| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright IBM Corp. 2006 |
| */ |
| |
| #include <linux/memory_hotplug.h> |
| #include <linux/memblock.h> |
| #include <linux/kasan.h> |
| #include <linux/pfn.h> |
| #include <linux/mm.h> |
| #include <linux/init.h> |
| #include <linux/list.h> |
| #include <linux/hugetlb.h> |
| #include <linux/slab.h> |
| #include <linux/sort.h> |
| #include <asm/cacheflush.h> |
| #include <asm/nospec-branch.h> |
| #include <asm/pgalloc.h> |
| #include <asm/setup.h> |
| #include <asm/tlbflush.h> |
| #include <asm/sections.h> |
| #include <asm/set_memory.h> |
| |
| static DEFINE_MUTEX(vmem_mutex); |
| |
| static void __ref *vmem_alloc_pages(unsigned int order) |
| { |
| unsigned long size = PAGE_SIZE << order; |
| |
| if (slab_is_available()) |
| return (void *)__get_free_pages(GFP_KERNEL, order); |
| return memblock_alloc(size, size); |
| } |
| |
| static void vmem_free_pages(unsigned long addr, int order) |
| { |
| /* We don't expect boot memory to be removed ever. */ |
| if (!slab_is_available() || |
| WARN_ON_ONCE(PageReserved(virt_to_page(addr)))) |
| return; |
| free_pages(addr, order); |
| } |
| |
| void *vmem_crst_alloc(unsigned long val) |
| { |
| unsigned long *table; |
| |
| table = vmem_alloc_pages(CRST_ALLOC_ORDER); |
| if (table) |
| crst_table_init(table, val); |
| return table; |
| } |
| |
| pte_t __ref *vmem_pte_alloc(void) |
| { |
| unsigned long size = PTRS_PER_PTE * sizeof(pte_t); |
| pte_t *pte; |
| |
| if (slab_is_available()) |
| pte = (pte_t *) page_table_alloc(&init_mm); |
| else |
| pte = (pte_t *) memblock_alloc(size, size); |
| if (!pte) |
| return NULL; |
| memset64((u64 *)pte, _PAGE_INVALID, PTRS_PER_PTE); |
| return pte; |
| } |
| |
| static void vmem_pte_free(unsigned long *table) |
| { |
| /* We don't expect boot memory to be removed ever. */ |
| if (!slab_is_available() || |
| WARN_ON_ONCE(PageReserved(virt_to_page(table)))) |
| return; |
| page_table_free(&init_mm, table); |
| } |
| |
| #define PAGE_UNUSED 0xFD |
| |
| /* |
| * The unused vmemmap range, which was not yet memset(PAGE_UNUSED) ranges |
| * from unused_sub_pmd_start to next PMD_SIZE boundary. |
| */ |
| static unsigned long unused_sub_pmd_start; |
| |
| static void vmemmap_flush_unused_sub_pmd(void) |
| { |
| if (!unused_sub_pmd_start) |
| return; |
| memset((void *)unused_sub_pmd_start, PAGE_UNUSED, |
| ALIGN(unused_sub_pmd_start, PMD_SIZE) - unused_sub_pmd_start); |
| unused_sub_pmd_start = 0; |
| } |
| |
| static void vmemmap_mark_sub_pmd_used(unsigned long start, unsigned long end) |
| { |
| /* |
| * As we expect to add in the same granularity as we remove, it's |
| * sufficient to mark only some piece used to block the memmap page from |
| * getting removed (just in case the memmap never gets initialized, |
| * e.g., because the memory block never gets onlined). |
| */ |
| memset((void *)start, 0, sizeof(struct page)); |
| } |
| |
