blob: 5ec2e6bb2465c7b64740de2eda1ccf8e41e153ec [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Battery driver for 7th-generation Microsoft Surface devices via Surface
* System Aggregator Module (SSAM).
*
* Copyright (C) 2019-2021 Maximilian Luz <luzmaximilian@gmail.com>
*/
#include <asm/unaligned.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/power_supply.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include <linux/surface_aggregator/device.h>
/* -- SAM interface. -------------------------------------------------------- */
enum sam_event_cid_bat {
SAM_EVENT_CID_BAT_BIX = 0x15,
SAM_EVENT_CID_BAT_BST = 0x16,
SAM_EVENT_CID_BAT_ADP = 0x17,
SAM_EVENT_CID_BAT_PROT = 0x18,
SAM_EVENT_CID_BAT_DPTF = 0x53,
};
enum sam_battery_sta {
SAM_BATTERY_STA_OK = 0x0f,
SAM_BATTERY_STA_PRESENT = 0x10,
};
enum sam_battery_state {
SAM_BATTERY_STATE_DISCHARGING = BIT(0),
SAM_BATTERY_STATE_CHARGING = BIT(1),
SAM_BATTERY_STATE_CRITICAL = BIT(2),
};
enum sam_battery_power_unit {
SAM_BATTERY_POWER_UNIT_mW = 0,
SAM_BATTERY_POWER_UNIT_mA = 1,
};
/* Equivalent to data returned in ACPI _BIX method, revision 0. */
struct spwr_bix {
u8 revision;
__le32 power_unit;
__le32 design_cap;
__le32 last_full_charge_cap;
__le32 technology;
__le32 design_voltage;
__le32 design_cap_warn;
__le32 design_cap_low;
__le32 cycle_count;
__le32 measurement_accuracy;
__le32 max_sampling_time;
__le32 min_sampling_time;
__le32 max_avg_interval;
__le32 min_avg_interval;
__le32 bat_cap_granularity_1;
__le32 bat_cap_granularity_2;
__u8 model[21];
__u8 serial[11];
__u8 type[5];
__u8 oem_info[21];
} __packed;
static_assert(sizeof(struct spwr_bix) == 119);
/* Equivalent to data returned in ACPI _BST method. */
struct spwr_bst {
__le32 state;
__le32 present_rate;
__le32 remaining_cap;
__le32 present_voltage;
} __packed;
static_assert(sizeof(struct spwr_bst) == 16);
#define SPWR_BIX_REVISION 0
#define SPWR_BATTERY_VALUE_UNKNOWN 0xffffffff
/* Get battery status (_STA) */
SSAM_DEFINE_SYNC_REQUEST_CL_R(ssam_bat_get_sta, __le32, {
.target_category = SSAM_SSH_TC_BAT,
.command_id = 0x01,
});
/* Get battery static information (_BIX). */
SSAM_DEFINE_SYNC_REQUEST_CL_R(ssam_bat_get_bix, struct spwr_bix, {
.target_category = SSAM_SSH_TC_BAT,
.command_id = 0x02,
});
/* Get battery dynamic information (_BST). */
SSAM_DEFINE_SYNC_REQUEST_CL_R(ssam_bat_get_bst, struct spwr_bst, {
.target_category = SSAM_SSH_TC_BAT,
.command_id = 0x03,
});
/* Set battery trip point (_BTP). */
SSAM_DEFINE_SYNC_REQUEST_CL_W(ssam_bat_set_btp, __le32, {
.target_category = SSAM_SSH_TC_BAT,
.command_id = 0x04,
});
/* -- Device structures. ---------------------------------------------------- */
struct spwr_psy_properties {
const char *name;
struct ssam_event_registry registry;
};
struct spwr_battery_device {
struct ssam_device *sdev;
char name[32];
struct power_supply *psy;
struct power_supply_desc psy_desc;
struct delayed_work update_work;
struct ssam_event_notifier notif;
struct mutex lock; /* Guards access to state data below. */
unsigned long timestamp;
__le32 sta;
struct spwr_bix bix;
struct spwr_bst bst;
u32 alarm;
};
/* -- Module parameters. ---------------------------------------------------- */
static unsigned int cache_time = 1000;
module_param(cache_time, uint, 0644);
MODULE_PARM_DESC(cache_time, "battery state caching time in milliseconds [default: 1000]");
/* -- State management. ----------------------------------------------------- */
/*
* Delay for battery update quirk. See spwr_external_power_changed() below
* for more details.
