| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> |
| * |
| * Code for managing the extent btree and dynamically updating the writeback |
| * dirty sector count. |
| */ |
| |
| #include "bcachefs.h" |
| #include "bkey_methods.h" |
| #include "btree_cache.h" |
| #include "btree_gc.h" |
| #include "btree_io.h" |
| #include "btree_iter.h" |
| #include "buckets.h" |
| #include "checksum.h" |
| #include "compress.h" |
| #include "debug.h" |
| #include "disk_groups.h" |
| #include "error.h" |
| #include "extents.h" |
| #include "inode.h" |
| #include "journal.h" |
| #include "replicas.h" |
| #include "super.h" |
| #include "super-io.h" |
| #include "trace.h" |
| #include "util.h" |
| |
| static unsigned bch2_crc_field_size_max[] = { |
| [BCH_EXTENT_ENTRY_crc32] = CRC32_SIZE_MAX, |
| [BCH_EXTENT_ENTRY_crc64] = CRC64_SIZE_MAX, |
| [BCH_EXTENT_ENTRY_crc128] = CRC128_SIZE_MAX, |
| }; |
| |
| static void bch2_extent_crc_pack(union bch_extent_crc *, |
| struct bch_extent_crc_unpacked, |
| enum bch_extent_entry_type); |
| |
| struct bch_dev_io_failures *bch2_dev_io_failures(struct bch_io_failures *f, |
| unsigned dev) |
| { |
| struct bch_dev_io_failures *i; |
| |
| for (i = f->devs; i < f->devs + f->nr; i++) |
| if (i->dev == dev) |
| return i; |
| |
| return NULL; |
| } |
| |
| void bch2_mark_io_failure(struct bch_io_failures *failed, |
| struct extent_ptr_decoded *p) |
| { |
| struct bch_dev_io_failures *f = bch2_dev_io_failures(failed, p->ptr.dev); |
| |
| if (!f) { |
| BUG_ON(failed->nr >= ARRAY_SIZE(failed->devs)); |
| |
| f = &failed->devs[failed->nr++]; |
| f->dev = p->ptr.dev; |
| f->idx = p->idx; |
| f->nr_failed = 1; |
| f->nr_retries = 0; |
| } else if (p->idx != f->idx) { |
| f->idx = p->idx; |
| f->nr_failed = 1; |
| f->nr_retries = 0; |
| } else { |
| f->nr_failed++; |
| } |
| } |
| |
| static inline u64 dev_latency(struct bch_fs *c, unsigned dev) |
| { |
| struct bch_dev *ca = bch2_dev_rcu(c, dev); |
| return ca ? atomic64_read(&ca->cur_latency[READ]) : S64_MAX; |
| } |
| |
| /* |
| * returns true if p1 is better than p2: |
| */ |
| static inline bool ptr_better(struct bch_fs *c, |
| const struct extent_ptr_decoded p1, |
| const struct extent_ptr_decoded p2) |
| { |
| if (likely(!p1.idx && !p2.idx)) { |
| u64 l1 = dev_latency(c, p1.ptr.dev); |
| u64 l2 = dev_latency(c, p2.ptr.dev); |
| |
| /* Pick at random, biased in favor of the faster device: */ |
| |
| return bch2_rand_range(l1 + l2) > l1; |
| } |
| |
| if (bch2_force_reconstruct_read) |
| return p1.idx > p2.idx; |
| |
| return p1.idx < p2.idx; |
| } |
| |
| /* |
| * This picks a non-stale pointer, preferably from a device other than @avoid. |
| * Avoid can be NULL, meaning pick any. If there are no non-stale pointers to |
| * other devices, it will still pick a pointer from avoid. |
| */ |
| int bch2_bkey_pick_read_device(struct bch_fs *c, struct bkey_s_c k, |
| struct bch_io_failures *failed, |
| struct extent_ptr_decoded *pick) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| const union bch_extent_entry *entry; |
| struct extent_ptr_decoded p; |
| struct bch_dev_io_failures *f; |
| int ret = 0; |
| |
| if (k.k->type == KEY_TYPE_error) |
| return -BCH_ERR_key_type_error; |
| |
| rcu_read_lock(); |
| bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { |
| /* |
| * Unwritten extent: no need to actually read, treat it as a |
| * hole and return 0s: |
| */ |
| if (p.ptr.unwritten) { |
| ret = 0; |
| break; |
| } |
| |
| /* |
| * If there are any dirty pointers it's an error if we can't |
| * read: |
| */ |
| if (!ret && !p.ptr.cached) |
| ret = -BCH_ERR_no_device_to_read_from; |
| |
| struct bch_dev *ca = bch2_dev_rcu(c, p.ptr.dev); |
| |
| if (p.ptr.cached && (!ca || dev_ptr_stale_rcu(ca, &p.ptr))) |
| continue; |
| |
| f = failed ? bch2_dev_io_failures(failed, p.ptr.dev) : NULL; |
| if (f) |
| p.idx = f->nr_failed < f->nr_retries |
| ? f->idx |
| : f->idx + 1; |
| |
| if (!p.idx && (!ca || !bch2_dev_is_readable(ca))) |
| p.idx++; |
| |
| if (!p.idx && p.has_ec && bch2_force_reconstruct_read) |
| p.idx++; |
| |
| if (p.idx > (unsigned) p.has_ec) |
| continue; |
| |
| if (ret > 0 && !ptr_better(c, p, *pick)) |
| continue; |
| |
| *pick = p; |
| ret = 1; |
| } |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| /* KEY_TYPE_btree_ptr: */ |
| |
| int bch2_btree_ptr_validate(struct bch_fs *c, struct bkey_s_c k, |
| enum bch_validate_flags flags) |
| { |
| int ret = 0; |
| |
| bkey_fsck_err_on(bkey_val_u64s(k.k) > BCH_REPLICAS_MAX, |
| c, btree_ptr_val_too_big, |
| "value too big (%zu > %u)", bkey_val_u64s(k.k), BCH_REPLICAS_MAX); |
| |
| ret = bch2_bkey_ptrs_validate(c, k, flags); |
| fsck_err: |
| return ret; |
| } |
| |
| void bch2_btree_ptr_to_text(struct printbuf *out, struct bch_fs *c, |
| struct bkey_s_c k) |
| { |
| bch2_bkey_ptrs_to_text(out, c, k); |
| } |
| |
| int bch2_btree_ptr_v2_validate(struct bch_fs *c, struct bkey_s_c k, |
| enum bch_validate_flags flags) |
| { |
| struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); |
| int ret = 0; |
| |
| bkey_fsck_err_on(bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX, |
| c, btree_ptr_v2_val_too_big, |
| "value too big (%zu > %zu)", |
| bkey_val_u64s(k.k), BKEY_BTREE_PTR_VAL_U64s_MAX); |
| |
| bkey_fsck_err_on(bpos_ge(bp.v->min_key, bp.k->p), |
| c, btree_ptr_v2_min_key_bad, |
| "min_key > key"); |
| |
| if (flags & BCH_VALIDATE_write) |
| bkey_fsck_err_on(!bp.v->sectors_written, |
| c, btree_ptr_v2_written_0, |
| "sectors_written == 0"); |
| |
| ret = bch2_bkey_ptrs_validate(c, k, flags); |
| fsck_err: |
| return ret; |
| } |
| |
| void bch2_btree_ptr_v2_to_text(struct printbuf *out, struct bch_fs *c, |
| struct bkey_s_c k) |
| { |
| struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); |
| |
| prt_printf(out, "seq %llx written %u min_key %s", |
