAST_PACKET, data, len);
}
static void sd_pkt_scan_janggu(struct gspca_dev *gspca_dev, u8 *data, int len)
{
struct sd *sd = (struct sd *)gspca_dev;
int imagesize = gspca_dev->pixfmt.width * gspca_dev->pixfmt.height;
int i, plen, bits, pixels, info, count;
if (sd->restart_stream)
return;
/* Sometimes a 1024 bytes garbage bulk packet is send between frames */
if (gspca_dev->last_packet_type == LAST_PACKET && len == 1024) {
gspca_dev->last_packet_type = DISCARD_PACKET;
return;
}
i = 0;
while (i < len) {
/* Read header if not already be present from prev bulk pkt */
if (sd->packet_read < 4) {
count = 4 - sd->packet_read;
if (count > len - i)
count = len - i;
memcpy(&sd->packet[sd->packet_read], &data[i], count);
sd->packet_read += count;
i += count;
if (sd->packet_read < 4)
break;
}
bits = sd->packet[3] + (sd->packet[2] << 8);
pixels = sd->packet[1] + ((sd->packet[0] & 0x3f) << 8);
info = (sd->packet[0] & 0xc0) >> 6;
plen = ((bits + 47) >> 4) << 1;
/* Sanity checks */
if (plen > 1024) {
pr_err("invalid packet len %d restarting stream\n",
plen);
goto error;
}
if (info == 3) {
pr_err("unknown frame info value restarting stream\n");
goto error;
}
/* Read (remainder of) packet contents */
count = plen - sd->packet_read;
if (count > len - i)
count = len - i;
memcpy(&sd->packet[sd->packet_read], &data[i], count);
sd->packet_read += count;
i += count;
if (sd->packet_read < plen)
break;
sd->pixels_read += pixels;
sd->packet_read = 0;
switch (info) {
case 0: /* Frame data */
gspca_frame_add(gspca_dev, INTER_PACKET, sd->packet,
plen);
break;
case 1: /* EOF */
if (sd->pixels_read != imagesize) {
pr_err("frame size %d expected %d\n",
sd->pixels_read, imagesize);
goto error;
}
sd_complete_frame(gspca_dev, sd->packet, plen);
return; /* Discard the rest of the bulk packet !! */
case 2: /* SOF */
gspca_frame_add(gspca_dev, FIRST_PACKET, sd->packet,
plen);
sd->pixels_read = pixels;
break;
}
}
return;
error:
sd->restart_stream = 1;
/* Give userspace a 0 bytes frame, so our dq callback gets
called and it can restart the stream */
gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
}
static void sd_pkt_scan_bayer(struct gspca_dev *gspca_dev, u8 *data, int len)
{
struct cam *cam = &gspca_dev->cam;
int imagesize = cam->cam_mode[gspca_dev->curr_mode].sizeimage;
if (gspca_dev->image_len == 0) {
gspca_frame_add(gspca_dev, FIRST_PACKET, data, len);
return;
}
if (gspca_dev->image_len + len >= imagesize) {
sd_complete_frame(gspca_dev, data, len);
return;
}
gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
}
static void sd_pkt_scan(struct gspca_dev *gspca_dev, u8 *data, int len)
{
int mult = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv;
if (len == 0)
return;
if (mult == 1) /* mult == 1 means raw bayer */
sd_pkt_scan_bayer(gspca_dev, data, len);
else
sd_pkt_scan_janggu(gspca_dev, data, len);
}
#if IS_ENABLED(CONFIG_INPUT)
static int sd_int_pkt_scan(struct gspca_dev *gspca_dev, u8 *data, int len)
{
struct sd *sd = (struct sd *)gspca_dev;
u8 state;
if (len != 2)
return -EINVAL;
switch (data[0]) {
case 0:
case 1:
state = data[0];
break;
default:
return -EINVAL;
}
if (sd->button_state != state) {
input_report_key(gspca_dev->input_dev, KEY_CAMERA, state);
input_sync(gspca_dev->input_dev);
sd->button_state = state;
}
return 0;
}
#endif
static int sd_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct gspca_dev *gspca_dev =
container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
struct sd *sd = (struct sd *)gspca_dev;
gspca_dev->usb_err = 0;
if (!gspca_dev->streaming)
return 0;
switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:
setbrightness(gspca_dev, ctrl->val);
break;
case V4L2_CID_GAIN:
setgain(gspca_dev, ctrl->val);
break;
case V4L2_CID_EXPOSURE:
setexposure(gspca_dev, ctrl->val, sd->freq->val);
break;
}
return gspca_dev->usb_err;
}
static const struct v4l2_ctrl_ops sd_ctrl_ops = {
.s_ctrl = sd_s_ctrl,
};
static int sd_init_controls(struct gspca_dev *gspca_dev)
{
struct sd *sd = (struct sd *)gspca_dev;
struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler;
gspca_dev->vdev.ctrl_handler = hdl;
v4l2_ctrl_handler_init(hdl, 4);
if (sd->has_brightness)
v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
V4L2_CID_BRIGHTNESS, 0, 255, 1, 15);
/* max is really 63 but > 50 is not pretty */
v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
V4L2_CID_GAIN, 0, 50, 1, 25);
sd->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
V4L2_CID_EXPOSURE, 0, 32767, 1, 15000);
sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
V4L2_CID_POWER_LINE_FREQUENCY,
V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0, 0);
if (hdl->error) {
pr_err("Could not initialize controls\n");
return hdl->error;
}
v4l2_ctrl_cluster(2, &sd->exposure);
return 0;
}
/* sub-driver description */
static const struct sd_desc sd_desc = {
.name = MODULE_NAME,
.config = sd_config,
.init = sd_init,
.init_controls = sd_init_controls,
.isoc_init = sd_isoc_init,
.start = sd_start,
.stopN = sd_stopN,
.dq_callback = sd_dq_callback,
.pkt_scan = sd_pkt_scan,
#if IS_ENABLED(CONFIG_INPUT)
.int_pkt_scan = sd_int_pkt_scan,
#endif
};
/* -- module initialisation -- */
static const struct usb_device_id device_table[] = {
{USB_DEVICE(0x03e8, 0x0004)}, /* Endpoints/Aox SE401 */
{USB_DEVICE(0x0471, 0x030b)}, /* Philips PCVC665K */
{USB_DEVICE(0x047d, 0x5001)}, /* Kensington 67014 */
{USB_DEVICE(0x047d, 0x5002)}, /* Kensington 6701(5/7) */
{USB_DEVICE(0x047d, 0x5003)}, /* Kensington 67016 */
{}
};
MODULE_DEVICE_TABLE(usb, device_table);
/* -- device connect -- */
static int sd_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
THIS_MODULE);
}
static int sd_pre_reset(struct usb_interface *intf)
{
return 0;
}
static int sd_post_reset(struct usb_interface *intf)
{
return 0;
}
static struct usb_driver sd_driver = {
.name = MODULE_NAME,
.id_table = device_table,
.probe = sd_probe,
.disconnect = gspca_disconnect,
#ifdef CONFIG_PM
.suspend = gspca_suspend,
.resume = gspca_resume,
.reset_resume = gspca_resume,
#endif
.pre_reset = sd_pre_reset,
.post_reset = sd_post_reset,
};
module_usb_driver(sd_driver);