*/
#define SPWR_AC_BAT_UPDATE_DELAY msecs_to_jiffies(5000)
static bool spwr_battery_present(struct spwr_battery_device *bat)
{
lockdep_assert_held(&bat->lock);
return le32_to_cpu(bat->sta) & SAM_BATTERY_STA_PRESENT;
}
static int spwr_battery_load_sta(struct spwr_battery_device *bat)
{
lockdep_assert_held(&bat->lock);
return ssam_retry(ssam_bat_get_sta, bat->sdev, &bat->sta);
}
static int spwr_battery_load_bix(struct spwr_battery_device *bat)
{
int status;
lockdep_assert_held(&bat->lock);
if (!spwr_battery_present(bat))
return 0;
status = ssam_retry(ssam_bat_get_bix, bat->sdev, &bat->bix);
/* Enforce NULL terminated strings in case anything goes wrong... */
bat->bix.model[ARRAY_SIZE(bat->bix.model) - 1] = 0;
bat->bix.serial[ARRAY_SIZE(bat->bix.serial) - 1] = 0;
bat->bix.type[ARRAY_SIZE(bat->bix.type) - 1] = 0;
bat->bix.oem_info[ARRAY_SIZE(bat->bix.oem_info) - 1] = 0;
return status;
}
static int spwr_battery_load_bst(struct spwr_battery_device *bat)
{
lockdep_assert_held(&bat->lock);
if (!spwr_battery_present(bat))
return 0;
return ssam_retry(ssam_bat_get_bst, bat->sdev, &bat->bst);
}
static int spwr_battery_set_alarm_unlocked(struct spwr_battery_device *bat, u32 value)
{
__le32 value_le = cpu_to_le32(value);
lockdep_assert_held(&bat->lock);
bat->alarm = value;
return ssam_retry(ssam_bat_set_btp, bat->sdev, &value_le);
}
static int spwr_battery_update_bst_unlocked(struct spwr_battery_device *bat, bool cached)
{
unsigned long cache_deadline = bat->timestamp + msecs_to_jiffies(cache_time);
int status;
lockdep_assert_held(&bat->lock);
if (cached && bat->timestamp && time_is_after_jiffies(cache_deadline))
return 0;
status = spwr_battery_load_sta(bat);
if (status)
return status;
status = spwr_battery_load_bst(bat);
if (status)
return status;
bat->timestamp = jiffies;
return 0;
}
static int spwr_battery_update_bst(struct spwr_battery_device *bat, bool cached)
{
int status;
mutex_lock(&bat->lock);
status = spwr_battery_update_bst_unlocked(bat, cached);
mutex_unlock(&bat->lock);
return status;
}
static int spwr_battery_update_bix_unlocked(struct spwr_battery_device *bat)
{
int status;
lockdep_assert_held(&bat->lock);
status = spwr_battery_load_sta(bat);
if (status)
return status;
status = spwr_battery_load_bix(bat);
if (status)
return status;
status = spwr_battery_load_bst(bat);
if (status)
return status;
if (bat->bix.revision != SPWR_BIX_REVISION)
dev_warn(&bat->sdev->dev, "unsupported battery revision: %u\n", bat->bix.revision);
bat->timestamp = jiffies;
return 0;
}
static u32 sprw_battery_get_full_cap_safe(struct spwr_battery_device *bat)
{
u32 full_cap = get_unaligned_le32(&bat->bix.last_full_charge_cap);
lockdep_assert_held(&bat->lock);
if (full_cap == 0 || full_cap == SPWR_BATTERY_VALUE_UNKNOWN)
full_cap = get_unaligned_le32(&bat->bix.design_cap);
return full_cap;
}
static bool spwr_battery_is_full(struct spwr_battery_device *bat)
{
u32 state = get_unaligned_le32(&bat->bst.state);
u32 full_cap = sprw_battery_get_full_cap_safe(bat);
u32 remaining_cap = get_unaligned_le32(&bat->bst.remaining_cap);
lockdep_assert_held(&bat->lock);
return full_cap != SPWR_BATTERY_VALUE_UNKNOWN && full_cap != 0 &&
remaining_cap != SPWR_BATTERY_VALUE_UNKNOWN &&
remaining_cap >= full_cap &&
state == 0;
}
static int spwr_battery_recheck_full(struct spwr_battery_device *bat)
{
bool present;
u32 unit;
int status;
mutex_lock(&bat->lock);
unit = get_unaligned_le32(&bat->bix.power_unit);
present = spwr_battery_present(bat);
status = spwr_battery_update_bix_unlocked(bat);
if (status)
goto out;
/* If battery has been attached, (re-)initialize alarm. */
if (!present && spwr_battery_present(bat)) {
u32 cap_warn = get_unaligned_le32(&bat->bix.design_cap_warn);
status = spwr_battery_set_alarm_unlocked(bat, cap_warn);
if (status)
goto out;
}
/*
* Warn if the unit has changed. This is something we genuinely don't
* expect to happen, so make this a big warning. If it does, we'll
* need to add support for it.
