blob: 39e11eaec1a3f1cccade492af13a57abcea826a6 [file] [log] [blame]
/*
* Copyright (c) 2006 Dave Airlie <airlied@linux.ie>
* Copyright (c) 2007-2008 Intel Corporation
* Jesse Barnes <jesse.barnes@intel.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef __INTEL_DISPLAY_TYPES_H__
#define __INTEL_DISPLAY_TYPES_H__
#include <linux/async.h>
#include <linux/i2c.h>
#include <linux/pwm.h>
#include <linux/sched/clock.h>
#include <drm/drm_atomic.h>
#include <drm/drm_crtc.h>
#include <drm/drm_dp_dual_mode_helper.h>
#include <drm/drm_dp_mst_helper.h>
#include <drm/drm_encoder.h>
#include <drm/drm_fb_helper.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_rect.h>
#include <drm/drm_vblank.h>
#include <drm/i915_mei_hdcp_interface.h>
#include <media/cec-notifier.h>
#include "i915_drv.h"
struct drm_printer;
struct __intel_global_objs_state;
struct intel_ddi_buf_trans;
/*
* Display related stuff
*/
/* these are outputs from the chip - integrated only
external chips are via DVO or SDVO output */
enum intel_output_type {
INTEL_OUTPUT_UNUSED = 0,
INTEL_OUTPUT_ANALOG = 1,
INTEL_OUTPUT_DVO = 2,
INTEL_OUTPUT_SDVO = 3,
INTEL_OUTPUT_LVDS = 4,
INTEL_OUTPUT_TVOUT = 5,
INTEL_OUTPUT_HDMI = 6,
INTEL_OUTPUT_DP = 7,
INTEL_OUTPUT_EDP = 8,
INTEL_OUTPUT_DSI = 9,
INTEL_OUTPUT_DDI = 10,
INTEL_OUTPUT_DP_MST = 11,
};
enum hdmi_force_audio {
HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
HDMI_AUDIO_OFF, /* force turn off HDMI audio */
HDMI_AUDIO_AUTO, /* trust EDID */
HDMI_AUDIO_ON, /* force turn on HDMI audio */
};
/* "Broadcast RGB" property */
enum intel_broadcast_rgb {
INTEL_BROADCAST_RGB_AUTO,
INTEL_BROADCAST_RGB_FULL,
INTEL_BROADCAST_RGB_LIMITED,
};
struct intel_fb_view {
/*
* The remap information used in the remapped and rotated views to
* create the DMA scatter-gather list for each FB color plane. This sg
* list is created along with the view type (gtt.type) specific
* i915_vma object and contains the list of FB object pages (reordered
* in the rotated view) that are visible in the view.
* In the normal view the FB object's backing store sg list is used
* directly and hence the remap information here is not used.
*/
struct i915_ggtt_view gtt;
/*
* The GTT view (gtt.type) specific information for each FB color
* plane. In the normal GTT view all formats (up to 4 color planes),
* in the rotated and remapped GTT view all no-CCS formats (up to 2
* color planes) are supported.
*
* The view information shared by all FB color planes in the FB,
* like dst x/y and src/dst width, is stored separately in
* intel_plane_state.
*/
struct i915_color_plane_view {
u32 offset;
unsigned int x, y;
/*
* Plane stride in:
* bytes for 0/180 degree rotation
* pixels for 90/270 degree rotation
*/
unsigned int stride;
} color_plane[4];
};
struct intel_framebuffer {
struct drm_framebuffer base;
struct intel_frontbuffer *frontbuffer;
/* Params to remap the FB pages and program the plane registers in each view. */
struct intel_fb_view normal_view;
union {
struct intel_fb_view rotated_view;
struct intel_fb_view remapped_view;
};
struct i915_address_space *dpt_vm;
};
struct intel_fbdev {
struct drm_fb_helper helper;
struct intel_framebuffer *fb;
struct i915_vma *vma;
unsigned long vma_flags;
async_cookie_t cookie;
int preferred_bpp;
/* Whether or not fbdev hpd processing is temporarily suspended */
bool hpd_suspended : 1;
/* Set when a hotplug was received while HPD processing was
* suspended
*/
bool hpd_waiting : 1;
/* Protects hpd_suspended */
struct mutex hpd_lock;
};
enum intel_hotplug_state {
INTEL_HOTPLUG_UNCHANGED,
INTEL_HOTPLUG_CHANGED,
INTEL_HOTPLUG_RETRY,
};
struct intel_encoder {
struct drm_encoder base;
enum intel_output_type type;
enum port port;
u16 cloneable;
u8 pipe_mask;
enum intel_hotplug_state (*hotplug)(struct intel_encoder *encoder,
struct intel_connector *connector);
enum intel_output_type (*compute_output_type)(struct intel_encoder *,
struct intel_crtc_state *,
struct drm_connector_state *);
int (*compute_config)(struct intel_encoder *,
struct intel_crtc_state *,
struct drm_connector_state *);
int (*compute_config_late)(struct intel_encoder *,
struct intel_crtc_state *,
struct drm_connector_state *);
void (*update_prepare)(struct intel_atomic_state *,
struct intel_encoder *,
struct intel_crtc *);
void (*pre_pll_enable)(struct intel_atomic_state *,
struct intel_encoder *,
const struct intel_crtc_state *,
const struct drm_connector_state *);
void (*pre_enable)(struct intel_atomic_state *,
struct intel_encoder *,
const struct intel_crtc_state *,
const struct drm_connector_state *);
void (*enable)(struct intel_atomic_state *,
struct intel_encoder *,
const struct intel_crtc_state *,
const struct drm_connector_state *);
void (*update_complete)(struct intel_atomic_state *,
struct intel_encoder *,
struct intel_crtc *);