| static void vmemmap_use_sub_pmd(unsigned long start, unsigned long end) |
| { |
| /* |
| * We only optimize if the new used range directly follows the |
| * previously unused range (esp., when populating consecutive sections). |
| */ |
| if (unused_sub_pmd_start == start) { |
| unused_sub_pmd_start = end; |
| if (likely(IS_ALIGNED(unused_sub_pmd_start, PMD_SIZE))) |
| unused_sub_pmd_start = 0; |
| return; |
| } |
| vmemmap_flush_unused_sub_pmd(); |
| vmemmap_mark_sub_pmd_used(start, end); |
| } |
| |
| static void vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end) |
| { |
| unsigned long page = ALIGN_DOWN(start, PMD_SIZE); |
| |
| vmemmap_flush_unused_sub_pmd(); |
| |
| /* Could be our memmap page is filled with PAGE_UNUSED already ... */ |
| vmemmap_mark_sub_pmd_used(start, end); |
| |
| /* Mark the unused parts of the new memmap page PAGE_UNUSED. */ |
| if (!IS_ALIGNED(start, PMD_SIZE)) |
| memset((void *)page, PAGE_UNUSED, start - page); |
| /* |
| * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of |
| * consecutive sections. Remember for the last added PMD the last |
| * unused range in the populated PMD. |
| */ |
| if (!IS_ALIGNED(end, PMD_SIZE)) |
| unused_sub_pmd_start = end; |
| } |
| |
| /* Returns true if the PMD is completely unused and can be freed. */ |
| static bool vmemmap_unuse_sub_pmd(unsigned long start, unsigned long end) |
| { |
| unsigned long page = ALIGN_DOWN(start, PMD_SIZE); |
| |
| vmemmap_flush_unused_sub_pmd(); |
| memset((void *)start, PAGE_UNUSED, end - start); |
| return !memchr_inv((void *)page, PAGE_UNUSED, PMD_SIZE); |
| } |
| |
| /* __ref: we'll only call vmemmap_alloc_block() via vmemmap_populate() */ |
| static int __ref modify_pte_table(pmd_t *pmd, unsigned long addr, |
| unsigned long end, bool add, bool direct) |
| { |
| unsigned long prot, pages = 0; |
| int ret = -ENOMEM; |
| pte_t *pte; |
| |
| prot = pgprot_val(PAGE_KERNEL); |
| if (!MACHINE_HAS_NX) |
| prot &= ~_PAGE_NOEXEC; |
| |
| pte = pte_offset_kernel(pmd, addr); |
| for (; addr < end; addr += PAGE_SIZE, pte++) { |
| if (!add) { |
| if (pte_none(*pte)) |
| continue; |
| if (!direct) |
| vmem_free_pages((unsigned long) pfn_to_virt(pte_pfn(*pte)), 0); |
| pte_clear(&init_mm, addr, pte); |
| } else if (pte_none(*pte)) { |
| if (!direct) { |
| void *new_page = vmemmap_alloc_block(PAGE_SIZE, NUMA_NO_NODE); |
| |
| if (!new_page) |
| goto out; |
| set_pte(pte, __pte(__pa(new_page) | prot)); |
| } else { |
| set_pte(pte, __pte(__pa(addr) | prot)); |
| } |
| } else { |
| continue; |
| } |
| pages++; |
| } |
| ret = 0; |
| out: |
| if (direct) |
| update_page_count(PG_DIRECT_MAP_4K, add ? pages : -pages); |
| return ret; |
| } |
| |
| static void try_free_pte_table(pmd_t *pmd, unsigned long start) |
| { |
| pte_t *pte; |
| int i; |
| |
| /* We can safely assume this is fully in 1:1 mapping & vmemmap area */ |
| pte = pte_offset_kernel(pmd, start); |
| for (i = 0; i < PTRS_PER_PTE; i++, pte++) { |
| if (!pte_none(*pte)) |
