| /* |
| * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. |
| * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/module.h> |
| |
| #include <net/tcp.h> |
| #include <net/inet_common.h> |
| #include <linux/highmem.h> |
| #include <linux/netdevice.h> |
| #include <linux/sched/signal.h> |
| #include <linux/inetdevice.h> |
| #include <linux/inet_diag.h> |
| |
| #include <net/snmp.h> |
| #include <net/tls.h> |
| #include <net/tls_toe.h> |
| |
| #include "tls.h" |
| |
| MODULE_AUTHOR("Mellanox Technologies"); |
| MODULE_DESCRIPTION("Transport Layer Security Support"); |
| MODULE_LICENSE("Dual BSD/GPL"); |
| MODULE_ALIAS_TCP_ULP("tls"); |
| |
| enum { |
| TLSV4, |
| TLSV6, |
| TLS_NUM_PROTS, |
| }; |
| |
| #define CHECK_CIPHER_DESC(cipher,ci) \ |
| static_assert(cipher ## _IV_SIZE <= TLS_MAX_IV_SIZE); \ |
| static_assert(cipher ## _SALT_SIZE <= TLS_MAX_SALT_SIZE); \ |
| static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE); \ |
| static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE); \ |
| static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE); \ |
| static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE); \ |
| static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE); \ |
| static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE); |
| |
| #define __CIPHER_DESC(ci) \ |
| .iv_offset = offsetof(struct ci, iv), \ |
| .key_offset = offsetof(struct ci, key), \ |
| .salt_offset = offsetof(struct ci, salt), \ |
| .rec_seq_offset = offsetof(struct ci, rec_seq), \ |
| .crypto_info = sizeof(struct ci) |
| |
| #define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \ |
| .nonce = cipher ## _IV_SIZE, \ |
| .iv = cipher ## _IV_SIZE, \ |
| .key = cipher ## _KEY_SIZE, \ |
| .salt = cipher ## _SALT_SIZE, \ |
| .tag = cipher ## _TAG_SIZE, \ |
| .rec_seq = cipher ## _REC_SEQ_SIZE, \ |
| .cipher_name = algname, \ |
| .offloadable = _offloadable, \ |
| __CIPHER_DESC(ci), \ |
| } |
| |
| #define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \ |
| .nonce = 0, \ |
| .iv = cipher ## _IV_SIZE, \ |
| .key = cipher ## _KEY_SIZE, \ |
| .salt = cipher ## _SALT_SIZE, \ |
| .tag = cipher ## _TAG_SIZE, \ |
| .rec_seq = cipher ## _REC_SEQ_SIZE, \ |
| .cipher_name = algname, \ |
| .offloadable = _offloadable, \ |
| __CIPHER_DESC(ci), \ |
| } |
| |
| const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = { |
| CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true), |
| CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true), |
| CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false), |
| CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false), |
| CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false), |
| CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false), |
| CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false), |
| CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false), |
| }; |
| |
| CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128); |
| CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256); |
| CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128); |
| CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305); |
| CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm); |
| CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm); |
| CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128); |
| CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256); |
| |
| static const struct proto *saved_tcpv6_prot; |
| static DEFINE_MUTEX(tcpv6_prot_mutex); |
| static const struct proto *saved_tcpv4_prot; |
| static DEFINE_MUTEX(tcpv4_prot_mutex); |
| static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; |
| static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG]; |
| static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], |
| const struct proto *base); |
| |
