blob: c7e8d7b3baa1874c71e5be6b7314ae2f284de074 [file] [log] [blame]
/*
* Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <rdma/uverbs_ioctl.h>
#include "iw_cxgb4.h"
static void destroy_cq(struct c4iw_rdev *rdev, struct t4_cq *cq,
struct c4iw_dev_ucontext *uctx, struct sk_buff *skb,
struct c4iw_wr_wait *wr_waitp)
{
struct fw_ri_res_wr *res_wr;
struct fw_ri_res *res;
int wr_len;
wr_len = sizeof(*res_wr) + sizeof(*res);
set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
res_wr = __skb_put_zero(skb, wr_len);
res_wr->op_nres = cpu_to_be32(
FW_WR_OP_V(FW_RI_RES_WR) |
FW_RI_RES_WR_NRES_V(1) |
FW_WR_COMPL_F);
res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16));
res_wr->cookie = (uintptr_t)wr_waitp;
res = res_wr->res;
res->u.cq.restype = FW_RI_RES_TYPE_CQ;
res->u.cq.op = FW_RI_RES_OP_RESET;
res->u.cq.iqid = cpu_to_be32(cq->cqid);
c4iw_init_wr_wait(wr_waitp);
c4iw_ref_send_wait(rdev, skb, wr_waitp, 0, 0, __func__);
kfree(cq->sw_queue);
dma_free_coherent(&(rdev->lldi.pdev->dev),
cq->memsize, cq->queue,
dma_unmap_addr(cq, mapping));
c4iw_put_cqid(rdev, cq->cqid, uctx);
}
static int create_cq(struct c4iw_rdev *rdev, struct t4_cq *cq,
struct c4iw_dev_ucontext *uctx,
struct c4iw_wr_wait *wr_waitp)
{
struct fw_ri_res_wr *res_wr;
struct fw_ri_res *res;
int wr_len;
int user = (uctx != &rdev->uctx);
int ret;
struct sk_buff *skb;
struct c4iw_ucontext *ucontext = NULL;
if (user)
ucontext = container_of(uctx, struct c4iw_ucontext, uctx);
cq->cqid = c4iw_get_cqid(rdev, uctx);
if (!cq->cqid) {
ret = -ENOMEM;
goto err1;
}
if (!user) {
cq->sw_queue = kzalloc(cq->memsize, GFP_KERNEL);
if (!cq->sw_queue) {
ret = -ENOMEM;
goto err2;
}
}
cq->queue = dma_alloc_coherent(&rdev->lldi.pdev->dev, cq->memsize,
&cq->dma_addr, GFP_KERNEL);
if (!cq->queue) {
ret = -ENOMEM;
goto err3;
}
dma_unmap_addr_set(cq, mapping, cq->dma_addr);
if (user && ucontext->is_32b_cqe) {
cq->qp_errp = &((struct t4_status_page *)
((u8 *)cq->queue + (cq->size - 1) *
(sizeof(*cq->queue) / 2)))->qp_err;
} else {
cq->qp_errp = &((struct t4_status_page *)
((u8 *)cq->queue + (cq->size - 1) *
sizeof(*cq->queue)))->qp_err;
}
/* build fw_ri_res_wr */
wr_len = sizeof(*res_wr) + sizeof(*res);
skb = alloc_skb(wr_len, GFP_KERNEL);
if (!skb) {
ret = -ENOMEM;
goto err4;
}
set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
res_wr = __skb_put_zero(skb, wr_len);
res_wr->op_nres = cpu_to_be32(
FW_WR_OP_V(FW_RI_RES_WR) |
FW_RI_RES_WR_NRES_V(1) |
FW_WR_COMPL_F);
res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16));
res_wr->cookie = (uintptr_t)wr_waitp;
res = res_wr->res;
res->u.cq.restype = FW_RI_RES_TYPE_CQ;
res->u.cq.op = FW_RI_RES_OP_WRITE;
res->u.cq.iqid = cpu_to_be32(cq->cqid);
res->u.cq.iqandst_to_iqandstindex = cpu_to_be32(
FW_RI_RES_WR_IQANUS_V(0) |
FW_RI_RES_WR_IQANUD_V(1) |
FW_RI_RES_WR_IQANDST_F |
FW_RI_RES_WR_IQANDSTINDEX_V(
rdev->lldi.ciq_ids[cq->vector]));
res->u.cq.iqdroprss_to_iqesize = cpu_to_be16(
FW_RI_RES_WR_IQDROPRSS_F |
FW_RI_RES_WR_IQPCIECH_V(2) |
FW_RI_RES_WR_IQINTCNTTHRESH_V(0) |
FW_RI_RES_WR_IQO_F |
((user && ucontext->is_32b_cqe) ?