| return; |
| } |
| vmem_pte_free((unsigned long *) pmd_deref(*pmd)); |
| pmd_clear(pmd); |
| } |
| |
| /* __ref: we'll only call vmemmap_alloc_block() via vmemmap_populate() */ |
| static int __ref modify_pmd_table(pud_t *pud, unsigned long addr, |
| unsigned long end, bool add, bool direct) |
| { |
| unsigned long next, prot, pages = 0; |
| int ret = -ENOMEM; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| prot = pgprot_val(SEGMENT_KERNEL); |
| if (!MACHINE_HAS_NX) |
| prot &= ~_SEGMENT_ENTRY_NOEXEC; |
| |
| pmd = pmd_offset(pud, addr); |
| for (; addr < end; addr = next, pmd++) { |
| next = pmd_addr_end(addr, end); |
| if (!add) { |
| if (pmd_none(*pmd)) |
| continue; |
| if (pmd_large(*pmd)) { |
| if (IS_ALIGNED(addr, PMD_SIZE) && |
| IS_ALIGNED(next, PMD_SIZE)) { |
| if (!direct) |
| vmem_free_pages(pmd_deref(*pmd), get_order(PMD_SIZE)); |
| pmd_clear(pmd); |
| pages++; |
| } else if (!direct && vmemmap_unuse_sub_pmd(addr, next)) { |
| vmem_free_pages(pmd_deref(*pmd), get_order(PMD_SIZE)); |
| pmd_clear(pmd); |
| } |
| continue; |
| } |
| } else if (pmd_none(*pmd)) { |
| if (IS_ALIGNED(addr, PMD_SIZE) && |
| IS_ALIGNED(next, PMD_SIZE) && |
| MACHINE_HAS_EDAT1 && direct && |
| !debug_pagealloc_enabled()) { |
| set_pmd(pmd, __pmd(__pa(addr) | prot)); |
| pages++; |
| continue; |
| } else if (!direct && MACHINE_HAS_EDAT1) { |
| void *new_page; |
| |
| /* |
| * Use 1MB frames for vmemmap if available. We |
| * always use large frames even if they are only |
| * partially used. Otherwise we would have also |
| * page tables since vmemmap_populate gets |
| * called for each section separately. |
| */ |
| new_page = vmemmap_alloc_block(PMD_SIZE, NUMA_NO_NODE); |
| if (new_page) { |
| set_pmd(pmd, __pmd(__pa(new_page) | prot)); |
| if (!IS_ALIGNED(addr, PMD_SIZE) || |
| !IS_ALIGNED(next, PMD_SIZE)) { |
| vmemmap_use_new_sub_pmd(addr, next); |
| } |
| continue; |
| } |
| } |
| pte = vmem_pte_alloc(); |
| if (!pte) |
| goto out; |
| pmd_populate(&init_mm, pmd, pte); |
| } else if (pmd_large(*pmd)) { |
| if (!direct) |
| vmemmap_use_sub_pmd(addr, next); |
| continue; |
| } |
| ret = modify_pte_table(pmd, addr, next, add, direct); |
| if (ret) |
| goto out; |
| if (!add) |
| try_free_pte_table(pmd, addr & PMD_MASK); |
| } |
| ret = 0; |
| out: |
| if (direct) |
| update_page_count(PG_DIRECT_MAP_1M, add ? pages : -pages); |
| return ret; |
| } |
| |
| static void try_free_pmd_table(pud_t *pud, unsigned long start) |
| { |
| const unsigned long end = start + PUD_SIZE; |
| pmd_t *pmd; |
| int i; |
| |
| /* Don't mess with any tables not fully in 1:1 mapping & vmemmap area */ |
| if (end > VMALLOC_START) |
| return; |
| |
| pmd = pmd_offset(pud, start); |
| for (i = 0; i < PTRS_PER_PMD; i++, pmd++) |
| if (!pmd_none(*pmd)) |
| return; |
| vmem_free_pages(pud_deref(*pud), CRST_ALLOC_ORDER); |
| pud_clear(pud); |
| } |
| |
| static int modify_pud_table(p4d_t *p4d, unsigned long addr, unsigned long end, |
