| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Moving/copying garbage collector |
| * |
| * Copyright 2012 Google, Inc. |
| */ |
| |
| #include "bcachefs.h" |
| #include "alloc_background.h" |
| #include "alloc_foreground.h" |
| #include "btree_iter.h" |
| #include "btree_update.h" |
| #include "btree_write_buffer.h" |
| #include "buckets.h" |
| #include "clock.h" |
| #include "errcode.h" |
| #include "error.h" |
| #include "lru.h" |
| #include "move.h" |
| #include "movinggc.h" |
| #include "trace.h" |
| |
| #include <linux/freezer.h> |
| #include <linux/kthread.h> |
| #include <linux/math64.h> |
| #include <linux/sched/task.h> |
| #include <linux/wait.h> |
| |
| struct buckets_in_flight { |
| struct rhashtable table; |
| struct move_bucket_in_flight *first; |
| struct move_bucket_in_flight *last; |
| size_t nr; |
| size_t sectors; |
| }; |
| |
| static const struct rhashtable_params bch_move_bucket_params = { |
| .head_offset = offsetof(struct move_bucket_in_flight, hash), |
| .key_offset = offsetof(struct move_bucket_in_flight, bucket.k), |
| .key_len = sizeof(struct move_bucket_key), |
| }; |
| |
| static struct move_bucket_in_flight * |
| move_bucket_in_flight_add(struct buckets_in_flight *list, struct move_bucket b) |
| { |
| struct move_bucket_in_flight *new = kzalloc(sizeof(*new), GFP_KERNEL); |
| int ret; |
| |
| if (!new) |
| return ERR_PTR(-ENOMEM); |
| |
| new->bucket = b; |
| |
| ret = rhashtable_lookup_insert_fast(&list->table, &new->hash, |
| bch_move_bucket_params); |
| if (ret) { |
| kfree(new); |
| return ERR_PTR(ret); |
| } |
| |
| if (!list->first) |
| list->first = new; |
| else |
| list->last->next = new; |
| |
| list->last = new; |
| list->nr++; |
| list->sectors += b.sectors; |
| return new; |
| } |
| |
| static int bch2_bucket_is_movable(struct btree_trans *trans, |
| struct move_bucket *b, u64 time) |
| { |
| struct btree_iter iter; |
| struct bkey_s_c k; |
| struct bch_alloc_v4 _a; |
| const struct bch_alloc_v4 *a; |
| int ret; |
| |
| if (bch2_bucket_is_open(trans->c, |
| b->k.bucket.inode, |
| b->k.bucket.offset)) |
| return 0; |
| |
| k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_alloc, |
| b->k.bucket, BTREE_ITER_CACHED); |
| ret = bkey_err(k); |
| if (ret) |
| return ret; |
| |
| a = bch2_alloc_to_v4(k, &_a); |
| b->k.gen = a->gen; |
| b->sectors = bch2_bucket_sectors_dirty(*a); |
| |
| ret = data_type_movable(a->data_type) && |
| a->fragmentation_lru && |
| a->fragmentation_lru <= time; |
| |
| bch2_trans_iter_exit(trans, &iter); |
| return ret; |
| } |
| |
| static void move_buckets_wait(struct moving_context *ctxt, |
| struct buckets_in_flight *list, |
| bool flush) |
| { |
| struct move_bucket_in_flight *i; |
| int ret; |
| |
| while ((i = list->first)) { |
| if (flush) |
| move_ctxt_wait_event(ctxt, !atomic_read(&i->count)); |
| |
| if (atomic_read(&i->count)) |
| break; |
| |
| list->first = i->next; |
| if (!list->first) |
| list->last = NULL; |
| |
| list->nr--; |
| list->sectors -= i->bucket.sectors; |
| |
| ret = rhashtable_remove_fast(&list->table, &i->hash, |
| bch_move_bucket_params); |
| BUG_ON(ret); |
| kfree(i); |
| } |
| |
| bch2_trans_unlock_long(ctxt->trans); |
| } |
| |
| static bool bucket_in_flight(struct buckets_in_flight *list, |
| struct move_bucket_key k) |
| { |
| return rhashtable_lookup_fast(&list->table, &k, bch_move_bucket_params); |
| } |
| |
| typedef DARRAY(struct move_bucket) move_buckets; |
| |
| static int bch2_copygc_get_buckets(struct moving_context *ctxt, |
| struct buckets_in_flight *buckets_in_flight, |
| move_buckets *buckets) |
| { |
| struct btree_trans *trans = ctxt->trans; |
| struct bch_fs *c = trans->c; |
| size_t nr_to_get = max_t(size_t, 16U, buckets_in_flight->nr / 4); |
| size_t saw = 0, in_flight = 0, not_movable = 0, sectors = 0; |
| int ret; |
| |
| move_buckets_wait(ctxt, buckets_in_flight, false); |
| |
| ret = bch2_btree_write_buffer_tryflush(trans); |
