blob: cd42be646ed3b56f301c7ab7f3ef8c3c9d397261 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/* netfs cookie management
*
* Copyright (C) 2004-2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* See Documentation/filesystems/caching/netfs-api.rst for more information on
* the netfs API.
*/
#define FSCACHE_DEBUG_LEVEL COOKIE
#include <linux/module.h>
#include <linux/slab.h>
#include "internal.h"
struct kmem_cache *fscache_cookie_jar;
static atomic_t fscache_object_debug_id = ATOMIC_INIT(0);
#define fscache_cookie_hash_shift 15
static struct hlist_bl_head fscache_cookie_hash[1 << fscache_cookie_hash_shift];
static LIST_HEAD(fscache_cookies);
static DEFINE_RWLOCK(fscache_cookies_lock);
static int fscache_acquire_non_index_cookie(struct fscache_cookie *cookie,
loff_t object_size);
static int fscache_alloc_object(struct fscache_cache *cache,
struct fscache_cookie *cookie);
static int fscache_attach_object(struct fscache_cookie *cookie,
struct fscache_object *object);
static void fscache_print_cookie(struct fscache_cookie *cookie, char prefix)
{
struct fscache_object *object;
struct hlist_node *o;
const u8 *k;
unsigned loop;
pr_err("%c-cookie c=%08x [p=%08x fl=%lx nc=%u na=%u]\n",
prefix,
cookie->debug_id,
cookie->parent ? cookie->parent->debug_id : 0,
cookie->flags,
atomic_read(&cookie->n_children),
atomic_read(&cookie->n_active));
pr_err("%c-cookie d=%p{%s} n=%p\n",
prefix,
cookie->def,
cookie->def ? cookie->def->name : "?",
cookie->netfs_data);
o = READ_ONCE(cookie->backing_objects.first);
if (o) {
object = hlist_entry(o, struct fscache_object, cookie_link);
pr_err("%c-cookie o=%u\n", prefix, object->debug_id);
}
pr_err("%c-key=[%u] '", prefix, cookie->key_len);
k = (cookie->key_len <= sizeof(cookie->inline_key)) ?
cookie->inline_key : cookie->key;
for (loop = 0; loop < cookie->key_len; loop++)
pr_cont("%02x", k[loop]);
pr_cont("'\n");
}
void fscache_free_cookie(struct fscache_cookie *cookie)
{
if (cookie) {
BUG_ON(!hlist_empty(&cookie->backing_objects));
write_lock(&fscache_cookies_lock);
list_del(&cookie->proc_link);
write_unlock(&fscache_cookies_lock);
if (cookie->aux_len > sizeof(cookie->inline_aux))
kfree(cookie->aux);
if (cookie->key_len > sizeof(cookie->inline_key))
kfree(cookie->key);
kmem_cache_free(fscache_cookie_jar, cookie);
}
}
/*
* Set the index key in a cookie. The cookie struct has space for a 16-byte
* key plus length and hash, but if that's not big enough, it's instead a
* pointer to a buffer containing 3 bytes of hash, 1 byte of length and then
* the key data.
*/
static int fscache_set_key(struct fscache_cookie *cookie,
const void *index_key, size_t index_key_len)
{
u32 *buf;
int bufs;
bufs = DIV_ROUND_UP(index_key_len, sizeof(*buf));
if (index_key_len > sizeof(cookie->inline_key)) {
buf = kcalloc(bufs, sizeof(*buf), GFP_KERNEL);
if (!buf)
return -ENOMEM;
cookie->key = buf;
} else {
buf = (u32 *)cookie->inline_key;
}
memcpy(buf, index_key, index_key_len);
cookie->key_hash = fscache_hash(0, buf, bufs);
return 0;
}
static long fscache_compare_cookie(const struct fscache_cookie *a,
const struct fscache_cookie *b)
{
const void *ka, *kb;
if (a->key_hash != b->key_hash)
return (long)a->key_hash - (long)b->key_hash;
if (a->parent != b->parent)
return (long)a->parent - (long)b->parent;
if (a->key_len != b->key_len)
return (long)a->key_len - (long)b->key_len;
if (a->type != b->type)
return (long)a->type - (long)b->type;
if (a->key_len <= sizeof(a->inline_key)) {
ka = &a->inline_key;
kb = &b->inline_key;
} else {
ka = a->key;
kb = b->key;
}
return memcmp(ka, kb, a->key_len);
}
static atomic_t fscache_cookie_debug_id = ATOMIC_INIT(1);
/*
* Allocate a cookie.