FW_RI_RES_WR_IQESIZE_V(1) :
FW_RI_RES_WR_IQESIZE_V(2)));
res->u.cq.iqsize = cpu_to_be16(cq->size);
res->u.cq.iqaddr = cpu_to_be64(cq->dma_addr);
c4iw_init_wr_wait(wr_waitp);
ret = c4iw_ref_send_wait(rdev, skb, wr_waitp, 0, 0, __func__);
if (ret)
goto err4;
cq->gen = 1;
cq->gts = rdev->lldi.gts_reg;
cq->rdev = rdev;
cq->bar2_va = c4iw_bar2_addrs(rdev, cq->cqid, CXGB4_BAR2_QTYPE_INGRESS,
&cq->bar2_qid,
user ? &cq->bar2_pa : NULL);
if (user && !cq->bar2_pa) {
pr_warn("%s: cqid %u not in BAR2 range\n",
pci_name(rdev->lldi.pdev), cq->cqid);
ret = -EINVAL;
goto err4;
}
return 0;
err4:
dma_free_coherent(&rdev->lldi.pdev->dev, cq->memsize, cq->queue,
dma_unmap_addr(cq, mapping));
err3:
kfree(cq->sw_queue);
err2:
c4iw_put_cqid(rdev, cq->cqid, uctx);
err1:
return ret;
}
static void insert_recv_cqe(struct t4_wq *wq, struct t4_cq *cq, u32 srqidx)
{
struct t4_cqe cqe;
pr_debug("wq %p cq %p sw_cidx %u sw_pidx %u\n",
wq, cq, cq->sw_cidx, cq->sw_pidx);
memset(&cqe, 0, sizeof(cqe));
cqe.header = cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH) |
CQE_OPCODE_V(FW_RI_SEND) |
CQE_TYPE_V(0) |
CQE_SWCQE_V(1) |
CQE_QPID_V(wq->sq.qid));
cqe.bits_type_ts = cpu_to_be64(CQE_GENBIT_V((u64)cq->gen));
if (srqidx)
cqe.u.srcqe.abs_rqe_idx = cpu_to_be32(srqidx);
cq->sw_queue[cq->sw_pidx] = cqe;
t4_swcq_produce(cq);
}
int c4iw_flush_rq(struct t4_wq *wq, struct t4_cq *cq, int count)
{
int flushed = 0;
int in_use = wq->rq.in_use - count;
pr_debug("wq %p cq %p rq.in_use %u skip count %u\n",
wq, cq, wq->rq.in_use, count);
while (in_use--) {
insert_recv_cqe(wq, cq, 0);
flushed++;
}
return flushed;
}
static void insert_sq_cqe(struct t4_wq *wq, struct t4_cq *cq,
struct t4_swsqe *swcqe)
{
struct t4_cqe cqe;
pr_debug("wq %p cq %p sw_cidx %u sw_pidx %u\n",
wq, cq, cq->sw_cidx, cq->sw_pidx);
memset(&cqe, 0, sizeof(cqe));
cqe.header = cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH) |
CQE_OPCODE_V(swcqe->opcode) |
CQE_TYPE_V(1) |
CQE_SWCQE_V(1) |
CQE_QPID_V(wq->sq.qid));
CQE_WRID_SQ_IDX(&cqe) = swcqe->idx;
cqe.bits_type_ts = cpu_to_be64(CQE_GENBIT_V((u64)cq->gen));
cq->sw_queue[cq->sw_pidx] = cqe;
t4_swcq_produce(cq);
}
static void advance_oldest_read(struct t4_wq *wq);
int c4iw_flush_sq(struct c4iw_qp *qhp)
{
int flushed = 0;
struct t4_wq *wq = &qhp->wq;
struct c4iw_cq *chp = to_c4iw_cq(qhp->ibqp.send_cq);
struct t4_cq *cq = &chp->cq;
int idx;
struct t4_swsqe *swsqe;
if (wq->sq.flush_cidx == -1)
wq->sq.flush_cidx = wq->sq.cidx;
idx = wq->sq.flush_cidx;
while (idx != wq->sq.pidx) {
swsqe = &wq->sq.sw_sq[idx];
swsqe->flushed = 1;
insert_sq_cqe(wq, cq, swsqe);
if (wq->sq.oldest_read == swsqe) {
advance_oldest_read(wq);
}
flushed++;
if (++idx == wq->sq.size)
idx = 0;
}
wq->sq.flush_cidx += flushed;
if (wq->sq.flush_cidx >= wq->sq.size)
wq->sq.flush_cidx -= wq->sq.size;
return flushed;
}
static void flush_completed_wrs(struct t4_wq *wq, struct t4_cq *cq)
{
struct t4_swsqe *swsqe;
int cidx;
if (wq->sq.flush_cidx == -1)
wq->sq.flush_cidx = wq->sq.cidx;
cidx = wq->sq.flush_cidx;
while (cidx != wq->sq.pidx) {
swsqe = &wq->sq.sw_sq[cidx];
if (!swsqe->signaled) {
if (++cidx == wq->sq.size)
cidx = 0;
} else if (swsqe->complete) {
/*
* Insert this completed cqe into the swcq.