void (*pre_disable)(struct intel_atomic_state *,
struct intel_encoder *,
const struct intel_crtc_state *,
const struct drm_connector_state *);
void (*disable)(struct intel_atomic_state *,
struct intel_encoder *,
const struct intel_crtc_state *,
const struct drm_connector_state *);
void (*post_disable)(struct intel_atomic_state *,
struct intel_encoder *,
const struct intel_crtc_state *,
const struct drm_connector_state *);
void (*post_pll_disable)(struct intel_atomic_state *,
struct intel_encoder *,
const struct intel_crtc_state *,
const struct drm_connector_state *);
void (*update_pipe)(struct intel_atomic_state *,
struct intel_encoder *,
const struct intel_crtc_state *,
const struct drm_connector_state *);
/* Read out the current hw state of this connector, returning true if
* the encoder is active. If the encoder is enabled it also set the pipe
* it is connected to in the pipe parameter. */
bool (*get_hw_state)(struct intel_encoder *, enum pipe *pipe);
/* Reconstructs the equivalent mode flags for the current hardware
* state. This must be called _after_ display->get_pipe_config has
* pre-filled the pipe config. Note that intel_encoder->base.crtc must
* be set correctly before calling this function. */
void (*get_config)(struct intel_encoder *,
struct intel_crtc_state *pipe_config);
/*
* Optional hook called during init/resume to sync any state
* stored in the encoder (eg. DP link parameters) wrt. the HW state.
*/
void (*sync_state)(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state);
/*
* Optional hook, returning true if this encoder allows a fastset
* during the initial commit, false otherwise.
*/
bool (*initial_fastset_check)(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state);
/*
* Acquires the power domains needed for an active encoder during
* hardware state readout.
*/
void (*get_power_domains)(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state);
/*
* Called during system suspend after all pending requests for the
* encoder are flushed (for example for DP AUX transactions) and
* device interrupts are disabled.
*/
void (*suspend)(struct intel_encoder *);
/*
* Called during system reboot/shutdown after all the
* encoders have been disabled and suspended.
*/
void (*shutdown)(struct intel_encoder *encoder);
/*
* Enable/disable the clock to the port.
*/
void (*enable_clock)(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state);
void (*disable_clock)(struct intel_encoder *encoder);
/*
* Returns whether the port clock is enabled or not.
*/
bool (*is_clock_enabled)(struct intel_encoder *encoder);
const struct intel_ddi_buf_trans *(*get_buf_trans)(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
int *n_entries);
void (*set_signal_levels)(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state);
enum hpd_pin hpd_pin;
enum intel_display_power_domain power_domain;
/* for communication with audio component; protected by av_mutex */
const struct drm_connector *audio_connector;
/* VBT information for this encoder (may be NULL for older platforms) */
const struct intel_bios_encoder_data *devdata;
};
struct intel_panel_bl_funcs {
/* Connector and platform specific backlight functions */
int (*setup)(struct intel_connector *connector, enum pipe pipe);
u32 (*get)(struct intel_connector *connector, enum pipe pipe);
void (*set)(const struct drm_connector_state *conn_state, u32 level);
void (*disable)(const struct drm_connector_state *conn_state, u32 level);
void (*enable)(const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state, u32 level);
u32 (*hz_to_pwm)(struct intel_connector *connector, u32 hz);
};
struct intel_panel {
struct drm_display_mode *fixed_mode;
struct drm_display_mode *downclock_mode;
/* backlight */
struct {
bool present;
u32 level;
u32 min;
u32 max;
bool enabled;
bool combination_mode; /* gen 2/4 only */
bool active_low_pwm;
bool alternate_pwm_increment; /* lpt+ */
/* PWM chip */
u32 pwm_level_min;
u32 pwm_level_max;
bool pwm_enabled;
bool util_pin_active_low; /* bxt+ */
u8 controller; /* bxt+ only */
struct pwm_device *pwm;
struct pwm_state pwm_state;
/* DPCD backlight */
union {
struct {
struct drm_edp_backlight_info info;
} vesa;
struct {
bool sdr_uses_aux;
} intel;
} edp;
struct backlight_device *device;
const struct intel_panel_bl_funcs *funcs;
const struct intel_panel_bl_funcs *pwm_funcs;
void (*power)(struct intel_connector *, bool enable);
} backlight;
};
struct intel_digital_port;
enum check_link_response {
HDCP_LINK_PROTECTED = 0,
HDCP_TOPOLOGY_CHANGE,
HDCP_LINK_INTEGRITY_FAILURE,
HDCP_REAUTH_REQUEST
};
/*
* This structure serves as a translation layer between the generic HDCP code
* and the bus-specific code. What that means is that HDCP over HDMI differs
* from HDCP over DP, so to account for these differences, we need to
* communicate with the receiver through this shim.