| le64_to_cpu(bp.v->seq), |
| le16_to_cpu(bp.v->sectors_written), |
| BTREE_PTR_RANGE_UPDATED(bp.v) ? "R " : ""); |
| |
| bch2_bpos_to_text(out, bp.v->min_key); |
| prt_printf(out, " "); |
| bch2_bkey_ptrs_to_text(out, c, k); |
| } |
| |
| void bch2_btree_ptr_v2_compat(enum btree_id btree_id, unsigned version, |
| unsigned big_endian, int write, |
| struct bkey_s k) |
| { |
| struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(k); |
| |
| compat_bpos(0, btree_id, version, big_endian, write, &bp.v->min_key); |
| |
| if (version < bcachefs_metadata_version_inode_btree_change && |
| btree_id_is_extents(btree_id) && |
| !bkey_eq(bp.v->min_key, POS_MIN)) |
| bp.v->min_key = write |
| ? bpos_nosnap_predecessor(bp.v->min_key) |
| : bpos_nosnap_successor(bp.v->min_key); |
| } |
| |
| /* KEY_TYPE_extent: */ |
| |
| bool bch2_extent_merge(struct bch_fs *c, struct bkey_s l, struct bkey_s_c r) |
| { |
| struct bkey_ptrs l_ptrs = bch2_bkey_ptrs(l); |
| struct bkey_ptrs_c r_ptrs = bch2_bkey_ptrs_c(r); |
| union bch_extent_entry *en_l; |
| const union bch_extent_entry *en_r; |
| struct extent_ptr_decoded lp, rp; |
| bool use_right_ptr; |
| |
| en_l = l_ptrs.start; |
| en_r = r_ptrs.start; |
| while (en_l < l_ptrs.end && en_r < r_ptrs.end) { |
| if (extent_entry_type(en_l) != extent_entry_type(en_r)) |
| return false; |
| |
| en_l = extent_entry_next(en_l); |
| en_r = extent_entry_next(en_r); |
| } |
| |
| if (en_l < l_ptrs.end || en_r < r_ptrs.end) |
| return false; |
| |
| en_l = l_ptrs.start; |
| en_r = r_ptrs.start; |
| lp.crc = bch2_extent_crc_unpack(l.k, NULL); |
| rp.crc = bch2_extent_crc_unpack(r.k, NULL); |
| |
| while (__bkey_ptr_next_decode(l.k, l_ptrs.end, lp, en_l) && |
| __bkey_ptr_next_decode(r.k, r_ptrs.end, rp, en_r)) { |
| if (lp.ptr.offset + lp.crc.offset + lp.crc.live_size != |
| rp.ptr.offset + rp.crc.offset || |
| lp.ptr.dev != rp.ptr.dev || |
| lp.ptr.gen != rp.ptr.gen || |
| lp.ptr.unwritten != rp.ptr.unwritten || |
| lp.has_ec != rp.has_ec) |
| return false; |
| |
| /* Extents may not straddle buckets: */ |
| rcu_read_lock(); |
| struct bch_dev *ca = bch2_dev_rcu(c, lp.ptr.dev); |
| bool same_bucket = ca && PTR_BUCKET_NR(ca, &lp.ptr) == PTR_BUCKET_NR(ca, &rp.ptr); |
| rcu_read_unlock(); |
| |
| if (!same_bucket) |
| return false; |
| |
| if (lp.has_ec != rp.has_ec || |
| (lp.has_ec && |
| (lp.ec.block != rp.ec.block || |
| lp.ec.redundancy != rp.ec.redundancy || |
| lp.ec.idx != rp.ec.idx))) |
| return false; |
| |
| if (lp.crc.compression_type != rp.crc.compression_type || |
| lp.crc.nonce != rp.crc.nonce) |
| return false; |
| |
| if (lp.crc.offset + lp.crc.live_size + rp.crc.live_size <= |
| lp.crc.uncompressed_size) { |
| /* can use left extent's crc entry */ |
| } else if (lp.crc.live_size <= rp.crc.offset) { |
| /* can use right extent's crc entry */ |
| } else { |
| /* check if checksums can be merged: */ |
| if (lp.crc.csum_type != rp.crc.csum_type || |
| lp.crc.nonce != rp.crc.nonce || |
| crc_is_compressed(lp.crc) || |
| !bch2_checksum_mergeable(lp.crc.csum_type)) |
| return false; |
| |
| if (lp.crc.offset + lp.crc.live_size != lp.crc.compressed_size || |
| rp.crc.offset) |
| return false; |
| |
| if (lp.crc.csum_type && |
| lp.crc.uncompressed_size + |
| rp.crc.uncompressed_size > (c->opts.encoded_extent_max >> 9)) |
| return false; |
| } |
| |
| en_l = extent_entry_next(en_l); |
| en_r = extent_entry_next(en_r); |
| } |
| |
| en_l = l_ptrs.start; |
| en_r = r_ptrs.start; |
| while (en_l < l_ptrs.end && en_r < r_ptrs.end) { |
| if (extent_entry_is_crc(en_l)) { |
| struct bch_extent_crc_unpacked crc_l = bch2_extent_crc_unpack(l.k, entry_to_crc(en_l)); |
| struct bch_extent_crc_unpacked crc_r = bch2_extent_crc_unpack(r.k, entry_to_crc(en_r)); |
| |
| if (crc_l.uncompressed_size + crc_r.uncompressed_size > |
| bch2_crc_field_size_max[extent_entry_type(en_l)]) |
| return false; |
| } |
| |
| en_l = extent_entry_next(en_l); |
| en_r = extent_entry_next(en_r); |
| } |
| |
| use_right_ptr = false; |
| en_l = l_ptrs.start; |
| en_r = r_ptrs.start; |
| while (en_l < l_ptrs.end) { |
| if (extent_entry_type(en_l) == BCH_EXTENT_ENTRY_ptr && |
| use_right_ptr) |
| en_l->ptr = en_r->ptr; |
| |
| if (extent_entry_is_crc(en_l)) { |
| struct bch_extent_crc_unpacked crc_l = |
| bch2_extent_crc_unpack(l.k, entry_to_crc(en_l)); |
| struct bch_extent_crc_unpacked crc_r = |
| bch2_extent_crc_unpack(r.k, entry_to_crc(en_r)); |
| |
| use_right_ptr = false; |
| |
| if (crc_l.offset + crc_l.live_size + crc_r.live_size <= |
| crc_l.uncompressed_size) { |
| /* can use left extent's crc entry */ |
| } else if (crc_l.live_size <= crc_r.offset) { |
| /* can use right extent's crc entry */ |
| crc_r.offset -= crc_l.live_size; |
| bch2_extent_crc_pack(entry_to_crc(en_l), crc_r, |
| extent_entry_type(en_l)); |
| use_right_ptr = true; |
| } else { |
| crc_l.csum = bch2_checksum_merge(crc_l.csum_type, |
| crc_l.csum, |
| crc_r.csum, |
| crc_r.uncompressed_size << 9); |
| |
| crc_l.uncompressed_size += crc_r.uncompressed_size; |
| crc_l.compressed_size += crc_r.compressed_size; |
| bch2_extent_crc_pack(entry_to_crc(en_l), crc_l, |
| extent_entry_type(en_l)); |
| } |
| } |
| |
| en_l = extent_entry_next(en_l); |
| en_r = extent_entry_next(en_r); |
| } |
| |
| bch2_key_resize(l.k, l.k->size + r.k->size); |
| return true; |
| } |
| |
| /* KEY_TYPE_reservation: */ |
| |
| int bch2_reservation_validate(struct bch_fs *c, struct bkey_s_c k, |
| enum bch_validate_flags flags) |
| { |
| struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); |
| int ret = 0; |
| |
| bkey_fsck_err_on(!r.v->nr_replicas || r.v->nr_replicas > BCH_REPLICAS_MAX, |
| c, reservation_key_nr_replicas_invalid, |
| "invalid nr_replicas (%u)", r.v->nr_replicas); |
| fsck_err: |
| return ret; |
| } |
| |
| void bch2_reservation_to_text(struct printbuf *out, struct bch_fs *c, |
