blob: a8197c500894fdeee7a00d80e6e4272706ab1608 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "bkey_methods.h"
#include "bkey_sort.h"
#include "btree_cache.h"
#include "btree_io.h"
#include "btree_iter.h"
#include "btree_locking.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "buckets.h"
#include "checksum.h"
#include "debug.h"
#include "error.h"
#include "extents.h"
#include "io.h"
#include "journal_reclaim.h"
#include "journal_seq_blacklist.h"
#include "super-io.h"
#include "trace.h"
#include <linux/sched/mm.h>
void bch2_btree_node_io_unlock(struct btree *b)
{
EBUG_ON(!btree_node_write_in_flight(b));
clear_btree_node_write_in_flight_inner(b);
clear_btree_node_write_in_flight(b);
wake_up_bit(&b->flags, BTREE_NODE_write_in_flight);
}
void bch2_btree_node_io_lock(struct btree *b)
{
bch2_assert_btree_nodes_not_locked();
wait_on_bit_lock_io(&b->flags, BTREE_NODE_write_in_flight,
TASK_UNINTERRUPTIBLE);
}
void __bch2_btree_node_wait_on_read(struct btree *b)
{
wait_on_bit_io(&b->flags, BTREE_NODE_read_in_flight,
TASK_UNINTERRUPTIBLE);
}
void __bch2_btree_node_wait_on_write(struct btree *b)
{
wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight,
TASK_UNINTERRUPTIBLE);
}
void bch2_btree_node_wait_on_read(struct btree *b)
{
bch2_assert_btree_nodes_not_locked();
wait_on_bit_io(&b->flags, BTREE_NODE_read_in_flight,
TASK_UNINTERRUPTIBLE);
}
void bch2_btree_node_wait_on_write(struct btree *b)
{
bch2_assert_btree_nodes_not_locked();
wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight,
TASK_UNINTERRUPTIBLE);
}
static void verify_no_dups(struct btree *b,
struct bkey_packed *start,
struct bkey_packed *end)
{
#ifdef CONFIG_BCACHEFS_DEBUG
struct bkey_packed *k, *p;
if (start == end)
return;
for (p = start, k = bkey_p_next(start);
k != end;
p = k, k = bkey_p_next(k)) {
struct bkey l = bkey_unpack_key(b, p);
struct bkey r = bkey_unpack_key(b, k);
BUG_ON(bpos_ge(l.p, bkey_start_pos(&r)));
}
#endif
}
static void set_needs_whiteout(struct bset *i, int v)
{
struct bkey_packed *k;
for (k = i->start; k != vstruct_last(i); k = bkey_p_next(k))
k->needs_whiteout = v;
}
static void btree_bounce_free(struct bch_fs *c, size_t size,
bool used_mempool, void *p)
{
if (used_mempool)
mempool_free(p, &c->btree_bounce_pool);
else
vpfree(p, size);
}
static void *btree_bounce_alloc(struct bch_fs *c, size_t size,
bool *used_mempool)
{
unsigned flags = memalloc_nofs_save();
void *p;
BUG_ON(size > btree_bytes(c));
*used_mempool = false;
p = vpmalloc(size, __GFP_NOWARN|GFP_NOWAIT);
if (!p) {
*used_mempool = true;
p = mempool_alloc(&c->btree_bounce_pool, GFP_NOFS);
}
memalloc_nofs_restore(flags);
return p;
}
static void sort_bkey_ptrs(const struct btree *bt,
struct bkey_packed **ptrs, unsigned nr)
{
unsigned n = nr, a = nr / 2, b, c, d;
if (!a)
return;
/* Heap sort: see lib/sort.c: */
while (1) {
if (a)
a--;
else if (--n)
swap(ptrs[0], ptrs[n]);
else
break;
for (b = a; c = 2 * b + 1, (d = c + 1) < n;)
b = bch2_bkey_cmp_packed(bt,
ptrs[c],
ptrs[d]) >= 0 ? c : d;
if (d == n)
b = c;
while (b != a &&
bch2_bkey_cmp_packed(bt,
ptrs[a],
ptrs[b]) >= 0)
b = (b - 1) / 2;
c = b;
while (b != a) {
b = (b - 1) / 2;
swap(ptrs[b], ptrs[c]);
}
}
}
static void bch2_sort_whiteouts(struct bch_fs *c, struct btree *b)
{
struct bkey_packed *new_whiteouts, **ptrs, **ptrs_end, *k;
bool used_mempool = false;
size_t bytes = b->whiteout_u64s * sizeof(u64);
if (!b->whiteout_u64s)
return;
new_whiteouts = btree_bounce_alloc(c, bytes, &used_mempool);
ptrs = ptrs_end = ((void *) new_whiteouts + bytes);
for (k = unwritten_whiteouts_start(c, b);
k != unwritten_whiteouts_end(c, b);
k = bkey_p_next(k))
*--ptrs = k;
sort_bkey_ptrs(b, ptrs, ptrs_end - ptrs);
k = new_whiteouts;
while (ptrs != ptrs_end) {
bkey_copy(k, *ptrs);
k = bkey_p_next(k);
ptrs++;
}
verify_no_dups(b, new_whiteouts,
(void *) ((u64 *) new_whiteouts + b->whiteout_u64s));
memcpy_u64s(unwritten_whiteouts_start(c, b),
new_whiteouts, b->whiteout_u64s);
btree_bounce_free(c, bytes, used_mempool, new_whiteouts);
}
static bool should_compact_bset(struct btree *b, struct bset_tree *t,
bool compacting, enum compact_mode mode)
{
if (!bset_dead_u64s(b, t))
return false;
switch (mode) {
case COMPACT_LAZY:
return should_compact_bset_lazy(b, t) ||
(compacting && !bset_written(b, bset(b, t)));
case COMPACT_ALL:
return true;
default:
BUG();
}
}
static bool bch2_drop_whiteouts(struct btree *b, enum compact_mode mode)
{
struct bset_tree *t;
bool ret = false;
for_each_bset(b, t) {
struct bset *i = bset(b, t);
struct bkey_packed *k, *n, *out, *start, *end;
struct btree_node_entry *src = NULL, *dst = NULL;
if (t != b->set && !bset_written(b, i)) {
src = container_of(i, struct btree_node_entry, keys);
dst = max(write_block(b),
(void *) btree_bkey_last(b, t - 1));
}
if (src != dst)
ret = true;
if (!should_compact_bset(b, t, ret, mode)) {
if (src != dst) {
memmove(dst, src, sizeof(*src) +
le16_to_cpu(src->keys.u64s) *
sizeof(u64));
i = &dst->keys;
set_btree_bset(b, t, i);
}
continue;
}
start = btree_bkey_first(b, t);
end = btree_bkey_last(b, t);
if (src != dst) {
memmove(dst, src, sizeof(*src));
i = &dst->keys;
set_btree_bset(b, t, i);
}
out = i->start;
for (k = start; k != end; k = n) {
n = bkey_p_next(k);
if (!bkey_deleted(k)) {
bkey_copy(out, k);
out = bkey_p_next(out);
} else {
BUG_ON(k->needs_whiteout);
}
}
i->u64s = cpu_to_le16((u64 *) out - i->_data);
set_btree_bset_end(b, t);
bch2_bset_set_no_aux_tree(b, t);
ret = true;
}
bch2_verify_btree_nr_keys(b);
bch2_btree_build_aux_trees(b);
return ret;
}
bool bch2_compact_whiteouts(struct bch_fs *c, struct btree *b,
enum compact_mode mode)
{
return bch2_drop_whiteouts(b, mode);
}
static void btree_node_sort(struct bch_fs *c, struct btree *b,
unsigned start_idx,
unsigned end_idx,
bool filter_whiteouts)
{
struct btree_node *out;
struct sort_iter sort_iter;
struct bset_tree *t;
struct bset *start_bset = bset(b, &b->set[start_idx]);
bool used_mempool = false;
u64 start_time, seq = 0;
unsigned i, u64s = 0, bytes, shift = end_idx - start_idx - 1;
bool sorting_entire_node = start_idx == 0 &&
end_idx == b->nsets;
sort_iter_init(&sort_iter, b);
for (t = b->set + start_idx;
t < b->set + end_idx;
t++) {
u64s += le16_to_cpu(bset(b, t)->u64s);
sort_iter_add(&sort_iter,