*
* For completeness, the 2 buses differ in the following ways:
* - DP AUX vs. DDC
* HDCP registers on the receiver are set via DP AUX for DP, and
* they are set via DDC for HDMI.
* - Receiver register offsets
* The offsets of the registers are different for DP vs. HDMI
* - Receiver register masks/offsets
* For instance, the ready bit for the KSV fifo is in a different
* place on DP vs HDMI
* - Receiver register names
* Seriously. In the DP spec, the 16-bit register containing
* downstream information is called BINFO, on HDMI it's called
* BSTATUS. To confuse matters further, DP has a BSTATUS register
* with a completely different definition.
* - KSV FIFO
* On HDMI, the ksv fifo is read all at once, whereas on DP it must
* be read 3 keys at a time
* - Aksv output
* Since Aksv is hidden in hardware, there's different procedures
* to send it over DP AUX vs DDC
*/
struct intel_hdcp_shim {
/* Outputs the transmitter's An and Aksv values to the receiver. */
int (*write_an_aksv)(struct intel_digital_port *dig_port, u8 *an);
/* Reads the receiver's key selection vector */
int (*read_bksv)(struct intel_digital_port *dig_port, u8 *bksv);
/*
* Reads BINFO from DP receivers and BSTATUS from HDMI receivers. The
* definitions are the same in the respective specs, but the names are
* different. Call it BSTATUS since that's the name the HDMI spec
* uses and it was there first.
*/
int (*read_bstatus)(struct intel_digital_port *dig_port,
u8 *bstatus);
/* Determines whether a repeater is present downstream */
int (*repeater_present)(struct intel_digital_port *dig_port,
bool *repeater_present);
/* Reads the receiver's Ri' value */
int (*read_ri_prime)(struct intel_digital_port *dig_port, u8 *ri);
/* Determines if the receiver's KSV FIFO is ready for consumption */
int (*read_ksv_ready)(struct intel_digital_port *dig_port,
bool *ksv_ready);
/* Reads the ksv fifo for num_downstream devices */
int (*read_ksv_fifo)(struct intel_digital_port *dig_port,
int num_downstream, u8 *ksv_fifo);
/* Reads a 32-bit part of V' from the receiver */
int (*read_v_prime_part)(struct intel_digital_port *dig_port,
int i, u32 *part);
/* Enables HDCP signalling on the port */
int (*toggle_signalling)(struct intel_digital_port *dig_port,
enum transcoder cpu_transcoder,
bool enable);
/* Enable/Disable stream encryption on DP MST Transport Link */
int (*stream_encryption)(struct intel_connector *connector,
bool enable);
/* Ensures the link is still protected */
bool (*check_link)(struct intel_digital_port *dig_port,
struct intel_connector *connector);
/* Detects panel's hdcp capability. This is optional for HDMI. */
int (*hdcp_capable)(struct intel_digital_port *dig_port,
bool *hdcp_capable);
/* HDCP adaptation(DP/HDMI) required on the port */
enum hdcp_wired_protocol protocol;
/* Detects whether sink is HDCP2.2 capable */
int (*hdcp_2_2_capable)(struct intel_digital_port *dig_port,
bool *capable);
/* Write HDCP2.2 messages */
int (*write_2_2_msg)(struct intel_digital_port *dig_port,
void *buf, size_t size);
/* Read HDCP2.2 messages */
int (*read_2_2_msg)(struct intel_digital_port *dig_port,
u8 msg_id, void *buf, size_t size);
/*
* Implementation of DP HDCP2.2 Errata for the communication of stream
* type to Receivers. In DP HDCP2.2 Stream type is one of the input to
* the HDCP2.2 Cipher for En/De-Cryption. Not applicable for HDMI.
*/
int (*config_stream_type)(struct intel_digital_port *dig_port,
bool is_repeater, u8 type);
/* Enable/Disable HDCP 2.2 stream encryption on DP MST Transport Link */
int (*stream_2_2_encryption)(struct intel_connector *connector,
bool enable);
/* HDCP2.2 Link Integrity Check */
int (*check_2_2_link)(struct intel_digital_port *dig_port,
struct intel_connector *connector);
};
struct intel_hdcp {
const struct intel_hdcp_shim *shim;
/* Mutex for hdcp state of the connector */
struct mutex mutex;
u64 value;
struct delayed_work check_work;
struct work_struct prop_work;
/* HDCP1.4 Encryption status */
bool hdcp_encrypted;
/* HDCP2.2 related definitions */
/* Flag indicates whether this connector supports HDCP2.2 or not. */
bool hdcp2_supported;
/* HDCP2.2 Encryption status */
bool hdcp2_encrypted;
/*
* Content Stream Type defined by content owner. TYPE0(0x0) content can
* flow in the link protected by HDCP2.2 or HDCP1.4, where as TYPE1(0x1)
* content can flow only through a link protected by HDCP2.2.