| struct bkey_s_c k) |
| { |
| struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); |
| |
| prt_printf(out, "generation %u replicas %u", |
| le32_to_cpu(r.v->generation), |
| r.v->nr_replicas); |
| } |
| |
| bool bch2_reservation_merge(struct bch_fs *c, struct bkey_s _l, struct bkey_s_c _r) |
| { |
| struct bkey_s_reservation l = bkey_s_to_reservation(_l); |
| struct bkey_s_c_reservation r = bkey_s_c_to_reservation(_r); |
| |
| if (l.v->generation != r.v->generation || |
| l.v->nr_replicas != r.v->nr_replicas) |
| return false; |
| |
| bch2_key_resize(l.k, l.k->size + r.k->size); |
| return true; |
| } |
| |
| /* Extent checksum entries: */ |
| |
| /* returns true if not equal */ |
| static inline bool bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l, |
| struct bch_extent_crc_unpacked r) |
| { |
| return (l.csum_type != r.csum_type || |
| l.compression_type != r.compression_type || |
| l.compressed_size != r.compressed_size || |
| l.uncompressed_size != r.uncompressed_size || |
| l.offset != r.offset || |
| l.live_size != r.live_size || |
| l.nonce != r.nonce || |
| bch2_crc_cmp(l.csum, r.csum)); |
| } |
| |
| static inline bool can_narrow_crc(struct bch_extent_crc_unpacked u, |
| struct bch_extent_crc_unpacked n) |
| { |
| return !crc_is_compressed(u) && |
| u.csum_type && |
| u.uncompressed_size > u.live_size && |
| bch2_csum_type_is_encryption(u.csum_type) == |
| bch2_csum_type_is_encryption(n.csum_type); |
| } |
| |
| bool bch2_can_narrow_extent_crcs(struct bkey_s_c k, |
| struct bch_extent_crc_unpacked n) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| struct bch_extent_crc_unpacked crc; |
| const union bch_extent_entry *i; |
| |
| if (!n.csum_type) |
| return false; |
| |
| bkey_for_each_crc(k.k, ptrs, crc, i) |
| if (can_narrow_crc(crc, n)) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * We're writing another replica for this extent, so while we've got the data in |
| * memory we'll be computing a new checksum for the currently live data. |
| * |
| * If there are other replicas we aren't moving, and they are checksummed but |
| * not compressed, we can modify them to point to only the data that is |
| * currently live (so that readers won't have to bounce) while we've got the |
| * checksum we need: |
| */ |
| bool bch2_bkey_narrow_crcs(struct bkey_i *k, struct bch_extent_crc_unpacked n) |
| { |
| struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); |
| struct bch_extent_crc_unpacked u; |
| struct extent_ptr_decoded p; |
| union bch_extent_entry *i; |
| bool ret = false; |
| |
| /* Find a checksum entry that covers only live data: */ |
| if (!n.csum_type) { |
| bkey_for_each_crc(&k->k, ptrs, u, i) |
| if (!crc_is_compressed(u) && |
| u.csum_type && |
| u.live_size == u.uncompressed_size) { |
| n = u; |
| goto found; |
| } |
| return false; |
| } |
| found: |
| BUG_ON(crc_is_compressed(n)); |
| BUG_ON(n.offset); |
| BUG_ON(n.live_size != k->k.size); |
| |
| restart_narrow_pointers: |
| ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); |
| |
| bkey_for_each_ptr_decode(&k->k, ptrs, p, i) |
| if (can_narrow_crc(p.crc, n)) { |
| bch2_bkey_drop_ptr_noerror(bkey_i_to_s(k), &i->ptr); |
| p.ptr.offset += p.crc.offset; |
| p.crc = n; |
| bch2_extent_ptr_decoded_append(k, &p); |
| ret = true; |
| goto restart_narrow_pointers; |
| } |
| |
| return ret; |
| } |
| |
| static void bch2_extent_crc_pack(union bch_extent_crc *dst, |
| struct bch_extent_crc_unpacked src, |
| enum bch_extent_entry_type type) |
| { |
| #define set_common_fields(_dst, _src) \ |
| _dst.type = 1 << type; \ |
| _dst.csum_type = _src.csum_type, \ |
| _dst.compression_type = _src.compression_type, \ |
| _dst._compressed_size = _src.compressed_size - 1, \ |
| _dst._uncompressed_size = _src.uncompressed_size - 1, \ |
| _dst.offset = _src.offset |
| |
| switch (type) { |
| case BCH_EXTENT_ENTRY_crc32: |
| set_common_fields(dst->crc32, src); |
| dst->crc32.csum = (u32 __force) *((__le32 *) &src.csum.lo); |
| break; |
| case BCH_EXTENT_ENTRY_crc64: |
| set_common_fields(dst->crc64, src); |
| dst->crc64.nonce = src.nonce; |
| dst->crc64.csum_lo = (u64 __force) src.csum.lo; |
| dst->crc64.csum_hi = (u64 __force) *((__le16 *) &src.csum.hi); |
| break; |
| case BCH_EXTENT_ENTRY_crc128: |
| set_common_fields(dst->crc128, src); |
| dst->crc128.nonce = src.nonce; |
| dst->crc128.csum = src.csum; |
| break; |
| default: |
| BUG(); |
| } |
| #undef set_common_fields |
| } |
| |
| void bch2_extent_crc_append(struct bkey_i *k, |
| struct bch_extent_crc_unpacked new) |
| { |
| struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); |
| union bch_extent_crc *crc = (void *) ptrs.end; |
| enum bch_extent_entry_type type; |
| |
| if (bch_crc_bytes[new.csum_type] <= 4 && |
| new.uncompressed_size <= CRC32_SIZE_MAX && |
| new.nonce <= CRC32_NONCE_MAX) |
| type = BCH_EXTENT_ENTRY_crc32; |
| else if (bch_crc_bytes[new.csum_type] <= 10 && |
| new.uncompressed_size <= CRC64_SIZE_MAX && |
| new.nonce <= CRC64_NONCE_MAX) |
| type = BCH_EXTENT_ENTRY_crc64; |
| else if (bch_crc_bytes[new.csum_type] <= 16 && |
| new.uncompressed_size <= CRC128_SIZE_MAX && |
| new.nonce <= CRC128_NONCE_MAX) |
| type = BCH_EXTENT_ENTRY_crc128; |
| else |
| BUG(); |
| |
| bch2_extent_crc_pack(crc, new, type); |
| |
| k->k.u64s += extent_entry_u64s(ptrs.end); |
| |
| EBUG_ON(bkey_val_u64s(&k->k) > BKEY_EXTENT_VAL_U64s_MAX); |
| } |
| |
| /* Generic code for keys with pointers: */ |
| |
| unsigned bch2_bkey_nr_ptrs(struct bkey_s_c k) |
| { |
| return bch2_bkey_devs(k).nr; |
| } |
| |
| unsigned bch2_bkey_nr_ptrs_allocated(struct bkey_s_c k) |
| { |
| return k.k->type == KEY_TYPE_reservation |
| ? bkey_s_c_to_reservation(k).v->nr_replicas |
| : bch2_bkey_dirty_devs(k).nr; |
| } |
| |