| void update_sk_prot(struct sock *sk, struct tls_context *ctx) |
| { |
| int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; |
| |
| WRITE_ONCE(sk->sk_prot, |
| &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]); |
| WRITE_ONCE(sk->sk_socket->ops, |
| &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]); |
| } |
| |
| int wait_on_pending_writer(struct sock *sk, long *timeo) |
| { |
| DEFINE_WAIT_FUNC(wait, woken_wake_function); |
| int ret, rc = 0; |
| |
| add_wait_queue(sk_sleep(sk), &wait); |
| while (1) { |
| if (!*timeo) { |
| rc = -EAGAIN; |
| break; |
| } |
| |
| if (signal_pending(current)) { |
| rc = sock_intr_errno(*timeo); |
| break; |
| } |
| |
| ret = sk_wait_event(sk, timeo, |
| !READ_ONCE(sk->sk_write_pending), &wait); |
| if (ret) { |
| if (ret < 0) |
| rc = ret; |
| break; |
| } |
| } |
| remove_wait_queue(sk_sleep(sk), &wait); |
| return rc; |
| } |
| |
| int tls_push_sg(struct sock *sk, |
| struct tls_context *ctx, |
| struct scatterlist *sg, |
| u16 first_offset, |
| int flags) |
| { |
| struct bio_vec bvec; |
| struct msghdr msg = { |
| .msg_flags = MSG_SPLICE_PAGES | flags, |
| }; |
| int ret = 0; |
| struct page *p; |
| size_t size; |
| int offset = first_offset; |
| |
| size = sg->length - offset; |
| offset += sg->offset; |
| |
| ctx->splicing_pages = true; |
| while (1) { |
| /* is sending application-limited? */ |
| tcp_rate_check_app_limited(sk); |
| p = sg_page(sg); |
| retry: |
| bvec_set_page(&bvec, p, size, offset); |
| iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size); |
| |
| ret = tcp_sendmsg_locked(sk, &msg, size); |
| |
| if (ret != size) { |
| if (ret > 0) { |
| offset += ret; |
| size -= ret; |
| goto retry; |
| } |
| |
| offset -= sg->offset; |
| ctx->partially_sent_offset = offset; |
| ctx->partially_sent_record = (void *)sg; |
| ctx->splicing_pages = false; |
| return ret; |
| } |
| |
| put_page(p); |
| sk_mem_uncharge(sk, sg->length); |
| sg = sg_next(sg); |
| if (!sg) |
| break; |
| |
| offset = sg->offset; |
| size = sg->length; |
| } |
| |
| ctx->splicing_pages = false; |
| |
| return 0; |
| } |
| |
| static int tls_handle_open_record(struct sock *sk, int flags) |
| { |
| struct tls_context *ctx = tls_get_ctx(sk); |
| |
| if (tls_is_pending_open_record(ctx)) |
| return ctx->push_pending_record(sk, flags); |
| |
| return 0; |
| } |
| |
| int tls_process_cmsg(struct sock *sk, struct msghdr *msg, |
| unsigned char *record_type) |
| { |
| struct cmsghdr *cmsg; |
| int rc = -EINVAL; |
| |
| for_each_cmsghdr(cmsg, msg) { |
| if (!CMSG_OK(msg, cmsg)) |
| return -EINVAL; |
| if (cmsg->cmsg_level != SOL_TLS) |
| continue; |
| |
| switch (cmsg->cmsg_type) { |
| case TLS_SET_RECORD_TYPE: |
| if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type))) |
| return -EINVAL; |
| |
| if (msg->msg_flags & MSG_MORE) |
| return -EINVAL; |
| |
| rc = tls_handle_open_record(sk, msg->msg_flags); |
| if (rc) |
| return rc; |
| |
| *record_type = *(unsigned char *)CMSG_DATA(cmsg); |
| rc = 0; |
| break; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| return rc; |
| } |
| |
| int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, |
| int flags) |
| { |
| struct scatterlist *sg; |
| u16 offset; |
| |
| sg = ctx->partially_sent_record; |
| offset = ctx->partially_sent_offset; |
| |
| ctx->partially_sent_record = NULL; |
| return tls_push_sg(sk, ctx, sg, offset, flags); |
| } |
| |
| void tls_free_partial_record(struct sock *sk, struct tls_context *ctx) |
| { |
| struct scatterlist *sg; |
| |
| for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) { |
| put_page(sg_page(sg)); |
| sk_mem_uncharge(sk, sg->length); |
| } |
| ctx->partially_sent_record = NULL; |
| } |
| |
| static void tls_write_space(struct sock *sk) |
| { |
| struct tls_context *ctx = tls_get_ctx(sk); |
| |
| /* If splicing_pages call lower protocol write space handler |