*/
pr_debug("moving cqe into swcq sq idx %u cq idx %u\n",
cidx, cq->sw_pidx);
swsqe->cqe.header |= htonl(CQE_SWCQE_V(1));
cq->sw_queue[cq->sw_pidx] = swsqe->cqe;
t4_swcq_produce(cq);
swsqe->flushed = 1;
if (++cidx == wq->sq.size)
cidx = 0;
wq->sq.flush_cidx = cidx;
} else
break;
}
}
static void create_read_req_cqe(struct t4_wq *wq, struct t4_cqe *hw_cqe,
struct t4_cqe *read_cqe)
{
read_cqe->u.scqe.cidx = wq->sq.oldest_read->idx;
read_cqe->len = htonl(wq->sq.oldest_read->read_len);
read_cqe->header = htonl(CQE_QPID_V(CQE_QPID(hw_cqe)) |
CQE_SWCQE_V(SW_CQE(hw_cqe)) |
CQE_OPCODE_V(FW_RI_READ_REQ) |
CQE_TYPE_V(1));
read_cqe->bits_type_ts = hw_cqe->bits_type_ts;
}
static void advance_oldest_read(struct t4_wq *wq)
{
u32 rptr = wq->sq.oldest_read - wq->sq.sw_sq + 1;
if (rptr == wq->sq.size)
rptr = 0;
while (rptr != wq->sq.pidx) {
wq->sq.oldest_read = &wq->sq.sw_sq[rptr];
if (wq->sq.oldest_read->opcode == FW_RI_READ_REQ)
return;
if (++rptr == wq->sq.size)
rptr = 0;
}
wq->sq.oldest_read = NULL;
}
/*
* Move all CQEs from the HWCQ into the SWCQ.
* Deal with out-of-order and/or completions that complete
* prior unsignalled WRs.
*/
void c4iw_flush_hw_cq(struct c4iw_cq *chp, struct c4iw_qp *flush_qhp)
{
struct t4_cqe *hw_cqe, *swcqe, read_cqe;
struct c4iw_qp *qhp;
struct t4_swsqe *swsqe;
int ret;
pr_debug("cqid 0x%x\n", chp->cq.cqid);
ret = t4_next_hw_cqe(&chp->cq, &hw_cqe);
/*
* This logic is similar to poll_cq(), but not quite the same
* unfortunately. Need to move pertinent HW CQEs to the SW CQ but
* also do any translation magic that poll_cq() normally does.
*/
while (!ret) {
qhp = get_qhp(chp->rhp, CQE_QPID(hw_cqe));
/*
* drop CQEs with no associated QP
*/
if (qhp == NULL)
goto next_cqe;
if (flush_qhp != qhp) {
spin_lock(&qhp->lock);
if (qhp->wq.flushed == 1)
goto next_cqe;
}
if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE)
goto next_cqe;
if (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP) {
/* If we have reached here because of async
* event or other error, and have egress error
* then drop
*/
if (CQE_TYPE(hw_cqe) == 1)
goto next_cqe;
/* drop peer2peer RTR reads.
*/
if (CQE_WRID_STAG(hw_cqe) == 1)
goto next_cqe;
/*
* Eat completions for unsignaled read WRs.
*/
if (!qhp->wq.sq.oldest_read->signaled) {
advance_oldest_read(&qhp->wq);
goto next_cqe;
}
/*
* Don't write to the HWCQ, create a new read req CQE
* in local memory and move it into the swcq.
*/
create_read_req_cqe(&qhp->wq, hw_cqe, &read_cqe);
hw_cqe = &read_cqe;
advance_oldest_read(&qhp->wq);
}
/* if its a SQ completion, then do the magic to move all the
* unsignaled and now in-order completions into the swcq.
*/
if (SQ_TYPE(hw_cqe)) {
swsqe = &qhp->wq.sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)];
swsqe->cqe = *hw_cqe;
swsqe->complete = 1;
flush_completed_wrs(&qhp->wq, &chp->cq);
} else {
swcqe = &chp->cq.sw_queue[chp->cq.sw_pidx];
*swcqe = *hw_cqe;
swcqe->header |= cpu_to_be32(CQE_SWCQE_V(1));
t4_swcq_produce(&chp->cq);
}
next_cqe:
t4_hwcq_consume(&chp->cq);
ret = t4_next_hw_cqe(&chp->cq, &hw_cqe);
if (qhp && flush_qhp != qhp)
spin_unlock(&qhp->lock);
}
}
static int cqe_completes_wr(struct t4_cqe *cqe, struct t4_wq *wq)
{
if (DRAIN_CQE(cqe)) {
WARN_ONCE(1, "Unexpected DRAIN CQE qp id %u!\n", wq->sq.qid);
return 0;
}
if (CQE_OPCODE(cqe) == FW_RI_TERMINATE)
return 0;
if ((CQE_OPCODE(cqe) == FW_RI_RDMA_WRITE) && RQ_TYPE(cqe))
return 0;
if ((CQE_OPCODE(cqe) == FW_RI_READ_RESP) && SQ_TYPE(cqe))
return 0;
if (CQE_SEND_OPCODE(cqe) && RQ_TYPE(cqe) && t4_rq_empty(wq))
return 0;
return 1;
}
void c4iw_count_rcqes(struct t4_cq *cq, struct t4_wq *wq, int *count)