| bool add, bool direct) |
| { |
| unsigned long next, prot, pages = 0; |
| int ret = -ENOMEM; |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| prot = pgprot_val(REGION3_KERNEL); |
| if (!MACHINE_HAS_NX) |
| prot &= ~_REGION_ENTRY_NOEXEC; |
| pud = pud_offset(p4d, addr); |
| for (; addr < end; addr = next, pud++) { |
| next = pud_addr_end(addr, end); |
| if (!add) { |
| if (pud_none(*pud)) |
| continue; |
| if (pud_large(*pud)) { |
| if (IS_ALIGNED(addr, PUD_SIZE) && |
| IS_ALIGNED(next, PUD_SIZE)) { |
| pud_clear(pud); |
| pages++; |
| } |
| continue; |
| } |
| } else if (pud_none(*pud)) { |
| if (IS_ALIGNED(addr, PUD_SIZE) && |
| IS_ALIGNED(next, PUD_SIZE) && |
| MACHINE_HAS_EDAT2 && direct && |
| !debug_pagealloc_enabled()) { |
| set_pud(pud, __pud(__pa(addr) | prot)); |
| pages++; |
| continue; |
| } |
| pmd = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY); |
| if (!pmd) |
| goto out; |
| pud_populate(&init_mm, pud, pmd); |
| } else if (pud_large(*pud)) { |
| continue; |
| } |
| ret = modify_pmd_table(pud, addr, next, add, direct); |
| if (ret) |
| goto out; |
| if (!add) |
| try_free_pmd_table(pud, addr & PUD_MASK); |
| } |
| ret = 0; |
| out: |
| if (direct) |
| update_page_count(PG_DIRECT_MAP_2G, add ? pages : -pages); |
| return ret; |
| } |
| |
| static void try_free_pud_table(p4d_t *p4d, unsigned long start) |
| { |
| const unsigned long end = start + P4D_SIZE; |
| pud_t *pud; |
| int i; |
| |
| /* Don't mess with any tables not fully in 1:1 mapping & vmemmap area */ |
| if (end > VMALLOC_START) |
| return; |
| |
| pud = pud_offset(p4d, start); |
| for (i = 0; i < PTRS_PER_PUD; i++, pud++) { |
| if (!pud_none(*pud)) |
| return; |
| } |
| vmem_free_pages(p4d_deref(*p4d), CRST_ALLOC_ORDER); |
| p4d_clear(p4d); |
| } |
| |
| static int modify_p4d_table(pgd_t *pgd, unsigned long addr, unsigned long end, |
| bool add, bool direct) |
| { |
| unsigned long next; |
| int ret = -ENOMEM; |
| p4d_t *p4d; |
| pud_t *pud; |
| |
| p4d = p4d_offset(pgd, addr); |
| for (; addr < end; addr = next, p4d++) { |
| next = p4d_addr_end(addr, end); |
| if (!add) { |
| if (p4d_none(*p4d)) |
| continue; |
| } else if (p4d_none(*p4d)) { |
| pud = vmem_crst_alloc(_REGION3_ENTRY_EMPTY); |
| if (!pud) |
| goto out; |
| p4d_populate(&init_mm, p4d, pud); |
| } |
| ret = modify_pud_table(p4d, addr, next, add, direct); |
| if (ret) |
| goto out; |
| if (!add) |
| try_free_pud_table(p4d, addr & P4D_MASK); |
| } |
| ret = 0; |
| out: |
| return ret; |
| } |
| |
| static void try_free_p4d_table(pgd_t *pgd, unsigned long start) |
| { |
| const unsigned long end = start + PGDIR_SIZE; |
| p4d_t *p4d; |
| int i; |
| |
| /* Don't mess with any tables not fully in 1:1 mapping & vmemmap area */ |
| if (end > VMALLOC_START) |
| return; |
| |
| p4d = p4d_offset(pgd, start); |
| for (i = 0; i < PTRS_PER_P4D; i++, p4d++) { |
| if (!p4d_none(*p4d)) |
| return; |
| } |
| vmem_free_pages(pgd_deref(*pgd), CRST_ALLOC_ORDER); |