| unsigned bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c k) |
| { |
| unsigned ret = 0; |
| |
| if (k.k->type == KEY_TYPE_reservation) { |
| ret = bkey_s_c_to_reservation(k).v->nr_replicas; |
| } else { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| const union bch_extent_entry *entry; |
| struct extent_ptr_decoded p; |
| |
| bkey_for_each_ptr_decode(k.k, ptrs, p, entry) |
| ret += !p.ptr.cached && !crc_is_compressed(p.crc); |
| } |
| |
| return ret; |
| } |
| |
| unsigned bch2_bkey_sectors_compressed(struct bkey_s_c k) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| const union bch_extent_entry *entry; |
| struct extent_ptr_decoded p; |
| unsigned ret = 0; |
| |
| bkey_for_each_ptr_decode(k.k, ptrs, p, entry) |
| if (!p.ptr.cached && crc_is_compressed(p.crc)) |
| ret += p.crc.compressed_size; |
| |
| return ret; |
| } |
| |
| bool bch2_bkey_is_incompressible(struct bkey_s_c k) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| const union bch_extent_entry *entry; |
| struct bch_extent_crc_unpacked crc; |
| |
| bkey_for_each_crc(k.k, ptrs, crc, entry) |
| if (crc.compression_type == BCH_COMPRESSION_TYPE_incompressible) |
| return true; |
| return false; |
| } |
| |
| unsigned bch2_bkey_replicas(struct bch_fs *c, struct bkey_s_c k) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| const union bch_extent_entry *entry; |
| struct extent_ptr_decoded p = { 0 }; |
| unsigned replicas = 0; |
| |
| bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { |
| if (p.ptr.cached) |
| continue; |
| |
| if (p.has_ec) |
| replicas += p.ec.redundancy; |
| |
| replicas++; |
| |
| } |
| |
| return replicas; |
| } |
| |
| static inline unsigned __extent_ptr_durability(struct bch_dev *ca, struct extent_ptr_decoded *p) |
| { |
| if (p->ptr.cached) |
| return 0; |
| |
| return p->has_ec |
| ? p->ec.redundancy + 1 |
| : ca->mi.durability; |
| } |
| |
| unsigned bch2_extent_ptr_desired_durability(struct bch_fs *c, struct extent_ptr_decoded *p) |
| { |
| struct bch_dev *ca = bch2_dev_rcu(c, p->ptr.dev); |
| |
| return ca ? __extent_ptr_durability(ca, p) : 0; |
| } |
| |
| unsigned bch2_extent_ptr_durability(struct bch_fs *c, struct extent_ptr_decoded *p) |
| { |
| struct bch_dev *ca = bch2_dev_rcu(c, p->ptr.dev); |
| |
| if (!ca || ca->mi.state == BCH_MEMBER_STATE_failed) |
| return 0; |
| |
| return __extent_ptr_durability(ca, p); |
| } |
| |
| unsigned bch2_bkey_durability(struct bch_fs *c, struct bkey_s_c k) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| const union bch_extent_entry *entry; |
| struct extent_ptr_decoded p; |
| unsigned durability = 0; |
| |
| rcu_read_lock(); |
| bkey_for_each_ptr_decode(k.k, ptrs, p, entry) |
| durability += bch2_extent_ptr_durability(c, &p); |
| rcu_read_unlock(); |
| |
| return durability; |
| } |
| |
| static unsigned bch2_bkey_durability_safe(struct bch_fs *c, struct bkey_s_c k) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| const union bch_extent_entry *entry; |
| struct extent_ptr_decoded p; |
| unsigned durability = 0; |
| |
| rcu_read_lock(); |
| bkey_for_each_ptr_decode(k.k, ptrs, p, entry) |
| if (p.ptr.dev < c->sb.nr_devices && c->devs[p.ptr.dev]) |
| durability += bch2_extent_ptr_durability(c, &p); |
| rcu_read_unlock(); |
| |
| return durability; |
| } |
| |
| void bch2_bkey_extent_entry_drop(struct bkey_i *k, union bch_extent_entry *entry) |
| { |
| union bch_extent_entry *end = bkey_val_end(bkey_i_to_s(k)); |
| union bch_extent_entry *next = extent_entry_next(entry); |
| |
| memmove_u64s(entry, next, (u64 *) end - (u64 *) next); |
| k->k.u64s -= extent_entry_u64s(entry); |
| } |
| |
| void bch2_extent_ptr_decoded_append(struct bkey_i *k, |
| struct extent_ptr_decoded *p) |
| { |
| struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); |
| struct bch_extent_crc_unpacked crc = |
| bch2_extent_crc_unpack(&k->k, NULL); |
| union bch_extent_entry *pos; |
| |
| if (!bch2_crc_unpacked_cmp(crc, p->crc)) { |
| pos = ptrs.start; |
| goto found; |
| } |
| |
| bkey_for_each_crc(&k->k, ptrs, crc, pos) |
| if (!bch2_crc_unpacked_cmp(crc, p->crc)) { |
| pos = extent_entry_next(pos); |
| goto found; |
| } |
| |
| bch2_extent_crc_append(k, p->crc); |
| pos = bkey_val_end(bkey_i_to_s(k)); |
| found: |
| p->ptr.type = 1 << BCH_EXTENT_ENTRY_ptr; |
| __extent_entry_insert(k, pos, to_entry(&p->ptr)); |
| |
| if (p->has_ec) { |
| p->ec.type = 1 << BCH_EXTENT_ENTRY_stripe_ptr; |
| __extent_entry_insert(k, pos, to_entry(&p->ec)); |
| } |
| } |
| |
| static union bch_extent_entry *extent_entry_prev(struct bkey_ptrs ptrs, |
| union bch_extent_entry *entry) |
| { |
| union bch_extent_entry *i = ptrs.start; |
| |
| if (i == entry) |
| return NULL; |
| |
| while (extent_entry_next(i) != entry) |
| i = extent_entry_next(i); |
| return i; |
| } |
| |
| /* |
| * Returns pointer to the next entry after the one being dropped: |
| */ |
| void bch2_bkey_drop_ptr_noerror(struct bkey_s k, struct bch_extent_ptr *ptr) |
| { |
| struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); |
| union bch_extent_entry *entry = to_entry(ptr), *next; |
| bool drop_crc = true; |
| |
| if (k.k->type == KEY_TYPE_stripe) { |
| ptr->dev = BCH_SB_MEMBER_INVALID; |
| return; |
| } |
| |
| EBUG_ON(ptr < &ptrs.start->ptr || |
| ptr >= &ptrs.end->ptr); |
| EBUG_ON(ptr->type != 1 << BCH_EXTENT_ENTRY_ptr); |
| |
| for (next = extent_entry_next(entry); |
| next != ptrs.end; |
| next = extent_entry_next(next)) { |
| if (extent_entry_is_crc(next)) { |
| break; |
| } else if (extent_entry_is_ptr(next)) { |
| drop_crc = false; |
| break; |
| } |
| } |
| |
| extent_entry_drop(k, entry); |
| |
| while ((entry = extent_entry_prev(ptrs, entry))) { |
| if (extent_entry_is_ptr(entry)) |
| break; |
| |
| if ((extent_entry_is_crc(entry) && drop_crc) || |
| extent_entry_is_stripe_ptr(entry)) |
| extent_entry_drop(k, entry); |
