mm: reorganize SLAB freelist randomization
The kernel heap allocators are using a sequential freelist making their
allocation predictable. This predictability makes kernel heap overflow
easier to exploit. An attacker can careful prepare the kernel heap to
control the following chunk overflowed.
For example these attacks exploit the predictability of the heap:
- Linux Kernel CAN SLUB overflow (https://goo.gl/oMNWkU)
- Exploiting Linux Kernel Heap corruptions (http://goo.gl/EXLn95)
***Problems that needed solving:
- Randomize the Freelist (singled linked) used in the SLUB allocator.
- Ensure good performance to encourage usage.
- Get best entropy in early boot stage.
***Parts:
- 01/02 Reorganize the SLAB Freelist randomization to share elements
with the SLUB implementation.
- 02/02 The SLUB Freelist randomization implementation. Similar approach
than the SLAB but tailored to the singled freelist used in SLUB.
***Performance data:
slab_test impact is between 3% to 4% on average for 100000 attempts
without smp. It is a very focused testing, kernbench show the overall
impact on the system is way lower.
Before:
Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles
100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles
100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles
100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles
100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles
100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles
100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles
100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles
100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles
100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles
2. Kmalloc: alloc/free test
100000 times kmalloc(8)/kfree -> 70 cycles
100000 times kmalloc(16)/kfree -> 70 cycles
100000 times kmalloc(32)/kfree -> 70 cycles
100000 times kmalloc(64)/kfree -> 70 cycles
100000 times kmalloc(128)/kfree -> 70 cycles
100000 times kmalloc(256)/kfree -> 69 cycles
100000 times kmalloc(512)/kfree -> 70 cycles
100000 times kmalloc(1024)/kfree -> 73 cycles
100000 times kmalloc(2048)/kfree -> 72 cycles
100000 times kmalloc(4096)/kfree -> 71 cycles
After:
Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles
100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles
100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles
100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles
100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles
100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles
100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles
100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles
100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles
100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles
2. Kmalloc: alloc/free test
100000 times kmalloc(8)/kfree -> 66 cycles
100000 times kmalloc(16)/kfree -> 66 cycles
100000 times kmalloc(32)/kfree -> 66 cycles
100000 times kmalloc(64)/kfree -> 66 cycles
100000 times kmalloc(128)/kfree -> 65 cycles
100000 times kmalloc(256)/kfree -> 67 cycles
100000 times kmalloc(512)/kfree -> 67 cycles
100000 times kmalloc(1024)/kfree -> 64 cycles
100000 times kmalloc(2048)/kfree -> 67 cycles
100000 times kmalloc(4096)/kfree -> 67 cycles
Kernbench, before:
Average Optimal load -j 12 Run (std deviation):
Elapsed Time 101.873 (1.16069)
User Time 1045.22 (1.60447)
System Time 88.969 (0.559195)
Percent CPU 1112.9 (13.8279)
Context Switches 189140 (2282.15)
Sleeps 99008.6 (768.091)
After:
Average Optimal load -j 12 Run (std deviation):
Elapsed Time 102.47 (0.562732)
User Time 1045.3 (1.34263)
System Time 88.311 (0.342554)
Percent CPU 1105.8 (6.49444)
Context Switches 189081 (2355.78)
Sleeps 99231.5 (800.358)
This patch (of 2):
This commit reorganizes the previous SLAB freelist randomization to
prepare for the SLUB implementation. It moves functions that will be
shared to slab_common.
The entropy functions are changed to align with the SLUB implementation,
now using get_random_(int|long) functions. These functions were chosen
because they provide a bit more entropy early on boot and better
performance when specific arch instructions are not available.
[akpm@linux-foundation.org: fix build]
Link: http://lkml.kernel.org/r/1464295031-26375-2-git-send-email-thgarnie@google.com
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff --git a/mm/slab.c b/mm/slab.c
index cc8bbc1..763096a 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -1236,61 +1236,6 @@
}
}
-#ifdef CONFIG_SLAB_FREELIST_RANDOM
-static void freelist_randomize(struct rnd_state *state, freelist_idx_t *list,
- size_t count)
-{
- size_t i;
- unsigned int rand;
-
- for (i = 0; i < count; i++)
- list[i] = i;
-
- /* Fisher-Yates shuffle */
- for (i = count - 1; i > 0; i--) {
- rand = prandom_u32_state(state);
- rand %= (i + 1);
- swap(list[i], list[rand]);
- }
-}
-
-/* Create a random sequence per cache */
-static int cache_random_seq_create(struct kmem_cache *cachep, gfp_t gfp)
-{
- unsigned int seed, count = cachep->num;
- struct rnd_state state;
-
- if (count < 2)
- return 0;
-
- /* If it fails, we will just use the global lists */
- cachep->random_seq = kcalloc(count, sizeof(freelist_idx_t), gfp);
- if (!cachep->random_seq)
- return -ENOMEM;
-
- /* Get best entropy at this stage */
- get_random_bytes_arch(&seed, sizeof(seed));
- prandom_seed_state(&state, seed);
-
- freelist_randomize(&state, cachep->random_seq, count);
- return 0;
-}
-
-/* Destroy the per-cache random freelist sequence */
-static void cache_random_seq_destroy(struct kmem_cache *cachep)
-{
- kfree(cachep->random_seq);
- cachep->random_seq = NULL;
-}
-#else
-static inline int cache_random_seq_create(struct kmem_cache *cachep, gfp_t gfp)
-{
- return 0;
-}
-static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
-#endif /* CONFIG_SLAB_FREELIST_RANDOM */
-
-
/*
* Initialisation. Called after the page allocator have been initialised and
* before smp_init().
@@ -2535,7 +2480,7 @@
union freelist_init_state {
struct {
unsigned int pos;
- freelist_idx_t *list;
+ unsigned int *list;
unsigned int count;
unsigned int rand;
};
@@ -2554,7 +2499,7 @@
unsigned int rand;
/* Use best entropy available to define a random shift */
- get_random_bytes_arch(&rand, sizeof(rand));
+ rand = get_random_int();
/* Use a random state if the pre-computed list is not available */
if (!cachep->random_seq) {
@@ -2576,13 +2521,20 @@
return (state->list[state->pos++] + state->rand) % state->count;
}
+/* Swap two freelist entries */
+static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
+{
+ swap(((freelist_idx_t *)page->freelist)[a],
+ ((freelist_idx_t *)page->freelist)[b]);
+}
+
/*
* Shuffle the freelist initialization state based on pre-computed lists.
* return true if the list was successfully shuffled, false otherwise.
*/
static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
{
- unsigned int objfreelist = 0, i, count = cachep->num;
+ unsigned int objfreelist = 0, i, rand, count = cachep->num;
union freelist_init_state state;
bool precomputed;
@@ -2607,7 +2559,15 @@
* Later use a pre-computed list for speed.
*/
if (!precomputed) {
- freelist_randomize(&state.rnd_state, page->freelist, count);
+ for (i = 0; i < count; i++)
+ set_free_obj(page, i, i);
+
+ /* Fisher-Yates shuffle */
+ for (i = count - 1; i > 0; i--) {
+ rand = prandom_u32_state(&state.rnd_state);
+ rand %= (i + 1);
+ swap_free_obj(page, i, rand);
+ }
} else {
for (i = 0; i < count; i++)
set_free_obj(page, i, next_random_slot(&state));
@@ -3979,7 +3939,7 @@
int shared = 0;
int batchcount = 0;
- err = cache_random_seq_create(cachep, gfp);
+ err = cache_random_seq_create(cachep, cachep->num, gfp);
if (err)
goto end;