| pgd_clear(pgd); |
| } |
| |
| static int modify_pagetable(unsigned long start, unsigned long end, bool add, |
| bool direct) |
| { |
| unsigned long addr, next; |
| int ret = -ENOMEM; |
| pgd_t *pgd; |
| p4d_t *p4d; |
| |
| if (WARN_ON_ONCE(!PAGE_ALIGNED(start | end))) |
| return -EINVAL; |
| for (addr = start; addr < end; addr = next) { |
| next = pgd_addr_end(addr, end); |
| pgd = pgd_offset_k(addr); |
| |
| if (!add) { |
| if (pgd_none(*pgd)) |
| continue; |
| } else if (pgd_none(*pgd)) { |
| p4d = vmem_crst_alloc(_REGION2_ENTRY_EMPTY); |
| if (!p4d) |
| goto out; |
| pgd_populate(&init_mm, pgd, p4d); |
| } |
| ret = modify_p4d_table(pgd, addr, next, add, direct); |
| if (ret) |
| goto out; |
| if (!add) |
| try_free_p4d_table(pgd, addr & PGDIR_MASK); |
| } |
| ret = 0; |
| out: |
| if (!add) |
| flush_tlb_kernel_range(start, end); |
| return ret; |
| } |
| |
| static int add_pagetable(unsigned long start, unsigned long end, bool direct) |
| { |
| return modify_pagetable(start, end, true, direct); |
| } |
| |
| static int remove_pagetable(unsigned long start, unsigned long end, bool direct) |
| { |
| return modify_pagetable(start, end, false, direct); |
| } |
| |
| /* |
| * Add a physical memory range to the 1:1 mapping. |
| */ |
| static int vmem_add_range(unsigned long start, unsigned long size) |
| { |
| return add_pagetable(start, start + size, true); |
| } |
| |
| /* |
| * Remove a physical memory range from the 1:1 mapping. |
| */ |
| static void vmem_remove_range(unsigned long start, unsigned long size) |
| { |
| remove_pagetable(start, start + size, true); |
| } |
| |
| /* |
| * Add a backed mem_map array to the virtual mem_map array. |
| */ |
| int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, |
| struct vmem_altmap *altmap) |
| { |
| int ret; |
| |
| mutex_lock(&vmem_mutex); |
| /* We don't care about the node, just use NUMA_NO_NODE on allocations */ |
| ret = add_pagetable(start, end, false); |
| if (ret) |
| remove_pagetable(start, end, false); |
| mutex_unlock(&vmem_mutex); |
| return ret; |
| } |
| |
| void vmemmap_free(unsigned long start, unsigned long end, |
| struct vmem_altmap *altmap) |
| { |
| mutex_lock(&vmem_mutex); |
| remove_pagetable(start, end, false); |
| mutex_unlock(&vmem_mutex); |
| } |
| |
| void vmem_remove_mapping(unsigned long start, unsigned long size) |
| { |
| mutex_lock(&vmem_mutex); |
| vmem_remove_range(start, size); |
| mutex_unlock(&vmem_mutex); |
| } |
| |
| struct range arch_get_mappable_range(void) |
| { |
| struct range mhp_range; |
| |
| mhp_range.start = 0; |
| mhp_range.end = VMEM_MAX_PHYS - 1; |
| return mhp_range; |
| } |
| |
| int vmem_add_mapping(unsigned long start, unsigned long size) |
| { |
| struct range range = arch_get_mappable_range(); |
| int ret; |
| |
| if (start < range.start || |
| start + size > range.end + 1 || |
| start + size < start) |
| return -ERANGE; |
| |
| mutex_lock(&vmem_mutex); |
| ret = vmem_add_range(start, size); |