| * to ensure we wake up any waiting operations there. For example |
| * if splicing pages where to call sk_wait_event. |
| */ |
| if (ctx->splicing_pages) { |
| ctx->sk_write_space(sk); |
| return; |
| } |
| |
| #ifdef CONFIG_TLS_DEVICE |
| if (ctx->tx_conf == TLS_HW) |
| tls_device_write_space(sk, ctx); |
| else |
| #endif |
| tls_sw_write_space(sk, ctx); |
| |
| ctx->sk_write_space(sk); |
| } |
| |
| /** |
| * tls_ctx_free() - free TLS ULP context |
| * @sk: socket to with @ctx is attached |
| * @ctx: TLS context structure |
| * |
| * Free TLS context. If @sk is %NULL caller guarantees that the socket |
| * to which @ctx was attached has no outstanding references. |
| */ |
| void tls_ctx_free(struct sock *sk, struct tls_context *ctx) |
| { |
| if (!ctx) |
| return; |
| |
| memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send)); |
| memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv)); |
| mutex_destroy(&ctx->tx_lock); |
| |
| if (sk) |
| kfree_rcu(ctx, rcu); |
| else |
| kfree(ctx); |
| } |
| |
| static void tls_sk_proto_cleanup(struct sock *sk, |
| struct tls_context *ctx, long timeo) |
| { |
| if (unlikely(sk->sk_write_pending) && |
| !wait_on_pending_writer(sk, &timeo)) |
| tls_handle_open_record(sk, 0); |
| |
| /* We need these for tls_sw_fallback handling of other packets */ |
| if (ctx->tx_conf == TLS_SW) { |
| tls_sw_release_resources_tx(sk); |
| TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); |
| } else if (ctx->tx_conf == TLS_HW) { |
| tls_device_free_resources_tx(sk); |
| TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); |
| } |
| |
| if (ctx->rx_conf == TLS_SW) { |
| tls_sw_release_resources_rx(sk); |
| TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); |
| } else if (ctx->rx_conf == TLS_HW) { |
| tls_device_offload_cleanup_rx(sk); |
| TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); |
| } |
| } |
| |
| static void tls_sk_proto_close(struct sock *sk, long timeout) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| struct tls_context *ctx = tls_get_ctx(sk); |
| long timeo = sock_sndtimeo(sk, 0); |
| bool free_ctx; |
| |
| if (ctx->tx_conf == TLS_SW) |
| tls_sw_cancel_work_tx(ctx); |
| |
| lock_sock(sk); |
| free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW; |
| |
| if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE) |
| tls_sk_proto_cleanup(sk, ctx, timeo); |
| |
| write_lock_bh(&sk->sk_callback_lock); |
| if (free_ctx) |
| rcu_assign_pointer(icsk->icsk_ulp_data, NULL); |
| WRITE_ONCE(sk->sk_prot, ctx->sk_proto); |
| if (sk->sk_write_space == tls_write_space) |
| sk->sk_write_space = ctx->sk_write_space; |
| write_unlock_bh(&sk->sk_callback_lock); |
| release_sock(sk); |
| if (ctx->tx_conf == TLS_SW) |
| tls_sw_free_ctx_tx(ctx); |
| if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) |
| tls_sw_strparser_done(ctx); |
| if (ctx->rx_conf == TLS_SW) |
| tls_sw_free_ctx_rx(ctx); |
| ctx->sk_proto->close(sk, timeout); |
| |
| if (free_ctx) |
| tls_ctx_free(sk, ctx); |
| } |
| |
| static __poll_t tls_sk_poll(struct file *file, struct socket *sock, |
| struct poll_table_struct *wait) |
| { |
| struct tls_sw_context_rx *ctx; |
| struct tls_context *tls_ctx; |
| struct sock *sk = sock->sk; |
| struct sk_psock *psock; |
| __poll_t mask = 0; |
| u8 shutdown; |
| int state; |
| |
| mask = tcp_poll(file, sock, wait); |
| |
| state = inet_sk_state_load(sk); |
| shutdown = READ_ONCE(sk->sk_shutdown); |
| if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN)) |
| return mask; |
| |
| tls_ctx = tls_get_ctx(sk); |
| ctx = tls_sw_ctx_rx(tls_ctx); |
| psock = sk_psock_get(sk); |
| |
| if (skb_queue_empty_lockless(&ctx->rx_list) && |
| !tls_strp_msg_ready(ctx) && |
| sk_psock_queue_empty(psock)) |
| mask &= ~(EPOLLIN | EPOLLRDNORM); |
| |
| if (psock) |
| sk_psock_put(sk, psock); |
| |
| return mask; |
| } |
| |