btree_bkey_first(b, t),
btree_bkey_last(b, t));
}
bytes = sorting_entire_node
? btree_bytes(c)
: __vstruct_bytes(struct btree_node, u64s);
out = btree_bounce_alloc(c, bytes, &used_mempool);
start_time = local_clock();
u64s = bch2_sort_keys(out->keys.start, &sort_iter, filter_whiteouts);
out->keys.u64s = cpu_to_le16(u64s);
BUG_ON(vstruct_end(&out->keys) > (void *) out + bytes);
if (sorting_entire_node)
bch2_time_stats_update(&c->times[BCH_TIME_btree_node_sort],
start_time);
/* Make sure we preserve bset journal_seq: */
for (t = b->set + start_idx; t < b->set + end_idx; t++)
seq = max(seq, le64_to_cpu(bset(b, t)->journal_seq));
start_bset->journal_seq = cpu_to_le64(seq);
if (sorting_entire_node) {
unsigned u64s = le16_to_cpu(out->keys.u64s);
BUG_ON(bytes != btree_bytes(c));
/*
* Our temporary buffer is the same size as the btree node's
* buffer, we can just swap buffers instead of doing a big
* memcpy()
*/
*out = *b->data;
out->keys.u64s = cpu_to_le16(u64s);
swap(out, b->data);
set_btree_bset(b, b->set, &b->data->keys);
} else {
start_bset->u64s = out->keys.u64s;
memcpy_u64s(start_bset->start,
out->keys.start,
le16_to_cpu(out->keys.u64s));
}
for (i = start_idx + 1; i < end_idx; i++)
b->nr.bset_u64s[start_idx] +=
b->nr.bset_u64s[i];
b->nsets -= shift;
for (i = start_idx + 1; i < b->nsets; i++) {
b->nr.bset_u64s[i] = b->nr.bset_u64s[i + shift];
b->set[i] = b->set[i + shift];
}
for (i = b->nsets; i < MAX_BSETS; i++)
b->nr.bset_u64s[i] = 0;
set_btree_bset_end(b, &b->set[start_idx]);
bch2_bset_set_no_aux_tree(b, &b->set[start_idx]);
btree_bounce_free(c, bytes, used_mempool, out);
bch2_verify_btree_nr_keys(b);
}
void bch2_btree_sort_into(struct bch_fs *c,
struct btree *dst,
struct btree *src)
{
struct btree_nr_keys nr;
struct btree_node_iter src_iter;
u64 start_time = local_clock();
BUG_ON(dst->nsets != 1);
bch2_bset_set_no_aux_tree(dst, dst->set);
bch2_btree_node_iter_init_from_start(&src_iter, src);
nr = bch2_sort_repack(btree_bset_first(dst),
src, &src_iter,
&dst->format,
true);
bch2_time_stats_update(&c->times[BCH_TIME_btree_node_sort],
start_time);
set_btree_bset_end(dst, dst->set);
dst->nr.live_u64s += nr.live_u64s;
dst->nr.bset_u64s[0] += nr.bset_u64s[0];
dst->nr.packed_keys += nr.packed_keys;
dst->nr.unpacked_keys += nr.unpacked_keys;
bch2_verify_btree_nr_keys(dst);
}
#define SORT_CRIT (4096 / sizeof(u64))
/*
* We're about to add another bset to the btree node, so if there's currently
* too many bsets - sort some of them together:
*/
static bool btree_node_compact(struct bch_fs *c, struct btree *b)
{
unsigned unwritten_idx;
bool ret = false;
for (unwritten_idx = 0;
unwritten_idx < b->nsets;
unwritten_idx++)
if (!bset_written(b, bset(b, &b->set[unwritten_idx])))
break;
if (b->nsets - unwritten_idx > 1) {
btree_node_sort(c, b, unwritten_idx,
b->nsets, false);
ret = true;
}
if (unwritten_idx > 1) {
btree_node_sort(c, b, 0, unwritten_idx, false);
ret = true;
}
return ret;
}
void bch2_btree_build_aux_trees(struct btree *b)
{
struct bset_tree *t;
for_each_bset(b, t)
bch2_bset_build_aux_tree(b, t,
!bset_written(b, bset(b, t)) &&
t == bset_tree_last(b));
}
/*
* If we have MAX_BSETS (3) bsets, should we sort them all down to just one?
*
* The first bset is going to be of similar order to the size of the node, the
* last bset is bounded by btree_write_set_buffer(), which is set to keep the
* memmove on insert from being too expensive: the middle bset should, ideally,
* be the geometric mean of the first and the last.
*
* Returns true if the middle bset is greater than that geometric mean:
*/
static inline bool should_compact_all(struct bch_fs *c, struct btree *b)
{
unsigned mid_u64s_bits =
(ilog2(btree_max_u64s(c)) + BTREE_WRITE_SET_U64s_BITS) / 2;
return bset_u64s(&b->set[1]) > 1U << mid_u64s_bits;
}
/*
* @bch_btree_init_next - initialize a new (unwritten) bset that can then be
* inserted into
*
* Safe to call if there already is an unwritten bset - will only add a new bset
* if @b doesn't already have one.
*
* Returns true if we sorted (i.e. invalidated iterators
*/
void bch2_btree_init_next(struct btree_trans *trans, struct btree *b)
{
struct bch_fs *c = trans->c;
struct btree_node_entry *bne;
bool reinit_iter = false;
EBUG_ON(!six_lock_counts(&b->c.lock).n[SIX_LOCK_write]);
BUG_ON(bset_written(b, bset(b, &b->set[1])));
BUG_ON(btree_node_just_written(b));
if (b->nsets == MAX_BSETS &&
!btree_node_write_in_flight(b) &&
should_compact_all(c, b)) {
bch2_btree_node_write(c, b, SIX_LOCK_write,
BTREE_WRITE_init_next_bset);
reinit_iter = true;
}
if (b->nsets == MAX_BSETS &&
btree_node_compact(c, b))
reinit_iter = true;
BUG_ON(b->nsets >= MAX_BSETS);
bne = want_new_bset(c, b);
if (bne)
bch2_bset_init_next(c, b, bne);
bch2_btree_build_aux_trees(b);
if (reinit_iter)
bch2_trans_node_reinit_iter(trans, b);
}
static void btree_pos_to_text(struct printbuf *out, struct bch_fs *c,
struct btree *b)
{
prt_printf(out, "%s level %u/%u\n ",
bch2_btree_ids[b->c.btree_id],
b->c.level,
bch2_btree_id_root(c, b->c.btree_id)->level);
bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&b->key));
}
static void btree_err_msg(struct printbuf *out, struct bch_fs *c,
struct bch_dev *ca,
struct btree *b, struct bset *i,
unsigned offset, int write)
{
prt_printf(out, bch2_log_msg(c, "%s"),
write == READ
? "error validating btree node "
: "corrupt btree node before write ");
if (ca)
prt_printf(out, "on %s ", ca->name);
prt_printf(out, "at btree ");
btree_pos_to_text(out, c, b);
prt_printf(out, "\n node offset %u", b->written);
if (i)
prt_printf(out, " bset u64s %u", le16_to_cpu(i->u64s));
prt_str(out, ": ");
}
enum btree_err_type {
/*
* We can repair this locally, and we're after the checksum check so
* there's no need to try another replica:
*/
BTREE_ERR_FIXABLE,
/*
* We can repair this if we have to, but we should try reading another
* replica if we can:
*/
BTREE_ERR_WANT_RETRY,
/*
* Read another replica if we have one, otherwise consider the whole
* node bad:
*/
BTREE_ERR_MUST_RETRY,
BTREE_ERR_BAD_NODE,
BTREE_ERR_INCOMPATIBLE,
};
enum btree_validate_ret {
BTREE_RETRY_READ = 64,
};
static int __btree_err(enum btree_err_type type,
struct bch_fs *c,
struct bch_dev *ca,
struct btree *b,
struct bset *i,
int write,
bool have_retry,
const char *fmt, ...)
