blob: 8908bbb3ff1f14cd9bff517bda1eae315b4e0b6d [file] [log] [blame]
/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#define SWSMU_CODE_LAYER_L2
#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "smu_v12_0_ppsmc.h"
#include "smu12_driver_if.h"
#include "smu_v12_0.h"
#include "renoir_ppt.h"
#include "smu_cmn.h"
/*
* DO NOT use these for err/warn/info/debug messages.
* Use dev_err, dev_warn, dev_info and dev_dbg instead.
* They are more MGPU friendly.
*/
#undef pr_err
#undef pr_warn
#undef pr_info
#undef pr_debug
#define mmMP1_SMN_C2PMSG_66 0x0282
#define mmMP1_SMN_C2PMSG_66_BASE_IDX 0
#define mmMP1_SMN_C2PMSG_82 0x0292
#define mmMP1_SMN_C2PMSG_82_BASE_IDX 0
#define mmMP1_SMN_C2PMSG_90 0x029a
#define mmMP1_SMN_C2PMSG_90_BASE_IDX 0
static struct cmn2asic_msg_mapping renoir_message_map[SMU_MSG_MAX_COUNT] = {
MSG_MAP(TestMessage, PPSMC_MSG_TestMessage, 1),
MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion, 1),
MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion, 1),
MSG_MAP(PowerUpGfx, PPSMC_MSG_PowerUpGfx, 1),
MSG_MAP(AllowGfxOff, PPSMC_MSG_EnableGfxOff, 1),
MSG_MAP(DisallowGfxOff, PPSMC_MSG_DisableGfxOff, 1),
MSG_MAP(PowerDownIspByTile, PPSMC_MSG_PowerDownIspByTile, 1),
MSG_MAP(PowerUpIspByTile, PPSMC_MSG_PowerUpIspByTile, 1),
MSG_MAP(PowerDownVcn, PPSMC_MSG_PowerDownVcn, 1),
MSG_MAP(PowerUpVcn, PPSMC_MSG_PowerUpVcn, 1),
MSG_MAP(PowerDownSdma, PPSMC_MSG_PowerDownSdma, 1),
MSG_MAP(PowerUpSdma, PPSMC_MSG_PowerUpSdma, 1),
MSG_MAP(SetHardMinIspclkByFreq, PPSMC_MSG_SetHardMinIspclkByFreq, 1),
MSG_MAP(SetHardMinVcn, PPSMC_MSG_SetHardMinVcn, 1),
MSG_MAP(SetAllowFclkSwitch, PPSMC_MSG_SetAllowFclkSwitch, 1),
MSG_MAP(SetMinVideoGfxclkFreq, PPSMC_MSG_SetMinVideoGfxclkFreq, 1),
MSG_MAP(ActiveProcessNotify, PPSMC_MSG_ActiveProcessNotify, 1),
MSG_MAP(SetCustomPolicy, PPSMC_MSG_SetCustomPolicy, 1),
MSG_MAP(SetVideoFps, PPSMC_MSG_SetVideoFps, 1),
MSG_MAP(NumOfDisplays, PPSMC_MSG_SetDisplayCount, 1),
MSG_MAP(QueryPowerLimit, PPSMC_MSG_QueryPowerLimit, 1),
MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh, 1),
MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow, 1),
MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram, 1),
MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu, 1),
MSG_MAP(GfxDeviceDriverReset, PPSMC_MSG_GfxDeviceDriverReset, 1),
MSG_MAP(SetGfxclkOverdriveByFreqVid, PPSMC_MSG_SetGfxclkOverdriveByFreqVid, 1),
MSG_MAP(SetHardMinDcfclkByFreq, PPSMC_MSG_SetHardMinDcfclkByFreq, 1),
MSG_MAP(SetHardMinSocclkByFreq, PPSMC_MSG_SetHardMinSocclkByFreq, 1),
MSG_MAP(ControlIgpuATS, PPSMC_MSG_ControlIgpuATS, 1),
MSG_MAP(SetMinVideoFclkFreq, PPSMC_MSG_SetMinVideoFclkFreq, 1),
MSG_MAP(SetMinDeepSleepDcfclk, PPSMC_MSG_SetMinDeepSleepDcfclk, 1),
MSG_MAP(ForcePowerDownGfx, PPSMC_MSG_ForcePowerDownGfx, 1),
MSG_MAP(SetPhyclkVoltageByFreq, PPSMC_MSG_SetPhyclkVoltageByFreq, 1),
MSG_MAP(SetDppclkVoltageByFreq, PPSMC_MSG_SetDppclkVoltageByFreq, 1),
MSG_MAP(SetSoftMinVcn, PPSMC_MSG_SetSoftMinVcn, 1),
MSG_MAP(EnablePostCode, PPSMC_MSG_EnablePostCode, 1),
MSG_MAP(GetGfxclkFrequency, PPSMC_MSG_GetGfxclkFrequency, 1),
MSG_MAP(GetFclkFrequency, PPSMC_MSG_GetFclkFrequency, 1),
MSG_MAP(GetMinGfxclkFrequency, PPSMC_MSG_GetMinGfxclkFrequency, 1),
MSG_MAP(GetMaxGfxclkFrequency, PPSMC_MSG_GetMaxGfxclkFrequency, 1),
MSG_MAP(SoftReset, PPSMC_MSG_SoftReset, 1),
MSG_MAP(SetGfxCGPG, PPSMC_MSG_SetGfxCGPG, 1),
MSG_MAP(SetSoftMaxGfxClk, PPSMC_MSG_SetSoftMaxGfxClk, 1),
MSG_MAP(SetHardMinGfxClk, PPSMC_MSG_SetHardMinGfxClk, 1),
MSG_MAP(SetSoftMaxSocclkByFreq, PPSMC_MSG_SetSoftMaxSocclkByFreq, 1),
MSG_MAP(SetSoftMaxFclkByFreq, PPSMC_MSG_SetSoftMaxFclkByFreq, 1),