| } |
| } |
| |
| void bch2_bkey_drop_ptr(struct bkey_s k, struct bch_extent_ptr *ptr) |
| { |
| if (k.k->type != KEY_TYPE_stripe) { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k.s_c); |
| const union bch_extent_entry *entry; |
| struct extent_ptr_decoded p; |
| |
| bkey_for_each_ptr_decode(k.k, ptrs, p, entry) |
| if (p.ptr.dev == ptr->dev && p.has_ec) { |
| ptr->dev = BCH_SB_MEMBER_INVALID; |
| return; |
| } |
| } |
| |
| bool have_dirty = bch2_bkey_dirty_devs(k.s_c).nr; |
| |
| bch2_bkey_drop_ptr_noerror(k, ptr); |
| |
| /* |
| * If we deleted all the dirty pointers and there's still cached |
| * pointers, we could set the cached pointers to dirty if they're not |
| * stale - but to do that correctly we'd need to grab an open_bucket |
| * reference so that we don't race with bucket reuse: |
| */ |
| if (have_dirty && |
| !bch2_bkey_dirty_devs(k.s_c).nr) { |
| k.k->type = KEY_TYPE_error; |
| set_bkey_val_u64s(k.k, 0); |
| } else if (!bch2_bkey_nr_ptrs(k.s_c)) { |
| k.k->type = KEY_TYPE_deleted; |
| set_bkey_val_u64s(k.k, 0); |
| } |
| } |
| |
| void bch2_bkey_drop_device(struct bkey_s k, unsigned dev) |
| { |
| bch2_bkey_drop_ptrs(k, ptr, ptr->dev == dev); |
| } |
| |
| void bch2_bkey_drop_device_noerror(struct bkey_s k, unsigned dev) |
| { |
| bch2_bkey_drop_ptrs_noerror(k, ptr, ptr->dev == dev); |
| } |
| |
| const struct bch_extent_ptr *bch2_bkey_has_device_c(struct bkey_s_c k, unsigned dev) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| |
| bkey_for_each_ptr(ptrs, ptr) |
| if (ptr->dev == dev) |
| return ptr; |
| |
| return NULL; |
| } |
| |
| bool bch2_bkey_has_target(struct bch_fs *c, struct bkey_s_c k, unsigned target) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| struct bch_dev *ca; |
| bool ret = false; |
| |
| rcu_read_lock(); |
| bkey_for_each_ptr(ptrs, ptr) |
| if (bch2_dev_in_target(c, ptr->dev, target) && |
| (ca = bch2_dev_rcu(c, ptr->dev)) && |
| (!ptr->cached || |
| !dev_ptr_stale_rcu(ca, ptr))) { |
| ret = true; |
| break; |
| } |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| bool bch2_bkey_matches_ptr(struct bch_fs *c, struct bkey_s_c k, |
| struct bch_extent_ptr m, u64 offset) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| const union bch_extent_entry *entry; |
| struct extent_ptr_decoded p; |
| |
| bkey_for_each_ptr_decode(k.k, ptrs, p, entry) |
| if (p.ptr.dev == m.dev && |
| p.ptr.gen == m.gen && |
| (s64) p.ptr.offset + p.crc.offset - bkey_start_offset(k.k) == |
| (s64) m.offset - offset) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * Returns true if two extents refer to the same data: |
| */ |
| bool bch2_extents_match(struct bkey_s_c k1, struct bkey_s_c k2) |
| { |
| if (k1.k->type != k2.k->type) |
| return false; |
| |
| if (bkey_extent_is_direct_data(k1.k)) { |
| struct bkey_ptrs_c ptrs1 = bch2_bkey_ptrs_c(k1); |
| struct bkey_ptrs_c ptrs2 = bch2_bkey_ptrs_c(k2); |
| const union bch_extent_entry *entry1, *entry2; |
| struct extent_ptr_decoded p1, p2; |
| |
| if (bkey_extent_is_unwritten(k1) != bkey_extent_is_unwritten(k2)) |
| return false; |
| |
| bkey_for_each_ptr_decode(k1.k, ptrs1, p1, entry1) |
| bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2) |
| if (p1.ptr.dev == p2.ptr.dev && |
| p1.ptr.gen == p2.ptr.gen && |
| |
| /* |
| * This checks that the two pointers point |
| * to the same region on disk - adjusting |
| * for the difference in where the extents |
| * start, since one may have been trimmed: |
| */ |
| (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) == |
| (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k) && |
| |
| /* |
| * This additionally checks that the |
| * extents overlap on disk, since the |
| * previous check may trigger spuriously |
| * when one extent is immediately partially |
| * overwritten with another extent (so that |
| * on disk they are adjacent) and |
| * compression is in use: |
| */ |
| ((p1.ptr.offset >= p2.ptr.offset && |
| p1.ptr.offset < p2.ptr.offset + p2.crc.compressed_size) || |
| (p2.ptr.offset >= p1.ptr.offset && |
| p2.ptr.offset < p1.ptr.offset + p1.crc.compressed_size))) |
| return true; |
| |
| return false; |
| } else { |
| /* KEY_TYPE_deleted, etc. */ |
| return true; |
| } |
| } |
| |
| struct bch_extent_ptr * |
| bch2_extent_has_ptr(struct bkey_s_c k1, struct extent_ptr_decoded p1, struct bkey_s k2) |
| { |
| struct bkey_ptrs ptrs2 = bch2_bkey_ptrs(k2); |
| union bch_extent_entry *entry2; |
| struct extent_ptr_decoded p2; |
| |
| bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2) |
| if (p1.ptr.dev == p2.ptr.dev && |
| p1.ptr.gen == p2.ptr.gen && |
| (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) == |
| (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k)) |
| return &entry2->ptr; |
| |
| return NULL; |
| } |
| |
| void bch2_extent_ptr_set_cached(struct bkey_s k, struct bch_extent_ptr *ptr) |
| { |
| struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); |
| union bch_extent_entry *entry; |
| union bch_extent_entry *ec = NULL; |
| |
| bkey_extent_entry_for_each(ptrs, entry) { |
| if (&entry->ptr == ptr) { |
| ptr->cached = true; |
| if (ec) |
| extent_entry_drop(k, ec); |
| return; |
| } |
| |
| if (extent_entry_is_stripe_ptr(entry)) |
| ec = entry; |
| else if (extent_entry_is_ptr(entry)) |
| ec = NULL; |
| } |
| |
| BUG(); |
| } |
| |
| /* |
| * bch_extent_normalize - clean up an extent, dropping stale pointers etc. |
| * |
| * Returns true if @k should be dropped entirely |
| * |
| * For existing keys, only called when btree nodes are being rewritten, not when |
| * they're merely being compacted/resorted in memory. |
| */ |
| bool bch2_extent_normalize(struct bch_fs *c, struct bkey_s k) |
| { |
| struct bch_dev *ca; |
| |
| rcu_read_lock(); |
| bch2_bkey_drop_ptrs(k, ptr, |
| ptr->cached && |