{
struct printbuf out = PRINTBUF;
va_list args;
int ret = -BCH_ERR_fsck_fix;
btree_err_msg(&out, c, ca, b, i, b->written, write);
va_start(args, fmt);
prt_vprintf(&out, fmt, args);
va_end(args);
if (write == WRITE) {
bch2_print_string_as_lines(KERN_ERR, out.buf);
ret = c->opts.errors == BCH_ON_ERROR_continue
? 0
: -BCH_ERR_fsck_errors_not_fixed;
goto out;
}
if (!have_retry && type == BTREE_ERR_WANT_RETRY)
type = BTREE_ERR_FIXABLE;
if (!have_retry && type == BTREE_ERR_MUST_RETRY)
type = BTREE_ERR_BAD_NODE;
switch (type) {
case BTREE_ERR_FIXABLE:
mustfix_fsck_err(c, "%s", out.buf);
ret = -BCH_ERR_fsck_fix;
break;
case BTREE_ERR_WANT_RETRY:
case BTREE_ERR_MUST_RETRY:
bch2_print_string_as_lines(KERN_ERR, out.buf);
ret = BTREE_RETRY_READ;
break;
case BTREE_ERR_BAD_NODE:
bch2_print_string_as_lines(KERN_ERR, out.buf);
bch2_topology_error(c);
ret = -BCH_ERR_need_topology_repair;
break;
case BTREE_ERR_INCOMPATIBLE:
bch2_print_string_as_lines(KERN_ERR, out.buf);
ret = -BCH_ERR_fsck_errors_not_fixed;
break;
default:
BUG();
}
out:
fsck_err:
printbuf_exit(&out);
return ret;
}
#define btree_err(type, c, ca, b, i, msg, ...) \
({ \
int _ret = __btree_err(type, c, ca, b, i, write, have_retry, msg, ##__VA_ARGS__);\
\
if (_ret != -BCH_ERR_fsck_fix) \
goto fsck_err; \
*saw_error = true; \
})
#define btree_err_on(cond, ...) ((cond) ? btree_err(__VA_ARGS__) : false)
/*
* When btree topology repair changes the start or end of a node, that might
* mean we have to drop keys that are no longer inside the node:
*/
__cold
void bch2_btree_node_drop_keys_outside_node(struct btree *b)
{
struct bset_tree *t;
struct bkey_s_c k;
struct bkey unpacked;
struct btree_node_iter iter;
for_each_bset(b, t) {
struct bset *i = bset(b, t);
struct bkey_packed *k;
for (k = i->start; k != vstruct_last(i); k = bkey_p_next(k))
if (bkey_cmp_left_packed(b, k, &b->data->min_key) >= 0)
break;
if (k != i->start) {
unsigned shift = (u64 *) k - (u64 *) i->start;
memmove_u64s_down(i->start, k,
(u64 *) vstruct_end(i) - (u64 *) k);
i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - shift);
set_btree_bset_end(b, t);
}
for (k = i->start; k != vstruct_last(i); k = bkey_p_next(k))
if (bkey_cmp_left_packed(b, k, &b->data->max_key) > 0)
break;
if (k != vstruct_last(i)) {
i->u64s = cpu_to_le16((u64 *) k - (u64 *) i->start);
set_btree_bset_end(b, t);
}
}
/*
* Always rebuild search trees: eytzinger search tree nodes directly
* depend on the values of min/max key:
*/
bch2_bset_set_no_aux_tree(b, b->set);
bch2_btree_build_aux_trees(b);
for_each_btree_node_key_unpack(b, k, &iter, &unpacked) {
BUG_ON(bpos_lt(k.k->p, b->data->min_key));
BUG_ON(bpos_gt(k.k->p, b->data->max_key));
}
}
static int validate_bset(struct bch_fs *c, struct bch_dev *ca,
struct btree *b, struct bset *i,
unsigned offset, unsigned sectors,
int write, bool have_retry, bool *saw_error)
{
unsigned version = le16_to_cpu(i->version);
const char *err;
struct printbuf buf1 = PRINTBUF;
struct printbuf buf2 = PRINTBUF;
int ret = 0;
btree_err_on(!bch2_version_compatible(version),
BTREE_ERR_INCOMPATIBLE, c, ca, b, i,
"unsupported bset version %u", version);
if (btree_err_on(version < c->sb.version_min,
BTREE_ERR_FIXABLE, c, NULL, b, i,
"bset version %u older than superblock version_min %u",
version, c->sb.version_min)) {
mutex_lock(&c->sb_lock);
c->disk_sb.sb->version_min = cpu_to_le16(version);
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
}
if (btree_err_on(version > c->sb.version,
BTREE_ERR_FIXABLE, c, NULL, b, i,
"bset version %u newer than superblock version %u",
version, c->sb.version)) {
mutex_lock(&c->sb_lock);
c->disk_sb.sb->version = cpu_to_le16(version);
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
}
btree_err_on(BSET_SEPARATE_WHITEOUTS(i),
BTREE_ERR_INCOMPATIBLE, c, ca, b, i,
"BSET_SEPARATE_WHITEOUTS no longer supported");
if (btree_err_on(offset + sectors > btree_sectors(c),
BTREE_ERR_FIXABLE, c, ca, b, i,
"bset past end of btree node")) {
i->u64s = 0;
ret = 0;
goto out;
}
btree_err_on(offset && !i->u64s,
BTREE_ERR_FIXABLE, c, ca, b, i,
"empty bset");
btree_err_on(BSET_OFFSET(i) &&
BSET_OFFSET(i) != offset,
BTREE_ERR_WANT_RETRY, c, ca, b, i,
"bset at wrong sector offset");
if (!offset) {
struct btree_node *bn =
container_of(i, struct btree_node, keys);
/* These indicate that we read the wrong btree node: */
if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
struct bch_btree_ptr_v2 *bp =
&bkey_i_to_btree_ptr_v2(&b->key)->v;
/* XXX endianness */
btree_err_on(bp->seq != bn->keys.seq,
BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
"incorrect sequence number (wrong btree node)");
}
btree_err_on(BTREE_NODE_ID(bn) != b->c.btree_id,
BTREE_ERR_MUST_RETRY, c, ca, b, i,
"incorrect btree id");
btree_err_on(BTREE_NODE_LEVEL(bn) != b->c.level,
BTREE_ERR_MUST_RETRY, c, ca, b, i,
"incorrect level");
if (!write)
compat_btree_node(b->c.level, b->c.btree_id, version,
BSET_BIG_ENDIAN(i), write, bn);
if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
struct bch_btree_ptr_v2 *bp =
&bkey_i_to_btree_ptr_v2(&b->key)->v;
if (BTREE_PTR_RANGE_UPDATED(bp)) {
b->data->min_key = bp->min_key;
b->data->max_key = b->key.k.p;
}
btree_err_on(!bpos_eq(b->data->min_key, bp->min_key),
BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
"incorrect min_key: got %s should be %s",
(printbuf_reset(&buf1),
bch2_bpos_to_text(&buf1, bn->min_key), buf1.buf),
(printbuf_reset(&buf2),
bch2_bpos_to_text(&buf2, bp->min_key), buf2.buf));
}
btree_err_on(!bpos_eq(bn->max_key, b->key.k.p),
BTREE_ERR_MUST_RETRY, c, ca, b, i,
"incorrect max key %s",
(printbuf_reset(&buf1),
bch2_bpos_to_text(&buf1, bn->max_key), buf1.buf));
if (write)
compat_btree_node(b->c.level, b->c.btree_id, version,
BSET_BIG_ENDIAN(i), write, bn);
err = bch2_bkey_format_validate(&bn->format);
btree_err_on(err,
BTREE_ERR_BAD_NODE, c, ca, b, i,
"invalid bkey format: %s", err);
compat_bformat(b->c.level, b->c.btree_id, version,
BSET_BIG_ENDIAN(i), write,
&bn->format);
}
out:
fsck_err:
printbuf_exit(&buf2);
printbuf_exit(&buf1);
return ret;
}
static int bset_key_invalid(struct bch_fs *c, struct btree *b,
struct bkey_s_c k,
bool updated_range, int rw,
struct printbuf *err)
{
return __bch2_bkey_invalid(c, k, btree_node_type(b), READ, err) ?:
(!updated_range ? bch2_bkey_in_btree_node(b, k, err) : 0) ?:
(rw == WRITE ? bch2_bkey_val_invalid(c, k, READ, err) : 0);
}
static int validate_bset_keys(struct bch_fs *c, struct btree *b,
struct bset *i, int write,
bool have_retry, bool *saw_error)
{
unsigned version = le16_to_cpu(i->version);
struct bkey_packed *k, *prev = NULL;
struct printbuf buf = PRINTBUF;
bool updated_range = b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
BTREE_PTR_RANGE_UPDATED(&bkey_i_to_btree_ptr_v2(&b->key)->v);
int ret = 0;
for (k = i->start;
k != vstruct_last(i);) {
struct bkey_s u;
struct bkey tmp;
if (btree_err_on(bkey_p_next(k) > vstruct_last(i),
BTREE_ERR_FIXABLE, c, NULL, b, i,
"key extends past end of bset")) {
i->u64s = cpu_to_le16((u64 *) k - i->_data);
break;
}
if (btree_err_on(k->format > KEY_FORMAT_CURRENT,
BTREE_ERR_FIXABLE, c, NULL, b, i,
"invalid bkey format %u", k->format)) {
i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
memmove_u64s_down(k, bkey_p_next(k),
(u64 *) vstruct_end(i) - (u64 *) k);
continue;
}
/* XXX: validate k->u64s */
if (!write)
bch2_bkey_compat(b->c.level, b->c.btree_id, version,
BSET_BIG_ENDIAN(i), write,