MSG_MAP(SetSoftMaxVcn, PPSMC_MSG_SetSoftMaxVcn, 1),
MSG_MAP(PowerGateMmHub, PPSMC_MSG_PowerGateMmHub, 1),
MSG_MAP(UpdatePmeRestore, PPSMC_MSG_UpdatePmeRestore, 1),
MSG_MAP(GpuChangeState, PPSMC_MSG_GpuChangeState, 1),
MSG_MAP(SetPowerLimitPercentage, PPSMC_MSG_SetPowerLimitPercentage, 1),
MSG_MAP(ForceGfxContentSave, PPSMC_MSG_ForceGfxContentSave, 1),
MSG_MAP(EnableTmdp48MHzRefclkPwrDown, PPSMC_MSG_EnableTmdp48MHzRefclkPwrDown, 1),
MSG_MAP(PowerDownJpeg, PPSMC_MSG_PowerDownJpeg, 1),
MSG_MAP(PowerUpJpeg, PPSMC_MSG_PowerUpJpeg, 1),
MSG_MAP(PowerGateAtHub, PPSMC_MSG_PowerGateAtHub, 1),
MSG_MAP(SetSoftMinJpeg, PPSMC_MSG_SetSoftMinJpeg, 1),
MSG_MAP(SetHardMinFclkByFreq, PPSMC_MSG_SetHardMinFclkByFreq, 1),
};
static struct cmn2asic_mapping renoir_clk_map[SMU_CLK_COUNT] = {
CLK_MAP(GFXCLK, CLOCK_GFXCLK),
CLK_MAP(SCLK, CLOCK_GFXCLK),
CLK_MAP(SOCCLK, CLOCK_SOCCLK),
CLK_MAP(UCLK, CLOCK_FCLK),
CLK_MAP(MCLK, CLOCK_FCLK),
CLK_MAP(VCLK, CLOCK_VCLK),
CLK_MAP(DCLK, CLOCK_DCLK),
};
static struct cmn2asic_mapping renoir_table_map[SMU_TABLE_COUNT] = {
TAB_MAP_VALID(WATERMARKS),
TAB_MAP_INVALID(CUSTOM_DPM),
TAB_MAP_VALID(DPMCLOCKS),
TAB_MAP_VALID(SMU_METRICS),
};
static struct cmn2asic_mapping renoir_workload_map[PP_SMC_POWER_PROFILE_COUNT] = {
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_FULLSCREEN3D, WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO, WORKLOAD_PPLIB_VIDEO_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VR, WORKLOAD_PPLIB_VR_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE, WORKLOAD_PPLIB_COMPUTE_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM, WORKLOAD_PPLIB_CUSTOM_BIT),
};
static const uint8_t renoir_throttler_map[] = {
[THROTTLER_STATUS_BIT_SPL] = (SMU_THROTTLER_SPL_BIT),
[THROTTLER_STATUS_BIT_FPPT] = (SMU_THROTTLER_FPPT_BIT),
[THROTTLER_STATUS_BIT_SPPT] = (SMU_THROTTLER_SPPT_BIT),
[THROTTLER_STATUS_BIT_SPPT_APU] = (SMU_THROTTLER_SPPT_APU_BIT),
[THROTTLER_STATUS_BIT_THM_CORE] = (SMU_THROTTLER_TEMP_CORE_BIT),
[THROTTLER_STATUS_BIT_THM_GFX] = (SMU_THROTTLER_TEMP_GPU_BIT),
[THROTTLER_STATUS_BIT_THM_SOC] = (SMU_THROTTLER_TEMP_SOC_BIT),
[THROTTLER_STATUS_BIT_TDC_VDD] = (SMU_THROTTLER_TDC_VDD_BIT),
[THROTTLER_STATUS_BIT_TDC_SOC] = (SMU_THROTTLER_TDC_SOC_BIT),
[THROTTLER_STATUS_BIT_PROCHOT_CPU] = (SMU_THROTTLER_PROCHOT_CPU_BIT),
[THROTTLER_STATUS_BIT_PROCHOT_GFX] = (SMU_THROTTLER_PROCHOT_GFX_BIT),
[THROTTLER_STATUS_BIT_EDC_CPU] = (SMU_THROTTLER_EDC_CPU_BIT),
[THROTTLER_STATUS_BIT_EDC_GFX] = (SMU_THROTTLER_EDC_GFX_BIT),
};
static int renoir_init_smc_tables(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *tables = smu_table->tables;
SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_DPMCLOCKS, sizeof(DpmClocks_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
smu_table->clocks_table = kzalloc(sizeof(DpmClocks_t), GFP_KERNEL);
if (!smu_table->clocks_table)
goto err0_out;
smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
if (!smu_table->metrics_table)
goto err1_out;
smu_table->metrics_time = 0;
smu_table->watermarks_table = kzalloc(sizeof(Watermarks_t), GFP_KERNEL);
if (!smu_table->watermarks_table)
goto err2_out;
smu_table->gpu_metrics_table_size = sizeof(struct gpu_metrics_v2_2);
smu_table->gpu_metrics_table = kzalloc(smu_table->gpu_metrics_table_size, GFP_KERNEL);
if (!smu_table->gpu_metrics_table)
goto err3_out;
return 0;
err3_out:
kfree(smu_table->watermarks_table);
err2_out:
kfree(smu_table->metrics_table);
err1_out:
kfree(smu_table->clocks_table);
err0_out:
return -ENOMEM;
}
/*
* This interface just for getting uclk ultimate freq and should't introduce
* other likewise function result in overmuch callback.