| (ca = bch2_dev_rcu(c, ptr->dev)) && |
| dev_ptr_stale_rcu(ca, ptr) > 0); |
| rcu_read_unlock(); |
| |
| return bkey_deleted(k.k); |
| } |
| |
| void bch2_extent_ptr_to_text(struct printbuf *out, struct bch_fs *c, const struct bch_extent_ptr *ptr) |
| { |
| out->atomic++; |
| rcu_read_lock(); |
| struct bch_dev *ca = bch2_dev_rcu_noerror(c, ptr->dev); |
| if (!ca) { |
| prt_printf(out, "ptr: %u:%llu gen %u%s", ptr->dev, |
| (u64) ptr->offset, ptr->gen, |
| ptr->cached ? " cached" : ""); |
| } else { |
| u32 offset; |
| u64 b = sector_to_bucket_and_offset(ca, ptr->offset, &offset); |
| |
| prt_printf(out, "ptr: %u:%llu:%u gen %u", |
| ptr->dev, b, offset, ptr->gen); |
| if (ca->mi.durability != 1) |
| prt_printf(out, " d=%u", ca->mi.durability); |
| if (ptr->cached) |
| prt_str(out, " cached"); |
| if (ptr->unwritten) |
| prt_str(out, " unwritten"); |
| int stale = dev_ptr_stale_rcu(ca, ptr); |
| if (stale > 0) |
| prt_printf(out, " stale"); |
| else if (stale) |
| prt_printf(out, " invalid"); |
| } |
| rcu_read_unlock(); |
| --out->atomic; |
| } |
| |
| void bch2_extent_crc_unpacked_to_text(struct printbuf *out, struct bch_extent_crc_unpacked *crc) |
| { |
| prt_printf(out, "crc: c_size %u size %u offset %u nonce %u csum ", |
| crc->compressed_size, |
| crc->uncompressed_size, |
| crc->offset, crc->nonce); |
| bch2_prt_csum_type(out, crc->csum_type); |
| prt_printf(out, " %0llx:%0llx ", crc->csum.hi, crc->csum.lo); |
| prt_str(out, " compress "); |
| bch2_prt_compression_type(out, crc->compression_type); |
| } |
| |
| void bch2_bkey_ptrs_to_text(struct printbuf *out, struct bch_fs *c, |
| struct bkey_s_c k) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| const union bch_extent_entry *entry; |
| bool first = true; |
| |
| if (c) |
| prt_printf(out, "durability: %u ", bch2_bkey_durability_safe(c, k)); |
| |
| bkey_extent_entry_for_each(ptrs, entry) { |
| if (!first) |
| prt_printf(out, " "); |
| |
| switch (__extent_entry_type(entry)) { |
| case BCH_EXTENT_ENTRY_ptr: |
| bch2_extent_ptr_to_text(out, c, entry_to_ptr(entry)); |
| break; |
| |
| case BCH_EXTENT_ENTRY_crc32: |
| case BCH_EXTENT_ENTRY_crc64: |
| case BCH_EXTENT_ENTRY_crc128: { |
| struct bch_extent_crc_unpacked crc = |
| bch2_extent_crc_unpack(k.k, entry_to_crc(entry)); |
| |
| bch2_extent_crc_unpacked_to_text(out, &crc); |
| break; |
| } |
| case BCH_EXTENT_ENTRY_stripe_ptr: { |
| const struct bch_extent_stripe_ptr *ec = &entry->stripe_ptr; |
| |
| prt_printf(out, "ec: idx %llu block %u", |
| (u64) ec->idx, ec->block); |
| break; |
| } |
| case BCH_EXTENT_ENTRY_rebalance: { |
| const struct bch_extent_rebalance *r = &entry->rebalance; |
| |
| prt_str(out, "rebalance: target "); |
| if (c) |
| bch2_target_to_text(out, c, r->target); |
| else |
| prt_printf(out, "%u", r->target); |
| prt_str(out, " compression "); |
| bch2_compression_opt_to_text(out, r->compression); |
| break; |
| } |
| default: |
| prt_printf(out, "(invalid extent entry %.16llx)", *((u64 *) entry)); |
| return; |
| } |
| |
| first = false; |
| } |
| } |
| |
| static int extent_ptr_validate(struct bch_fs *c, |
| struct bkey_s_c k, |
| enum bch_validate_flags flags, |
| const struct bch_extent_ptr *ptr, |
| unsigned size_ondisk, |
| bool metadata) |
| { |
| int ret = 0; |
| |
| /* bad pointers are repaired by check_fix_ptrs(): */ |
| rcu_read_lock(); |
| struct bch_dev *ca = bch2_dev_rcu_noerror(c, ptr->dev); |
| if (!ca) { |
| rcu_read_unlock(); |
| return 0; |
| } |
| u32 bucket_offset; |
| u64 bucket = sector_to_bucket_and_offset(ca, ptr->offset, &bucket_offset); |
| unsigned first_bucket = ca->mi.first_bucket; |
| u64 nbuckets = ca->mi.nbuckets; |
| unsigned bucket_size = ca->mi.bucket_size; |
| rcu_read_unlock(); |
| |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| bkey_for_each_ptr(ptrs, ptr2) |
| bkey_fsck_err_on(ptr != ptr2 && ptr->dev == ptr2->dev, |
| c, ptr_to_duplicate_device, |
| "multiple pointers to same device (%u)", ptr->dev); |
| |
| |
| bkey_fsck_err_on(bucket >= nbuckets, |
| c, ptr_after_last_bucket, |
| "pointer past last bucket (%llu > %llu)", bucket, nbuckets); |
| bkey_fsck_err_on(bucket < first_bucket, |
| c, ptr_before_first_bucket, |
| "pointer before first bucket (%llu < %u)", bucket, first_bucket); |
| bkey_fsck_err_on(bucket_offset + size_ondisk > bucket_size, |
| c, ptr_spans_multiple_buckets, |
| "pointer spans multiple buckets (%u + %u > %u)", |
| bucket_offset, size_ondisk, bucket_size); |
| fsck_err: |
| return ret; |
| } |
| |
| int bch2_bkey_ptrs_validate(struct bch_fs *c, struct bkey_s_c k, |
| enum bch_validate_flags flags) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| const union bch_extent_entry *entry; |
| struct bch_extent_crc_unpacked crc; |
| unsigned size_ondisk = k.k->size; |
| unsigned nonce = UINT_MAX; |
| unsigned nr_ptrs = 0; |
| bool have_written = false, have_unwritten = false, have_ec = false, crc_since_last_ptr = false; |
| int ret = 0; |
| |
| if (bkey_is_btree_ptr(k.k)) |
| size_ondisk = btree_sectors(c); |
| |
| bkey_extent_entry_for_each(ptrs, entry) { |
| bkey_fsck_err_on(__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX, |
| c, extent_ptrs_invalid_entry, |
| "invalid extent entry type (got %u, max %u)", |
| __extent_entry_type(entry), BCH_EXTENT_ENTRY_MAX); |
| |
| bkey_fsck_err_on(bkey_is_btree_ptr(k.k) && |
| !extent_entry_is_ptr(entry), |
| c, btree_ptr_has_non_ptr, |
| "has non ptr field"); |
| |
| switch (extent_entry_type(entry)) { |
| case BCH_EXTENT_ENTRY_ptr: |
| ret = extent_ptr_validate(c, k, flags, &entry->ptr, size_ondisk, false); |
| if (ret) |
| return ret; |
| |
| bkey_fsck_err_on(entry->ptr.cached && have_ec, |
| c, ptr_cached_and_erasure_coded, |
| "cached, erasure coded ptr"); |
| |
| if (!entry->ptr.unwritten) |
| have_written = true; |
| else |
| have_unwritten = true; |