*/
u8 content_type;
bool is_paired;
bool is_repeater;
/*
* Count of ReceiverID_List received. Initialized to 0 at AKE_INIT.
* Incremented after processing the RepeaterAuth_Send_ReceiverID_List.
* When it rolls over re-auth has to be triggered.
*/
u32 seq_num_v;
/*
* Count of RepeaterAuth_Stream_Manage msg propagated.
* Initialized to 0 on AKE_INIT. Incremented after every successful
* transmission of RepeaterAuth_Stream_Manage message. When it rolls
* over re-Auth has to be triggered.
*/
u32 seq_num_m;
/*
* Work queue to signal the CP_IRQ. Used for the waiters to read the
* available information from HDCP DP sink.
*/
wait_queue_head_t cp_irq_queue;
atomic_t cp_irq_count;
int cp_irq_count_cached;
/*
* HDCP register access for gen12+ need the transcoder associated.
* Transcoder attached to the connector could be changed at modeset.
* Hence caching the transcoder here.
*/
enum transcoder cpu_transcoder;
/* Only used for DP MST stream encryption */
enum transcoder stream_transcoder;
};
struct intel_connector {
struct drm_connector base;
/*
* The fixed encoder this connector is connected to.
*/
struct intel_encoder *encoder;
/* ACPI device id for ACPI and driver cooperation */
u32 acpi_device_id;
/* Reads out the current hw, returning true if the connector is enabled
* and active (i.e. dpms ON state). */
bool (*get_hw_state)(struct intel_connector *);
/* Panel info for eDP and LVDS */
struct intel_panel panel;
/* Cached EDID for eDP and LVDS. May hold ERR_PTR for invalid EDID. */
struct edid *edid;
struct edid *detect_edid;
/* Number of times hotplug detection was tried after an HPD interrupt */
int hotplug_retries;
/* since POLL and HPD connectors may use the same HPD line keep the native
state of connector->polled in case hotplug storm detection changes it */
u8 polled;
struct drm_dp_mst_port *port;
struct intel_dp *mst_port;
/* Work struct to schedule a uevent on link train failure */
struct work_struct modeset_retry_work;
struct intel_hdcp hdcp;
};
struct intel_digital_connector_state {
struct drm_connector_state base;
enum hdmi_force_audio force_audio;
int broadcast_rgb;
};
#define to_intel_digital_connector_state(x) container_of(x, struct intel_digital_connector_state, base)
struct dpll {
/* given values */
int n;
int m1, m2;
int p1, p2;
/* derived values */
int dot;
int vco;
int m;
int p;
};
struct intel_atomic_state {
struct drm_atomic_state base;
intel_wakeref_t wakeref;
struct __intel_global_objs_state *global_objs;
int num_global_objs;
bool dpll_set, modeset;
struct intel_shared_dpll_state shared_dpll[I915_NUM_PLLS];
/*
* Current watermarks can't be trusted during hardware readout, so
* don't bother calculating intermediate watermarks.
*/
bool skip_intermediate_wm;
bool rps_interactive;
struct i915_sw_fence commit_ready;
struct llist_node freed;
};
struct intel_plane_state {
struct drm_plane_state uapi;
/*
* actual hardware state, the state we program to the hardware.
* The following members are used to verify the hardware state:
* During initial hw readout, they need to be copied from uapi.
*/
struct {
struct drm_crtc *crtc;
struct drm_framebuffer *fb;
u16 alpha;
u16 pixel_blend_mode;
unsigned int rotation;
enum drm_color_encoding color_encoding;
enum drm_color_range color_range;
enum drm_scaling_filter scaling_filter;
} hw;
struct i915_vma *ggtt_vma;
struct i915_vma *dpt_vma;
unsigned long flags;
#define PLANE_HAS_FENCE BIT(0)
struct intel_fb_view view;
/* Plane pxp decryption state */
bool decrypt;
/* Plane state to display black pixels when pxp is borked */
bool force_black;
/* plane control register */
u32 ctl;
/* plane color control register */
u32 color_ctl;
/* chroma upsampler control register */
u32 cus_ctl;
/*
* scaler_id
* = -1 : not using a scaler
* >= 0 : using a scalers
*
* plane requiring a scaler:
* - During check_plane, its bit is set in
* crtc_state->scaler_state.scaler_users by calling helper function
* update_scaler_plane.
* - scaler_id indicates the scaler it got assigned.
*
* plane doesn't require a scaler:
* - this can happen when scaling is no more required or plane simply
* got disabled.
* - During check_plane, corresponding bit is reset in
* crtc_state->scaler_state.scaler_users by calling helper function
* update_scaler_plane.
*/
int scaler_id;
/*
* planar_linked_plane:
*
* ICL planar formats require 2 planes that are updated as pairs.
* This member is used to make sure the other plane is also updated
* when required, and for update_slave() to find the correct
* plane_state to pass as argument.
*/
struct intel_plane *planar_linked_plane;
/*
* planar_slave:
* If set don't update use the linked plane's state for updating
* this plane during atomic commit with the update_slave() callback.