*/
WARN_ON(unit != get_unaligned_le32(&bat->bix.power_unit));
out:
mutex_unlock(&bat->lock);
if (!status)
power_supply_changed(bat->psy);
return status;
}
static int spwr_battery_recheck_status(struct spwr_battery_device *bat)
{
int status;
status = spwr_battery_update_bst(bat, false);
if (!status)
power_supply_changed(bat->psy);
return status;
}
static u32 spwr_notify_bat(struct ssam_event_notifier *nf, const struct ssam_event *event)
{
struct spwr_battery_device *bat = container_of(nf, struct spwr_battery_device, notif);
int status;
/*
* We cannot use strict matching when registering the notifier as the
* EC expects us to register it against instance ID 0. Strict matching
* would thus drop events, as those may have non-zero instance IDs in
* this subsystem. So we need to check the instance ID of the event
* here manually.
*/
if (event->instance_id != bat->sdev->uid.instance)
return 0;
dev_dbg(&bat->sdev->dev, "power event (cid = %#04x, iid = %#04x, tid = %#04x)\n",
event->command_id, event->instance_id, event->target_id);
switch (event->command_id) {
case SAM_EVENT_CID_BAT_BIX:
status = spwr_battery_recheck_full(bat);
break;
case SAM_EVENT_CID_BAT_BST:
status = spwr_battery_recheck_status(bat);
break;
case SAM_EVENT_CID_BAT_PROT:
/*
* TODO: Implement support for battery protection status change
* event.
*/
status = 0;
break;
case SAM_EVENT_CID_BAT_DPTF:
/*
* TODO: Implement support for DPTF event.
*/
status = 0;
break;
default:
return 0;
}
return ssam_notifier_from_errno(status) | SSAM_NOTIF_HANDLED;
}
static void spwr_battery_update_bst_workfn(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct spwr_battery_device *bat;
int status;
bat = container_of(dwork, struct spwr_battery_device, update_work);
status = spwr_battery_update_bst(bat, false);
if (status) {
dev_err(&bat->sdev->dev, "failed to update battery state: %d\n", status);
return;
}
power_supply_changed(bat->psy);
}
static void spwr_external_power_changed(struct power_supply *psy)
{
struct spwr_battery_device *bat = power_supply_get_drvdata(psy);
/*
* Handle battery update quirk: When the battery is fully charged (or
* charged up to the limit imposed by the UEFI battery limit) and the
* adapter is plugged in or removed, the EC does not send a separate
* event for the state (charging/discharging) change. Furthermore it
* may take some time until the state is updated on the battery.
* Schedule an update to solve this.