| static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval, |
| int __user *optlen, int tx) |
| { |
| int rc = 0; |
| const struct tls_cipher_desc *cipher_desc; |
| struct tls_context *ctx = tls_get_ctx(sk); |
| struct tls_crypto_info *crypto_info; |
| struct cipher_context *cctx; |
| int len; |
| |
| if (get_user(len, optlen)) |
| return -EFAULT; |
| |
| if (!optval || (len < sizeof(*crypto_info))) { |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| if (!ctx) { |
| rc = -EBUSY; |
| goto out; |
| } |
| |
| /* get user crypto info */ |
| if (tx) { |
| crypto_info = &ctx->crypto_send.info; |
| cctx = &ctx->tx; |
| } else { |
| crypto_info = &ctx->crypto_recv.info; |
| cctx = &ctx->rx; |
| } |
| |
| if (!TLS_CRYPTO_INFO_READY(crypto_info)) { |
| rc = -EBUSY; |
| goto out; |
| } |
| |
| if (len == sizeof(*crypto_info)) { |
| if (copy_to_user(optval, crypto_info, sizeof(*crypto_info))) |
| rc = -EFAULT; |
| goto out; |
| } |
| |
| cipher_desc = get_cipher_desc(crypto_info->cipher_type); |
| if (!cipher_desc || len != cipher_desc->crypto_info) { |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| memcpy(crypto_info_iv(crypto_info, cipher_desc), |
| cctx->iv + cipher_desc->salt, cipher_desc->iv); |
| memcpy(crypto_info_rec_seq(crypto_info, cipher_desc), |
| cctx->rec_seq, cipher_desc->rec_seq); |
| |
| if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info)) |
| rc = -EFAULT; |
| |
| out: |
| return rc; |
| } |
| |
| static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval, |
| int __user *optlen) |
| { |
| struct tls_context *ctx = tls_get_ctx(sk); |
| unsigned int value; |
| int len; |
| |
| if (get_user(len, optlen)) |
| return -EFAULT; |
| |
| if (len != sizeof(value)) |
| return -EINVAL; |
| |
| value = ctx->zerocopy_sendfile; |
| if (copy_to_user(optval, &value, sizeof(value))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval, |
| int __user *optlen) |
| { |
| struct tls_context *ctx = tls_get_ctx(sk); |
| int value, len; |
| |
| if (ctx->prot_info.version != TLS_1_3_VERSION) |
| return -EINVAL; |
| |
| if (get_user(len, optlen)) |
| return -EFAULT; |
| if (len < sizeof(value)) |
| return -EINVAL; |
| |
| value = -EINVAL; |
| if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) |
| value = ctx->rx_no_pad; |
| if (value < 0) |
| return value; |
| |
| if (put_user(sizeof(value), optlen)) |
| return -EFAULT; |
| if (copy_to_user(optval, &value, sizeof(value))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int do_tls_getsockopt(struct sock *sk, int optname, |
| char __user *optval, int __user *optlen) |
| { |
| int rc = 0; |
| |
| lock_sock(sk); |
| |
| switch (optname) { |
| case TLS_TX: |
| case TLS_RX: |
| rc = do_tls_getsockopt_conf(sk, optval, optlen, |
| optname == TLS_TX); |
| break; |
| case TLS_TX_ZEROCOPY_RO: |
| rc = do_tls_getsockopt_tx_zc(sk, optval, optlen); |
| break; |
| case TLS_RX_EXPECT_NO_PAD: |
| rc = do_tls_getsockopt_no_pad(sk, optval, optlen); |
| break; |
| default: |
| rc = -ENOPROTOOPT; |
| break; |
| } |
| |
| release_sock(sk); |
| |
| return rc; |
| } |
| |
| static int tls_getsockopt(struct sock *sk, int level, int optname, |
| char __user *optval, int __user *optlen) |
| { |
| struct tls_context *ctx = tls_get_ctx(sk); |
| |
| if (level != SOL_TLS) |
| return ctx->sk_proto->getsockopt(sk, level, |
| optname, optval, optlen); |
| |
| return do_tls_getsockopt(sk, optname, optval, optlen); |
| } |
| |
| static int validate_crypto_info(const struct tls_crypto_info *crypto_info, |
| const struct tls_crypto_info *alt_crypto_info) |
| { |
| if (crypto_info->version != TLS_1_2_VERSION && |
| crypto_info->version != TLS_1_3_VERSION) |
| return -EINVAL; |
| |
| switch (crypto_info->cipher_type) { |
| case TLS_CIPHER_ARIA_GCM_128: |
| case TLS_CIPHER_ARIA_GCM_256: |
| if (crypto_info->version != TLS_1_2_VERSION) |
| return -EINVAL; |
| break; |
| } |
| |