*/
static int renoir_get_dpm_clk_limited(struct smu_context *smu, enum smu_clk_type clk_type,
uint32_t dpm_level, uint32_t *freq)
{
DpmClocks_t *clk_table = smu->smu_table.clocks_table;
if (!clk_table || clk_type >= SMU_CLK_COUNT)
return -EINVAL;
switch (clk_type) {
case SMU_SOCCLK:
if (dpm_level >= NUM_SOCCLK_DPM_LEVELS)
return -EINVAL;
*freq = clk_table->SocClocks[dpm_level].Freq;
break;
case SMU_UCLK:
case SMU_MCLK:
if (dpm_level >= NUM_FCLK_DPM_LEVELS)
return -EINVAL;
*freq = clk_table->FClocks[dpm_level].Freq;
break;
case SMU_DCEFCLK:
if (dpm_level >= NUM_DCFCLK_DPM_LEVELS)
return -EINVAL;
*freq = clk_table->DcfClocks[dpm_level].Freq;
break;
case SMU_FCLK:
if (dpm_level >= NUM_FCLK_DPM_LEVELS)
return -EINVAL;
*freq = clk_table->FClocks[dpm_level].Freq;
break;
case SMU_VCLK:
if (dpm_level >= NUM_VCN_DPM_LEVELS)
return -EINVAL;
*freq = clk_table->VClocks[dpm_level].Freq;
break;
case SMU_DCLK:
if (dpm_level >= NUM_VCN_DPM_LEVELS)
return -EINVAL;
*freq = clk_table->DClocks[dpm_level].Freq;
break;
default:
return -EINVAL;
}
return 0;
}
static int renoir_get_profiling_clk_mask(struct smu_context *smu,
enum amd_dpm_forced_level level,
uint32_t *sclk_mask,
uint32_t *mclk_mask,
uint32_t *soc_mask)
{
if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
if (sclk_mask)
*sclk_mask = 0;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
if (mclk_mask)
/* mclk levels are in reverse order */
*mclk_mask = NUM_MEMCLK_DPM_LEVELS - 1;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
if (sclk_mask)
/* The sclk as gfxclk and has three level about max/min/current */
*sclk_mask = 3 - 1;
if (mclk_mask)
/* mclk levels are in reverse order */
*mclk_mask = 0;
if (soc_mask)
*soc_mask = NUM_SOCCLK_DPM_LEVELS - 1;
}
return 0;
}
static int renoir_get_dpm_ultimate_freq(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t *min,
uint32_t *max)
{
int ret = 0;
uint32_t mclk_mask, soc_mask;
uint32_t clock_limit;
if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type)) {
switch (clk_type) {
case SMU_MCLK:
case SMU_UCLK:
clock_limit = smu->smu_table.boot_values.uclk;
break;
case SMU_GFXCLK:
case SMU_SCLK:
clock_limit = smu->smu_table.boot_values.gfxclk;
break;
case SMU_SOCCLK:
clock_limit = smu->smu_table.boot_values.socclk;
break;
default:
clock_limit = 0;
break;
}
/* clock in Mhz unit */
if (min)
*min = clock_limit / 100;
if (max)
*max = clock_limit / 100;
return 0;
}
if (max) {
ret = renoir_get_profiling_clk_mask(smu,
AMD_DPM_FORCED_LEVEL_PROFILE_PEAK,
NULL,
&mclk_mask,
&soc_mask);
if (ret)
goto failed;
switch (clk_type) {
case SMU_GFXCLK:
case SMU_SCLK:
ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GetMaxGfxclkFrequency, max);
if (ret) {
dev_err(smu->adev->dev, "Attempt to get max GX frequency from SMC Failed !\n");
goto failed;
}
break;
case SMU_UCLK:
case SMU_FCLK:
case SMU_MCLK:
ret = renoir_get_dpm_clk_limited(smu, clk_type, mclk_mask, max);
if (ret)
goto failed;
break;
case SMU_SOCCLK:
ret = renoir_get_dpm_clk_limited(smu, clk_type, soc_mask, max);
if (ret)
goto failed;
break;
default:
ret = -EINVAL;
goto failed;
}
}
if (min) {
switch (clk_type) {
case SMU_GFXCLK:
case SMU_SCLK:
ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GetMinGfxclkFrequency, min);
if (ret) {
dev_err(smu->adev->dev, "Attempt to get min GX frequency from SMC Failed !\n");
goto failed;
}
break;
case SMU_UCLK:
case SMU_FCLK:
case SMU_MCLK:
ret = renoir_get_dpm_clk_limited(smu, clk_type, NUM_MEMCLK_DPM_LEVELS - 1, min);
if (ret)
goto failed;
break;
case SMU_SOCCLK:
ret = renoir_get_dpm_clk_limited(smu, clk_type, 0, min);
if (ret)
goto failed;
break;
default:
ret = -EINVAL;
goto failed;
}
}
failed:
return ret;
}
static int renoir_od_edit_dpm_table(struct smu_context *smu,
enum PP_OD_DPM_TABLE_COMMAND type,
long input[], uint32_t size)
{
int ret = 0;
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
if (!(smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL)) {
dev_warn(smu->adev->dev,
"pp_od_clk_voltage is not accessible if power_dpm_force_performance_level is not in manual mode!\n");
return -EINVAL;
}
switch (type) {
case PP_OD_EDIT_SCLK_VDDC_TABLE:
if (size != 2) {
dev_err(smu->adev->dev, "Input parameter number not correct\n");
return -EINVAL;
}
if (input[0] == 0) {
if (input[1] < smu->gfx_default_hard_min_freq) {
dev_warn(smu->adev->dev,
"Fine grain setting minimum sclk (%ld) MHz is less than the minimum allowed (%d) MHz\n",
input[1], smu->gfx_default_hard_min_freq);
return -EINVAL;
}
smu->gfx_actual_hard_min_freq = input[1];
} else if (input[0] == 1) {
if (input[1] > smu->gfx_default_soft_max_freq) {
dev_warn(smu->adev->dev,
"Fine grain setting maximum sclk (%ld) MHz is greater than the maximum allowed (%d) MHz\n",
input[1], smu->gfx_default_soft_max_freq);
return -EINVAL;
}
smu->gfx_actual_soft_max_freq = input[1];
} else {
return -EINVAL;
}
break;
case PP_OD_RESTORE_DEFAULT_TABLE:
if (size != 0) {
dev_err(smu->adev->dev, "Input parameter number not correct\n");
return -EINVAL;
}
smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq;
smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq;
break;
case PP_OD_COMMIT_DPM_TABLE:
if (size != 0) {
dev_err(smu->adev->dev, "Input parameter number not correct\n");
return -EINVAL;
} else {
if (smu->gfx_actual_hard_min_freq > smu->gfx_actual_soft_max_freq) {
dev_err(smu->adev->dev,
"The setting minimum sclk (%d) MHz is greater than the setting maximum sclk (%d) MHz\n",
smu->gfx_actual_hard_min_freq,