*
* It's also used by the watermark code to ignore wm calculations on
* this plane. They're calculated by the linked plane's wm code.
*/
u32 planar_slave;
struct drm_intel_sprite_colorkey ckey;
struct drm_rect psr2_sel_fetch_area;
/* Clear Color Value */
u64 ccval;
};
struct intel_initial_plane_config {
struct intel_framebuffer *fb;
struct i915_vma *vma;
unsigned int tiling;
int size;
u32 base;
u8 rotation;
};
struct intel_scaler {
int in_use;
u32 mode;
};
struct intel_crtc_scaler_state {
#define SKL_NUM_SCALERS 2
struct intel_scaler scalers[SKL_NUM_SCALERS];
/*
* scaler_users: keeps track of users requesting scalers on this crtc.
*
* If a bit is set, a user is using a scaler.
* Here user can be a plane or crtc as defined below:
* bits 0-30 - plane (bit position is index from drm_plane_index)
* bit 31 - crtc
*
* Instead of creating a new index to cover planes and crtc, using
* existing drm_plane_index for planes which is well less than 31
* planes and bit 31 for crtc. This should be fine to cover all
* our platforms.
*
* intel_atomic_setup_scalers will setup available scalers to users
* requesting scalers. It will gracefully fail if request exceeds
* avilability.
*/
#define SKL_CRTC_INDEX 31
unsigned scaler_users;
/* scaler used by crtc for panel fitting purpose */
int scaler_id;
};
/* {crtc,crtc_state}->mode_flags */
/* Flag to get scanline using frame time stamps */
#define I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP (1<<1)
/* Flag to use the scanline counter instead of the pixel counter */
#define I915_MODE_FLAG_USE_SCANLINE_COUNTER (1<<2)
/*
* TE0 or TE1 flag is set if the crtc has a DSI encoder which
* is operating in command mode.
* Flag to use TE from DSI0 instead of VBI in command mode
*/
#define I915_MODE_FLAG_DSI_USE_TE0 (1<<3)
/* Flag to use TE from DSI1 instead of VBI in command mode */
#define I915_MODE_FLAG_DSI_USE_TE1 (1<<4)
/* Flag to indicate mipi dsi periodic command mode where we do not get TE */
#define I915_MODE_FLAG_DSI_PERIODIC_CMD_MODE (1<<5)
/* Do tricks to make vblank timestamps sane with VRR? */
#define I915_MODE_FLAG_VRR (1<<6)
struct intel_wm_level {
bool enable;
u32 pri_val;
u32 spr_val;
u32 cur_val;
u32 fbc_val;
};
struct intel_pipe_wm {
struct intel_wm_level wm[5];
bool fbc_wm_enabled;
bool pipe_enabled;
bool sprites_enabled;
bool sprites_scaled;
};
struct skl_wm_level {
u16 min_ddb_alloc;
u16 blocks;
u8 lines;
bool enable;
bool ignore_lines;
bool can_sagv;
};
struct skl_plane_wm {
struct skl_wm_level wm[8];
struct skl_wm_level uv_wm[8];
struct skl_wm_level trans_wm;
struct {
struct skl_wm_level wm0;
struct skl_wm_level trans_wm;
} sagv;
bool is_planar;
};
struct skl_pipe_wm {
struct skl_plane_wm planes[I915_MAX_PLANES];
bool use_sagv_wm;
};
enum vlv_wm_level {
VLV_WM_LEVEL_PM2,
VLV_WM_LEVEL_PM5,
VLV_WM_LEVEL_DDR_DVFS,
NUM_VLV_WM_LEVELS,
};
struct vlv_wm_state {
struct g4x_pipe_wm wm[NUM_VLV_WM_LEVELS];
struct g4x_sr_wm sr[NUM_VLV_WM_LEVELS];
u8 num_levels;
bool cxsr;
};
struct vlv_fifo_state {
u16 plane[I915_MAX_PLANES];
};
enum g4x_wm_level {
G4X_WM_LEVEL_NORMAL,
G4X_WM_LEVEL_SR,
G4X_WM_LEVEL_HPLL,
NUM_G4X_WM_LEVELS,
};
struct g4x_wm_state {
struct g4x_pipe_wm wm;
struct g4x_sr_wm sr;
struct g4x_sr_wm hpll;
bool cxsr;
bool hpll_en;
bool fbc_en;
};
struct intel_crtc_wm_state {
union {
/*
* raw:
* The "raw" watermark values produced by the formula
* given the plane's current state. They do not consider
* how much FIFO is actually allocated for each plane.
*
* optimal:
* The "optimal" watermark values given the current
* state of the planes and the amount of FIFO
* allocated to each, ignoring any previous state
* of the planes.
*
* intermediate:
* The "intermediate" watermark values when transitioning
* between the old and new "optimal" values. Used when
* the watermark registers are single buffered and hence
* their state changes asynchronously with regards to the
* actual plane registers. These are essentially the
* worst case combination of the old and new "optimal"
* watermarks, which are therefore safe to use when the
* plane is in either its old or new state.