| /* Ensure that TLS version and ciphers are same in both directions */ |
| if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) { |
| if (alt_crypto_info->version != crypto_info->version || |
| alt_crypto_info->cipher_type != crypto_info->cipher_type) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval, |
| unsigned int optlen, int tx) |
| { |
| struct tls_crypto_info *crypto_info; |
| struct tls_crypto_info *alt_crypto_info; |
| struct tls_context *ctx = tls_get_ctx(sk); |
| const struct tls_cipher_desc *cipher_desc; |
| union tls_crypto_context *crypto_ctx; |
| int rc = 0; |
| int conf; |
| |
| if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) |
| return -EINVAL; |
| |
| if (tx) { |
| crypto_ctx = &ctx->crypto_send; |
| alt_crypto_info = &ctx->crypto_recv.info; |
| } else { |
| crypto_ctx = &ctx->crypto_recv; |
| alt_crypto_info = &ctx->crypto_send.info; |
| } |
| |
| crypto_info = &crypto_ctx->info; |
| |
| /* Currently we don't support set crypto info more than one time */ |
| if (TLS_CRYPTO_INFO_READY(crypto_info)) |
| return -EBUSY; |
| |
| rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info)); |
| if (rc) { |
| rc = -EFAULT; |
| goto err_crypto_info; |
| } |
| |
| rc = validate_crypto_info(crypto_info, alt_crypto_info); |
| if (rc) |
| goto err_crypto_info; |
| |
| cipher_desc = get_cipher_desc(crypto_info->cipher_type); |
| if (!cipher_desc) { |
| rc = -EINVAL; |
| goto err_crypto_info; |
| } |
| |
| if (optlen != cipher_desc->crypto_info) { |
| rc = -EINVAL; |
| goto err_crypto_info; |
| } |
| |
| rc = copy_from_sockptr_offset(crypto_info + 1, optval, |
| sizeof(*crypto_info), |
| optlen - sizeof(*crypto_info)); |
| if (rc) { |
| rc = -EFAULT; |
| goto err_crypto_info; |
| } |
| |
| if (tx) { |
| rc = tls_set_device_offload(sk); |
| conf = TLS_HW; |
| if (!rc) { |
| TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE); |
| TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE); |
| } else { |
| rc = tls_set_sw_offload(sk, 1); |
| if (rc) |
| goto err_crypto_info; |
| TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW); |
| TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW); |
| conf = TLS_SW; |
| } |
| } else { |
| rc = tls_set_device_offload_rx(sk, ctx); |
| conf = TLS_HW; |
| if (!rc) { |
| TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE); |
| TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE); |
| } else { |
| rc = tls_set_sw_offload(sk, 0); |
| if (rc) |
| goto err_crypto_info; |
| TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW); |
| TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW); |
| conf = TLS_SW; |
| } |
| tls_sw_strparser_arm(sk, ctx); |
| } |
| |
| if (tx) |
| ctx->tx_conf = conf; |
| else |
| ctx->rx_conf = conf; |
| update_sk_prot(sk, ctx); |
| if (tx) { |
| ctx->sk_write_space = sk->sk_write_space; |
| sk->sk_write_space = tls_write_space; |
| } else { |
| struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx); |
| |
| tls_strp_check_rcv(&rx_ctx->strp); |
| } |
| return 0; |
| |
| err_crypto_info: |
| memzero_explicit(crypto_ctx, sizeof(*crypto_ctx)); |
| return rc; |
| } |
| |
| static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval, |
| unsigned int optlen) |
| { |
| struct tls_context *ctx = tls_get_ctx(sk); |
| unsigned int value; |
| |
| if (sockptr_is_null(optval) || optlen != sizeof(value)) |
| return -EINVAL; |
| |
| if (copy_from_sockptr(&value, optval, sizeof(value))) |
| return -EFAULT; |
| |
| if (value > 1) |
| return -EINVAL; |
| |
| ctx->zerocopy_sendfile = value; |
| |
| return 0; |
| } |
| |
| static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval, |
| unsigned int optlen) |
| { |
| struct tls_context *ctx = tls_get_ctx(sk); |
| u32 val; |
| int rc; |
| |
| if (ctx->prot_info.version != TLS_1_3_VERSION || |
| sockptr_is_null(optval) || optlen < sizeof(val)) |