| if (ret) |
| vmem_remove_range(start, size); |
| mutex_unlock(&vmem_mutex); |
| return ret; |
| } |
| |
| /* |
| * Allocate new or return existing page-table entry, but do not map it |
| * to any physical address. If missing, allocate segment- and region- |
| * table entries along. Meeting a large segment- or region-table entry |
| * while traversing is an error, since the function is expected to be |
| * called against virtual regions reserverd for 4KB mappings only. |
| */ |
| pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc) |
| { |
| pte_t *ptep = NULL; |
| pgd_t *pgd; |
| p4d_t *p4d; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| pgd = pgd_offset_k(addr); |
| if (pgd_none(*pgd)) { |
| if (!alloc) |
| goto out; |
| p4d = vmem_crst_alloc(_REGION2_ENTRY_EMPTY); |
| if (!p4d) |
| goto out; |
| pgd_populate(&init_mm, pgd, p4d); |
| } |
| p4d = p4d_offset(pgd, addr); |
| if (p4d_none(*p4d)) { |
| if (!alloc) |
| goto out; |
| pud = vmem_crst_alloc(_REGION3_ENTRY_EMPTY); |
| if (!pud) |
| goto out; |
| p4d_populate(&init_mm, p4d, pud); |
| } |
| pud = pud_offset(p4d, addr); |
| if (pud_none(*pud)) { |
| if (!alloc) |
| goto out; |
| pmd = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY); |
| if (!pmd) |
| goto out; |
| pud_populate(&init_mm, pud, pmd); |
| } else if (WARN_ON_ONCE(pud_large(*pud))) { |
| goto out; |
| } |
| pmd = pmd_offset(pud, addr); |
| if (pmd_none(*pmd)) { |
| if (!alloc) |
| goto out; |
| pte = vmem_pte_alloc(); |
| if (!pte) |
| goto out; |
| pmd_populate(&init_mm, pmd, pte); |
| } else if (WARN_ON_ONCE(pmd_large(*pmd))) { |
| goto out; |
| } |
| ptep = pte_offset_kernel(pmd, addr); |
| out: |
| return ptep; |
| } |
| |
| int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc) |
| { |
| pte_t *ptep, pte; |
| |
| if (!IS_ALIGNED(addr, PAGE_SIZE)) |
| return -EINVAL; |
| ptep = vmem_get_alloc_pte(addr, alloc); |
| if (!ptep) |
| return -ENOMEM; |
| __ptep_ipte(addr, ptep, 0, 0, IPTE_GLOBAL); |
| pte = mk_pte_phys(phys, prot); |
| set_pte(ptep, pte); |
| return 0; |
| } |
| |
| int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot) |
| { |
| int rc; |
| |
| mutex_lock(&vmem_mutex); |
| rc = __vmem_map_4k_page(addr, phys, prot, true); |
| mutex_unlock(&vmem_mutex); |
| return rc; |
| } |
| |
| void vmem_unmap_4k_page(unsigned long addr) |
| { |
| pte_t *ptep; |
| |
| mutex_lock(&vmem_mutex); |
| ptep = virt_to_kpte(addr); |
| __ptep_ipte(addr, ptep, 0, 0, IPTE_GLOBAL); |
| pte_clear(&init_mm, addr, ptep); |
| mutex_unlock(&vmem_mutex); |
| } |
| |
| static int __init memblock_region_cmp(const void *a, const void *b) |
| { |
| const struct memblock_region *r1 = a; |
| const struct memblock_region *r2 = b; |
| |
| if (r1->base < r2->base) |
| return -1; |
| if (r1->base > r2->base) |
| return 1; |
| return 0; |
| } |
| |
| static void __init memblock_region_swap(void *a, void *b, int size) |
| { |
| swap(*(struct memblock_region *)a, *(struct memblock_region *)b); |