*/
struct fscache_cookie *fscache_alloc_cookie(
struct fscache_cookie *parent,
const struct fscache_cookie_def *def,
const void *index_key, size_t index_key_len,
const void *aux_data, size_t aux_data_len,
void *netfs_data,
loff_t object_size)
{
struct fscache_cookie *cookie;
/* allocate and initialise a cookie */
cookie = kmem_cache_zalloc(fscache_cookie_jar, GFP_KERNEL);
if (!cookie)
return NULL;
cookie->key_len = index_key_len;
cookie->aux_len = aux_data_len;
if (fscache_set_key(cookie, index_key, index_key_len) < 0)
goto nomem;
if (cookie->aux_len <= sizeof(cookie->inline_aux)) {
memcpy(cookie->inline_aux, aux_data, cookie->aux_len);
} else {
cookie->aux = kmemdup(aux_data, cookie->aux_len, GFP_KERNEL);
if (!cookie->aux)
goto nomem;
}
refcount_set(&cookie->ref, 1);
atomic_set(&cookie->n_children, 0);
cookie->debug_id = atomic_inc_return(&fscache_cookie_debug_id);
/* We keep the active count elevated until relinquishment to prevent an
* attempt to wake up every time the object operations queue quiesces.
*/
atomic_set(&cookie->n_active, 1);
cookie->def = def;
cookie->parent = parent;
cookie->netfs_data = netfs_data;
cookie->flags = (1 << FSCACHE_COOKIE_NO_DATA_YET);
cookie->type = def->type;
spin_lock_init(&cookie->lock);
spin_lock_init(&cookie->stores_lock);
INIT_HLIST_HEAD(&cookie->backing_objects);
/* radix tree insertion won't use the preallocation pool unless it's
* told it may not wait */
INIT_RADIX_TREE(&cookie->stores, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
write_lock(&fscache_cookies_lock);
list_add_tail(&cookie->proc_link, &fscache_cookies);
write_unlock(&fscache_cookies_lock);
return cookie;
nomem:
fscache_free_cookie(cookie);
return NULL;
}
/*
* Attempt to insert the new cookie into the hash. If there's a collision, we
* return the old cookie if it's not in use and an error otherwise.
*/
struct fscache_cookie *fscache_hash_cookie(struct fscache_cookie *candidate)
{
struct fscache_cookie *cursor;
struct hlist_bl_head *h;
struct hlist_bl_node *p;
unsigned int bucket;
bucket = candidate->key_hash & (ARRAY_SIZE(fscache_cookie_hash) - 1);
h = &fscache_cookie_hash[bucket];
hlist_bl_lock(h);
hlist_bl_for_each_entry(cursor, p, h, hash_link) {
if (fscache_compare_cookie(candidate, cursor) == 0)
goto collision;
}
__set_bit(FSCACHE_COOKIE_ACQUIRED, &candidate->flags);
fscache_cookie_get(candidate->parent, fscache_cookie_get_acquire_parent);
atomic_inc(&candidate->parent->n_children);
hlist_bl_add_head(&candidate->hash_link, h);
hlist_bl_unlock(h);
return candidate;
collision:
if (test_and_set_bit(FSCACHE_COOKIE_ACQUIRED, &cursor->flags)) {
trace_fscache_cookie(cursor->debug_id, refcount_read(&cursor->ref),
fscache_cookie_collision);
pr_err("Duplicate cookie detected\n");
fscache_print_cookie(cursor, 'O');
fscache_print_cookie(candidate, 'N');
hlist_bl_unlock(h);
return NULL;
}
fscache_cookie_get(cursor, fscache_cookie_get_reacquire);
hlist_bl_unlock(h);
return cursor;
}
/*
* request a cookie to represent an object (index, datafile, xattr, etc)