*/
schedule_delayed_work(&bat->update_work, SPWR_AC_BAT_UPDATE_DELAY);
}
/* -- Properties. ----------------------------------------------------------- */
static const enum power_supply_property spwr_battery_props_chg[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CYCLE_COUNT,
POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_MODEL_NAME,
POWER_SUPPLY_PROP_MANUFACTURER,
POWER_SUPPLY_PROP_SERIAL_NUMBER,
};
static const enum power_supply_property spwr_battery_props_eng[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CYCLE_COUNT,
POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_POWER_NOW,
POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
POWER_SUPPLY_PROP_ENERGY_FULL,
POWER_SUPPLY_PROP_ENERGY_NOW,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_MODEL_NAME,
POWER_SUPPLY_PROP_MANUFACTURER,
POWER_SUPPLY_PROP_SERIAL_NUMBER,
};
static int spwr_battery_prop_status(struct spwr_battery_device *bat)
{
u32 state = get_unaligned_le32(&bat->bst.state);
u32 present_rate = get_unaligned_le32(&bat->bst.present_rate);
lockdep_assert_held(&bat->lock);
if (state & SAM_BATTERY_STATE_DISCHARGING)
return POWER_SUPPLY_STATUS_DISCHARGING;
if (state & SAM_BATTERY_STATE_CHARGING)
return POWER_SUPPLY_STATUS_CHARGING;
if (spwr_battery_is_full(bat))
return POWER_SUPPLY_STATUS_FULL;
if (present_rate == 0)
return POWER_SUPPLY_STATUS_NOT_CHARGING;
return POWER_SUPPLY_STATUS_UNKNOWN;
}
static int spwr_battery_prop_technology(struct spwr_battery_device *bat)
{
lockdep_assert_held(&bat->lock);
if (!strcasecmp("NiCd", bat->bix.type))
return POWER_SUPPLY_TECHNOLOGY_NiCd;
if (!strcasecmp("NiMH", bat->bix.type))
return POWER_SUPPLY_TECHNOLOGY_NiMH;
if (!strcasecmp("LION", bat->bix.type))
return POWER_SUPPLY_TECHNOLOGY_LION;
if (!strncasecmp("LI-ION", bat->bix.type, 6))
return POWER_SUPPLY_TECHNOLOGY_LION;
if (!strcasecmp("LiP", bat->bix.type))
return POWER_SUPPLY_TECHNOLOGY_LIPO;
return POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
}
static int spwr_battery_prop_capacity(struct spwr_battery_device *bat)
{
u32 full_cap = sprw_battery_get_full_cap_safe(bat);
u32 remaining_cap = get_unaligned_le32(&bat->bst.remaining_cap);
lockdep_assert_held(&bat->lock);
if (full_cap == 0 || full_cap == SPWR_BATTERY_VALUE_UNKNOWN)
return -ENODATA;
if (remaining_cap == SPWR_BATTERY_VALUE_UNKNOWN)
return -ENODATA;
return remaining_cap * 100 / full_cap;
}
static int spwr_battery_prop_capacity_level(struct spwr_battery_device *bat)
{
u32 state = get_unaligned_le32(&bat->bst.state);
u32 remaining_cap = get_unaligned_le32(&bat->bst.remaining_cap);
lockdep_assert_held(&bat->lock);
if (state & SAM_BATTERY_STATE_CRITICAL)
return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
if (spwr_battery_is_full(bat))
return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
if (remaining_cap <= bat->alarm)
return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
}
static int spwr_battery_get_property(struct power_supply *psy, enum power_supply_property psp,
union power_supply_propval *val)
{
struct spwr_battery_device *bat = power_supply_get_drvdata(psy);
u32 value;
int status;
mutex_lock(&bat->lock);
status = spwr_battery_update_bst_unlocked(bat, true);
if (status)
goto out;
/* Abort if battery is not present. */
if (!spwr_battery_present(bat) && psp != POWER_SUPPLY_PROP_PRESENT) {
status = -ENODEV;
goto out;
}
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
val->intval = spwr_battery_prop_status(bat);
break;
case POWER_SUPPLY_PROP_PRESENT:
val->intval = spwr_battery_present(bat);
break;
case POWER_SUPPLY_PROP_TECHNOLOGY:
val->intval = spwr_battery_prop_technology(bat);
break;
case POWER_SUPPLY_PROP_CYCLE_COUNT:
value = get_unaligned_le32(&bat->bix.cycle_count);