&b->format, k);
u = __bkey_disassemble(b, k, &tmp);
printbuf_reset(&buf);
if (bset_key_invalid(c, b, u.s_c, updated_range, write, &buf)) {
printbuf_reset(&buf);
prt_printf(&buf, "invalid bkey: ");
bset_key_invalid(c, b, u.s_c, updated_range, write, &buf);
prt_printf(&buf, "\n ");
bch2_bkey_val_to_text(&buf, c, u.s_c);
btree_err(BTREE_ERR_FIXABLE, c, NULL, b, i, "%s", buf.buf);
i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
memmove_u64s_down(k, bkey_p_next(k),
(u64 *) vstruct_end(i) - (u64 *) k);
continue;
}
if (write)
bch2_bkey_compat(b->c.level, b->c.btree_id, version,
BSET_BIG_ENDIAN(i), write,
&b->format, k);
if (prev && bkey_iter_cmp(b, prev, k) > 0) {
struct bkey up = bkey_unpack_key(b, prev);
printbuf_reset(&buf);
prt_printf(&buf, "keys out of order: ");
bch2_bkey_to_text(&buf, &up);
prt_printf(&buf, " > ");
bch2_bkey_to_text(&buf, u.k);
bch2_dump_bset(c, b, i, 0);
if (btree_err(BTREE_ERR_FIXABLE, c, NULL, b, i, "%s", buf.buf)) {
i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
memmove_u64s_down(k, bkey_p_next(k),
(u64 *) vstruct_end(i) - (u64 *) k);
continue;
}
}
prev = k;
k = bkey_p_next(k);
}
fsck_err:
printbuf_exit(&buf);
return ret;
}
int bch2_btree_node_read_done(struct bch_fs *c, struct bch_dev *ca,
struct btree *b, bool have_retry, bool *saw_error)
{
struct btree_node_entry *bne;
struct sort_iter *iter;
struct btree_node *sorted;
struct bkey_packed *k;
struct bch_extent_ptr *ptr;
struct bset *i;
bool used_mempool, blacklisted;
bool updated_range = b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
BTREE_PTR_RANGE_UPDATED(&bkey_i_to_btree_ptr_v2(&b->key)->v);
unsigned u64s;
unsigned blacklisted_written, nonblacklisted_written = 0;
unsigned ptr_written = btree_ptr_sectors_written(&b->key);
struct printbuf buf = PRINTBUF;
int ret = 0, retry_read = 0, write = READ;
b->version_ondisk = U16_MAX;
/* We might get called multiple times on read retry: */
b->written = 0;
iter = mempool_alloc(&c->fill_iter, GFP_NOFS);
sort_iter_init(iter, b);
iter->size = (btree_blocks(c) + 1) * 2;
if (bch2_meta_read_fault("btree"))
btree_err(BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
"dynamic fault");
btree_err_on(le64_to_cpu(b->data->magic) != bset_magic(c),
BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
"bad magic: want %llx, got %llx",
bset_magic(c), le64_to_cpu(b->data->magic));
btree_err_on(!b->data->keys.seq,
BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
"bad btree header: seq 0");
if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
struct bch_btree_ptr_v2 *bp =
&bkey_i_to_btree_ptr_v2(&b->key)->v;
btree_err_on(b->data->keys.seq != bp->seq,
BTREE_ERR_MUST_RETRY, c, ca, b, NULL,
"got wrong btree node (seq %llx want %llx)",
b->data->keys.seq, bp->seq);
}
while (b->written < (ptr_written ?: btree_sectors(c))) {
unsigned sectors;
struct nonce nonce;
struct bch_csum csum;
bool first = !b->written;
if (!b->written) {
i = &b->data->keys;
btree_err_on(!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)),
BTREE_ERR_WANT_RETRY, c, ca, b, i,
"unknown checksum type %llu",
BSET_CSUM_TYPE(i));
nonce = btree_nonce(i, b->written << 9);
csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, b->data);
btree_err_on(bch2_crc_cmp(csum, b->data->csum),
BTREE_ERR_WANT_RETRY, c, ca, b, i,
"invalid checksum");
ret = bset_encrypt(c, i, b->written << 9);
if (bch2_fs_fatal_err_on(ret, c,
"error decrypting btree node: %i", ret))
goto fsck_err;
btree_err_on(btree_node_type_is_extents(btree_node_type(b)) &&
!BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data),
BTREE_ERR_INCOMPATIBLE, c, NULL, b, NULL,
"btree node does not have NEW_EXTENT_OVERWRITE set");
sectors = vstruct_sectors(b->data, c->block_bits);
} else {
bne = write_block(b);
i = &bne->keys;
if (i->seq != b->data->keys.seq)
break;
btree_err_on(!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)),
BTREE_ERR_WANT_RETRY, c, ca, b, i,
"unknown checksum type %llu",
BSET_CSUM_TYPE(i));
nonce = btree_nonce(i, b->written << 9);
csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne);
btree_err_on(bch2_crc_cmp(csum, bne->csum),
BTREE_ERR_WANT_RETRY, c, ca, b, i,
"invalid checksum");
ret = bset_encrypt(c, i, b->written << 9);
if (bch2_fs_fatal_err_on(ret, c,
"error decrypting btree node: %i\n", ret))
goto fsck_err;
sectors = vstruct_sectors(bne, c->block_bits);
}
b->version_ondisk = min(b->version_ondisk,
le16_to_cpu(i->version));
ret = validate_bset(c, ca, b, i, b->written, sectors,
READ, have_retry, saw_error);
if (ret)
goto fsck_err;
if (!b->written)
btree_node_set_format(b, b->data->format);
ret = validate_bset_keys(c, b, i, READ, have_retry, saw_error);
if (ret)
goto fsck_err;
SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
blacklisted = bch2_journal_seq_is_blacklisted(c,
le64_to_cpu(i->journal_seq),
true);
btree_err_on(blacklisted && first,
BTREE_ERR_FIXABLE, c, ca, b, i,
"first btree node bset has blacklisted journal seq (%llu)",
le64_to_cpu(i->journal_seq));
btree_err_on(blacklisted && ptr_written,
BTREE_ERR_FIXABLE, c, ca, b, i,
"found blacklisted bset (journal seq %llu) in btree node at offset %u-%u/%u",
le64_to_cpu(i->journal_seq),
b->written, b->written + sectors, ptr_written);
b->written += sectors;
if (blacklisted && !first)
continue;
sort_iter_add(iter,
vstruct_idx(i, 0),
vstruct_last(i));
nonblacklisted_written = b->written;
}
if (ptr_written) {
btree_err_on(b->written < ptr_written,
BTREE_ERR_WANT_RETRY, c, ca, b, NULL,
"btree node data missing: expected %u sectors, found %u",
ptr_written, b->written);
} else {
for (bne = write_block(b);
bset_byte_offset(b, bne) < btree_bytes(c);
bne = (void *) bne + block_bytes(c))
btree_err_on(bne->keys.seq == b->data->keys.seq &&
!bch2_journal_seq_is_blacklisted(c,
le64_to_cpu(bne->keys.journal_seq),
true),
BTREE_ERR_WANT_RETRY, c, ca, b, NULL,
"found bset signature after last bset");
/*
* Blacklisted bsets are those that were written after the most recent
* (flush) journal write. Since there wasn't a flush, they may not have
* made it to all devices - which means we shouldn't write new bsets
* after them, as that could leave a gap and then reads from that device
* wouldn't find all the bsets in that btree node - which means it's
* important that we start writing new bsets after the most recent _non_
* blacklisted bset:
*/
blacklisted_written = b->written;
b->written = nonblacklisted_written;
}
sorted = btree_bounce_alloc(c, btree_bytes(c), &used_mempool);
sorted->keys.u64s = 0;
set_btree_bset(b, b->set, &b->data->keys);
b->nr = bch2_key_sort_fix_overlapping(c, &sorted->keys, iter);
u64s = le16_to_cpu(sorted->keys.u64s);
*sorted = *b->data;
sorted->keys.u64s = cpu_to_le16(u64s);
swap(sorted, b->data);
set_btree_bset(b, b->set, &b->data->keys);
b->nsets = 1;
BUG_ON(b->nr.live_u64s != u64s);
btree_bounce_free(c, btree_bytes(c), used_mempool, sorted);
if (updated_range)
bch2_btree_node_drop_keys_outside_node(b);
i = &b->data->keys;
for (k = i->start; k != vstruct_last(i);) {
struct bkey tmp;
struct bkey_s u = __bkey_disassemble(b, k, &tmp);
printbuf_reset(&buf);
if (bch2_bkey_val_invalid(c, u.s_c, READ, &buf) ||
(bch2_inject_invalid_keys &&
!bversion_cmp(u.k->version, MAX_VERSION))) {
printbuf_reset(&buf);
prt_printf(&buf, "invalid bkey: ");
bch2_bkey_val_invalid(c, u.s_c, READ, &buf);
prt_printf(&buf, "\n ");
bch2_bkey_val_to_text(&buf, c, u.s_c);
btree_err(BTREE_ERR_FIXABLE, c, NULL, b, i, "%s", buf.buf);