| |
| have_ec = false; |
| crc_since_last_ptr = false; |
| nr_ptrs++; |
| break; |
| case BCH_EXTENT_ENTRY_crc32: |
| case BCH_EXTENT_ENTRY_crc64: |
| case BCH_EXTENT_ENTRY_crc128: |
| crc = bch2_extent_crc_unpack(k.k, entry_to_crc(entry)); |
| |
| bkey_fsck_err_on(crc.offset + crc.live_size > crc.uncompressed_size, |
| c, ptr_crc_uncompressed_size_too_small, |
| "checksum offset + key size > uncompressed size"); |
| bkey_fsck_err_on(!bch2_checksum_type_valid(c, crc.csum_type), |
| c, ptr_crc_csum_type_unknown, |
| "invalid checksum type"); |
| bkey_fsck_err_on(crc.compression_type >= BCH_COMPRESSION_TYPE_NR, |
| c, ptr_crc_compression_type_unknown, |
| "invalid compression type"); |
| |
| if (bch2_csum_type_is_encryption(crc.csum_type)) { |
| if (nonce == UINT_MAX) |
| nonce = crc.offset + crc.nonce; |
| else if (nonce != crc.offset + crc.nonce) |
| bkey_fsck_err(c, ptr_crc_nonce_mismatch, |
| "incorrect nonce"); |
| } |
| |
| bkey_fsck_err_on(crc_since_last_ptr, |
| c, ptr_crc_redundant, |
| "redundant crc entry"); |
| crc_since_last_ptr = true; |
| |
| bkey_fsck_err_on(crc_is_encoded(crc) && |
| (crc.uncompressed_size > c->opts.encoded_extent_max >> 9) && |
| (flags & (BCH_VALIDATE_write|BCH_VALIDATE_commit)), |
| c, ptr_crc_uncompressed_size_too_big, |
| "too large encoded extent"); |
| |
| size_ondisk = crc.compressed_size; |
| break; |
| case BCH_EXTENT_ENTRY_stripe_ptr: |
| bkey_fsck_err_on(have_ec, |
| c, ptr_stripe_redundant, |
| "redundant stripe entry"); |
| have_ec = true; |
| break; |
| case BCH_EXTENT_ENTRY_rebalance: { |
| /* |
| * this shouldn't be a fsck error, for forward |
| * compatibility; the rebalance code should just refetch |
| * the compression opt if it's unknown |
| */ |
| #if 0 |
| const struct bch_extent_rebalance *r = &entry->rebalance; |
| |
| if (!bch2_compression_opt_valid(r->compression)) { |
| struct bch_compression_opt opt = __bch2_compression_decode(r->compression); |
| prt_printf(err, "invalid compression opt %u:%u", |
| opt.type, opt.level); |
| return -BCH_ERR_invalid_bkey; |
| } |
| #endif |
| break; |
| } |
| } |
| } |
| |
| bkey_fsck_err_on(!nr_ptrs, |
| c, extent_ptrs_no_ptrs, |
| "no ptrs"); |
| bkey_fsck_err_on(nr_ptrs > BCH_BKEY_PTRS_MAX, |
| c, extent_ptrs_too_many_ptrs, |
| "too many ptrs: %u > %u", nr_ptrs, BCH_BKEY_PTRS_MAX); |
| bkey_fsck_err_on(have_written && have_unwritten, |
| c, extent_ptrs_written_and_unwritten, |
| "extent with unwritten and written ptrs"); |
| bkey_fsck_err_on(k.k->type != KEY_TYPE_extent && have_unwritten, |
| c, extent_ptrs_unwritten, |
| "has unwritten ptrs"); |
| bkey_fsck_err_on(crc_since_last_ptr, |
| c, extent_ptrs_redundant_crc, |
| "redundant crc entry"); |
| bkey_fsck_err_on(have_ec, |
| c, extent_ptrs_redundant_stripe, |
| "redundant stripe entry"); |
| fsck_err: |
| return ret; |
| } |
| |
| void bch2_ptr_swab(struct bkey_s k) |
| { |
| struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); |
| union bch_extent_entry *entry; |
| u64 *d; |
| |
| for (d = (u64 *) ptrs.start; |
| d != (u64 *) ptrs.end; |
| d++) |
| *d = swab64(*d); |
| |
| for (entry = ptrs.start; |
| entry < ptrs.end; |
| entry = extent_entry_next(entry)) { |
| switch (extent_entry_type(entry)) { |
| case BCH_EXTENT_ENTRY_ptr: |
| break; |
| case BCH_EXTENT_ENTRY_crc32: |
| entry->crc32.csum = swab32(entry->crc32.csum); |
| break; |
| case BCH_EXTENT_ENTRY_crc64: |
| entry->crc64.csum_hi = swab16(entry->crc64.csum_hi); |
| entry->crc64.csum_lo = swab64(entry->crc64.csum_lo); |
| break; |
| case BCH_EXTENT_ENTRY_crc128: |
| entry->crc128.csum.hi = (__force __le64) |
| swab64((__force u64) entry->crc128.csum.hi); |
| entry->crc128.csum.lo = (__force __le64) |
| swab64((__force u64) entry->crc128.csum.lo); |
| break; |
| case BCH_EXTENT_ENTRY_stripe_ptr: |
| break; |
| case BCH_EXTENT_ENTRY_rebalance: |
| break; |
| } |
| } |
| } |
| |
| const struct bch_extent_rebalance *bch2_bkey_rebalance_opts(struct bkey_s_c k) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| const union bch_extent_entry *entry; |
| |
| bkey_extent_entry_for_each(ptrs, entry) |
| if (__extent_entry_type(entry) == BCH_EXTENT_ENTRY_rebalance) |
| return &entry->rebalance; |
| |
| return NULL; |
| } |
| |
| unsigned bch2_bkey_ptrs_need_rebalance(struct bch_fs *c, struct bkey_s_c k, |
| unsigned target, unsigned compression) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| unsigned rewrite_ptrs = 0; |
| |
| if (compression) { |
| unsigned compression_type = bch2_compression_opt_to_type(compression); |
| const union bch_extent_entry *entry; |
| struct extent_ptr_decoded p; |
| unsigned i = 0; |
| |
| bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { |
| if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible || |
| p.ptr.unwritten) { |
| rewrite_ptrs = 0; |
| goto incompressible; |
| } |
| |
| if (!p.ptr.cached && p.crc.compression_type != compression_type) |
| rewrite_ptrs |= 1U << i; |
| i++; |
| } |
| } |
| incompressible: |
| if (target && bch2_target_accepts_data(c, BCH_DATA_user, target)) { |
| unsigned i = 0; |
| |
| bkey_for_each_ptr(ptrs, ptr) { |
| if (!ptr->cached && !bch2_dev_in_target(c, ptr->dev, target)) |
| rewrite_ptrs |= 1U << i; |
| i++; |
| } |
| } |
| |
| return rewrite_ptrs; |
| } |
| |
| bool bch2_bkey_needs_rebalance(struct bch_fs *c, struct bkey_s_c k) |
| { |
| const struct bch_extent_rebalance *r = bch2_bkey_rebalance_opts(k); |
| |
| /* |
| * If it's an indirect extent, we don't delete the rebalance entry when |
| * done so that we know what options were applied - check if it still |
| * needs work done: |
| */ |
| if (r && |
| k.k->type == KEY_TYPE_reflink_v && |
| !bch2_bkey_ptrs_need_rebalance(c, k, r->target, r->compression)) |
| r = NULL; |
| |
| return r != NULL; |
| } |
| |
| static u64 __bch2_bkey_sectors_need_rebalance(struct bch_fs *c, struct bkey_s_c k, |