smu->gfx_actual_soft_max_freq);
return -EINVAL;
}
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetHardMinGfxClk,
smu->gfx_actual_hard_min_freq,
NULL);
if (ret) {
dev_err(smu->adev->dev, "Set hard min sclk failed!");
return ret;
}
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetSoftMaxGfxClk,
smu->gfx_actual_soft_max_freq,
NULL);
if (ret) {
dev_err(smu->adev->dev, "Set soft max sclk failed!");
return ret;
}
}
break;
default:
return -ENOSYS;
}
return ret;
}
static int renoir_set_fine_grain_gfx_freq_parameters(struct smu_context *smu)
{
uint32_t min = 0, max = 0;
uint32_t ret = 0;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_GetMinGfxclkFrequency,
0, &min);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_GetMaxGfxclkFrequency,
0, &max);
if (ret)
return ret;
smu->gfx_default_hard_min_freq = min;
smu->gfx_default_soft_max_freq = max;
smu->gfx_actual_hard_min_freq = 0;
smu->gfx_actual_soft_max_freq = 0;
return 0;
}
static int renoir_print_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type, char *buf)
{
int i, idx, size = 0, ret = 0;
uint32_t cur_value = 0, value = 0, count = 0, min = 0, max = 0;
SmuMetrics_t metrics;
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
bool cur_value_match_level = false;
memset(&metrics, 0, sizeof(metrics));
ret = smu_cmn_get_metrics_table(smu, &metrics, false);
if (ret)
return ret;
smu_cmn_get_sysfs_buf(&buf, &size);
switch (clk_type) {
case SMU_OD_RANGE:
if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) {
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_GetMinGfxclkFrequency,
0, &min);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_GetMaxGfxclkFrequency,
0, &max);
if (ret)
return ret;
size += sysfs_emit_at(buf, size, "OD_RANGE\nSCLK: %10uMhz %10uMhz\n", min, max);
}
break;
case SMU_OD_SCLK:
if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) {
min = (smu->gfx_actual_hard_min_freq > 0) ? smu->gfx_actual_hard_min_freq : smu->gfx_default_hard_min_freq;
max = (smu->gfx_actual_soft_max_freq > 0) ? smu->gfx_actual_soft_max_freq : smu->gfx_default_soft_max_freq;
size += sysfs_emit_at(buf, size, "OD_SCLK\n");
size += sysfs_emit_at(buf, size, "0:%10uMhz\n", min);
size += sysfs_emit_at(buf, size, "1:%10uMhz\n", max);
}
break;
case SMU_GFXCLK:
case SMU_SCLK:
/* retirve table returned paramters unit is MHz */
cur_value = metrics.ClockFrequency[CLOCK_GFXCLK];
ret = renoir_get_dpm_ultimate_freq(smu, SMU_GFXCLK, &min, &max);
if (!ret) {
/* driver only know min/max gfx_clk, Add level 1 for all other gfx clks */
if (cur_value == max)
i = 2;
else if (cur_value == min)
i = 0;
else
i = 1;
size += sysfs_emit_at(buf, size, "0: %uMhz %s\n", min,
i == 0 ? "*" : "");
size += sysfs_emit_at(buf, size, "1: %uMhz %s\n",
i == 1 ? cur_value : RENOIR_UMD_PSTATE_GFXCLK,
i == 1 ? "*" : "");
size += sysfs_emit_at(buf, size, "2: %uMhz %s\n", max,
i == 2 ? "*" : "");
}
return size;
case SMU_SOCCLK:
count = NUM_SOCCLK_DPM_LEVELS;
cur_value = metrics.ClockFrequency[CLOCK_SOCCLK];
break;
case SMU_MCLK:
count = NUM_MEMCLK_DPM_LEVELS;
cur_value = metrics.ClockFrequency[CLOCK_FCLK];
break;
case SMU_DCEFCLK:
count = NUM_DCFCLK_DPM_LEVELS;
cur_value = metrics.ClockFrequency[CLOCK_DCFCLK];
break;
case SMU_FCLK:
count = NUM_FCLK_DPM_LEVELS;
cur_value = metrics.ClockFrequency[CLOCK_FCLK];
break;
case SMU_VCLK:
count = NUM_VCN_DPM_LEVELS;
cur_value = metrics.ClockFrequency[CLOCK_VCLK];
break;
case SMU_DCLK:
count = NUM_VCN_DPM_LEVELS;
cur_value = metrics.ClockFrequency[CLOCK_DCLK];
break;
default:
break;
}
switch (clk_type) {
case SMU_GFXCLK:
case SMU_SCLK:
case SMU_SOCCLK:
case SMU_MCLK:
case SMU_DCEFCLK:
case SMU_FCLK:
case SMU_VCLK:
case SMU_DCLK:
for (i = 0; i < count; i++) {
idx = (clk_type == SMU_FCLK || clk_type == SMU_MCLK) ? (count - i - 1) : i;
ret = renoir_get_dpm_clk_limited(smu, clk_type, idx, &value);
if (ret)
return ret;
if (!value)
continue;
size += sysfs_emit_at(buf, size, "%d: %uMhz %s\n", i, value,
cur_value == value ? "*" : "");
if (cur_value == value)
cur_value_match_level = true;
}
if (!cur_value_match_level)
size += sysfs_emit_at(buf, size, " %uMhz *\n", cur_value);
break;
default:
break;
}
return size;
}
static enum amd_pm_state_type renoir_get_current_power_state(struct smu_context *smu)
{
enum amd_pm_state_type pm_type;
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
if (!smu_dpm_ctx->dpm_context ||
!smu_dpm_ctx->dpm_current_power_state)
return -EINVAL;
switch (smu_dpm_ctx->dpm_current_power_state->classification.ui_label) {
case SMU_STATE_UI_LABEL_BATTERY:
pm_type = POWER_STATE_TYPE_BATTERY;
break;
case SMU_STATE_UI_LABEL_BALLANCED:
pm_type = POWER_STATE_TYPE_BALANCED;
break;
case SMU_STATE_UI_LABEL_PERFORMANCE:
pm_type = POWER_STATE_TYPE_PERFORMANCE;
break;
default:
if (smu_dpm_ctx->dpm_current_power_state->classification.flags & SMU_STATE_CLASSIFICATION_FLAG_BOOT)
pm_type = POWER_STATE_TYPE_INTERNAL_BOOT;
else
pm_type = POWER_STATE_TYPE_DEFAULT;
break;
}
return pm_type;
}
static int renoir_dpm_set_vcn_enable(struct smu_context *smu, bool enable)
{
int ret = 0;
if (enable) {
/* vcn dpm on is a prerequisite for vcn power gate messages */
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) {
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpVcn, 0, NULL);
if (ret)
return ret;
}
} else {
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) {
ret = smu_cmn_send_smc_msg(smu, SMU_MSG_PowerDownVcn, NULL);
if (ret)
return ret;
}
}
return ret;