btree_keys_account_key_drop(&b->nr, 0, k);
i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
memmove_u64s_down(k, bkey_p_next(k),
(u64 *) vstruct_end(i) - (u64 *) k);
set_btree_bset_end(b, b->set);
continue;
}
if (u.k->type == KEY_TYPE_btree_ptr_v2) {
struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(u);
bp.v->mem_ptr = 0;
}
k = bkey_p_next(k);
}
bch2_bset_build_aux_tree(b, b->set, false);
set_needs_whiteout(btree_bset_first(b), true);
btree_node_reset_sib_u64s(b);
bkey_for_each_ptr(bch2_bkey_ptrs(bkey_i_to_s(&b->key)), ptr) {
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
if (ca->mi.state != BCH_MEMBER_STATE_rw)
set_btree_node_need_rewrite(b);
}
if (!ptr_written)
set_btree_node_need_rewrite(b);
out:
mempool_free(iter, &c->fill_iter);
printbuf_exit(&buf);
return retry_read;
fsck_err:
if (ret == BTREE_RETRY_READ)
retry_read = 1;
else
set_btree_node_read_error(b);
goto out;
}
static void btree_node_read_work(struct work_struct *work)
{
struct btree_read_bio *rb =
container_of(work, struct btree_read_bio, work);
struct bch_fs *c = rb->c;
struct btree *b = rb->b;
struct bch_dev *ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev);
struct bio *bio = &rb->bio;
struct bch_io_failures failed = { .nr = 0 };
struct printbuf buf = PRINTBUF;
bool saw_error = false;
bool retry = false;
bool can_retry;
goto start;
while (1) {
retry = true;
bch_info(c, "retrying read");
ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev);
rb->have_ioref = bch2_dev_get_ioref(ca, READ);
bio_reset(bio, NULL, REQ_OP_READ|REQ_SYNC|REQ_META);
bio->bi_iter.bi_sector = rb->pick.ptr.offset;
bio->bi_iter.bi_size = btree_bytes(c);
if (rb->have_ioref) {
bio_set_dev(bio, ca->disk_sb.bdev);
submit_bio_wait(bio);
} else {
bio->bi_status = BLK_STS_REMOVED;
}
start:
printbuf_reset(&buf);
btree_pos_to_text(&buf, c, b);
bch2_dev_io_err_on(bio->bi_status, ca, "btree read error %s for %s",
bch2_blk_status_to_str(bio->bi_status), buf.buf);
if (rb->have_ioref)
percpu_ref_put(&ca->io_ref);
rb->have_ioref = false;
bch2_mark_io_failure(&failed, &rb->pick);
can_retry = bch2_bkey_pick_read_device(c,
bkey_i_to_s_c(&b->key),
&failed, &rb->pick) > 0;
if (!bio->bi_status &&
!bch2_btree_node_read_done(c, ca, b, can_retry, &saw_error)) {
if (retry)
bch_info(c, "retry success");
break;
}
saw_error = true;
if (!can_retry) {
set_btree_node_read_error(b);
break;
}
}
bch2_time_stats_update(&c->times[BCH_TIME_btree_node_read],
rb->start_time);
bio_put(&rb->bio);
printbuf_exit(&buf);
if (saw_error && !btree_node_read_error(b)) {
struct printbuf buf = PRINTBUF;
bch2_bpos_to_text(&buf, b->key.k.p);
bch_info(c, "%s: rewriting btree node at btree=%s level=%u %s due to error",
__func__, bch2_btree_ids[b->c.btree_id], b->c.level, buf.buf);
printbuf_exit(&buf);
bch2_btree_node_rewrite_async(c, b);
}
clear_btree_node_read_in_flight(b);
wake_up_bit(&b->flags, BTREE_NODE_read_in_flight);
}
static void btree_node_read_endio(struct bio *bio)
{
struct btree_read_bio *rb =
container_of(bio, struct btree_read_bio, bio);
struct bch_fs *c = rb->c;
if (rb->have_ioref) {
struct bch_dev *ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev);
bch2_latency_acct(ca, rb->start_time, READ);
}
queue_work(c->io_complete_wq, &rb->work);
}
struct btree_node_read_all {
struct closure cl;
struct bch_fs *c;
struct btree *b;
unsigned nr;
void *buf[BCH_REPLICAS_MAX];
struct bio *bio[BCH_REPLICAS_MAX];
blk_status_t err[BCH_REPLICAS_MAX];
};
static unsigned btree_node_sectors_written(struct bch_fs *c, void *data)
{
struct btree_node *bn = data;
struct btree_node_entry *bne;
unsigned offset = 0;
if (le64_to_cpu(bn->magic) != bset_magic(c))
return 0;
while (offset < btree_sectors(c)) {
if (!offset) {
offset += vstruct_sectors(bn, c->block_bits);
} else {
bne = data + (offset << 9);
if (bne->keys.seq != bn->keys.seq)
break;
offset += vstruct_sectors(bne, c->block_bits);
}
}
return offset;
}
static bool btree_node_has_extra_bsets(struct bch_fs *c, unsigned offset, void *data)
{
struct btree_node *bn = data;
struct btree_node_entry *bne;
if (!offset)
return false;
while (offset < btree_sectors(c)) {
bne = data + (offset << 9);
if (bne->keys.seq == bn->keys.seq)
return true;
offset++;
}
return false;
return offset;
}
static void btree_node_read_all_replicas_done(struct closure *cl)
{
struct btree_node_read_all *ra =
container_of(cl, struct btree_node_read_all, cl);
struct bch_fs *c = ra->c;
struct btree *b = ra->b;
struct printbuf buf = PRINTBUF;
bool dump_bset_maps = false;
bool have_retry = false;
int ret = 0, best = -1, write = READ;
unsigned i, written = 0, written2 = 0;
__le64 seq = b->key.k.type == KEY_TYPE_btree_ptr_v2
? bkey_i_to_btree_ptr_v2(&b->key)->v.seq : 0;
bool _saw_error = false, *saw_error = &_saw_error;
for (i = 0; i < ra->nr; i++) {
struct btree_node *bn = ra->buf[i];
if (ra->err[i])
continue;
if (le64_to_cpu(bn->magic) != bset_magic(c) ||
(seq && seq != bn->keys.seq))
continue;
if (best < 0) {
best = i;
written = btree_node_sectors_written(c, bn);
continue;
}
written2 = btree_node_sectors_written(c, ra->buf[i]);
if (btree_err_on(written2 != written, BTREE_ERR_FIXABLE, c, NULL, b, NULL,
"btree node sectors written mismatch: %u != %u",
written, written2) ||
btree_err_on(btree_node_has_extra_bsets(c, written2, ra->buf[i]),
BTREE_ERR_FIXABLE, c, NULL, b, NULL,
"found bset signature after last bset") ||
btree_err_on(memcmp(ra->buf[best], ra->buf[i], written << 9),
BTREE_ERR_FIXABLE, c, NULL, b, NULL,
"btree node replicas content mismatch"))
dump_bset_maps = true;
if (written2 > written) {
written = written2;
best = i;
}
}
fsck_err:
if (dump_bset_maps) {
for (i = 0; i < ra->nr; i++) {
struct btree_node *bn = ra->buf[i];
struct btree_node_entry *bne = NULL;
unsigned offset = 0, sectors;
bool gap = false;
if (ra->err[i])
continue;
printbuf_reset(&buf);
while (offset < btree_sectors(c)) {
if (!offset) {
sectors = vstruct_sectors(bn, c->block_bits);
} else {
bne = ra->buf[i] + (offset << 9);
if (bne->keys.seq != bn->keys.seq)
break;
sectors = vstruct_sectors(bne, c->block_bits);
}
prt_printf(&buf, " %u-%u", offset, offset + sectors);
if (bne && bch2_journal_seq_is_blacklisted(c,
le64_to_cpu(bne->keys.journal_seq), false))
prt_printf(&buf, "*");
offset += sectors;
}
while (offset < btree_sectors(c)) {
bne = ra->buf[i] + (offset << 9);
if (bne->keys.seq == bn->keys.seq) {
if (!gap)
prt_printf(&buf, " GAP");
gap = true;
sectors = vstruct_sectors(bne, c->block_bits);
prt_printf(&buf, " %u-%u", offset, offset + sectors);
if (bch2_journal_seq_is_blacklisted(c,
le64_to_cpu(bne->keys.journal_seq), false))
prt_printf(&buf, "*");
}
offset++;
}
bch_err(c, "replica %u:%s", i, buf.buf);
}
}
if (best >= 0) {
memcpy(b->data, ra->buf[best], btree_bytes(c));
ret = bch2_btree_node_read_done(c, NULL, b, false, saw_error);
} else {
ret = -1;
}
if (ret)
set_btree_node_read_error(b);
else if (*saw_error)
bch2_btree_node_rewrite_async(c, b);
for (i = 0; i < ra->nr; i++) {
mempool_free(ra->buf[i], &c->btree_bounce_pool);
bio_put(ra->bio[i]);
}
closure_debug_destroy(&ra->cl);
kfree(ra);
printbuf_exit(&buf);
clear_btree_node_read_in_flight(b);
wake_up_bit(&b->flags, BTREE_NODE_read_in_flight);
}
static void btree_node_read_all_replicas_endio(struct bio *bio)
{
struct btree_read_bio *rb =
container_of(bio, struct btree_read_bio, bio);
struct bch_fs *c = rb->c;
struct btree_node_read_all *ra = rb->ra;