*/
struct {
struct intel_pipe_wm intermediate;
struct intel_pipe_wm optimal;
} ilk;
struct {
struct skl_pipe_wm raw;
/* gen9+ only needs 1-step wm programming */
struct skl_pipe_wm optimal;
struct skl_ddb_entry ddb;
struct skl_ddb_entry plane_ddb_y[I915_MAX_PLANES];
struct skl_ddb_entry plane_ddb_uv[I915_MAX_PLANES];
} skl;
struct {
struct g4x_pipe_wm raw[NUM_VLV_WM_LEVELS]; /* not inverted */
struct vlv_wm_state intermediate; /* inverted */
struct vlv_wm_state optimal; /* inverted */
struct vlv_fifo_state fifo_state;
} vlv;
struct {
struct g4x_pipe_wm raw[NUM_G4X_WM_LEVELS];
struct g4x_wm_state intermediate;
struct g4x_wm_state optimal;
} g4x;
};
/*
* Platforms with two-step watermark programming will need to
* update watermark programming post-vblank to switch from the
* safe intermediate watermarks to the optimal final
* watermarks.
*/
bool need_postvbl_update;
};
enum intel_output_format {
INTEL_OUTPUT_FORMAT_RGB,
INTEL_OUTPUT_FORMAT_YCBCR420,
INTEL_OUTPUT_FORMAT_YCBCR444,
};
struct intel_mpllb_state {
u32 clock; /* in KHz */
u32 ref_control;
u32 mpllb_cp;
u32 mpllb_div;
u32 mpllb_div2;
u32 mpllb_fracn1;
u32 mpllb_fracn2;
u32 mpllb_sscen;
u32 mpllb_sscstep;
};
struct intel_crtc_state {
/*
* uapi (drm) state. This is the software state shown to userspace.
* In particular, the following members are used for bookkeeping:
* - crtc
* - state
* - *_changed
* - event
* - commit
* - mode_blob
*/
struct drm_crtc_state uapi;
/*
* actual hardware state, the state we program to the hardware.
* The following members are used to verify the hardware state:
* - enable
* - active
* - mode / pipe_mode / adjusted_mode
* - color property blobs.
*
* During initial hw readout, they need to be copied to uapi.
*
* Bigjoiner will allow a transcoder mode that spans 2 pipes;
* Use the pipe_mode for calculations like watermarks, pipe
* scaler, and bandwidth.
*
* Use adjusted_mode for things that need to know the full
* mode on the transcoder, which spans all pipes.
*/
struct {
bool active, enable;
struct drm_property_blob *degamma_lut, *gamma_lut, *ctm;
struct drm_display_mode mode, pipe_mode, adjusted_mode;
enum drm_scaling_filter scaling_filter;
} hw;
/**
* quirks - bitfield with hw state readout quirks
*
* For various reasons the hw state readout code might not be able to
* completely faithfully read out the current state. These cases are
* tracked with quirk flags so that fastboot and state checker can act
* accordingly.
*/
#define PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS (1<<0) /* unreliable sync mode.flags */
#define PIPE_CONFIG_QUIRK_BIGJOINER_SLAVE (1<<1) /* bigjoiner slave, partial readout */
unsigned long quirks;
unsigned fb_bits; /* framebuffers to flip */
bool update_pipe; /* can a fast modeset be performed? */
bool disable_cxsr;
bool update_wm_pre, update_wm_post; /* watermarks are updated */
bool fifo_changed; /* FIFO split is changed */
bool preload_luts;
bool inherited; /* state inherited from BIOS? */
/* Pipe source size (ie. panel fitter input size)
* All planes will be positioned inside this space,
* and get clipped at the edges. */
int pipe_src_w, pipe_src_h;
/*
* Pipe pixel rate, adjusted for
* panel fitter/pipe scaler downscaling.
*/
unsigned int pixel_rate;
/* Whether to set up the PCH/FDI. Note that we never allow sharing
* between pch encoders and cpu encoders. */
bool has_pch_encoder;
/* Are we sending infoframes on the attached port */
bool has_infoframe;
/* CPU Transcoder for the pipe. Currently this can only differ from the
* pipe on Haswell and later (where we have a special eDP transcoder)
* and Broxton (where we have special DSI transcoders). */
enum transcoder cpu_transcoder;
/*
* Use reduced/limited/broadcast rbg range, compressing from the full
* range fed into the crtcs.
*/
bool limited_color_range;
/* Bitmask of encoder types (enum intel_output_type)
* driven by the pipe.
*/
unsigned int output_types;
/* Whether we should send NULL infoframes. Required for audio. */
bool has_hdmi_sink;
/* Audio enabled on this pipe. Only valid if either has_hdmi_sink or
* has_dp_encoder is set. */
bool has_audio;
/*
* Enable dithering, used when the selected pipe bpp doesn't match the
* plane bpp.
*/
bool dither;
/*
* Dither gets enabled for 18bpp which causes CRC mismatch errors for
* compliance video pattern tests.
* Disable dither only if it is a compliance test request for
* 18bpp.