{
struct t4_cqe *cqe;
u32 ptr;
*count = 0;
pr_debug("count zero %d\n", *count);
ptr = cq->sw_cidx;
while (ptr != cq->sw_pidx) {
cqe = &cq->sw_queue[ptr];
if (RQ_TYPE(cqe) && (CQE_OPCODE(cqe) != FW_RI_READ_RESP) &&
(CQE_QPID(cqe) == wq->sq.qid) && cqe_completes_wr(cqe, wq))
(*count)++;
if (++ptr == cq->size)
ptr = 0;
}
pr_debug("cq %p count %d\n", cq, *count);
}
static void post_pending_srq_wrs(struct t4_srq *srq)
{
struct t4_srq_pending_wr *pwr;
u16 idx = 0;
while (srq->pending_in_use) {
pwr = &srq->pending_wrs[srq->pending_cidx];
srq->sw_rq[srq->pidx].wr_id = pwr->wr_id;
srq->sw_rq[srq->pidx].valid = 1;
pr_debug("%s posting pending cidx %u pidx %u wq_pidx %u in_use %u rq_size %u wr_id %llx\n",
__func__,
srq->cidx, srq->pidx, srq->wq_pidx,
srq->in_use, srq->size,
(unsigned long long)pwr->wr_id);
c4iw_copy_wr_to_srq(srq, &pwr->wqe, pwr->len16);
t4_srq_consume_pending_wr(srq);
t4_srq_produce(srq, pwr->len16);
idx += DIV_ROUND_UP(pwr->len16 * 16, T4_EQ_ENTRY_SIZE);
}
if (idx) {
t4_ring_srq_db(srq, idx, pwr->len16, &pwr->wqe);
srq->queue[srq->size].status.host_wq_pidx =
srq->wq_pidx;
}
}
static u64 reap_srq_cqe(struct t4_cqe *hw_cqe, struct t4_srq *srq)
{
int rel_idx = CQE_ABS_RQE_IDX(hw_cqe) - srq->rqt_abs_idx;
u64 wr_id;
srq->sw_rq[rel_idx].valid = 0;
wr_id = srq->sw_rq[rel_idx].wr_id;
if (rel_idx == srq->cidx) {
pr_debug("%s in order cqe rel_idx %u cidx %u pidx %u wq_pidx %u in_use %u rq_size %u wr_id %llx\n",
__func__, rel_idx, srq->cidx, srq->pidx,
srq->wq_pidx, srq->in_use, srq->size,
(unsigned long long)srq->sw_rq[rel_idx].wr_id);
t4_srq_consume(srq);
while (srq->ooo_count && !srq->sw_rq[srq->cidx].valid) {
pr_debug("%s eat ooo cidx %u pidx %u wq_pidx %u in_use %u rq_size %u ooo_count %u wr_id %llx\n",
__func__, srq->cidx, srq->pidx,
srq->wq_pidx, srq->in_use,
srq->size, srq->ooo_count,
(unsigned long long)
srq->sw_rq[srq->cidx].wr_id);
t4_srq_consume_ooo(srq);
}
if (srq->ooo_count == 0 && srq->pending_in_use)
post_pending_srq_wrs(srq);
} else {
pr_debug("%s ooo cqe rel_idx %u cidx %u pidx %u wq_pidx %u in_use %u rq_size %u ooo_count %u wr_id %llx\n",
__func__, rel_idx, srq->cidx,
srq->pidx, srq->wq_pidx,
srq->in_use, srq->size,
srq->ooo_count,
(unsigned long long)srq->sw_rq[rel_idx].wr_id);
t4_srq_produce_ooo(srq);
}
return wr_id;
}
/*
* poll_cq
*
* Caller must:
* check the validity of the first CQE,
* supply the wq assicated with the qpid.
*
* credit: cq credit to return to sge.
* cqe_flushed: 1 iff the CQE is flushed.
* cqe: copy of the polled CQE.
*
* return value:
* 0 CQE returned ok.
* -EAGAIN CQE skipped, try again.
* -EOVERFLOW CQ overflow detected.
*/
static int poll_cq(struct t4_wq *wq, struct t4_cq *cq, struct t4_cqe *cqe,
u8 *cqe_flushed, u64 *cookie, u32 *credit,
struct t4_srq *srq)
{
int ret = 0;
struct t4_cqe *hw_cqe, read_cqe;
*cqe_flushed = 0;
*credit = 0;
ret = t4_next_cqe(cq, &hw_cqe);
if (ret)
return ret;
pr_debug("CQE OVF %u qpid 0x%0x genbit %u type %u status 0x%0x opcode 0x%0x len 0x%0x wrid_hi_stag 0x%x wrid_low_msn 0x%x\n",
CQE_OVFBIT(hw_cqe), CQE_QPID(hw_cqe),
CQE_GENBIT(hw_cqe), CQE_TYPE(hw_cqe), CQE_STATUS(hw_cqe),
CQE_OPCODE(hw_cqe), CQE_LEN(hw_cqe), CQE_WRID_HI(hw_cqe),
CQE_WRID_LOW(hw_cqe));
/*
* skip cqe's not affiliated with a QP.
*/
if (wq == NULL) {
ret = -EAGAIN;
goto skip_cqe;
}
/*
* skip hw cqe's if the wq is flushed.
*/
if (wq->flushed && !SW_CQE(hw_cqe)) {
ret = -EAGAIN;
goto skip_cqe;
}
/*
* skip TERMINATE cqes...
*/
if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE) {
ret = -EAGAIN;
goto skip_cqe;
}
/*
* Special cqe for drain WR completions...