if (value != SPWR_BATTERY_VALUE_UNKNOWN)
val->intval = value;
else
status = -ENODATA;
break;
case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
value = get_unaligned_le32(&bat->bix.design_voltage);
if (value != SPWR_BATTERY_VALUE_UNKNOWN)
val->intval = value * 1000;
else
status = -ENODATA;
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
value = get_unaligned_le32(&bat->bst.present_voltage);
if (value != SPWR_BATTERY_VALUE_UNKNOWN)
val->intval = value * 1000;
else
status = -ENODATA;
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
case POWER_SUPPLY_PROP_POWER_NOW:
value = get_unaligned_le32(&bat->bst.present_rate);
if (value != SPWR_BATTERY_VALUE_UNKNOWN)
val->intval = value * 1000;
else
status = -ENODATA;
break;
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
value = get_unaligned_le32(&bat->bix.design_cap);
if (value != SPWR_BATTERY_VALUE_UNKNOWN)
val->intval = value * 1000;
else
status = -ENODATA;
break;
case POWER_SUPPLY_PROP_CHARGE_FULL:
case POWER_SUPPLY_PROP_ENERGY_FULL:
value = get_unaligned_le32(&bat->bix.last_full_charge_cap);
if (value != SPWR_BATTERY_VALUE_UNKNOWN)
val->intval = value * 1000;
else
status = -ENODATA;
break;
case POWER_SUPPLY_PROP_CHARGE_NOW:
case POWER_SUPPLY_PROP_ENERGY_NOW:
value = get_unaligned_le32(&bat->bst.remaining_cap);
if (value != SPWR_BATTERY_VALUE_UNKNOWN)
val->intval = value * 1000;
else
status = -ENODATA;
break;
case POWER_SUPPLY_PROP_CAPACITY:
val->intval = spwr_battery_prop_capacity(bat);
break;
case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
val->intval = spwr_battery_prop_capacity_level(bat);
break;
case POWER_SUPPLY_PROP_MODEL_NAME:
val->strval = bat->bix.model;
break;
case POWER_SUPPLY_PROP_MANUFACTURER:
val->strval = bat->bix.oem_info;
break;
case POWER_SUPPLY_PROP_SERIAL_NUMBER:
val->strval = bat->bix.serial;
break;
default:
status = -EINVAL;
break;
}
out:
mutex_unlock(&bat->lock);
return status;
}
/* -- Alarm attribute. ------------------------------------------------------ */
static ssize_t alarm_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct power_supply *psy = dev_get_drvdata(dev);
struct spwr_battery_device *bat = power_supply_get_drvdata(psy);
int status;
mutex_lock(&bat->lock);
status = sysfs_emit(buf, "%d\n", bat->alarm * 1000);
mutex_unlock(&bat->lock);
return status;
}
static ssize_t alarm_store(struct device *dev, struct device_attribute *attr, const char *buf,
size_t count)
{
struct power_supply *psy = dev_get_drvdata(dev);
struct spwr_battery_device *bat = power_supply_get_drvdata(psy);
unsigned long value;
int status;
status = kstrtoul(buf, 0, &value);
if (status)
return status;
mutex_lock(&bat->lock);
if (!spwr_battery_present(bat)) {
mutex_unlock(&bat->lock);
return -ENODEV;
}
status = spwr_battery_set_alarm_unlocked(bat, value / 1000);
if (status) {
mutex_unlock(&bat->lock);
return status;
}
mutex_unlock(&bat->lock);
return count;
}
static DEVICE_ATTR_RW(alarm);
static struct attribute *spwr_battery_attrs[] = {
&dev_attr_alarm.attr,
NULL,
};
ATTRIBUTE_GROUPS(spwr_battery);
/* -- Device setup. --------------------------------------------------------- */
static void spwr_battery_init(struct spwr_battery_device *bat, struct ssam_device *sdev,
struct ssam_event_registry registry, const char *name)
{
mutex_init(&bat->lock);
strncpy(bat->name, name, ARRAY_SIZE(bat->name) - 1);
bat->sdev = sdev;
bat->notif.base.priority = 1;
bat->notif.base.fn = spwr_notify_bat;
bat->notif.event.reg = registry;
bat->notif.event.id.target_category = sdev->uid.category;
bat->notif.event.id.instance = 0; /* need to register with instance 0 */
bat->notif.event.mask = SSAM_EVENT_MASK_TARGET;
bat->notif.event.flags = SSAM_EVENT_SEQUENCED;
bat->psy_desc.name = bat->name;