* - parent specifies the parent object
* - the top level index cookie for each netfs is stored in the fscache_netfs
* struct upon registration
* - def points to the definition
* - the netfs_data will be passed to the functions pointed to in *def
* - all attached caches will be searched to see if they contain this object
* - index objects aren't stored on disk until there's a dependent file that
* needs storing
* - other objects are stored in a selected cache immediately, and all the
* indices forming the path to it are instantiated if necessary
* - we never let on to the netfs about errors
* - we may set a negative cookie pointer, but that's okay
*/
struct fscache_cookie *__fscache_acquire_cookie(
struct fscache_cookie *parent,
const struct fscache_cookie_def *def,
const void *index_key, size_t index_key_len,
const void *aux_data, size_t aux_data_len,
void *netfs_data,
loff_t object_size,
bool enable)
{
struct fscache_cookie *candidate, *cookie;
BUG_ON(!def);
_enter("{%s},{%s},%p,%u",
parent ? (char *) parent->def->name : "<no-parent>",
def->name, netfs_data, enable);
if (!index_key || !index_key_len || index_key_len > 255 || aux_data_len > 255)
return NULL;
if (!aux_data || !aux_data_len) {
aux_data = NULL;
aux_data_len = 0;
}
fscache_stat(&fscache_n_acquires);
/* if there's no parent cookie, then we don't create one here either */
if (!parent) {
fscache_stat(&fscache_n_acquires_null);
_leave(" [no parent]");
return NULL;
}
/* validate the definition */
BUG_ON(!def->name[0]);
BUG_ON(def->type == FSCACHE_COOKIE_TYPE_INDEX &&
parent->type != FSCACHE_COOKIE_TYPE_INDEX);
candidate = fscache_alloc_cookie(parent, def,
index_key, index_key_len,
aux_data, aux_data_len,
netfs_data, object_size);
if (!candidate) {
fscache_stat(&fscache_n_acquires_oom);
_leave(" [ENOMEM]");
return NULL;
}
cookie = fscache_hash_cookie(candidate);
if (!cookie) {
trace_fscache_cookie(candidate->debug_id, 1,
fscache_cookie_discard);
goto out;
}
if (cookie == candidate)
candidate = NULL;
switch (cookie->type) {
case FSCACHE_COOKIE_TYPE_INDEX:
fscache_stat(&fscache_n_cookie_index);
break;
case FSCACHE_COOKIE_TYPE_DATAFILE:
fscache_stat(&fscache_n_cookie_data);
break;
default:
fscache_stat(&fscache_n_cookie_special);
break;
}
trace_fscache_acquire(cookie);
if (enable) {
/* if the object is an index then we need do nothing more here
* - we create indices on disk when we need them as an index
* may exist in multiple caches */
if (cookie->type != FSCACHE_COOKIE_TYPE_INDEX) {
if (fscache_acquire_non_index_cookie(cookie, object_size) == 0) {
set_bit(FSCACHE_COOKIE_ENABLED, &cookie->flags);
} else {
atomic_dec(&parent->n_children);
fscache_cookie_put(cookie,
fscache_cookie_put_acquire_nobufs);
fscache_stat(&fscache_n_acquires_nobufs);
_leave(" = NULL");
return NULL;
}
} else {
set_bit(FSCACHE_COOKIE_ENABLED, &cookie->flags);
}
}
fscache_stat(&fscache_n_acquires_ok);
out:
fscache_free_cookie(candidate);
return cookie;
}
EXPORT_SYMBOL(__fscache_acquire_cookie);
/*
* Enable a cookie to permit it to accept new operations.