*/
if (DRAIN_CQE(hw_cqe)) {
*cookie = CQE_DRAIN_COOKIE(hw_cqe);
*cqe = *hw_cqe;
goto skip_cqe;
}
/*
* Gotta tweak READ completions:
* 1) the cqe doesn't contain the sq_wptr from the wr.
* 2) opcode not reflected from the wr.
* 3) read_len not reflected from the wr.
* 4) cq_type is RQ_TYPE not SQ_TYPE.
*/
if (RQ_TYPE(hw_cqe) && (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP)) {
/* If we have reached here because of async
* event or other error, and have egress error
* then drop
*/
if (CQE_TYPE(hw_cqe) == 1) {
if (CQE_STATUS(hw_cqe))
t4_set_wq_in_error(wq, 0);
ret = -EAGAIN;
goto skip_cqe;
}
/* If this is an unsolicited read response, then the read
* was generated by the kernel driver as part of peer-2-peer
* connection setup. So ignore the completion.
*/
if (CQE_WRID_STAG(hw_cqe) == 1) {
if (CQE_STATUS(hw_cqe))
t4_set_wq_in_error(wq, 0);
ret = -EAGAIN;
goto skip_cqe;
}
/*
* Eat completions for unsignaled read WRs.
*/
if (!wq->sq.oldest_read->signaled) {
advance_oldest_read(wq);
ret = -EAGAIN;
goto skip_cqe;
}
/*
* Don't write to the HWCQ, so create a new read req CQE
* in local memory.
*/
create_read_req_cqe(wq, hw_cqe, &read_cqe);
hw_cqe = &read_cqe;
advance_oldest_read(wq);
}
if (CQE_STATUS(hw_cqe) || t4_wq_in_error(wq)) {
*cqe_flushed = (CQE_STATUS(hw_cqe) == T4_ERR_SWFLUSH);
t4_set_wq_in_error(wq, 0);
}
/*
* RECV completion.
*/
if (RQ_TYPE(hw_cqe)) {
/*
* HW only validates 4 bits of MSN. So we must validate that
* the MSN in the SEND is the next expected MSN. If its not,
* then we complete this with T4_ERR_MSN and mark the wq in
* error.
*/
if (unlikely(!CQE_STATUS(hw_cqe) &&
CQE_WRID_MSN(hw_cqe) != wq->rq.msn)) {
t4_set_wq_in_error(wq, 0);
hw_cqe->header |= cpu_to_be32(CQE_STATUS_V(T4_ERR_MSN));
}
goto proc_cqe;
}
/*
* If we get here its a send completion.
*
* Handle out of order completion. These get stuffed
* in the SW SQ. Then the SW SQ is walked to move any
* now in-order completions into the SW CQ. This handles
* 2 cases:
* 1) reaping unsignaled WRs when the first subsequent
* signaled WR is completed.
* 2) out of order read completions.
*/
if (!SW_CQE(hw_cqe) && (CQE_WRID_SQ_IDX(hw_cqe) != wq->sq.cidx)) {
struct t4_swsqe *swsqe;
pr_debug("out of order completion going in sw_sq at idx %u\n",
CQE_WRID_SQ_IDX(hw_cqe));
swsqe = &wq->sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)];
swsqe->cqe = *hw_cqe;
swsqe->complete = 1;
ret = -EAGAIN;
goto flush_wq;
}
proc_cqe:
*cqe = *hw_cqe;
/*
* Reap the associated WR(s) that are freed up with this
* completion.
*/
if (SQ_TYPE(hw_cqe)) {
int idx = CQE_WRID_SQ_IDX(hw_cqe);
/*
* Account for any unsignaled completions completed by
* this signaled completion. In this case, cidx points
* to the first unsignaled one, and idx points to the
* signaled one. So adjust in_use based on this delta.
* if this is not completing any unsigned wrs, then the
* delta will be 0. Handle wrapping also!
*/
if (idx < wq->sq.cidx)
wq->sq.in_use -= wq->sq.size + idx - wq->sq.cidx;
else
wq->sq.in_use -= idx - wq->sq.cidx;
wq->sq.cidx = (uint16_t)idx;
pr_debug("completing sq idx %u\n", wq->sq.cidx);
*cookie = wq->sq.sw_sq[wq->sq.cidx].wr_id;
if (c4iw_wr_log)
c4iw_log_wr_stats(wq, hw_cqe);
t4_sq_consume(wq);
} else {
if (!srq) {
pr_debug("completing rq idx %u\n", wq->rq.cidx);
*cookie = wq->rq.sw_rq[wq->rq.cidx].wr_id;
if (c4iw_wr_log)
c4iw_log_wr_stats(wq, hw_cqe);
t4_rq_consume(wq);
} else {
*cookie = reap_srq_cqe(hw_cqe, srq);
}
wq->rq.msn++;
goto skip_cqe;
}
flush_wq:
/*
* Flush any completed cqes that are now in-order.