*/
bool dither_force_disable;
/* Controls for the clock computation, to override various stages. */
bool clock_set;
/* SDVO TV has a bunch of special case. To make multifunction encoders
* work correctly, we need to track this at runtime.*/
bool sdvo_tv_clock;
/*
* crtc bandwidth limit, don't increase pipe bpp or clock if not really
* required. This is set in the 2nd loop of calling encoder's
* ->compute_config if the first pick doesn't work out.
*/
bool bw_constrained;
/* Settings for the intel dpll used on pretty much everything but
* haswell. */
struct dpll dpll;
/* Selected dpll when shared or NULL. */
struct intel_shared_dpll *shared_dpll;
/* Actual register state of the dpll, for shared dpll cross-checking. */
union {
struct intel_dpll_hw_state dpll_hw_state;
struct intel_mpllb_state mpllb_state;
};
/*
* ICL reserved DPLLs for the CRTC/port. The active PLL is selected by
* setting shared_dpll and dpll_hw_state to one of these reserved ones.
*/
struct icl_port_dpll {
struct intel_shared_dpll *pll;
struct intel_dpll_hw_state hw_state;
} icl_port_dplls[ICL_PORT_DPLL_COUNT];
/* DSI PLL registers */
struct {
u32 ctrl, div;
} dsi_pll;
int pipe_bpp;
struct intel_link_m_n dp_m_n;
/* m2_n2 for eDP downclock */
struct intel_link_m_n dp_m2_n2;
bool has_drrs;
/* PSR is supported but might not be enabled due the lack of enabled planes */
bool has_psr;
bool has_psr2;
bool enable_psr2_sel_fetch;
bool req_psr2_sdp_prior_scanline;
u32 dc3co_exitline;
u16 su_y_granularity;
struct drm_dp_vsc_sdp psr_vsc;
/*
* Frequence the dpll for the port should run at. Differs from the
* adjusted dotclock e.g. for DP or 10/12bpc hdmi mode. This is also
* already multiplied by pixel_multiplier.
*/
int port_clock;
/* Used by SDVO (and if we ever fix it, HDMI). */
unsigned pixel_multiplier;
/* I915_MODE_FLAG_* */
u8 mode_flags;
u8 lane_count;
/*
* Used by platforms having DP/HDMI PHY with programmable lane
* latency optimization.
*/
u8 lane_lat_optim_mask;
/* minimum acceptable voltage level */
u8 min_voltage_level;
/* Panel fitter controls for gen2-gen4 + VLV */
struct {
u32 control;
u32 pgm_ratios;
u32 lvds_border_bits;
} gmch_pfit;
/* Panel fitter placement and size for Ironlake+ */
struct {
struct drm_rect dst;
bool enabled;
bool force_thru;
} pch_pfit;
/* FDI configuration, only valid if has_pch_encoder is set. */
int fdi_lanes;
struct intel_link_m_n fdi_m_n;
bool ips_enabled;
bool crc_enabled;
bool enable_fbc;
bool double_wide;
int pbn;
struct intel_crtc_scaler_state scaler_state;
/* w/a for waiting 2 vblanks during crtc enable */
enum pipe hsw_workaround_pipe;
/* IVB sprite scaling w/a (WaCxSRDisabledForSpriteScaling:ivb) */
bool disable_lp_wm;
struct intel_crtc_wm_state wm;
int min_cdclk[I915_MAX_PLANES];
u32 data_rate[I915_MAX_PLANES];
/* FIXME unify with data_rate[] */
u64 plane_data_rate[I915_MAX_PLANES];
u64 uv_plane_data_rate[I915_MAX_PLANES];
/* Gamma mode programmed on the pipe */
u32 gamma_mode;
union {
/* CSC mode programmed on the pipe */
u32 csc_mode;
/* CHV CGM mode */
u32 cgm_mode;
};
/* bitmask of logically enabled planes (enum plane_id) */
u8 enabled_planes;
/* bitmask of actually visible planes (enum plane_id) */
u8 active_planes;
u8 nv12_planes;
u8 c8_planes;
/* bitmask of planes that will be updated during the commit */
u8 update_planes;
struct {
u32 enable;
u32 gcp;
union hdmi_infoframe avi;
union hdmi_infoframe spd;
union hdmi_infoframe hdmi;
union hdmi_infoframe drm;
struct drm_dp_vsc_sdp vsc;
} infoframes;
/* HDMI scrambling status */
bool hdmi_scrambling;
/* HDMI High TMDS char rate ratio */
bool hdmi_high_tmds_clock_ratio;
/* Output format RGB/YCBCR etc */
enum intel_output_format output_format;
/* enable pipe gamma? */
bool gamma_enable;
/* enable pipe csc? */
bool csc_enable;
/* enable pipe big joiner? */
bool bigjoiner;
/* big joiner slave crtc? */
bool bigjoiner_slave;
/* linked crtc for bigjoiner, either slave or master */
struct intel_crtc *bigjoiner_linked_crtc;
/* Display Stream compression state */
struct {
bool compression_enable;
bool dsc_split;
u16 compressed_bpp;
u8 slice_count;
struct drm_dsc_config config;