}
static int renoir_dpm_set_jpeg_enable(struct smu_context *smu, bool enable)
{
int ret = 0;
if (enable) {
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) {
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpJpeg, 0, NULL);
if (ret)
return ret;
}
} else {
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) {
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerDownJpeg, 0, NULL);
if (ret)
return ret;
}
}
return ret;
}
static int renoir_force_dpm_limit_value(struct smu_context *smu, bool highest)
{
int ret = 0, i = 0;
uint32_t min_freq, max_freq, force_freq;
enum smu_clk_type clk_type;
enum smu_clk_type clks[] = {
SMU_GFXCLK,
SMU_MCLK,
SMU_SOCCLK,
};
for (i = 0; i < ARRAY_SIZE(clks); i++) {
clk_type = clks[i];
ret = renoir_get_dpm_ultimate_freq(smu, clk_type, &min_freq, &max_freq);
if (ret)
return ret;
force_freq = highest ? max_freq : min_freq;
ret = smu_v12_0_set_soft_freq_limited_range(smu, clk_type, force_freq, force_freq);
if (ret)
return ret;
}
return ret;
}
static int renoir_unforce_dpm_levels(struct smu_context *smu) {
int ret = 0, i = 0;
uint32_t min_freq, max_freq;
enum smu_clk_type clk_type;
struct clk_feature_map {
enum smu_clk_type clk_type;
uint32_t feature;
} clk_feature_map[] = {
{SMU_GFXCLK, SMU_FEATURE_DPM_GFXCLK_BIT},
{SMU_MCLK, SMU_FEATURE_DPM_UCLK_BIT},
{SMU_SOCCLK, SMU_FEATURE_DPM_SOCCLK_BIT},
};
for (i = 0; i < ARRAY_SIZE(clk_feature_map); i++) {
if (!smu_cmn_feature_is_enabled(smu, clk_feature_map[i].feature))
continue;
clk_type = clk_feature_map[i].clk_type;
ret = renoir_get_dpm_ultimate_freq(smu, clk_type, &min_freq, &max_freq);
if (ret)
return ret;
ret = smu_v12_0_set_soft_freq_limited_range(smu, clk_type, min_freq, max_freq);
if (ret)
return ret;
}
return ret;
}
/*
* This interface get dpm clock table for dc
*/
static int renoir_get_dpm_clock_table(struct smu_context *smu, struct dpm_clocks *clock_table)
{
DpmClocks_t *table = smu->smu_table.clocks_table;
int i;
if (!clock_table || !table)
return -EINVAL;
for (i = 0; i < NUM_DCFCLK_DPM_LEVELS; i++) {
clock_table->DcfClocks[i].Freq = table->DcfClocks[i].Freq;
clock_table->DcfClocks[i].Vol = table->DcfClocks[i].Vol;
}
for (i = 0; i < NUM_SOCCLK_DPM_LEVELS; i++) {
clock_table->SocClocks[i].Freq = table->SocClocks[i].Freq;
clock_table->SocClocks[i].Vol = table->SocClocks[i].Vol;
}
for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++) {
clock_table->FClocks[i].Freq = table->FClocks[i].Freq;
clock_table->FClocks[i].Vol = table->FClocks[i].Vol;
}
for (i = 0; i< NUM_MEMCLK_DPM_LEVELS; i++) {
clock_table->MemClocks[i].Freq = table->MemClocks[i].Freq;
clock_table->MemClocks[i].Vol = table->MemClocks[i].Vol;
}
for (i = 0; i < NUM_VCN_DPM_LEVELS; i++) {
clock_table->VClocks[i].Freq = table->VClocks[i].Freq;
clock_table->VClocks[i].Vol = table->VClocks[i].Vol;
}
for (i = 0; i < NUM_VCN_DPM_LEVELS; i++) {
clock_table->DClocks[i].Freq = table->DClocks[i].Freq;
clock_table->DClocks[i].Vol = table->DClocks[i].Vol;
}
return 0;
}
static int renoir_force_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type, uint32_t mask)
{
int ret = 0 ;
uint32_t soft_min_level = 0, soft_max_level = 0, min_freq = 0, max_freq = 0;
soft_min_level = mask ? (ffs(mask) - 1) : 0;
soft_max_level = mask ? (fls(mask) - 1) : 0;
switch (clk_type) {
case SMU_GFXCLK:
case SMU_SCLK:
if (soft_min_level > 2 || soft_max_level > 2) {
dev_info(smu->adev->dev, "Currently sclk only support 3 levels on APU\n");
return -EINVAL;
}
ret = renoir_get_dpm_ultimate_freq(smu, SMU_GFXCLK, &min_freq, &max_freq);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxGfxClk,
soft_max_level == 0 ? min_freq :
soft_max_level == 1 ? RENOIR_UMD_PSTATE_GFXCLK : max_freq,
NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinGfxClk,
soft_min_level == 2 ? max_freq :
soft_min_level == 1 ? RENOIR_UMD_PSTATE_GFXCLK : min_freq,
NULL);
if (ret)
return ret;
break;
case SMU_SOCCLK:
ret = renoir_get_dpm_clk_limited(smu, clk_type, soft_min_level, &min_freq);
if (ret)
return ret;
ret = renoir_get_dpm_clk_limited(smu, clk_type, soft_max_level, &max_freq);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxSocclkByFreq, max_freq, NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinSocclkByFreq, min_freq, NULL);
if (ret)
return ret;
break;
case SMU_MCLK:
case SMU_FCLK:
ret = renoir_get_dpm_clk_limited(smu, clk_type, soft_min_level, &min_freq);
if (ret)
return ret;
ret = renoir_get_dpm_clk_limited(smu, clk_type, soft_max_level, &max_freq);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxFclkByFreq, max_freq, NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinFclkByFreq, min_freq, NULL);
if (ret)
return ret;
break;
default:
break;
}
return ret;
}
static int renoir_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size)
{
int workload_type, ret;
uint32_t profile_mode = input[size];
if (profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) {
dev_err(smu->adev->dev, "Invalid power profile mode %d\n", profile_mode);
return -EINVAL;
}
if (profile_mode == PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT ||
profile_mode == PP_SMC_POWER_PROFILE_POWERSAVING)
return 0;
/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
workload_type = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_WORKLOAD,
profile_mode);
if (workload_type < 0) {
/*
* TODO: If some case need switch to powersave/default power mode
* then can consider enter WORKLOAD_COMPUTE/WORKLOAD_CUSTOM for power saving.