*/
flush_completed_wrs(wq, cq);
skip_cqe:
if (SW_CQE(hw_cqe)) {
pr_debug("cq %p cqid 0x%x skip sw cqe cidx %u\n",
cq, cq->cqid, cq->sw_cidx);
t4_swcq_consume(cq);
} else {
pr_debug("cq %p cqid 0x%x skip hw cqe cidx %u\n",
cq, cq->cqid, cq->cidx);
t4_hwcq_consume(cq);
}
return ret;
}
static int __c4iw_poll_cq_one(struct c4iw_cq *chp, struct c4iw_qp *qhp,
struct ib_wc *wc, struct c4iw_srq *srq)
{
struct t4_cqe cqe;
struct t4_wq *wq = qhp ? &qhp->wq : NULL;
u32 credit = 0;
u8 cqe_flushed;
u64 cookie = 0;
int ret;
ret = poll_cq(wq, &(chp->cq), &cqe, &cqe_flushed, &cookie, &credit,
srq ? &srq->wq : NULL);
if (ret)
goto out;
wc->wr_id = cookie;
wc->qp = qhp ? &qhp->ibqp : NULL;
wc->vendor_err = CQE_STATUS(&cqe);
wc->wc_flags = 0;
/*
* Simulate a SRQ_LIMIT_REACHED HW notification if required.
*/
if (srq && !(srq->flags & T4_SRQ_LIMIT_SUPPORT) && srq->armed &&
srq->wq.in_use < srq->srq_limit)
c4iw_dispatch_srq_limit_reached_event(srq);
pr_debug("qpid 0x%x type %d opcode %d status 0x%x len %u wrid hi 0x%x lo 0x%x cookie 0x%llx\n",
CQE_QPID(&cqe),
CQE_TYPE(&cqe), CQE_OPCODE(&cqe),
CQE_STATUS(&cqe), CQE_LEN(&cqe),
CQE_WRID_HI(&cqe), CQE_WRID_LOW(&cqe),
(unsigned long long)cookie);
if (CQE_TYPE(&cqe) == 0) {
if (!CQE_STATUS(&cqe))
wc->byte_len = CQE_LEN(&cqe);
else
wc->byte_len = 0;
switch (CQE_OPCODE(&cqe)) {
case FW_RI_SEND:
wc->opcode = IB_WC_RECV;
break;
case FW_RI_SEND_WITH_INV:
case FW_RI_SEND_WITH_SE_INV:
wc->opcode = IB_WC_RECV;
wc->ex.invalidate_rkey = CQE_WRID_STAG(&cqe);
wc->wc_flags |= IB_WC_WITH_INVALIDATE;
c4iw_invalidate_mr(qhp->rhp, wc->ex.invalidate_rkey);
break;
case FW_RI_WRITE_IMMEDIATE:
wc->opcode = IB_WC_RECV_RDMA_WITH_IMM;
wc->ex.imm_data = CQE_IMM_DATA(&cqe);
wc->wc_flags |= IB_WC_WITH_IMM;
break;
default:
pr_err("Unexpected opcode %d in the CQE received for QPID=0x%0x\n",
CQE_OPCODE(&cqe), CQE_QPID(&cqe));
ret = -EINVAL;
goto out;
}
} else {
switch (CQE_OPCODE(&cqe)) {
case FW_RI_WRITE_IMMEDIATE:
case FW_RI_RDMA_WRITE:
wc->opcode = IB_WC_RDMA_WRITE;
break;
case FW_RI_READ_REQ:
wc->opcode = IB_WC_RDMA_READ;
wc->byte_len = CQE_LEN(&cqe);
break;
case FW_RI_SEND_WITH_INV:
case FW_RI_SEND_WITH_SE_INV:
wc->opcode = IB_WC_SEND;
wc->wc_flags |= IB_WC_WITH_INVALIDATE;
break;
case FW_RI_SEND:
case FW_RI_SEND_WITH_SE:
wc->opcode = IB_WC_SEND;
break;
case FW_RI_LOCAL_INV:
wc->opcode = IB_WC_LOCAL_INV;
break;
case FW_RI_FAST_REGISTER:
wc->opcode = IB_WC_REG_MR;
/* Invalidate the MR if the fastreg failed */
if (CQE_STATUS(&cqe) != T4_ERR_SUCCESS)
c4iw_invalidate_mr(qhp->rhp,
CQE_WRID_FR_STAG(&cqe));
break;
default:
pr_err("Unexpected opcode %d in the CQE received for QPID=0x%0x\n",
CQE_OPCODE(&cqe), CQE_QPID(&cqe));
ret = -EINVAL;
goto out;
}
}
if (cqe_flushed)
wc->status = IB_WC_WR_FLUSH_ERR;
else {
switch (CQE_STATUS(&cqe)) {
case T4_ERR_SUCCESS:
wc->status = IB_WC_SUCCESS;
break;
case T4_ERR_STAG:
wc->status = IB_WC_LOC_ACCESS_ERR;
break;
case T4_ERR_PDID:
wc->status = IB_WC_LOC_PROT_ERR;
break;
case T4_ERR_QPID:
case T4_ERR_ACCESS:
wc->status = IB_WC_LOC_ACCESS_ERR;
break;
case T4_ERR_WRAP:
wc->status = IB_WC_GENERAL_ERR;
break;
case T4_ERR_BOUND:
wc->status = IB_WC_LOC_LEN_ERR;
break;
case T4_ERR_INVALIDATE_SHARED_MR:
case T4_ERR_INVALIDATE_MR_WITH_MW_BOUND:
wc->status = IB_WC_MW_BIND_ERR;
break;
case T4_ERR_CRC:
case T4_ERR_MARKER:
case T4_ERR_PDU_LEN_ERR:
case T4_ERR_OUT_OF_RQE:
case T4_ERR_DDP_VERSION:
case T4_ERR_RDMA_VERSION:
case T4_ERR_DDP_QUEUE_NUM:
case T4_ERR_MSN:
case T4_ERR_TBIT:
case T4_ERR_MO:
case T4_ERR_MSN_RANGE:
case T4_ERR_IRD_OVERFLOW:
case T4_ERR_OPCODE:
case T4_ERR_INTERNAL_ERR:
wc->status = IB_WC_FATAL_ERR;
break;
case T4_ERR_SWFLUSH:
wc->status = IB_WC_WR_FLUSH_ERR;
break;
default:
pr_err("Unexpected cqe_status 0x%x for QPID=0x%0x\n",
CQE_STATUS(&cqe), CQE_QPID(&cqe));
wc->status = IB_WC_FATAL_ERR;
}
}
out:
return ret;
}
/*
* Get one cq entry from c4iw and map it to openib.