*/
void __fscache_enable_cookie(struct fscache_cookie *cookie,
const void *aux_data,
loff_t object_size,
bool (*can_enable)(void *data),
void *data)
{
_enter("%x", cookie->debug_id);
trace_fscache_enable(cookie);
wait_on_bit_lock(&cookie->flags, FSCACHE_COOKIE_ENABLEMENT_LOCK,
TASK_UNINTERRUPTIBLE);
fscache_update_aux(cookie, aux_data);
if (test_bit(FSCACHE_COOKIE_ENABLED, &cookie->flags))
goto out_unlock;
if (can_enable && !can_enable(data)) {
/* The netfs decided it didn't want to enable after all */
} else if (cookie->type != FSCACHE_COOKIE_TYPE_INDEX) {
/* Wait for outstanding disablement to complete */
__fscache_wait_on_invalidate(cookie);
if (fscache_acquire_non_index_cookie(cookie, object_size) == 0)
set_bit(FSCACHE_COOKIE_ENABLED, &cookie->flags);
} else {
set_bit(FSCACHE_COOKIE_ENABLED, &cookie->flags);
}
out_unlock:
clear_bit_unlock(FSCACHE_COOKIE_ENABLEMENT_LOCK, &cookie->flags);
wake_up_bit(&cookie->flags, FSCACHE_COOKIE_ENABLEMENT_LOCK);
}
EXPORT_SYMBOL(__fscache_enable_cookie);
/*
* acquire a non-index cookie
* - this must make sure the index chain is instantiated and instantiate the
* object representation too
*/
static int fscache_acquire_non_index_cookie(struct fscache_cookie *cookie,
loff_t object_size)
{
struct fscache_object *object;
struct fscache_cache *cache;
int ret;
_enter("");
set_bit(FSCACHE_COOKIE_UNAVAILABLE, &cookie->flags);
/* now we need to see whether the backing objects for this cookie yet
* exist, if not there'll be nothing to search */
down_read(&fscache_addremove_sem);
if (list_empty(&fscache_cache_list)) {
up_read(&fscache_addremove_sem);
_leave(" = 0 [no caches]");
return 0;
}
/* select a cache in which to store the object */
cache = fscache_select_cache_for_object(cookie->parent);
if (!cache) {
up_read(&fscache_addremove_sem);
fscache_stat(&fscache_n_acquires_no_cache);
_leave(" = -ENOMEDIUM [no cache]");
return -ENOMEDIUM;
}
_debug("cache %s", cache->tag->name);
set_bit(FSCACHE_COOKIE_LOOKING_UP, &cookie->flags);
/* ask the cache to allocate objects for this cookie and its parent
* chain */
ret = fscache_alloc_object(cache, cookie);
if (ret < 0) {
up_read(&fscache_addremove_sem);
_leave(" = %d", ret);
return ret;
}
spin_lock(&cookie->lock);
if (hlist_empty(&cookie->backing_objects)) {
spin_unlock(&cookie->lock);
goto unavailable;
}
object = hlist_entry(cookie->backing_objects.first,
struct fscache_object, cookie_link);
fscache_set_store_limit(object, object_size);
/* initiate the process of looking up all the objects in the chain
* (done by fscache_initialise_object()) */
fscache_raise_event(object, FSCACHE_OBJECT_EV_NEW_CHILD);
spin_unlock(&cookie->lock);
/* we may be required to wait for lookup to complete at this point */
if (!fscache_defer_lookup) {
wait_on_bit(&cookie->flags, FSCACHE_COOKIE_LOOKING_UP,
TASK_UNINTERRUPTIBLE);
if (test_bit(FSCACHE_COOKIE_UNAVAILABLE, &cookie->flags))
goto unavailable;
}
up_read(&fscache_addremove_sem);
_leave(" = 0 [deferred]");
return 0;
unavailable:
up_read(&fscache_addremove_sem);
_leave(" = -ENOBUFS");
return -ENOBUFS;
}
/*
* recursively allocate cache object records for a cookie/cache combination
* - caller must be holding the addremove sem
*/
static int fscache_alloc_object(struct fscache_cache *cache,
struct fscache_cookie *cookie)
{
struct fscache_object *object;
int ret;
_enter("%s,%x{%s}", cache->tag->name, cookie->debug_id, cookie->def->name);
spin_lock(&cookie->lock);
hlist_for_each_entry(object, &cookie->backing_objects,
cookie_link) {
if (object->cache == cache)
goto object_already_extant;
}
spin_unlock(&cookie->lock);
/* ask the cache to allocate an object (we may end up with duplicate
* objects at this stage, but we sort that out later) */
fscache_stat(&fscache_n_cop_alloc_object);
object = cache->ops->alloc_object(cache, cookie);
fscache_stat_d(&fscache_n_cop_alloc_object);