*/
dev_dbg(smu->adev->dev, "Unsupported power profile mode %d on RENOIR\n", profile_mode);
return -EINVAL;
}
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_ActiveProcessNotify,
1 << workload_type,
NULL);
if (ret) {
dev_err_once(smu->adev->dev, "Fail to set workload type %d\n", workload_type);
return ret;
}
smu->power_profile_mode = profile_mode;
return 0;
}
static int renoir_set_peak_clock_by_device(struct smu_context *smu)
{
int ret = 0;
uint32_t sclk_freq = 0, uclk_freq = 0;
ret = renoir_get_dpm_ultimate_freq(smu, SMU_SCLK, NULL, &sclk_freq);
if (ret)
return ret;
ret = smu_v12_0_set_soft_freq_limited_range(smu, SMU_SCLK, sclk_freq, sclk_freq);
if (ret)
return ret;
ret = renoir_get_dpm_ultimate_freq(smu, SMU_UCLK, NULL, &uclk_freq);
if (ret)
return ret;
ret = smu_v12_0_set_soft_freq_limited_range(smu, SMU_UCLK, uclk_freq, uclk_freq);
if (ret)
return ret;
return ret;
}
static int renoir_set_performance_level(struct smu_context *smu,
enum amd_dpm_forced_level level)
{
int ret = 0;
uint32_t sclk_mask, mclk_mask, soc_mask;
switch (level) {
case AMD_DPM_FORCED_LEVEL_HIGH:
smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq;
smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq;
ret = renoir_force_dpm_limit_value(smu, true);
break;
case AMD_DPM_FORCED_LEVEL_LOW:
smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq;
smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq;
ret = renoir_force_dpm_limit_value(smu, false);
break;
case AMD_DPM_FORCED_LEVEL_AUTO:
smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq;
smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq;
ret = renoir_unforce_dpm_levels(smu);
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq;
smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetHardMinGfxClk,
RENOIR_UMD_PSTATE_GFXCLK,
NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetHardMinFclkByFreq,
RENOIR_UMD_PSTATE_FCLK,
NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetHardMinSocclkByFreq,
RENOIR_UMD_PSTATE_SOCCLK,
NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetHardMinVcn,
RENOIR_UMD_PSTATE_VCNCLK,
NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetSoftMaxGfxClk,
RENOIR_UMD_PSTATE_GFXCLK,
NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetSoftMaxFclkByFreq,
RENOIR_UMD_PSTATE_FCLK,
NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetSoftMaxSocclkByFreq,
RENOIR_UMD_PSTATE_SOCCLK,
NULL);
if (ret)
return ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetSoftMaxVcn,
RENOIR_UMD_PSTATE_VCNCLK,
NULL);
if (ret)
return ret;
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq;
smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq;
ret = renoir_get_profiling_clk_mask(smu, level,
&sclk_mask,
&mclk_mask,
&soc_mask);
if (ret)
return ret;
renoir_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask);
renoir_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask);
renoir_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask);
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq;
smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq;
ret = renoir_set_peak_clock_by_device(smu);
break;
case AMD_DPM_FORCED_LEVEL_MANUAL:
case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
default:
break;
}
return ret;
}
/* save watermark settings into pplib smu structure,
* also pass data to smu controller
*/
static int renoir_set_watermarks_table(
struct smu_context *smu,
struct pp_smu_wm_range_sets *clock_ranges)
{
Watermarks_t *table = smu->smu_table.watermarks_table;
int ret = 0;
int i;
if (clock_ranges) {
if (clock_ranges->num_reader_wm_sets > NUM_WM_RANGES ||
clock_ranges->num_writer_wm_sets > NUM_WM_RANGES)
return -EINVAL;
/* save into smu->smu_table.tables[SMU_TABLE_WATERMARKS]->cpu_addr*/
for (i = 0; i < clock_ranges->num_reader_wm_sets; i++) {
table->WatermarkRow[WM_DCFCLK][i].MinClock =
clock_ranges->reader_wm_sets[i].min_drain_clk_mhz;
table->WatermarkRow[WM_DCFCLK][i].MaxClock =
clock_ranges->reader_wm_sets[i].max_drain_clk_mhz;
table->WatermarkRow[WM_DCFCLK][i].MinMclk =
clock_ranges->reader_wm_sets[i].min_fill_clk_mhz;
table->WatermarkRow[WM_DCFCLK][i].MaxMclk =
clock_ranges->reader_wm_sets[i].max_fill_clk_mhz;
table->WatermarkRow[WM_DCFCLK][i].WmSetting =
clock_ranges->reader_wm_sets[i].wm_inst;
table->WatermarkRow[WM_DCFCLK][i].WmType =
clock_ranges->reader_wm_sets[i].wm_type;
}
for (i = 0; i < clock_ranges->num_writer_wm_sets; i++) {
table->WatermarkRow[WM_SOCCLK][i].MinClock =
clock_ranges->writer_wm_sets[i].min_fill_clk_mhz;
table->WatermarkRow[WM_SOCCLK][i].MaxClock =
clock_ranges->writer_wm_sets[i].max_fill_clk_mhz;
table->WatermarkRow[WM_SOCCLK][i].MinMclk =
clock_ranges->writer_wm_sets[i].min_drain_clk_mhz;
table->WatermarkRow[WM_SOCCLK][i].MaxMclk =
clock_ranges->writer_wm_sets[i].max_drain_clk_mhz;
table->WatermarkRow[WM_SOCCLK][i].WmSetting =
clock_ranges->writer_wm_sets[i].wm_inst;
table->WatermarkRow[WM_SOCCLK][i].WmType =
clock_ranges->writer_wm_sets[i].wm_type;
}
smu->watermarks_bitmap |= WATERMARKS_EXIST;
}
/* pass data to smu controller */
if ((smu->watermarks_bitmap & WATERMARKS_EXIST) &&
!(smu->watermarks_bitmap & WATERMARKS_LOADED)) {
ret = smu_cmn_write_watermarks_table(smu);
if (ret) {
dev_err(smu->adev->dev, "Failed to update WMTABLE!");
return ret;
}
smu->watermarks_bitmap |= WATERMARKS_LOADED;
}
return 0;
}
static int renoir_get_power_profile_mode(struct smu_context *smu,
char *buf)
{
uint32_t i, size = 0;
int16_t workload_type = 0;
if (!buf)
return -EINVAL;
for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) {
/*
* Conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT
* Not all profile modes are supported on arcturus.