| } |
| |
| #ifdef CONFIG_KASAN |
| #define __sha(x) ((unsigned long)kasan_mem_to_shadow((void *)x)) |
| #endif |
| /* |
| * map whole physical memory to virtual memory (identity mapping) |
| * we reserve enough space in the vmalloc area for vmemmap to hotplug |
| * additional memory segments. |
| */ |
| void __init vmem_map_init(void) |
| { |
| struct memblock_region memory_rwx_regions[] = { |
| { |
| .base = 0, |
| .size = sizeof(struct lowcore), |
| .flags = MEMBLOCK_NONE, |
| #ifdef CONFIG_NUMA |
| .nid = NUMA_NO_NODE, |
| #endif |
| }, |
| { |
| .base = __pa(_stext), |
| .size = _etext - _stext, |
| .flags = MEMBLOCK_NONE, |
| #ifdef CONFIG_NUMA |
| .nid = NUMA_NO_NODE, |
| #endif |
| }, |
| { |
| .base = __pa(_sinittext), |
| .size = _einittext - _sinittext, |
| .flags = MEMBLOCK_NONE, |
| #ifdef CONFIG_NUMA |
| .nid = NUMA_NO_NODE, |
| #endif |
| }, |
| { |
| .base = __stext_amode31, |
| .size = __etext_amode31 - __stext_amode31, |
| .flags = MEMBLOCK_NONE, |
| #ifdef CONFIG_NUMA |
| .nid = NUMA_NO_NODE, |
| #endif |
| }, |
| }; |
| struct memblock_type memory_rwx = { |
| .regions = memory_rwx_regions, |
| .cnt = ARRAY_SIZE(memory_rwx_regions), |
| .max = ARRAY_SIZE(memory_rwx_regions), |
| }; |
| phys_addr_t base, end; |
| u64 i; |
| |
| /* |
| * Set RW+NX attribute on all memory, except regions enumerated with |
| * memory_rwx exclude type. These regions need different attributes, |
| * which are enforced afterwards. |
| * |
| * __for_each_mem_range() iterate and exclude types should be sorted. |
| * The relative location of _stext and _sinittext is hardcoded in the |
| * linker script. However a location of __stext_amode31 and the kernel |
| * image itself are chosen dynamically. Thus, sort the exclude type. |
| */ |
| sort(&memory_rwx_regions, |
| ARRAY_SIZE(memory_rwx_regions), sizeof(memory_rwx_regions[0]), |
| memblock_region_cmp, memblock_region_swap); |
| __for_each_mem_range(i, &memblock.memory, &memory_rwx, |
| NUMA_NO_NODE, MEMBLOCK_NONE, &base, &end, NULL) { |
| set_memory_rwnx((unsigned long)__va(base), |
| (end - base) >> PAGE_SHIFT); |
| } |
| |
| #ifdef CONFIG_KASAN |
| for_each_mem_range(i, &base, &end) { |
| set_memory_rwnx(__sha(base), |
| (__sha(end) - __sha(base)) >> PAGE_SHIFT); |
| } |
| #endif |
| set_memory_rox((unsigned long)_stext, |
| (unsigned long)(_etext - _stext) >> PAGE_SHIFT); |
| set_memory_ro((unsigned long)_etext, |
| (unsigned long)(__end_rodata - _etext) >> PAGE_SHIFT); |
| set_memory_rox((unsigned long)_sinittext, |
| (unsigned long)(_einittext - _sinittext) >> PAGE_SHIFT); |
| set_memory_rox(__stext_amode31, |
| (__etext_amode31 - __stext_amode31) >> PAGE_SHIFT); |
| |
| /* lowcore must be executable for LPSWE */ |
| if (static_key_enabled(&cpu_has_bear)) |
| set_memory_nx(0, 1); |
| set_memory_nx(PAGE_SIZE, 1); |
| |
| pr_info("Write protected kernel read-only data: %luk\n", |
| (unsigned long)(__end_rodata - _stext) >> 10); |
| } |