if (IS_ERR(object)) {
fscache_stat(&fscache_n_object_no_alloc);
ret = PTR_ERR(object);
goto error;
}
ASSERTCMP(object->cookie, ==, cookie);
fscache_stat(&fscache_n_object_alloc);
object->debug_id = atomic_inc_return(&fscache_object_debug_id);
_debug("ALLOC OBJ%x: %s {%lx}",
object->debug_id, cookie->def->name, object->events);
ret = fscache_alloc_object(cache, cookie->parent);
if (ret < 0)
goto error_put;
/* only attach if we managed to allocate all we needed, otherwise
* discard the object we just allocated and instead use the one
* attached to the cookie */
if (fscache_attach_object(cookie, object) < 0) {
fscache_stat(&fscache_n_cop_put_object);
cache->ops->put_object(object, fscache_obj_put_attach_fail);
fscache_stat_d(&fscache_n_cop_put_object);
}
_leave(" = 0");
return 0;
object_already_extant:
ret = -ENOBUFS;
if (fscache_object_is_dying(object) ||
fscache_cache_is_broken(object)) {
spin_unlock(&cookie->lock);
goto error;
}
spin_unlock(&cookie->lock);
_leave(" = 0 [found]");
return 0;
error_put:
fscache_stat(&fscache_n_cop_put_object);
cache->ops->put_object(object, fscache_obj_put_alloc_fail);
fscache_stat_d(&fscache_n_cop_put_object);
error:
_leave(" = %d", ret);
return ret;
}
/*
* attach a cache object to a cookie
*/
static int fscache_attach_object(struct fscache_cookie *cookie,
struct fscache_object *object)
{
struct fscache_object *p;
struct fscache_cache *cache = object->cache;
int ret;
_enter("{%s},{OBJ%x}", cookie->def->name, object->debug_id);
ASSERTCMP(object->cookie, ==, cookie);
spin_lock(&cookie->lock);
/* there may be multiple initial creations of this object, but we only
* want one */
ret = -EEXIST;
hlist_for_each_entry(p, &cookie->backing_objects, cookie_link) {
if (p->cache == object->cache) {
if (fscache_object_is_dying(p))
ret = -ENOBUFS;
goto cant_attach_object;
}
}
/* pin the parent object */
spin_lock_nested(&cookie->parent->lock, 1);
hlist_for_each_entry(p, &cookie->parent->backing_objects,
cookie_link) {
if (p->cache == object->cache) {
if (fscache_object_is_dying(p)) {
ret = -ENOBUFS;
spin_unlock(&cookie->parent->lock);
goto cant_attach_object;
}
object->parent = p;
spin_lock(&p->lock);
p->n_children++;
spin_unlock(&p->lock);
break;
}
}
spin_unlock(&cookie->parent->lock);
/* attach to the cache's object list */
if (list_empty(&object->cache_link)) {
spin_lock(&cache->object_list_lock);
list_add(&object->cache_link, &cache->object_list);
spin_unlock(&cache->object_list_lock);
}
/* Attach to the cookie. The object already has a ref on it. */
hlist_add_head(&object->cookie_link, &cookie->backing_objects);
ret = 0;
cant_attach_object:
spin_unlock(&cookie->lock);
_leave(" = %d", ret);
return ret;
}
/*
* Invalidate an object. Callable with spinlocks held.
*/
void __fscache_invalidate(struct fscache_cookie *cookie)
{
struct fscache_object *object;
_enter("{%s}", cookie->def->name);
fscache_stat(&fscache_n_invalidates);
/* Only permit invalidation of data files. Invalidating an index will
* require the caller to release all its attachments to the tree rooted
* there, and if it's doing that, it may as well just retire the
* cookie.
*/
ASSERTCMP(cookie->type, ==, FSCACHE_COOKIE_TYPE_DATAFILE);
/* If there's an object, we tell the object state machine to handle the
* invalidation on our behalf, otherwise there's nothing to do.
*/
if (!hlist_empty(&cookie->backing_objects)) {
spin_lock(&cookie->lock);
if (fscache_cookie_enabled(cookie) &&
!hlist_empty(&cookie->backing_objects) &&
!test_and_set_bit(FSCACHE_COOKIE_INVALIDATING,
&cookie->flags)) {
object = hlist_entry(cookie->backing_objects.first,
struct fscache_object,
cookie_link);
if (fscache_object_is_live(object))
fscache_raise_event(
object, FSCACHE_OBJECT_EV_INVALIDATE);
}
spin_unlock(&cookie->lock);
}
_leave("");
}
EXPORT_SYMBOL(__fscache_invalidate);
/*
* Wait for object invalidation to complete.