*/
workload_type = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_WORKLOAD,
i);
if (workload_type < 0)
continue;
size += sysfs_emit_at(buf, size, "%2d %14s%s\n",
i, amdgpu_pp_profile_name[i], (i == smu->power_profile_mode) ? "*" : " ");
}
return size;
}
static void renoir_get_ss_power_percent(SmuMetrics_t *metrics,
uint32_t *apu_percent, uint32_t *dgpu_percent)
{
uint32_t apu_boost = 0;
uint32_t dgpu_boost = 0;
uint16_t apu_limit = 0;
uint16_t dgpu_limit = 0;
uint16_t apu_power = 0;
uint16_t dgpu_power = 0;
apu_power = metrics->ApuPower;
apu_limit = metrics->StapmOriginalLimit;
if (apu_power > apu_limit && apu_limit != 0)
apu_boost = ((apu_power - apu_limit) * 100) / apu_limit;
apu_boost = (apu_boost > 100) ? 100 : apu_boost;
dgpu_power = metrics->dGpuPower;
if (metrics->StapmCurrentLimit > metrics->StapmOriginalLimit)
dgpu_limit = metrics->StapmCurrentLimit - metrics->StapmOriginalLimit;
if (dgpu_power > dgpu_limit && dgpu_limit != 0)
dgpu_boost = ((dgpu_power - dgpu_limit) * 100) / dgpu_limit;
dgpu_boost = (dgpu_boost > 100) ? 100 : dgpu_boost;
if (dgpu_boost >= apu_boost)
apu_boost = 0;
else
dgpu_boost = 0;
*apu_percent = apu_boost;
*dgpu_percent = dgpu_boost;
}
static int renoir_get_smu_metrics_data(struct smu_context *smu,
MetricsMember_t member,
uint32_t *value)
{
struct smu_table_context *smu_table = &smu->smu_table;
SmuMetrics_t *metrics = (SmuMetrics_t *)smu_table->metrics_table;
int ret = 0;
uint32_t apu_percent = 0;
uint32_t dgpu_percent = 0;
struct amdgpu_device *adev = smu->adev;
ret = smu_cmn_get_metrics_table(smu,
NULL,
false);
if (ret)
return ret;
switch (member) {
case METRICS_AVERAGE_GFXCLK:
*value = metrics->ClockFrequency[CLOCK_GFXCLK];
break;
case METRICS_AVERAGE_SOCCLK:
*value = metrics->ClockFrequency[CLOCK_SOCCLK];
break;
case METRICS_AVERAGE_UCLK:
*value = metrics->ClockFrequency[CLOCK_FCLK];
break;
case METRICS_AVERAGE_GFXACTIVITY:
*value = metrics->AverageGfxActivity / 100;
break;
case METRICS_AVERAGE_VCNACTIVITY:
*value = metrics->AverageUvdActivity / 100;
break;
case METRICS_CURR_SOCKETPOWER:
if (((amdgpu_ip_version(adev, MP1_HWIP, 0) ==
IP_VERSION(12, 0, 1)) &&
(adev->pm.fw_version >= 0x40000f)) ||
((amdgpu_ip_version(adev, MP1_HWIP, 0) ==
IP_VERSION(12, 0, 0)) &&
(adev->pm.fw_version >= 0x373200)))
*value = metrics->CurrentSocketPower << 8;
else
*value = (metrics->CurrentSocketPower << 8) / 1000;
break;
case METRICS_TEMPERATURE_EDGE:
*value = (metrics->GfxTemperature / 100) *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_HOTSPOT:
*value = (metrics->SocTemperature / 100) *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_THROTTLER_STATUS:
*value = metrics->ThrottlerStatus;
break;
case METRICS_VOLTAGE_VDDGFX:
*value = metrics->Voltage[0];
break;
case METRICS_VOLTAGE_VDDSOC:
*value = metrics->Voltage[1];
break;
case METRICS_SS_APU_SHARE:
/* return the percentage of APU power boost
* with respect to APU's power limit.
*/
renoir_get_ss_power_percent(metrics, &apu_percent, &dgpu_percent);
*value = apu_percent;
break;
case METRICS_SS_DGPU_SHARE:
/* return the percentage of dGPU power boost
* with respect to dGPU's power limit.
*/
renoir_get_ss_power_percent(metrics, &apu_percent, &dgpu_percent);
*value = dgpu_percent;
break;
default:
*value = UINT_MAX;
break;
}
return ret;
}
static int renoir_read_sensor(struct smu_context *smu,
enum amd_pp_sensors sensor,
void *data, uint32_t *size)
{
int ret = 0;
if (!data || !size)
return -EINVAL;
switch (sensor) {
case AMDGPU_PP_SENSOR_GPU_LOAD:
ret = renoir_get_smu_metrics_data(smu,
METRICS_AVERAGE_GFXACTIVITY,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_EDGE_TEMP:
ret = renoir_get_smu_metrics_data(smu,
METRICS_TEMPERATURE_EDGE,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
ret = renoir_get_smu_metrics_data(smu,
METRICS_TEMPERATURE_HOTSPOT,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_MCLK:
ret = renoir_get_smu_metrics_data(smu,
METRICS_AVERAGE_UCLK,
(uint32_t *)data);
*(uint32_t *)data *= 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_SCLK:
ret = renoir_get_smu_metrics_data(smu,
METRICS_AVERAGE_GFXCLK,
(uint32_t *)data);
*(uint32_t *)data *= 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_VDDGFX:
ret = renoir_get_smu_metrics_data(smu,
METRICS_VOLTAGE_VDDGFX,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_VDDNB:
ret = renoir_get_smu_metrics_data(smu,
METRICS_VOLTAGE_VDDSOC,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_INPUT_POWER:
ret = renoir_get_smu_metrics_data(smu,
METRICS_CURR_SOCKETPOWER,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_SS_APU_SHARE:
ret = renoir_get_smu_metrics_data(smu,
METRICS_SS_APU_SHARE,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_SS_DGPU_SHARE:
ret = renoir_get_smu_metrics_data(smu,
METRICS_SS_DGPU_SHARE,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_AVG_POWER:
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
static bool renoir_is_dpm_running(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
/*
* Until now, the pmfw hasn't exported the interface of SMU
* feature mask to APU SKU so just force on all the feature
* at early initial stage.