*
* Returns:
* 0 cqe returned
* -ENODATA EMPTY;
* -EAGAIN caller must try again
* any other -errno fatal error
*/
static int c4iw_poll_cq_one(struct c4iw_cq *chp, struct ib_wc *wc)
{
struct c4iw_srq *srq = NULL;
struct c4iw_qp *qhp = NULL;
struct t4_cqe *rd_cqe;
int ret;
ret = t4_next_cqe(&chp->cq, &rd_cqe);
if (ret)
return ret;
qhp = get_qhp(chp->rhp, CQE_QPID(rd_cqe));
if (qhp) {
spin_lock(&qhp->lock);
srq = qhp->srq;
if (srq)
spin_lock(&srq->lock);
ret = __c4iw_poll_cq_one(chp, qhp, wc, srq);
spin_unlock(&qhp->lock);
if (srq)
spin_unlock(&srq->lock);
} else {
ret = __c4iw_poll_cq_one(chp, NULL, wc, NULL);
}
return ret;
}
int c4iw_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *wc)
{
struct c4iw_cq *chp;
unsigned long flags;
int npolled;
int err = 0;
chp = to_c4iw_cq(ibcq);
spin_lock_irqsave(&chp->lock, flags);
for (npolled = 0; npolled < num_entries; ++npolled) {
do {
err = c4iw_poll_cq_one(chp, wc + npolled);
} while (err == -EAGAIN);
if (err)
break;
}
spin_unlock_irqrestore(&chp->lock, flags);
return !err || err == -ENODATA ? npolled : err;
}
void c4iw_cq_rem_ref(struct c4iw_cq *chp)
{
if (refcount_dec_and_test(&chp->refcnt))
complete(&chp->cq_rel_comp);
}
int c4iw_destroy_cq(struct ib_cq *ib_cq, struct ib_udata *udata)
{
struct c4iw_cq *chp;
struct c4iw_ucontext *ucontext;
pr_debug("ib_cq %p\n", ib_cq);
chp = to_c4iw_cq(ib_cq);
xa_erase_irq(&chp->rhp->cqs, chp->cq.cqid);
c4iw_cq_rem_ref(chp);
wait_for_completion(&chp->cq_rel_comp);
ucontext = rdma_udata_to_drv_context(udata, struct c4iw_ucontext,
ibucontext);
destroy_cq(&chp->rhp->rdev, &chp->cq,
ucontext ? &ucontext->uctx : &chp->cq.rdev->uctx,
chp->destroy_skb, chp->wr_waitp);
c4iw_put_wr_wait(chp->wr_waitp);
return 0;
}
int c4iw_create_cq(struct ib_cq *ibcq, const struct ib_cq_init_attr *attr,
struct ib_udata *udata)
{
struct ib_device *ibdev = ibcq->device;
int entries = attr->cqe;
int vector = attr->comp_vector;
struct c4iw_dev *rhp = to_c4iw_dev(ibcq->device);
struct c4iw_cq *chp = to_c4iw_cq(ibcq);
struct c4iw_create_cq ucmd;
struct c4iw_create_cq_resp uresp;
int ret, wr_len;
size_t memsize, hwentries;
struct c4iw_mm_entry *mm, *mm2;
struct c4iw_ucontext *ucontext = rdma_udata_to_drv_context(
udata, struct c4iw_ucontext, ibucontext);
pr_debug("ib_dev %p entries %d\n", ibdev, entries);
if (attr->flags)
return -EOPNOTSUPP;
if (entries < 1 || entries > ibdev->attrs.max_cqe)
return -EINVAL;
if (vector >= rhp->rdev.lldi.nciq)
return -EINVAL;
if (udata) {
if (udata->inlen < sizeof(ucmd))
ucontext->is_32b_cqe = 1;
}
chp->wr_waitp = c4iw_alloc_wr_wait(GFP_KERNEL);
if (!chp->wr_waitp) {
ret = -ENOMEM;
goto err_free_chp;
}
c4iw_init_wr_wait(chp->wr_waitp);
wr_len = sizeof(struct fw_ri_res_wr) + sizeof(struct fw_ri_res);
chp->destroy_skb = alloc_skb(wr_len, GFP_KERNEL);
if (!chp->destroy_skb) {
ret = -ENOMEM;
goto err_free_wr_wait;
}
/* account for the status page. */
entries++;
/* IQ needs one extra entry to differentiate full vs empty. */
entries++;
/*
* entries must be multiple of 16 for HW.