*/
void __fscache_wait_on_invalidate(struct fscache_cookie *cookie)
{
_enter("%x", cookie->debug_id);
wait_on_bit(&cookie->flags, FSCACHE_COOKIE_INVALIDATING,
TASK_UNINTERRUPTIBLE);
_leave("");
}
EXPORT_SYMBOL(__fscache_wait_on_invalidate);
/*
* update the index entries backing a cookie
*/
void __fscache_update_cookie(struct fscache_cookie *cookie, const void *aux_data)
{
struct fscache_object *object;
fscache_stat(&fscache_n_updates);
if (!cookie) {
fscache_stat(&fscache_n_updates_null);
_leave(" [no cookie]");
return;
}
_enter("{%s}", cookie->def->name);
spin_lock(&cookie->lock);
fscache_update_aux(cookie, aux_data);
if (fscache_cookie_enabled(cookie)) {
/* update the index entry on disk in each cache backing this
* cookie.
*/
hlist_for_each_entry(object,
&cookie->backing_objects, cookie_link) {
fscache_raise_event(object, FSCACHE_OBJECT_EV_UPDATE);
}
}
spin_unlock(&cookie->lock);
_leave("");
}
EXPORT_SYMBOL(__fscache_update_cookie);
/*
* Disable a cookie to stop it from accepting new requests from the netfs.
*/
void __fscache_disable_cookie(struct fscache_cookie *cookie,
const void *aux_data,
bool invalidate)
{
struct fscache_object *object;
bool awaken = false;
_enter("%x,%u", cookie->debug_id, invalidate);
trace_fscache_disable(cookie);
ASSERTCMP(atomic_read(&cookie->n_active), >, 0);
if (atomic_read(&cookie->n_children) != 0) {
pr_err("Cookie '%s' still has children\n",
cookie->def->name);
BUG();
}
wait_on_bit_lock(&cookie->flags, FSCACHE_COOKIE_ENABLEMENT_LOCK,
TASK_UNINTERRUPTIBLE);
fscache_update_aux(cookie, aux_data);
if (!test_and_clear_bit(FSCACHE_COOKIE_ENABLED, &cookie->flags))
goto out_unlock_enable;
/* If the cookie is being invalidated, wait for that to complete first
* so that we can reuse the flag.
*/
__fscache_wait_on_invalidate(cookie);
/* Dispose of the backing objects */
set_bit(FSCACHE_COOKIE_INVALIDATING, &cookie->flags);
spin_lock(&cookie->lock);
if (!hlist_empty(&cookie->backing_objects)) {
hlist_for_each_entry(object, &cookie->backing_objects, cookie_link) {
if (invalidate)
set_bit(FSCACHE_OBJECT_RETIRED, &object->flags);
clear_bit(FSCACHE_OBJECT_PENDING_WRITE, &object->flags);
fscache_raise_event(object, FSCACHE_OBJECT_EV_KILL);
}
} else {
if (test_and_clear_bit(FSCACHE_COOKIE_INVALIDATING, &cookie->flags))
awaken = true;
}
spin_unlock(&cookie->lock);
if (awaken)
wake_up_bit(&cookie->flags, FSCACHE_COOKIE_INVALIDATING);
/* Wait for cessation of activity requiring access to the netfs (when
* n_active reaches 0). This makes sure outstanding reads and writes
* have completed.