| if (bch2_err_matches(ret, EROFS)) |
| return ret; |
| |
| if (bch2_fs_fatal_err_on(ret, c, "%s: error %s from bch2_btree_write_buffer_tryflush()", |
| __func__, bch2_err_str(ret))) |
| return ret; |
| |
| ret = for_each_btree_key_upto(trans, iter, BTREE_ID_lru, |
| lru_pos(BCH_LRU_FRAGMENTATION_START, 0, 0), |
| lru_pos(BCH_LRU_FRAGMENTATION_START, U64_MAX, LRU_TIME_MAX), |
| 0, k, ({ |
| struct move_bucket b = { .k.bucket = u64_to_bucket(k.k->p.offset) }; |
| int ret2 = 0; |
| |
| saw++; |
| |
| ret2 = bch2_bucket_is_movable(trans, &b, lru_pos_time(k.k->p)); |
| if (ret2 < 0) |
| goto err; |
| |
| if (!ret2) |
| not_movable++; |
| else if (bucket_in_flight(buckets_in_flight, b.k)) |
| in_flight++; |
| else { |
| ret2 = darray_push(buckets, b); |
| if (ret2) |
| goto err; |
| sectors += b.sectors; |
| } |
| |
| ret2 = buckets->nr >= nr_to_get; |
| err: |
| ret2; |
| })); |
| |
| pr_debug("have: %zu (%zu) saw %zu in flight %zu not movable %zu got %zu (%zu)/%zu buckets ret %i", |
| buckets_in_flight->nr, buckets_in_flight->sectors, |
| saw, in_flight, not_movable, buckets->nr, sectors, nr_to_get, ret); |
| |
| return ret < 0 ? ret : 0; |
| } |
| |
| noinline |
| static int bch2_copygc(struct moving_context *ctxt, |
| struct buckets_in_flight *buckets_in_flight, |
| bool *did_work) |
| { |
| struct btree_trans *trans = ctxt->trans; |
| struct bch_fs *c = trans->c; |
| struct data_update_opts data_opts = { |
| .btree_insert_flags = BCH_WATERMARK_copygc, |
| }; |
| move_buckets buckets = { 0 }; |
| struct move_bucket_in_flight *f; |
| u64 moved = atomic64_read(&ctxt->stats->sectors_moved); |
| int ret = 0; |
| |
| ret = bch2_copygc_get_buckets(ctxt, buckets_in_flight, &buckets); |
| if (ret) |
| goto err; |
| |
| darray_for_each(buckets, i) { |
| if (kthread_should_stop() || freezing(current)) |
| break; |
| |
| f = move_bucket_in_flight_add(buckets_in_flight, *i); |
| ret = PTR_ERR_OR_ZERO(f); |
| if (ret == -EEXIST) { /* rare race: copygc_get_buckets returned same bucket more than once */ |
| ret = 0; |
| continue; |
| } |
| if (ret == -ENOMEM) { /* flush IO, continue later */ |
| ret = 0; |
| break; |
| } |
| |
| ret = bch2_evacuate_bucket(ctxt, f, f->bucket.k.bucket, |
| f->bucket.k.gen, data_opts); |
| if (ret) |
| goto err; |
| |
| *did_work = true; |
| } |
| err: |
| darray_exit(&buckets); |
| |
| /* no entries in LRU btree found, or got to end: */ |
| if (bch2_err_matches(ret, ENOENT)) |
| ret = 0; |
| |
| if (ret < 0 && !bch2_err_matches(ret, EROFS)) |
| bch_err_msg(c, ret, "from bch2_move_data()"); |
| |
| moved = atomic64_read(&ctxt->stats->sectors_moved) - moved; |
| trace_and_count(c, copygc, c, moved, 0, 0, 0); |
| return ret; |
| } |
| |
| /* |
| * Copygc runs when the amount of fragmented data is above some arbitrary |
| * threshold: |
| * |
| * The threshold at the limit - when the device is full - is the amount of space |
| * we reserved in bch2_recalc_capacity; we can't have more than that amount of |
| * disk space stranded due to fragmentation and store everything we have |
| * promised to store. |
| * |
| * But we don't want to be running copygc unnecessarily when the device still |
| * has plenty of free space - rather, we want copygc to smoothly run every so |
| * often and continually reduce the amount of fragmented space as the device |
| * fills up. So, we increase the threshold by half the current free space. |
| */ |
| unsigned long bch2_copygc_wait_amount(struct bch_fs *c) |
| { |
| struct bch_dev *ca; |
| unsigned dev_idx; |
| s64 wait = S64_MAX, fragmented_allowed, fragmented; |
| unsigned i; |
| |
| for_each_rw_member(ca, c, dev_idx) { |
| struct bch_dev_usage usage = bch2_dev_usage_read(ca); |
| |
| fragmented_allowed = ((__dev_buckets_available(ca, usage, BCH_WATERMARK_stripe) * |
| ca->mi.bucket_size) >> 1); |
| fragmented = 0; |
| |
| for (i = 0; i < BCH_DATA_NR; i++) |
| if (data_type_movable(i)) |
| fragmented += usage.d[i].fragmented; |