if (rb->have_ioref) {
struct bch_dev *ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev);
bch2_latency_acct(ca, rb->start_time, READ);
}
ra->err[rb->idx] = bio->bi_status;
closure_put(&ra->cl);
}
/*
* XXX This allocates multiple times from the same mempools, and can deadlock
* under sufficient memory pressure (but is only a debug path)
*/
static int btree_node_read_all_replicas(struct bch_fs *c, struct btree *b, bool sync)
{
struct bkey_s_c k = bkey_i_to_s_c(&b->key);
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const union bch_extent_entry *entry;
struct extent_ptr_decoded pick;
struct btree_node_read_all *ra;
unsigned i;
ra = kzalloc(sizeof(*ra), GFP_NOFS);
if (!ra)
return -BCH_ERR_ENOMEM_btree_node_read_all_replicas;
closure_init(&ra->cl, NULL);
ra->c = c;
ra->b = b;
ra->nr = bch2_bkey_nr_ptrs(k);
for (i = 0; i < ra->nr; i++) {
ra->buf[i] = mempool_alloc(&c->btree_bounce_pool, GFP_NOFS);
ra->bio[i] = bio_alloc_bioset(NULL,
buf_pages(ra->buf[i], btree_bytes(c)),
REQ_OP_READ|REQ_SYNC|REQ_META,
GFP_NOFS,
&c->btree_bio);
}
i = 0;
bkey_for_each_ptr_decode(k.k, ptrs, pick, entry) {
struct bch_dev *ca = bch_dev_bkey_exists(c, pick.ptr.dev);
struct btree_read_bio *rb =
container_of(ra->bio[i], struct btree_read_bio, bio);
rb->c = c;
rb->b = b;
rb->ra = ra;
rb->start_time = local_clock();
rb->have_ioref = bch2_dev_get_ioref(ca, READ);
rb->idx = i;
rb->pick = pick;
rb->bio.bi_iter.bi_sector = pick.ptr.offset;
rb->bio.bi_end_io = btree_node_read_all_replicas_endio;
bch2_bio_map(&rb->bio, ra->buf[i], btree_bytes(c));
if (rb->have_ioref) {
this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_btree],
bio_sectors(&rb->bio));
bio_set_dev(&rb->bio, ca->disk_sb.bdev);
closure_get(&ra->cl);
submit_bio(&rb->bio);
} else {
ra->err[i] = BLK_STS_REMOVED;
}
i++;
}
if (sync) {
closure_sync(&ra->cl);
btree_node_read_all_replicas_done(&ra->cl);
} else {
continue_at(&ra->cl, btree_node_read_all_replicas_done,
c->io_complete_wq);
}
return 0;
}
void bch2_btree_node_read(struct bch_fs *c, struct btree *b,
bool sync)
{
struct extent_ptr_decoded pick;
struct btree_read_bio *rb;
struct bch_dev *ca;
struct bio *bio;
int ret;
trace_and_count(c, btree_node_read, c, b);
if (bch2_verify_all_btree_replicas &&
!btree_node_read_all_replicas(c, b, sync))
return;
ret = bch2_bkey_pick_read_device(c, bkey_i_to_s_c(&b->key),
NULL, &pick);
if (ret <= 0) {
struct printbuf buf = PRINTBUF;
prt_str(&buf, "btree node read error: no device to read from\n at ");
btree_pos_to_text(&buf, c, b);
bch_err(c, "%s", buf.buf);
if (test_bit(BCH_FS_TOPOLOGY_REPAIR_DONE, &c->flags))
bch2_fatal_error(c);
set_btree_node_read_error(b);
clear_btree_node_read_in_flight(b);
wake_up_bit(&b->flags, BTREE_NODE_read_in_flight);
printbuf_exit(&buf);
return;
}
ca = bch_dev_bkey_exists(c, pick.ptr.dev);
bio = bio_alloc_bioset(NULL,
buf_pages(b->data, btree_bytes(c)),
REQ_OP_READ|REQ_SYNC|REQ_META,
GFP_NOFS,
&c->btree_bio);
rb = container_of(bio, struct btree_read_bio, bio);
rb->c = c;
rb->b = b;
rb->ra = NULL;
rb->start_time = local_clock();
rb->have_ioref = bch2_dev_get_ioref(ca, READ);
rb->pick = pick;
INIT_WORK(&rb->work, btree_node_read_work);
bio->bi_iter.bi_sector = pick.ptr.offset;
bio->bi_end_io = btree_node_read_endio;
bch2_bio_map(bio, b->data, btree_bytes(c));
if (rb->have_ioref) {
this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_btree],
bio_sectors(bio));
bio_set_dev(bio, ca->disk_sb.bdev);
if (sync) {
submit_bio_wait(bio);
btree_node_read_work(&rb->work);
} else {
submit_bio(bio);
}
} else {
bio->bi_status = BLK_STS_REMOVED;
if (sync)
btree_node_read_work(&rb->work);
else
queue_work(c->io_complete_wq, &rb->work);
}
}
static int __bch2_btree_root_read(struct btree_trans *trans, enum btree_id id,
const struct bkey_i *k, unsigned level)
{
struct bch_fs *c = trans->c;
struct closure cl;
struct btree *b;
int ret;
closure_init_stack(&cl);
do {
ret = bch2_btree_cache_cannibalize_lock(c, &cl);
closure_sync(&cl);
} while (ret);
b = bch2_btree_node_mem_alloc(trans, level != 0);
bch2_btree_cache_cannibalize_unlock(c);
BUG_ON(IS_ERR(b));
bkey_copy(&b->key, k);
BUG_ON(bch2_btree_node_hash_insert(&c->btree_cache, b, level, id));
set_btree_node_read_in_flight(b);
bch2_btree_node_read(c, b, true);
if (btree_node_read_error(b)) {
bch2_btree_node_hash_remove(&c->btree_cache, b);
mutex_lock(&c->btree_cache.lock);
list_move(&b->list, &c->btree_cache.freeable);
mutex_unlock(&c->btree_cache.lock);
ret = -EIO;
goto err;
}
bch2_btree_set_root_for_read(c, b);
err:
six_unlock_write(&b->c.lock);
six_unlock_intent(&b->c.lock);
return ret;
}
int bch2_btree_root_read(struct bch_fs *c, enum btree_id id,
const struct bkey_i *k, unsigned level)
{
return bch2_trans_run(c, __bch2_btree_root_read(&trans, id, k, level));
}
void bch2_btree_complete_write(struct bch_fs *c, struct btree *b,
struct btree_write *w)
{
unsigned long old, new, v = READ_ONCE(b->will_make_reachable);
do {
old = new = v;
if (!(old & 1))
break;
new &= ~1UL;
} while ((v = cmpxchg(&b->will_make_reachable, old, new)) != old);
if (old & 1)
closure_put(&((struct btree_update *) new)->cl);
bch2_journal_pin_drop(&c->journal, &w->journal);
}
static void __btree_node_write_done(struct bch_fs *c, struct btree *b)
{
struct btree_write *w = btree_prev_write(b);
unsigned long old, new, v;
unsigned type = 0;
bch2_btree_complete_write(c, b, w);
v = READ_ONCE(b->flags);
do {
old = new = v;
if ((old & (1U << BTREE_NODE_dirty)) &&
(old & (1U << BTREE_NODE_need_write)) &&
!(old & (1U << BTREE_NODE_never_write)) &&
!(old & (1U << BTREE_NODE_write_blocked)) &&
!(old & (1U << BTREE_NODE_will_make_reachable))) {
new &= ~(1U << BTREE_NODE_dirty);
new &= ~(1U << BTREE_NODE_need_write);
new |= (1U << BTREE_NODE_write_in_flight);
new |= (1U << BTREE_NODE_write_in_flight_inner);
new |= (1U << BTREE_NODE_just_written);
new ^= (1U << BTREE_NODE_write_idx);
type = new & BTREE_WRITE_TYPE_MASK;
new &= ~BTREE_WRITE_TYPE_MASK;
} else {
new &= ~(1U << BTREE_NODE_write_in_flight);
new &= ~(1U << BTREE_NODE_write_in_flight_inner);
}
} while ((v = cmpxchg(&b->flags, old, new)) != old);
if (new & (1U << BTREE_NODE_write_in_flight))
__bch2_btree_node_write(c, b, BTREE_WRITE_ALREADY_STARTED|type);
else
wake_up_bit(&b->flags, BTREE_NODE_write_in_flight);
}
static void btree_node_write_done(struct bch_fs *c, struct btree *b)
{
struct btree_trans trans;
bch2_trans_init(&trans, c, 0, 0);
btree_node_lock_nopath_nofail(&trans, &b->c, SIX_LOCK_read);
__btree_node_write_done(c, b);
six_unlock_read(&b->c.lock);
bch2_trans_exit(&trans);
}
static void btree_node_write_work(struct work_struct *work)
{
struct btree_write_bio *wbio =
container_of(work, struct btree_write_bio, work);
struct bch_fs *c = wbio->wbio.c;
struct btree *b = wbio->wbio.bio.bi_private;
struct bch_extent_ptr *ptr;
int ret = 0;
btree_bounce_free(c,
wbio->data_bytes,
wbio->wbio.used_mempool,
wbio->data);
bch2_bkey_drop_ptrs(bkey_i_to_s(&wbio->key), ptr,
bch2_dev_list_has_dev(wbio->wbio.failed, ptr->dev));
if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(&wbio->key)))
goto err;
if (wbio->wbio.first_btree_write) {
if (wbio->wbio.failed.nr) {
}
} else {
ret = bch2_trans_do(c, NULL, NULL, 0,
bch2_btree_node_update_key_get_iter(&trans, b, &wbio->key,
BCH_WATERMARK_reclaim|
BTREE_INSERT_JOURNAL_RECLAIM|
BTREE_INSERT_NOFAIL|
BTREE_INSERT_NOCHECK_RW,
!wbio->wbio.failed.nr));
if (ret)
goto err;
}
out:
bio_put(&wbio->wbio.bio);