*/
if (adev->in_suspend)
return false;
else
return true;
}
static ssize_t renoir_get_gpu_metrics(struct smu_context *smu,
void **table)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct gpu_metrics_v2_2 *gpu_metrics =
(struct gpu_metrics_v2_2 *)smu_table->gpu_metrics_table;
SmuMetrics_t metrics;
int ret = 0;
ret = smu_cmn_get_metrics_table(smu, &metrics, true);
if (ret)
return ret;
smu_cmn_init_soft_gpu_metrics(gpu_metrics, 2, 2);
gpu_metrics->temperature_gfx = metrics.GfxTemperature;
gpu_metrics->temperature_soc = metrics.SocTemperature;
memcpy(&gpu_metrics->temperature_core[0],
&metrics.CoreTemperature[0],
sizeof(uint16_t) * 8);
gpu_metrics->temperature_l3[0] = metrics.L3Temperature[0];
gpu_metrics->temperature_l3[1] = metrics.L3Temperature[1];
gpu_metrics->average_gfx_activity = metrics.AverageGfxActivity;
gpu_metrics->average_mm_activity = metrics.AverageUvdActivity;
gpu_metrics->average_socket_power = metrics.CurrentSocketPower;
gpu_metrics->average_cpu_power = metrics.Power[0];
gpu_metrics->average_soc_power = metrics.Power[1];
memcpy(&gpu_metrics->average_core_power[0],
&metrics.CorePower[0],
sizeof(uint16_t) * 8);
gpu_metrics->average_gfxclk_frequency = metrics.AverageGfxclkFrequency;
gpu_metrics->average_socclk_frequency = metrics.AverageSocclkFrequency;
gpu_metrics->average_fclk_frequency = metrics.AverageFclkFrequency;
gpu_metrics->average_vclk_frequency = metrics.AverageVclkFrequency;
gpu_metrics->current_gfxclk = metrics.ClockFrequency[CLOCK_GFXCLK];
gpu_metrics->current_socclk = metrics.ClockFrequency[CLOCK_SOCCLK];
gpu_metrics->current_uclk = metrics.ClockFrequency[CLOCK_UMCCLK];
gpu_metrics->current_fclk = metrics.ClockFrequency[CLOCK_FCLK];
gpu_metrics->current_vclk = metrics.ClockFrequency[CLOCK_VCLK];
gpu_metrics->current_dclk = metrics.ClockFrequency[CLOCK_DCLK];
memcpy(&gpu_metrics->current_coreclk[0],
&metrics.CoreFrequency[0],
sizeof(uint16_t) * 8);
gpu_metrics->current_l3clk[0] = metrics.L3Frequency[0];
gpu_metrics->current_l3clk[1] = metrics.L3Frequency[1];
gpu_metrics->throttle_status = metrics.ThrottlerStatus;
gpu_metrics->indep_throttle_status =
smu_cmn_get_indep_throttler_status(metrics.ThrottlerStatus,
renoir_throttler_map);
gpu_metrics->fan_pwm = metrics.FanPwm;
gpu_metrics->system_clock_counter = ktime_get_boottime_ns();
*table = (void *)gpu_metrics;
return sizeof(struct gpu_metrics_v2_2);
}
static int renoir_gfx_state_change_set(struct smu_context *smu, uint32_t state)
{
return 0;
}
static int renoir_get_enabled_mask(struct smu_context *smu,
uint64_t *feature_mask)
{
if (!feature_mask)
return -EINVAL;
memset(feature_mask, 0xff, sizeof(*feature_mask));
return 0;
}
static const struct pptable_funcs renoir_ppt_funcs = {
.set_power_state = NULL,
.print_clk_levels = renoir_print_clk_levels,
.get_current_power_state = renoir_get_current_power_state,
.dpm_set_vcn_enable = renoir_dpm_set_vcn_enable,
.dpm_set_jpeg_enable = renoir_dpm_set_jpeg_enable,
.force_clk_levels = renoir_force_clk_levels,
.set_power_profile_mode = renoir_set_power_profile_mode,
.set_performance_level = renoir_set_performance_level,
.get_dpm_clock_table = renoir_get_dpm_clock_table,
.set_watermarks_table = renoir_set_watermarks_table,
.get_power_profile_mode = renoir_get_power_profile_mode,
.read_sensor = renoir_read_sensor,
.check_fw_status = smu_v12_0_check_fw_status,
.check_fw_version = smu_v12_0_check_fw_version,
.powergate_sdma = smu_v12_0_powergate_sdma,
.send_smc_msg_with_param = smu_cmn_send_smc_msg_with_param,
.send_smc_msg = smu_cmn_send_smc_msg,
.set_gfx_cgpg = smu_v12_0_set_gfx_cgpg,
.gfx_off_control = smu_v12_0_gfx_off_control,
.get_gfx_off_status = smu_v12_0_get_gfxoff_status,
.init_smc_tables = renoir_init_smc_tables,
.fini_smc_tables = smu_v12_0_fini_smc_tables,
.set_default_dpm_table = smu_v12_0_set_default_dpm_tables,
.get_enabled_mask = renoir_get_enabled_mask,
.feature_is_enabled = smu_cmn_feature_is_enabled,
.disable_all_features_with_exception = smu_cmn_disable_all_features_with_exception,
.get_dpm_ultimate_freq = renoir_get_dpm_ultimate_freq,
.mode2_reset = smu_v12_0_mode2_reset,
.set_soft_freq_limited_range = smu_v12_0_set_soft_freq_limited_range,
.set_driver_table_location = smu_v12_0_set_driver_table_location,
.is_dpm_running = renoir_is_dpm_running,
.get_pp_feature_mask = smu_cmn_get_pp_feature_mask,
.set_pp_feature_mask = smu_cmn_set_pp_feature_mask,
.get_gpu_metrics = renoir_get_gpu_metrics,
.gfx_state_change_set = renoir_gfx_state_change_set,
.set_fine_grain_gfx_freq_parameters = renoir_set_fine_grain_gfx_freq_parameters,
.od_edit_dpm_table = renoir_od_edit_dpm_table,
.get_vbios_bootup_values = smu_v12_0_get_vbios_bootup_values,
};
void renoir_set_ppt_funcs(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
smu->ppt_funcs = &renoir_ppt_funcs;
smu->message_map = renoir_message_map;
smu->clock_map = renoir_clk_map;
smu->table_map = renoir_table_map;
smu->workload_map = renoir_workload_map;
smu->smc_driver_if_version = SMU12_DRIVER_IF_VERSION;
smu->is_apu = true;
smu->param_reg = SOC15_REG_OFFSET(MP1, 0, mmMP1_SMN_C2PMSG_82);
smu->msg_reg = SOC15_REG_OFFSET(MP1, 0, mmMP1_SMN_C2PMSG_66);
smu->resp_reg = SOC15_REG_OFFSET(MP1, 0, mmMP1_SMN_C2PMSG_90);
}