*/
entries = roundup(entries, 16);
/*
* Make actual HW queue 2x to avoid cdix_inc overflows.
*/
hwentries = min(entries * 2, rhp->rdev.hw_queue.t4_max_iq_size);
/*
* Make HW queue at least 64 entries so GTS updates aren't too
* frequent.
*/
if (hwentries < 64)
hwentries = 64;
memsize = hwentries * ((ucontext && ucontext->is_32b_cqe) ?
(sizeof(*chp->cq.queue) / 2) : sizeof(*chp->cq.queue));
/*
* memsize must be a multiple of the page size if its a user cq.
*/
if (udata)
memsize = roundup(memsize, PAGE_SIZE);
chp->cq.size = hwentries;
chp->cq.memsize = memsize;
chp->cq.vector = vector;
ret = create_cq(&rhp->rdev, &chp->cq,
ucontext ? &ucontext->uctx : &rhp->rdev.uctx,
chp->wr_waitp);
if (ret)
goto err_free_skb;
chp->rhp = rhp;
chp->cq.size--; /* status page */
chp->ibcq.cqe = entries - 2;
spin_lock_init(&chp->lock);
spin_lock_init(&chp->comp_handler_lock);
refcount_set(&chp->refcnt, 1);
init_completion(&chp->cq_rel_comp);
ret = xa_insert_irq(&rhp->cqs, chp->cq.cqid, chp, GFP_KERNEL);
if (ret)
goto err_destroy_cq;
if (ucontext) {
ret = -ENOMEM;
mm = kmalloc(sizeof(*mm), GFP_KERNEL);
if (!mm)
goto err_remove_handle;
mm2 = kmalloc(sizeof(*mm2), GFP_KERNEL);
if (!mm2)
goto err_free_mm;
memset(&uresp, 0, sizeof(uresp));
uresp.qid_mask = rhp->rdev.cqmask;
uresp.cqid = chp->cq.cqid;
uresp.size = chp->cq.size;
uresp.memsize = chp->cq.memsize;
spin_lock(&ucontext->mmap_lock);
uresp.key = ucontext->key;
ucontext->key += PAGE_SIZE;
uresp.gts_key = ucontext->key;
ucontext->key += PAGE_SIZE;
/* communicate to the userspace that
* kernel driver supports 64B CQE
*/
uresp.flags |= C4IW_64B_CQE;
spin_unlock(&ucontext->mmap_lock);
ret = ib_copy_to_udata(udata, &uresp,
ucontext->is_32b_cqe ?
sizeof(uresp) - sizeof(uresp.flags) :
sizeof(uresp));
if (ret)
goto err_free_mm2;
mm->key = uresp.key;
mm->addr = virt_to_phys(chp->cq.queue);
mm->len = chp->cq.memsize;
insert_mmap(ucontext, mm);
mm2->key = uresp.gts_key;
mm2->addr = chp->cq.bar2_pa;
mm2->len = PAGE_SIZE;
insert_mmap(ucontext, mm2);
}
pr_debug("cqid 0x%0x chp %p size %u memsize %zu, dma_addr %pad\n",
chp->cq.cqid, chp, chp->cq.size, chp->cq.memsize,
&chp->cq.dma_addr);
return 0;
err_free_mm2:
kfree(mm2);
err_free_mm:
kfree(mm);
err_remove_handle:
xa_erase_irq(&rhp->cqs, chp->cq.cqid);
err_destroy_cq:
destroy_cq(&chp->rhp->rdev, &chp->cq,
ucontext ? &ucontext->uctx : &rhp->rdev.uctx,
chp->destroy_skb, chp->wr_waitp);
err_free_skb:
kfree_skb(chp->destroy_skb);
err_free_wr_wait:
c4iw_put_wr_wait(chp->wr_waitp);
err_free_chp:
return ret;
}
int c4iw_arm_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags flags)
{
struct c4iw_cq *chp;
int ret = 0;
unsigned long flag;
chp = to_c4iw_cq(ibcq);
spin_lock_irqsave(&chp->lock, flag);
t4_arm_cq(&chp->cq,
(flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED);
if (flags & IB_CQ_REPORT_MISSED_EVENTS)
ret = t4_cq_notempty(&chp->cq);
spin_unlock_irqrestore(&chp->lock, flag);
return ret;
}
void c4iw_flush_srqidx(struct c4iw_qp *qhp, u32 srqidx)
{
struct c4iw_cq *rchp = to_c4iw_cq(qhp->ibqp.recv_cq);
unsigned long flag;
/* locking heirarchy: cq lock first, then qp lock. */
spin_lock_irqsave(&rchp->lock, flag);
spin_lock(&qhp->lock);
/* create a SRQ RECV CQE for srqidx */
insert_recv_cqe(&qhp->wq, &rchp->cq, srqidx);
spin_unlock(&qhp->lock);
spin_unlock_irqrestore(&rchp->lock, flag);
}