btree_node_write_done(c, b);
return;
err:
set_btree_node_noevict(b);
if (!bch2_err_matches(ret, EROFS))
bch2_fs_fatal_error(c, "fatal error writing btree node: %s", bch2_err_str(ret));
goto out;
}
static void btree_node_write_endio(struct bio *bio)
{
struct bch_write_bio *wbio = to_wbio(bio);
struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL;
struct bch_write_bio *orig = parent ?: wbio;
struct btree_write_bio *wb = container_of(orig, struct btree_write_bio, wbio);
struct bch_fs *c = wbio->c;
struct btree *b = wbio->bio.bi_private;
struct bch_dev *ca = bch_dev_bkey_exists(c, wbio->dev);
unsigned long flags;
if (wbio->have_ioref)
bch2_latency_acct(ca, wbio->submit_time, WRITE);
if (bch2_dev_io_err_on(bio->bi_status, ca, "btree write error: %s",
bch2_blk_status_to_str(bio->bi_status)) ||
bch2_meta_write_fault("btree")) {
spin_lock_irqsave(&c->btree_write_error_lock, flags);
bch2_dev_list_add_dev(&orig->failed, wbio->dev);
spin_unlock_irqrestore(&c->btree_write_error_lock, flags);
}
if (wbio->have_ioref)
percpu_ref_put(&ca->io_ref);
if (parent) {
bio_put(bio);
bio_endio(&parent->bio);
return;
}
clear_btree_node_write_in_flight_inner(b);
wake_up_bit(&b->flags, BTREE_NODE_write_in_flight_inner);
INIT_WORK(&wb->work, btree_node_write_work);
queue_work(c->btree_io_complete_wq, &wb->work);
}
static int validate_bset_for_write(struct bch_fs *c, struct btree *b,
struct bset *i, unsigned sectors)
{
struct printbuf buf = PRINTBUF;
bool saw_error;
int ret;
ret = bch2_bkey_invalid(c, bkey_i_to_s_c(&b->key),
BKEY_TYPE_btree, WRITE, &buf);
if (ret)
bch2_fs_inconsistent(c, "invalid btree node key before write: %s", buf.buf);
printbuf_exit(&buf);
if (ret)
return ret;
ret = validate_bset_keys(c, b, i, WRITE, false, &saw_error) ?:
validate_bset(c, NULL, b, i, b->written, sectors, WRITE, false, &saw_error);
if (ret) {
bch2_inconsistent_error(c);
dump_stack();
}
return ret;
}
static void btree_write_submit(struct work_struct *work)
{
struct btree_write_bio *wbio = container_of(work, struct btree_write_bio, work);
struct bch_extent_ptr *ptr;
BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
bkey_copy(&tmp.k, &wbio->key);
bkey_for_each_ptr(bch2_bkey_ptrs(bkey_i_to_s(&tmp.k)), ptr)
ptr->offset += wbio->sector_offset;
bch2_submit_wbio_replicas(&wbio->wbio, wbio->wbio.c, BCH_DATA_btree,
&tmp.k, false);
}
void __bch2_btree_node_write(struct bch_fs *c, struct btree *b, unsigned flags)
{
struct btree_write_bio *wbio;
struct bset_tree *t;
struct bset *i;
struct btree_node *bn = NULL;
struct btree_node_entry *bne = NULL;
struct sort_iter sort_iter;
struct nonce nonce;
unsigned bytes_to_write, sectors_to_write, bytes, u64s;
u64 seq = 0;
bool used_mempool;
unsigned long old, new;
bool validate_before_checksum = false;
enum btree_write_type type = flags & BTREE_WRITE_TYPE_MASK;
void *data;
int ret;
if (flags & BTREE_WRITE_ALREADY_STARTED)
goto do_write;
/*
* We may only have a read lock on the btree node - the dirty bit is our
* "lock" against racing with other threads that may be trying to start
* a write, we do a write iff we clear the dirty bit. Since setting the
* dirty bit requires a write lock, we can't race with other threads
* redirtying it:
*/
do {
old = new = READ_ONCE(b->flags);
if (!(old & (1 << BTREE_NODE_dirty)))
return;
if ((flags & BTREE_WRITE_ONLY_IF_NEED) &&
!(old & (1 << BTREE_NODE_need_write)))
return;
if (old &
((1 << BTREE_NODE_never_write)|
(1 << BTREE_NODE_write_blocked)))
return;
if (b->written &&
(old & (1 << BTREE_NODE_will_make_reachable)))
return;
if (old & (1 << BTREE_NODE_write_in_flight))
return;
if (flags & BTREE_WRITE_ONLY_IF_NEED)
type = new & BTREE_WRITE_TYPE_MASK;
new &= ~BTREE_WRITE_TYPE_MASK;
new &= ~(1 << BTREE_NODE_dirty);
new &= ~(1 << BTREE_NODE_need_write);
new |= (1 << BTREE_NODE_write_in_flight);
new |= (1 << BTREE_NODE_write_in_flight_inner);
new |= (1 << BTREE_NODE_just_written);
new ^= (1 << BTREE_NODE_write_idx);
} while (cmpxchg_acquire(&b->flags, old, new) != old);
if (new & (1U << BTREE_NODE_need_write))
return;
do_write:
BUG_ON((type == BTREE_WRITE_initial) != (b->written == 0));
atomic_dec(&c->btree_cache.dirty);
BUG_ON(btree_node_fake(b));
BUG_ON((b->will_make_reachable != 0) != !b->written);
BUG_ON(b->written >= btree_sectors(c));
BUG_ON(b->written & (block_sectors(c) - 1));
BUG_ON(bset_written(b, btree_bset_last(b)));
BUG_ON(le64_to_cpu(b->data->magic) != bset_magic(c));
BUG_ON(memcmp(&b->data->format, &b->format, sizeof(b->format)));
bch2_sort_whiteouts(c, b);
sort_iter_init(&sort_iter, b);
bytes = !b->written
? sizeof(struct btree_node)
: sizeof(struct btree_node_entry);
bytes += b->whiteout_u64s * sizeof(u64);
for_each_bset(b, t) {
i = bset(b, t);
if (bset_written(b, i))
continue;
bytes += le16_to_cpu(i->u64s) * sizeof(u64);
sort_iter_add(&sort_iter,
btree_bkey_first(b, t),
btree_bkey_last(b, t));
seq = max(seq, le64_to_cpu(i->journal_seq));
}
BUG_ON(b->written && !seq);
/* bch2_varint_decode may read up to 7 bytes past the end of the buffer: */
bytes += 8;
/* buffer must be a multiple of the block size */
bytes = round_up(bytes, block_bytes(c));
data = btree_bounce_alloc(c, bytes, &used_mempool);
if (!b->written) {
bn = data;
*bn = *b->data;
i = &bn->keys;
} else {
bne = data;
bne->keys = b->data->keys;
i = &bne->keys;
}
i->journal_seq = cpu_to_le64(seq);
i->u64s = 0;
sort_iter_add(&sort_iter,
unwritten_whiteouts_start(c, b),
unwritten_whiteouts_end(c, b));
SET_BSET_SEPARATE_WHITEOUTS(i, false);
b->whiteout_u64s = 0;
u64s = bch2_sort_keys(i->start, &sort_iter, false);
le16_add_cpu(&i->u64s, u64s);
BUG_ON(!b->written && i->u64s != b->data->keys.u64s);
set_needs_whiteout(i, false);
/* do we have data to write? */
if (b->written && !i->u64s)
goto nowrite;
bytes_to_write = vstruct_end(i) - data;
sectors_to_write = round_up(bytes_to_write, block_bytes(c)) >> 9;
if (!b->written &&
b->key.k.type == KEY_TYPE_btree_ptr_v2)
BUG_ON(btree_ptr_sectors_written(&b->key) != sectors_to_write);
memset(data + bytes_to_write, 0,
(sectors_to_write << 9) - bytes_to_write);
BUG_ON(b->written + sectors_to_write > btree_sectors(c));
BUG_ON(BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN);
BUG_ON(i->seq != b->data->keys.seq);
i->version = cpu_to_le16(c->sb.version);
SET_BSET_OFFSET(i, b->written);
SET_BSET_CSUM_TYPE(i, bch2_meta_checksum_type(c));
if (bch2_csum_type_is_encryption(BSET_CSUM_TYPE(i)))
validate_before_checksum = true;
/* validate_bset will be modifying: */
if (le16_to_cpu(i->version) < bcachefs_metadata_version_current)
validate_before_checksum = true;
/* if we're going to be encrypting, check metadata validity first: */
if (validate_before_checksum &&
validate_bset_for_write(c, b, i, sectors_to_write))
goto err;
ret = bset_encrypt(c, i, b->written << 9);
if (bch2_fs_fatal_err_on(ret, c,
"error encrypting btree node: %i\n", ret))
goto err;
nonce = btree_nonce(i, b->written << 9);
if (bn)
bn->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bn);
else
bne->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne);
/* if we're not encrypting, check metadata after checksumming: */
if (!validate_before_checksum &&
validate_bset_for_write(c, b, i, sectors_to_write))
goto err;
/*
* We handle btree write errors by immediately halting the journal -
* after we've done that, we can't issue any subsequent btree writes
* because they might have pointers to new nodes that failed to write.