| |
| wait = min(wait, max(0LL, fragmented_allowed - fragmented)); |
| } |
| |
| return wait; |
| } |
| |
| void bch2_copygc_wait_to_text(struct printbuf *out, struct bch_fs *c) |
| { |
| prt_printf(out, "Currently waiting for: "); |
| prt_human_readable_u64(out, max(0LL, c->copygc_wait - |
| atomic64_read(&c->io_clock[WRITE].now)) << 9); |
| prt_newline(out); |
| |
| prt_printf(out, "Currently waiting since: "); |
| prt_human_readable_u64(out, max(0LL, |
| atomic64_read(&c->io_clock[WRITE].now) - |
| c->copygc_wait_at) << 9); |
| prt_newline(out); |
| |
| prt_printf(out, "Currently calculated wait: "); |
| prt_human_readable_u64(out, bch2_copygc_wait_amount(c)); |
| prt_newline(out); |
| } |
| |
| static int bch2_copygc_thread(void *arg) |
| { |
| struct bch_fs *c = arg; |
| struct moving_context ctxt; |
| struct bch_move_stats move_stats; |
| struct io_clock *clock = &c->io_clock[WRITE]; |
| struct buckets_in_flight *buckets; |
| u64 last, wait; |
| int ret = 0; |
| |
| buckets = kzalloc(sizeof(struct buckets_in_flight), GFP_KERNEL); |
| if (!buckets) |
| return -ENOMEM; |
| ret = rhashtable_init(&buckets->table, &bch_move_bucket_params); |
| bch_err_msg(c, ret, "allocating copygc buckets in flight"); |
| if (ret) { |
| kfree(buckets); |
| return ret; |
| } |
| |
| set_freezable(); |
| |
| bch2_move_stats_init(&move_stats, "copygc"); |
| bch2_moving_ctxt_init(&ctxt, c, NULL, &move_stats, |
| writepoint_ptr(&c->copygc_write_point), |
| false); |
| |
| while (!ret && !kthread_should_stop()) { |
| bool did_work = false; |
| |
| bch2_trans_unlock_long(ctxt.trans); |
| cond_resched(); |
| |
| if (!c->copy_gc_enabled) { |
| move_buckets_wait(&ctxt, buckets, true); |
| kthread_wait_freezable(c->copy_gc_enabled || |
| kthread_should_stop()); |
| } |
| |
| if (unlikely(freezing(current))) { |
| move_buckets_wait(&ctxt, buckets, true); |
| __refrigerator(false); |
| continue; |
| } |
| |
| last = atomic64_read(&clock->now); |
| wait = bch2_copygc_wait_amount(c); |
| |
| if (wait > clock->max_slop) { |
| c->copygc_wait_at = last; |
| c->copygc_wait = last + wait; |
| move_buckets_wait(&ctxt, buckets, true); |
| trace_and_count(c, copygc_wait, c, wait, last + wait); |
| bch2_kthread_io_clock_wait(clock, last + wait, |
| MAX_SCHEDULE_TIMEOUT); |
| continue; |
| } |
| |
| c->copygc_wait = 0; |
| |
| c->copygc_running = true; |
| ret = bch2_copygc(&ctxt, buckets, &did_work); |
| c->copygc_running = false; |
| |
| wake_up(&c->copygc_running_wq); |
| |
| if (!wait && !did_work) { |
| u64 min_member_capacity = bch2_min_rw_member_capacity(c); |
| |
| if (min_member_capacity == U64_MAX) |
| min_member_capacity = 128 * 2048; |
| |
| bch2_trans_unlock_long(ctxt.trans); |
| bch2_kthread_io_clock_wait(clock, last + (min_member_capacity >> 6), |
| MAX_SCHEDULE_TIMEOUT); |
| } |
| } |
| |
| move_buckets_wait(&ctxt, buckets, true); |
| |
| rhashtable_destroy(&buckets->table); |
| kfree(buckets); |
| bch2_moving_ctxt_exit(&ctxt); |
| bch2_move_stats_exit(&move_stats, c); |
| |
| return 0; |
| } |
| |
| void bch2_copygc_stop(struct bch_fs *c) |
| { |
| if (c->copygc_thread) { |
| kthread_stop(c->copygc_thread); |
| put_task_struct(c->copygc_thread); |
| } |
| c->copygc_thread = NULL; |
| } |
| |
| int bch2_copygc_start(struct bch_fs *c) |
| { |
| struct task_struct *t; |
| int ret; |
| |
| if (c->copygc_thread) |
| return 0; |
| |
| if (c->opts.nochanges) |
| return 0; |
| |
| if (bch2_fs_init_fault("copygc_start")) |
| return -ENOMEM; |
| |
| t = kthread_create(bch2_copygc_thread, c, "bch-copygc/%s", c->name); |
| ret = PTR_ERR_OR_ZERO(t); |
| bch_err_msg(c, ret, "creating copygc thread"); |
| if (ret) |
| return ret; |
| |
| get_task_struct(t); |
| |
| c->copygc_thread = t; |
| wake_up_process(c->copygc_thread); |
| |
| return 0; |
| } |
| |
| void bch2_fs_copygc_init(struct bch_fs *c) |
| { |
| init_waitqueue_head(&c->copygc_running_wq); |
| c->copygc_running = false; |
| } |