| return -EINVAL; |
| |
| rc = copy_from_sockptr(&val, optval, sizeof(val)); |
| if (rc) |
| return -EFAULT; |
| if (val > 1) |
| return -EINVAL; |
| rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val)); |
| if (rc < 1) |
| return rc == 0 ? -EINVAL : rc; |
| |
| lock_sock(sk); |
| rc = -EINVAL; |
| if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) { |
| ctx->rx_no_pad = val; |
| tls_update_rx_zc_capable(ctx); |
| rc = 0; |
| } |
| release_sock(sk); |
| |
| return rc; |
| } |
| |
| static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval, |
| unsigned int optlen) |
| { |
| int rc = 0; |
| |
| switch (optname) { |
| case TLS_TX: |
| case TLS_RX: |
| lock_sock(sk); |
| rc = do_tls_setsockopt_conf(sk, optval, optlen, |
| optname == TLS_TX); |
| release_sock(sk); |
| break; |
| case TLS_TX_ZEROCOPY_RO: |
| lock_sock(sk); |
| rc = do_tls_setsockopt_tx_zc(sk, optval, optlen); |
| release_sock(sk); |
| break; |
| case TLS_RX_EXPECT_NO_PAD: |
| rc = do_tls_setsockopt_no_pad(sk, optval, optlen); |
| break; |
| default: |
| rc = -ENOPROTOOPT; |
| break; |
| } |
| return rc; |
| } |
| |
| static int tls_setsockopt(struct sock *sk, int level, int optname, |
| sockptr_t optval, unsigned int optlen) |
| { |
| struct tls_context *ctx = tls_get_ctx(sk); |
| |
| if (level != SOL_TLS) |
| return ctx->sk_proto->setsockopt(sk, level, optname, optval, |
| optlen); |
| |
| return do_tls_setsockopt(sk, optname, optval, optlen); |
| } |
| |
| struct tls_context *tls_ctx_create(struct sock *sk) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| struct tls_context *ctx; |
| |
| ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); |
| if (!ctx) |
| return NULL; |
| |
| mutex_init(&ctx->tx_lock); |
| ctx->sk_proto = READ_ONCE(sk->sk_prot); |
| ctx->sk = sk; |
| /* Release semantic of rcu_assign_pointer() ensures that |
| * ctx->sk_proto is visible before changing sk->sk_prot in |
| * update_sk_prot(), and prevents reading uninitialized value in |
| * tls_{getsockopt, setsockopt}. Note that we do not need a |
| * read barrier in tls_{getsockopt,setsockopt} as there is an |
| * address dependency between sk->sk_proto->{getsockopt,setsockopt} |
| * and ctx->sk_proto. |
| */ |
| rcu_assign_pointer(icsk->icsk_ulp_data, ctx); |
| return ctx; |
| } |
| |
| static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG], |
| const struct proto_ops *base) |
| { |
| ops[TLS_BASE][TLS_BASE] = *base; |
| |
| ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; |
| ops[TLS_SW ][TLS_BASE].splice_eof = tls_sw_splice_eof; |
| |
| ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE]; |
| ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read; |
| ops[TLS_BASE][TLS_SW ].poll = tls_sk_poll; |
| ops[TLS_BASE][TLS_SW ].read_sock = tls_sw_read_sock; |
| |
| ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE]; |
| ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read; |
| ops[TLS_SW ][TLS_SW ].poll = tls_sk_poll; |
| ops[TLS_SW ][TLS_SW ].read_sock = tls_sw_read_sock; |
| |
| #ifdef CONFIG_TLS_DEVICE |
| ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE]; |
| |
| ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ]; |
| |
| ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ]; |
| |
| ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ]; |
| |
| ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ]; |
| #endif |
| #ifdef CONFIG_TLS_TOE |
| ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base; |
| #endif |
| } |
| |
| static void tls_build_proto(struct sock *sk) |
| { |
| int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4; |
| struct proto *prot = READ_ONCE(sk->sk_prot); |
| |
| /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */ |
| if (ip_ver == TLSV6 && |
| unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) { |
| mutex_lock(&tcpv6_prot_mutex); |
| if (likely(prot != saved_tcpv6_prot)) { |