*
* Furthermore, there's no point in doing any more btree writes because
* with the journal stopped, we're never going to update the journal to
* reflect that those writes were done and the data flushed from the
* journal:
*
* Also on journal error, the pending write may have updates that were
* never journalled (interior nodes, see btree_update_nodes_written()) -
* it's critical that we don't do the write in that case otherwise we
* will have updates visible that weren't in the journal:
*
* Make sure to update b->written so bch2_btree_init_next() doesn't
* break:
*/
if (bch2_journal_error(&c->journal) ||
c->opts.nochanges)
goto err;
trace_and_count(c, btree_node_write, b, bytes_to_write, sectors_to_write);
wbio = container_of(bio_alloc_bioset(NULL,
buf_pages(data, sectors_to_write << 9),
REQ_OP_WRITE|REQ_META,
GFP_NOFS,
&c->btree_bio),
struct btree_write_bio, wbio.bio);
wbio_init(&wbio->wbio.bio);
wbio->data = data;
wbio->data_bytes = bytes;
wbio->sector_offset = b->written;
wbio->wbio.c = c;
wbio->wbio.used_mempool = used_mempool;
wbio->wbio.first_btree_write = !b->written;
wbio->wbio.bio.bi_end_io = btree_node_write_endio;
wbio->wbio.bio.bi_private = b;
bch2_bio_map(&wbio->wbio.bio, data, sectors_to_write << 9);
bkey_copy(&wbio->key, &b->key);
b->written += sectors_to_write;
if (wbio->key.k.type == KEY_TYPE_btree_ptr_v2)
bkey_i_to_btree_ptr_v2(&wbio->key)->v.sectors_written =
cpu_to_le16(b->written);
atomic64_inc(&c->btree_write_stats[type].nr);
atomic64_add(bytes_to_write, &c->btree_write_stats[type].bytes);
INIT_WORK(&wbio->work, btree_write_submit);
queue_work(c->io_complete_wq, &wbio->work);
return;
err:
set_btree_node_noevict(b);
b->written += sectors_to_write;
nowrite:
btree_bounce_free(c, bytes, used_mempool, data);
__btree_node_write_done(c, b);
}
/*
* Work that must be done with write lock held:
*/
bool bch2_btree_post_write_cleanup(struct bch_fs *c, struct btree *b)
{
bool invalidated_iter = false;
struct btree_node_entry *bne;
struct bset_tree *t;
if (!btree_node_just_written(b))
return false;
BUG_ON(b->whiteout_u64s);
clear_btree_node_just_written(b);
/*
* Note: immediately after write, bset_written() doesn't work - the
* amount of data we had to write after compaction might have been
* smaller than the offset of the last bset.
*
* However, we know that all bsets have been written here, as long as
* we're still holding the write lock:
*/
/*
* XXX: decide if we really want to unconditionally sort down to a
* single bset:
*/
if (b->nsets > 1) {
btree_node_sort(c, b, 0, b->nsets, true);
invalidated_iter = true;
} else {
invalidated_iter = bch2_drop_whiteouts(b, COMPACT_ALL);
}
for_each_bset(b, t)
set_needs_whiteout(bset(b, t), true);
bch2_btree_verify(c, b);
/*
* If later we don't unconditionally sort down to a single bset, we have
* to ensure this is still true:
*/
BUG_ON((void *) btree_bkey_last(b, bset_tree_last(b)) > write_block(b));
bne = want_new_bset(c, b);
if (bne)
bch2_bset_init_next(c, b, bne);
bch2_btree_build_aux_trees(b);
return invalidated_iter;
}
/*
* Use this one if the node is intent locked:
*/
void bch2_btree_node_write(struct bch_fs *c, struct btree *b,
enum six_lock_type lock_type_held,
unsigned flags)
{
if (lock_type_held == SIX_LOCK_intent ||
(lock_type_held == SIX_LOCK_read &&
six_lock_tryupgrade(&b->c.lock))) {
__bch2_btree_node_write(c, b, flags);
/* don't cycle lock unnecessarily: */
if (btree_node_just_written(b) &&
six_trylock_write(&b->c.lock)) {
bch2_btree_post_write_cleanup(c, b);
six_unlock_write(&b->c.lock);
}
if (lock_type_held == SIX_LOCK_read)
six_lock_downgrade(&b->c.lock);
} else {
__bch2_btree_node_write(c, b, flags);
if (lock_type_held == SIX_LOCK_write &&
btree_node_just_written(b))
bch2_btree_post_write_cleanup(c, b);
}
}
static bool __bch2_btree_flush_all(struct bch_fs *c, unsigned flag)
{
struct bucket_table *tbl;
struct rhash_head *pos;
struct btree *b;
unsigned i;
bool ret = false;
restart:
rcu_read_lock();
for_each_cached_btree(b, c, tbl, i, pos)
if (test_bit(flag, &b->flags)) {
rcu_read_unlock();
wait_on_bit_io(&b->flags, flag, TASK_UNINTERRUPTIBLE);
ret = true;
goto restart;
}
rcu_read_unlock();
return ret;
}
bool bch2_btree_flush_all_reads(struct bch_fs *c)
{
return __bch2_btree_flush_all(c, BTREE_NODE_read_in_flight);
}
bool bch2_btree_flush_all_writes(struct bch_fs *c)
{
return __bch2_btree_flush_all(c, BTREE_NODE_write_in_flight);
}
static const char * const bch2_btree_write_types[] = {
#define x(t, n) [n] = #t,
BCH_BTREE_WRITE_TYPES()
NULL
};
void bch2_btree_write_stats_to_text(struct printbuf *out, struct bch_fs *c)
{
printbuf_tabstop_push(out, 20);
printbuf_tabstop_push(out, 10);
prt_tab(out);
prt_str(out, "nr");
prt_tab(out);
prt_str(out, "size");
prt_newline(out);
for (unsigned i = 0; i < BTREE_WRITE_TYPE_NR; i++) {
u64 nr = atomic64_read(&c->btree_write_stats[i].nr);
u64 bytes = atomic64_read(&c->btree_write_stats[i].bytes);
prt_printf(out, "%s:", bch2_btree_write_types[i]);
prt_tab(out);
prt_u64(out, nr);
prt_tab(out);
prt_human_readable_u64(out, nr ? div64_u64(bytes, nr) : 0);
prt_newline(out);
}
}