| unsigned target, unsigned compression) |
| { |
| struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); |
| const union bch_extent_entry *entry; |
| struct extent_ptr_decoded p; |
| u64 sectors = 0; |
| |
| if (compression) { |
| unsigned compression_type = bch2_compression_opt_to_type(compression); |
| |
| bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { |
| if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible || |
| p.ptr.unwritten) { |
| sectors = 0; |
| goto incompressible; |
| } |
| |
| if (!p.ptr.cached && p.crc.compression_type != compression_type) |
| sectors += p.crc.compressed_size; |
| } |
| } |
| incompressible: |
| if (target && bch2_target_accepts_data(c, BCH_DATA_user, target)) { |
| bkey_for_each_ptr_decode(k.k, ptrs, p, entry) |
| if (!p.ptr.cached && !bch2_dev_in_target(c, p.ptr.dev, target)) |
| sectors += p.crc.compressed_size; |
| } |
| |
| return sectors; |
| } |
| |
| u64 bch2_bkey_sectors_need_rebalance(struct bch_fs *c, struct bkey_s_c k) |
| { |
| const struct bch_extent_rebalance *r = bch2_bkey_rebalance_opts(k); |
| |
| return r ? __bch2_bkey_sectors_need_rebalance(c, k, r->target, r->compression) : 0; |
| } |
| |
| int bch2_bkey_set_needs_rebalance(struct bch_fs *c, struct bkey_i *_k, |
| struct bch_io_opts *opts) |
| { |
| struct bkey_s k = bkey_i_to_s(_k); |
| struct bch_extent_rebalance *r; |
| unsigned target = opts->background_target; |
| unsigned compression = background_compression(*opts); |
| bool needs_rebalance; |
| |
| if (!bkey_extent_is_direct_data(k.k)) |
| return 0; |
| |
| /* get existing rebalance entry: */ |
| r = (struct bch_extent_rebalance *) bch2_bkey_rebalance_opts(k.s_c); |
| if (r) { |
| if (k.k->type == KEY_TYPE_reflink_v) { |
| /* |
| * indirect extents: existing options take precedence, |
| * so that we don't move extents back and forth if |
| * they're referenced by different inodes with different |
| * options: |
| */ |
| if (r->target) |
| target = r->target; |
| if (r->compression) |
| compression = r->compression; |
| } |
| |
| r->target = target; |
| r->compression = compression; |
| } |
| |
| needs_rebalance = bch2_bkey_ptrs_need_rebalance(c, k.s_c, target, compression); |
| |
| if (needs_rebalance && !r) { |
| union bch_extent_entry *new = bkey_val_end(k); |
| |
| new->rebalance.type = 1U << BCH_EXTENT_ENTRY_rebalance; |
| new->rebalance.compression = compression; |
| new->rebalance.target = target; |
| new->rebalance.unused = 0; |
| k.k->u64s += extent_entry_u64s(new); |
| } else if (!needs_rebalance && r && k.k->type != KEY_TYPE_reflink_v) { |
| /* |
| * For indirect extents, don't delete the rebalance entry when |
| * we're finished so that we know we specifically moved it or |
| * compressed it to its current location/compression type |
| */ |
| extent_entry_drop(k, (union bch_extent_entry *) r); |
| } |
| |
| return 0; |
| } |
| |
| /* Generic extent code: */ |
| |
| int bch2_cut_front_s(struct bpos where, struct bkey_s k) |
| { |
| unsigned new_val_u64s = bkey_val_u64s(k.k); |
| int val_u64s_delta; |
| u64 sub; |
| |
| if (bkey_le(where, bkey_start_pos(k.k))) |
| return 0; |
| |
| EBUG_ON(bkey_gt(where, k.k->p)); |
| |
| sub = where.offset - bkey_start_offset(k.k); |
| |
| k.k->size -= sub; |
| |
| if (!k.k->size) { |
| k.k->type = KEY_TYPE_deleted; |
| new_val_u64s = 0; |
| } |
| |
| switch (k.k->type) { |
| case KEY_TYPE_extent: |
| case KEY_TYPE_reflink_v: { |
| struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); |
| union bch_extent_entry *entry; |
| bool seen_crc = false; |
| |
| bkey_extent_entry_for_each(ptrs, entry) { |
| switch (extent_entry_type(entry)) { |
| case BCH_EXTENT_ENTRY_ptr: |
| if (!seen_crc) |
| entry->ptr.offset += sub; |
| break; |
| case BCH_EXTENT_ENTRY_crc32: |
| entry->crc32.offset += sub; |
| break; |
| case BCH_EXTENT_ENTRY_crc64: |
| entry->crc64.offset += sub; |
| break; |
| case BCH_EXTENT_ENTRY_crc128: |
| entry->crc128.offset += sub; |
| break; |
| case BCH_EXTENT_ENTRY_stripe_ptr: |
| break; |
| case BCH_EXTENT_ENTRY_rebalance: |
| break; |
| } |
| |
| if (extent_entry_is_crc(entry)) |
| seen_crc = true; |
| } |
| |
| break; |
| } |
| case KEY_TYPE_reflink_p: { |
| struct bkey_s_reflink_p p = bkey_s_to_reflink_p(k); |
| |
| le64_add_cpu(&p.v->idx, sub); |
| break; |
| } |
| case KEY_TYPE_inline_data: |
| case KEY_TYPE_indirect_inline_data: { |
| void *p = bkey_inline_data_p(k); |
| unsigned bytes = bkey_inline_data_bytes(k.k); |
| |
| sub = min_t(u64, sub << 9, bytes); |
| |
| memmove(p, p + sub, bytes - sub); |
| |
| new_val_u64s -= sub >> 3; |
| break; |
| } |
| } |
| |
| val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s; |
| BUG_ON(val_u64s_delta < 0); |
| |
| set_bkey_val_u64s(k.k, new_val_u64s); |
| memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64)); |
| return -val_u64s_delta; |
| } |
| |
| int bch2_cut_back_s(struct bpos where, struct bkey_s k) |
| { |
| unsigned new_val_u64s = bkey_val_u64s(k.k); |
| int val_u64s_delta; |
| u64 len = 0; |
| |
| if (bkey_ge(where, k.k->p)) |
| return 0; |
| |
| EBUG_ON(bkey_lt(where, bkey_start_pos(k.k))); |
| |
| len = where.offset - bkey_start_offset(k.k); |
| |
| k.k->p.offset = where.offset; |
| k.k->size = len; |
| |
| if (!len) { |
| k.k->type = KEY_TYPE_deleted; |
| new_val_u64s = 0; |
| } |
| |
| switch (k.k->type) { |
| case KEY_TYPE_inline_data: |
| case KEY_TYPE_indirect_inline_data: |
| new_val_u64s = (bkey_inline_data_offset(k.k) + |
| min(bkey_inline_data_bytes(k.k), k.k->size << 9)) >> 3; |
| break; |
| } |
| |
| val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s; |
| BUG_ON(val_u64s_delta < 0); |
| |
| set_bkey_val_u64s(k.k, new_val_u64s); |
| memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64)); |
| return -val_u64s_delta; |
| } |