*/
if (!atomic_dec_and_test(&cookie->n_active)) {
wait_var_event(&cookie->n_active,
!atomic_read(&cookie->n_active));
}
/* Make sure any pending writes are cancelled. */
if (cookie->type != FSCACHE_COOKIE_TYPE_INDEX)
fscache_invalidate_writes(cookie);
/* Reset the cookie state if it wasn't relinquished */
if (!test_bit(FSCACHE_COOKIE_RELINQUISHED, &cookie->flags)) {
atomic_inc(&cookie->n_active);
set_bit(FSCACHE_COOKIE_NO_DATA_YET, &cookie->flags);
}
out_unlock_enable:
clear_bit_unlock(FSCACHE_COOKIE_ENABLEMENT_LOCK, &cookie->flags);
wake_up_bit(&cookie->flags, FSCACHE_COOKIE_ENABLEMENT_LOCK);
_leave("");
}
EXPORT_SYMBOL(__fscache_disable_cookie);
/*
* release a cookie back to the cache
* - the object will be marked as recyclable on disk if retire is true
* - all dependents of this cookie must have already been unregistered
* (indices/files/pages)
*/
void __fscache_relinquish_cookie(struct fscache_cookie *cookie,
const void *aux_data,
bool retire)
{
fscache_stat(&fscache_n_relinquishes);
if (retire)
fscache_stat(&fscache_n_relinquishes_retire);
if (!cookie) {
fscache_stat(&fscache_n_relinquishes_null);
_leave(" [no cookie]");
return;
}
_enter("%x{%s,%d},%d",
cookie->debug_id, cookie->def->name,
atomic_read(&cookie->n_active), retire);
trace_fscache_relinquish(cookie, retire);
/* No further netfs-accessing operations on this cookie permitted */
if (test_and_set_bit(FSCACHE_COOKIE_RELINQUISHED, &cookie->flags))
BUG();
__fscache_disable_cookie(cookie, aux_data, retire);
/* Clear pointers back to the netfs */
cookie->netfs_data = NULL;
cookie->def = NULL;
BUG_ON(!radix_tree_empty(&cookie->stores));
if (cookie->parent) {
ASSERTCMP(refcount_read(&cookie->parent->ref), >, 0);
ASSERTCMP(atomic_read(&cookie->parent->n_children), >, 0);
atomic_dec(&cookie->parent->n_children);
}
/* Dispose of the netfs's link to the cookie */
fscache_cookie_put(cookie, fscache_cookie_put_relinquish);
_leave("");
}
EXPORT_SYMBOL(__fscache_relinquish_cookie);
/*
* Remove a cookie from the hash table.
*/
static void fscache_unhash_cookie(struct fscache_cookie *cookie)
{
struct hlist_bl_head *h;
unsigned int bucket;
bucket = cookie->key_hash & (ARRAY_SIZE(fscache_cookie_hash) - 1);
h = &fscache_cookie_hash[bucket];
hlist_bl_lock(h);
hlist_bl_del(&cookie->hash_link);
hlist_bl_unlock(h);
}
/*
* Drop a reference to a cookie.
*/
void fscache_cookie_put(struct fscache_cookie *cookie,
enum fscache_cookie_trace where)
{
struct fscache_cookie *parent;
int ref;
_enter("%x", cookie->debug_id);
do {
unsigned int cookie_debug_id = cookie->debug_id;
bool zero = __refcount_dec_and_test(&cookie->ref, &ref);
trace_fscache_cookie(cookie_debug_id, ref - 1, where);
if (!zero)
return;
parent = cookie->parent;
fscache_unhash_cookie(cookie);
fscache_free_cookie(cookie);
cookie = parent;
where = fscache_cookie_put_parent;
} while (cookie);
_leave("");
}
/*
* Get a reference to a cookie.