| build_protos(tls_prots[TLSV6], prot); |
| build_proto_ops(tls_proto_ops[TLSV6], |
| sk->sk_socket->ops); |
| smp_store_release(&saved_tcpv6_prot, prot); |
| } |
| mutex_unlock(&tcpv6_prot_mutex); |
| } |
| |
| if (ip_ver == TLSV4 && |
| unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) { |
| mutex_lock(&tcpv4_prot_mutex); |
| if (likely(prot != saved_tcpv4_prot)) { |
| build_protos(tls_prots[TLSV4], prot); |
| build_proto_ops(tls_proto_ops[TLSV4], |
| sk->sk_socket->ops); |
| smp_store_release(&saved_tcpv4_prot, prot); |
| } |
| mutex_unlock(&tcpv4_prot_mutex); |
| } |
| } |
| |
| static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG], |
| const struct proto *base) |
| { |
| prot[TLS_BASE][TLS_BASE] = *base; |
| prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt; |
| prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt; |
| prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close; |
| |
| prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; |
| prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg; |
| prot[TLS_SW][TLS_BASE].splice_eof = tls_sw_splice_eof; |
| |
| prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE]; |
| prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg; |
| prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; |
| prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close; |
| |
| prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE]; |
| prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg; |
| prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable; |
| prot[TLS_SW][TLS_SW].close = tls_sk_proto_close; |
| |
| #ifdef CONFIG_TLS_DEVICE |
| prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE]; |
| prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg; |
| prot[TLS_HW][TLS_BASE].splice_eof = tls_device_splice_eof; |
| |
| prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW]; |
| prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg; |
| prot[TLS_HW][TLS_SW].splice_eof = tls_device_splice_eof; |
| |
| prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW]; |
| |
| prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW]; |
| |
| prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW]; |
| #endif |
| #ifdef CONFIG_TLS_TOE |
| prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base; |
| prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash; |
| prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash; |
| #endif |
| } |
| |
| static int tls_init(struct sock *sk) |
| { |
| struct tls_context *ctx; |
| int rc = 0; |
| |
| tls_build_proto(sk); |
| |
| #ifdef CONFIG_TLS_TOE |
| if (tls_toe_bypass(sk)) |
| return 0; |
| #endif |
| |
| /* The TLS ulp is currently supported only for TCP sockets |
| * in ESTABLISHED state. |
| * Supporting sockets in LISTEN state will require us |
| * to modify the accept implementation to clone rather then |
| * share the ulp context. |
| */ |
| if (sk->sk_state != TCP_ESTABLISHED) |
| return -ENOTCONN; |
| |
| /* allocate tls context */ |
| write_lock_bh(&sk->sk_callback_lock); |
| ctx = tls_ctx_create(sk); |
| if (!ctx) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| ctx->tx_conf = TLS_BASE; |
| ctx->rx_conf = TLS_BASE; |
| update_sk_prot(sk, ctx); |
| out: |
| write_unlock_bh(&sk->sk_callback_lock); |
| return rc; |
| } |
| |
| static void tls_update(struct sock *sk, struct proto *p, |
| void (*write_space)(struct sock *sk)) |
| { |
| struct tls_context *ctx; |
| |
| WARN_ON_ONCE(sk->sk_prot == p); |
| |
| ctx = tls_get_ctx(sk); |
| if (likely(ctx)) { |
| ctx->sk_write_space = write_space; |
| ctx->sk_proto = p; |
| } else { |
| /* Pairs with lockless read in sk_clone_lock(). */ |
| WRITE_ONCE(sk->sk_prot, p); |
| sk->sk_write_space = write_space; |
| } |
| } |
| |
| static u16 tls_user_config(struct tls_context *ctx, bool tx) |