bat->psy_desc.type = POWER_SUPPLY_TYPE_BATTERY;
bat->psy_desc.get_property = spwr_battery_get_property;
INIT_DELAYED_WORK(&bat->update_work, spwr_battery_update_bst_workfn);
}
static int spwr_battery_register(struct spwr_battery_device *bat)
{
struct power_supply_config psy_cfg = {};
__le32 sta;
int status;
/* Make sure the device is there and functioning properly. */
status = ssam_retry(ssam_bat_get_sta, bat->sdev, &sta);
if (status)
return status;
if ((le32_to_cpu(sta) & SAM_BATTERY_STA_OK) != SAM_BATTERY_STA_OK)
return -ENODEV;
/* Satisfy lockdep although we are in an exclusive context here. */
mutex_lock(&bat->lock);
status = spwr_battery_update_bix_unlocked(bat);
if (status) {
mutex_unlock(&bat->lock);
return status;
}
if (spwr_battery_present(bat)) {
u32 cap_warn = get_unaligned_le32(&bat->bix.design_cap_warn);
status = spwr_battery_set_alarm_unlocked(bat, cap_warn);
if (status) {
mutex_unlock(&bat->lock);
return status;
}
}
mutex_unlock(&bat->lock);
bat->psy_desc.external_power_changed = spwr_external_power_changed;
switch (get_unaligned_le32(&bat->bix.power_unit)) {
case SAM_BATTERY_POWER_UNIT_mW:
bat->psy_desc.properties = spwr_battery_props_eng;
bat->psy_desc.num_properties = ARRAY_SIZE(spwr_battery_props_eng);
break;
case SAM_BATTERY_POWER_UNIT_mA:
bat->psy_desc.properties = spwr_battery_props_chg;
bat->psy_desc.num_properties = ARRAY_SIZE(spwr_battery_props_chg);
break;
default:
dev_err(&bat->sdev->dev, "unsupported battery power unit: %u\n",
get_unaligned_le32(&bat->bix.power_unit));
return -EINVAL;
}
psy_cfg.drv_data = bat;
psy_cfg.attr_grp = spwr_battery_groups;
bat->psy = devm_power_supply_register(&bat->sdev->dev, &bat->psy_desc, &psy_cfg);
if (IS_ERR(bat->psy))
return PTR_ERR(bat->psy);
return ssam_notifier_register(bat->sdev->ctrl, &bat->notif);
}
/* -- Driver setup. --------------------------------------------------------- */
static int __maybe_unused surface_battery_resume(struct device *dev)
{
return spwr_battery_recheck_full(dev_get_drvdata(dev));
}
static SIMPLE_DEV_PM_OPS(surface_battery_pm_ops, NULL, surface_battery_resume);
static int surface_battery_probe(struct ssam_device *sdev)
{
const struct spwr_psy_properties *p;
struct spwr_battery_device *bat;
p = ssam_device_get_match_data(sdev);
if (!p)
return -ENODEV;
bat = devm_kzalloc(&sdev->dev, sizeof(*bat), GFP_KERNEL);
if (!bat)
return -ENOMEM;
spwr_battery_init(bat, sdev, p->registry, p->name);
ssam_device_set_drvdata(sdev, bat);
return spwr_battery_register(bat);
}
static void surface_battery_remove(struct ssam_device *sdev)
{
struct spwr_battery_device *bat = ssam_device_get_drvdata(sdev);
ssam_notifier_unregister(sdev->ctrl, &bat->notif);
cancel_delayed_work_sync(&bat->update_work);
}
static const struct spwr_psy_properties spwr_psy_props_bat1 = {
.name = "BAT1",
.registry = SSAM_EVENT_REGISTRY_SAM,
};
static const struct spwr_psy_properties spwr_psy_props_bat2_sb3 = {
.name = "BAT2",
.registry = SSAM_EVENT_REGISTRY_KIP,
};
static const struct ssam_device_id surface_battery_match[] = {
{ SSAM_SDEV(BAT, 0x01, 0x01, 0x00), (unsigned long)&spwr_psy_props_bat1 },
{ SSAM_SDEV(BAT, 0x02, 0x01, 0x00), (unsigned long)&spwr_psy_props_bat2_sb3 },
{ },
};
MODULE_DEVICE_TABLE(ssam, surface_battery_match);
static struct ssam_device_driver surface_battery_driver = {
.probe = surface_battery_probe,
.remove = surface_battery_remove,
.match_table = surface_battery_match,
.driver = {
.name = "surface_battery",
.pm = &surface_battery_pm_ops,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
},
};
module_ssam_device_driver(surface_battery_driver);
MODULE_AUTHOR("Maximilian Luz <luzmaximilian@gmail.com>");
MODULE_DESCRIPTION("Battery driver for Surface System Aggregator Module");
MODULE_LICENSE("GPL");