*/
struct fscache_cookie *fscache_cookie_get(struct fscache_cookie *cookie,
enum fscache_cookie_trace where)
{
int ref;
__refcount_inc(&cookie->ref, &ref);
trace_fscache_cookie(cookie->debug_id, ref + 1, where);
return cookie;
}
/*
* check the consistency between the netfs inode and the backing cache
*
* NOTE: it only serves no-index type
*/
int __fscache_check_consistency(struct fscache_cookie *cookie,
const void *aux_data)
{
struct fscache_operation *op;
struct fscache_object *object;
bool wake_cookie = false;
int ret;
_enter("%p,", cookie);
ASSERTCMP(cookie->type, ==, FSCACHE_COOKIE_TYPE_DATAFILE);
if (fscache_wait_for_deferred_lookup(cookie) < 0)
return -ERESTARTSYS;
if (hlist_empty(&cookie->backing_objects))
return 0;
op = kzalloc(sizeof(*op), GFP_NOIO | __GFP_NOMEMALLOC | __GFP_NORETRY);
if (!op)
return -ENOMEM;
fscache_operation_init(cookie, op, NULL, NULL, NULL);
op->flags = FSCACHE_OP_MYTHREAD |
(1 << FSCACHE_OP_WAITING) |
(1 << FSCACHE_OP_UNUSE_COOKIE);
trace_fscache_page_op(cookie, NULL, op, fscache_page_op_check_consistency);
spin_lock(&cookie->lock);
fscache_update_aux(cookie, aux_data);
if (!fscache_cookie_enabled(cookie) ||
hlist_empty(&cookie->backing_objects))
goto inconsistent;
object = hlist_entry(cookie->backing_objects.first,
struct fscache_object, cookie_link);
if (test_bit(FSCACHE_IOERROR, &object->cache->flags))
goto inconsistent;
op->debug_id = atomic_inc_return(&fscache_op_debug_id);
__fscache_use_cookie(cookie);
if (fscache_submit_op(object, op) < 0)
goto submit_failed;
/* the work queue now carries its own ref on the object */
spin_unlock(&cookie->lock);
ret = fscache_wait_for_operation_activation(object, op, NULL, NULL);
if (ret == 0) {
/* ask the cache to honour the operation */
ret = object->cache->ops->check_consistency(op);
fscache_op_complete(op, false);
} else if (ret == -ENOBUFS) {
ret = 0;
}
fscache_put_operation(op);
_leave(" = %d", ret);
return ret;
submit_failed:
wake_cookie = __fscache_unuse_cookie(cookie);
inconsistent:
spin_unlock(&cookie->lock);
if (wake_cookie)
__fscache_wake_unused_cookie(cookie);
kfree(op);
_leave(" = -ESTALE");
return -ESTALE;
}
EXPORT_SYMBOL(__fscache_check_consistency);
/*
* Generate a list of extant cookies in /proc/fs/fscache/cookies
*/
static int fscache_cookies_seq_show(struct seq_file *m, void *v)
{
struct fscache_cookie *cookie;
unsigned int keylen = 0, auxlen = 0;
char _type[3], *type;
u8 *p;
if (v == &fscache_cookies) {
seq_puts(m,
"COOKIE PARENT USAGE CHILD ACT TY FL DEF NETFS_DATA\n"
"======== ======== ===== ===== === == === ================ ==========\n"
);
return 0;
}
cookie = list_entry(v, struct fscache_cookie, proc_link);
switch (cookie->type) {
case 0:
type = "IX";
break;
case 1:
type = "DT";
break;
default:
snprintf(_type, sizeof(_type), "%02u",
cookie->type);
type = _type;
break;
}
seq_printf(m,
"%08x %08x %5u %5u %3u %s %03lx %-16s %px",
cookie->debug_id,
cookie->parent ? cookie->parent->debug_id : 0,
refcount_read(&cookie->ref),
atomic_read(&cookie->n_children),
atomic_read(&cookie->n_active),
type,
cookie->flags,
cookie->def->name,
cookie->netfs_data);
keylen = cookie->key_len;
auxlen = cookie->aux_len;
if (keylen > 0 || auxlen > 0) {
seq_puts(m, " ");
p = keylen <= sizeof(cookie->inline_key) ?
cookie->inline_key : cookie->key;
for (; keylen > 0; keylen--)
seq_printf(m, "%02x", *p++);
if (auxlen > 0) {
seq_puts(m, ", ");
p = auxlen <= sizeof(cookie->inline_aux) ?
cookie->inline_aux : cookie->aux;
for (; auxlen > 0; auxlen--)
seq_printf(m, "%02x", *p++);
}
}
seq_puts(m, "\n");
return 0;
}
static void *fscache_cookies_seq_start(struct seq_file *m, loff_t *_pos)
__acquires(fscache_cookies_lock)
{
read_lock(&fscache_cookies_lock);
return seq_list_start_head(&fscache_cookies, *_pos);
}
static void *fscache_cookies_seq_next(struct seq_file *m, void *v, loff_t *_pos)
{
return seq_list_next(v, &fscache_cookies, _pos);
}
static void fscache_cookies_seq_stop(struct seq_file *m, void *v)
__releases(rcu)
{
read_unlock(&fscache_cookies_lock);
}
const struct seq_operations fscache_cookies_seq_ops = {
.start = fscache_cookies_seq_start,
.next = fscache_cookies_seq_next,
.stop = fscache_cookies_seq_stop,
.show = fscache_cookies_seq_show,
};