| { |
| u16 config = tx ? ctx->tx_conf : ctx->rx_conf; |
| |
| switch (config) { |
| case TLS_BASE: |
| return TLS_CONF_BASE; |
| case TLS_SW: |
| return TLS_CONF_SW; |
| case TLS_HW: |
| return TLS_CONF_HW; |
| case TLS_HW_RECORD: |
| return TLS_CONF_HW_RECORD; |
| } |
| return 0; |
| } |
| |
| static int tls_get_info(struct sock *sk, struct sk_buff *skb) |
| { |
| u16 version, cipher_type; |
| struct tls_context *ctx; |
| struct nlattr *start; |
| int err; |
| |
| start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS); |
| if (!start) |
| return -EMSGSIZE; |
| |
| rcu_read_lock(); |
| ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data); |
| if (!ctx) { |
| err = 0; |
| goto nla_failure; |
| } |
| version = ctx->prot_info.version; |
| if (version) { |
| err = nla_put_u16(skb, TLS_INFO_VERSION, version); |
| if (err) |
| goto nla_failure; |
| } |
| cipher_type = ctx->prot_info.cipher_type; |
| if (cipher_type) { |
| err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type); |
| if (err) |
| goto nla_failure; |
| } |
| err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true)); |
| if (err) |
| goto nla_failure; |
| |
| err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false)); |
| if (err) |
| goto nla_failure; |
| |
| if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) { |
| err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX); |
| if (err) |
| goto nla_failure; |
| } |
| if (ctx->rx_no_pad) { |
| err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD); |
| if (err) |
| goto nla_failure; |
| } |
| |
| rcu_read_unlock(); |
| nla_nest_end(skb, start); |
| return 0; |
| |
| nla_failure: |
| rcu_read_unlock(); |
| nla_nest_cancel(skb, start); |
| return err; |
| } |
| |
| static size_t tls_get_info_size(const struct sock *sk) |
| { |
| size_t size = 0; |
| |
| size += nla_total_size(0) + /* INET_ULP_INFO_TLS */ |
| nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */ |
| nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */ |
| nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */ |
| nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */ |
| nla_total_size(0) + /* TLS_INFO_ZC_RO_TX */ |
| nla_total_size(0) + /* TLS_INFO_RX_NO_PAD */ |
| 0; |
| |
| return size; |
| } |
| |
| static int __net_init tls_init_net(struct net *net) |
| { |
| int err; |
| |
| net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib); |
| if (!net->mib.tls_statistics) |
| return -ENOMEM; |
| |
| err = tls_proc_init(net); |
| if (err) |
| goto err_free_stats; |
| |
| return 0; |
| err_free_stats: |
| free_percpu(net->mib.tls_statistics); |
| return err; |
| } |
| |
| static void __net_exit tls_exit_net(struct net *net) |
| { |
| tls_proc_fini(net); |
| free_percpu(net->mib.tls_statistics); |
| } |
| |
| static struct pernet_operations tls_proc_ops = { |
| .init = tls_init_net, |
| .exit = tls_exit_net, |
| }; |
| |
| static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = { |
| .name = "tls", |
| .owner = THIS_MODULE, |
| .init = tls_init, |
| .update = tls_update, |
| .get_info = tls_get_info, |
| .get_info_size = tls_get_info_size, |
| }; |
| |
| static int __init tls_register(void) |
| { |
| int err; |
| |
| err = register_pernet_subsys(&tls_proc_ops); |
| if (err) |
| return err; |
| |
| err = tls_strp_dev_init(); |
| if (err) |
| goto err_pernet; |
| |
| err = tls_device_init(); |
| if (err) |
| goto err_strp; |
| |
| tcp_register_ulp(&tcp_tls_ulp_ops); |
| |
| return 0; |
| err_strp: |
| tls_strp_dev_exit(); |
| err_pernet: |
| unregister_pernet_subsys(&tls_proc_ops); |
| return err; |
| } |
| |
| static void __exit tls_unregister(void) |
| { |
| tcp_unregister_ulp(&tcp_tls_ulp_ops); |
| tls_strp_dev_exit(); |
| tls_device_cleanup(); |
| unregister_pernet_subsys(&tls_proc_ops); |
| } |
| |
| module_init(tls_register); |
| module_exit(tls_unregister); |