} dsc;
/* HSW+ linetime watermarks */
u16 linetime;
u16 ips_linetime;
/* Forward Error correction State */
bool fec_enable;
/* Pointer to master transcoder in case of tiled displays */
enum transcoder master_transcoder;
/* Bitmask to indicate slaves attached */
u8 sync_mode_slaves_mask;
/* Only valid on TGL+ */
enum transcoder mst_master_transcoder;
/* For DSB related info */
struct intel_dsb *dsb;
u32 psr2_man_track_ctl;
/* Variable Refresh Rate state */
struct {
bool enable;
u8 pipeline_full;
u16 flipline, vmin, vmax, guardband;
} vrr;
/* Stream Splitter for eDP MSO */
struct {
bool enable;
u8 link_count;
u8 pixel_overlap;
} splitter;
};
enum intel_pipe_crc_source {
INTEL_PIPE_CRC_SOURCE_NONE,
INTEL_PIPE_CRC_SOURCE_PLANE1,
INTEL_PIPE_CRC_SOURCE_PLANE2,
INTEL_PIPE_CRC_SOURCE_PLANE3,
INTEL_PIPE_CRC_SOURCE_PLANE4,
INTEL_PIPE_CRC_SOURCE_PLANE5,
INTEL_PIPE_CRC_SOURCE_PLANE6,
INTEL_PIPE_CRC_SOURCE_PLANE7,
INTEL_PIPE_CRC_SOURCE_PIPE,
/* TV/DP on pre-gen5/vlv can't use the pipe source. */
INTEL_PIPE_CRC_SOURCE_TV,
INTEL_PIPE_CRC_SOURCE_DP_B,
INTEL_PIPE_CRC_SOURCE_DP_C,
INTEL_PIPE_CRC_SOURCE_DP_D,
INTEL_PIPE_CRC_SOURCE_AUTO,
INTEL_PIPE_CRC_SOURCE_MAX,
};
#define INTEL_PIPE_CRC_ENTRIES_NR 128
struct intel_pipe_crc {
spinlock_t lock;
int skipped;
enum intel_pipe_crc_source source;
};
struct intel_crtc {
struct drm_crtc base;
enum pipe pipe;
/*
* Whether the crtc and the connected output pipeline is active. Implies
* that crtc->enabled is set, i.e. the current mode configuration has
* some outputs connected to this crtc.
*/
bool active;
u8 plane_ids_mask;
/* I915_MODE_FLAG_* */
u8 mode_flags;
u16 vmax_vblank_start;
struct intel_display_power_domain_set enabled_power_domains;
struct intel_overlay *overlay;
struct intel_crtc_state *config;
/* Access to these should be protected by dev_priv->irq_lock. */
bool cpu_fifo_underrun_disabled;
bool pch_fifo_underrun_disabled;
/* per-pipe watermark state */
struct {
/* watermarks currently being used */
union {
struct intel_pipe_wm ilk;
struct vlv_wm_state vlv;
struct g4x_wm_state g4x;
} active;
} wm;
int scanline_offset;
struct {
unsigned start_vbl_count;
ktime_t start_vbl_time;
int min_vbl, max_vbl;
int scanline_start;
#ifdef CONFIG_DRM_I915_DEBUG_VBLANK_EVADE
struct {
u64 min;
u64 max;
u64 sum;
unsigned int over;
unsigned int times[17]; /* [1us, 16ms] */
} vbl;
#endif
} debug;
/* scalers available on this crtc */
int num_scalers;
#ifdef CONFIG_DEBUG_FS
struct intel_pipe_crc pipe_crc;
#endif
};
struct intel_plane {
struct drm_plane base;
enum i9xx_plane_id i9xx_plane;
enum plane_id id;
enum pipe pipe;
bool has_fbc;
bool has_ccs;
bool need_async_flip_disable_wa;
u32 frontbuffer_bit;
struct {
u32 base, cntl, size;
} cursor;
/*
* NOTE: Do not place new plane state fields here (e.g., when adding
* new plane properties). New runtime state should now be placed in
* the intel_plane_state structure and accessed via plane_state.
*/
int (*min_width)(const struct drm_framebuffer *fb,
int color_plane,
unsigned int rotation);
int (*max_width)(const struct drm_framebuffer *fb,
int color_plane,
unsigned int rotation);
int (*max_height)(const struct drm_framebuffer *fb,
int color_plane,
unsigned int rotation);
unsigned int (*max_stride)(struct intel_plane *plane,
u32 pixel_format, u64 modifier,
unsigned int rotation);
void (*update_plane)(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state);
void (*disable_plane)(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state);
bool (*get_hw_state)(struct intel_plane *plane, enum pipe *pipe);
int (*check_plane)(struct intel_crtc_state *crtc_state,
struct intel_plane_state *plane_state);
int (*min_cdclk)(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state);
void (*async_flip)(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
bool async_flip);
void (*enable_flip_done)(struct intel_plane *plane);
void (*disable_flip_done)(struct intel_plane *plane);
};
struct intel_watermark_params {
u16 fifo_size;
u16 max_wm;
u8 default_wm;
u8 guard_size;
u8 cacheline_size;
};
struct cxsr_latency {
bool is_desktop : 1;
bool is_ddr3 : 1;
u16 fsb_freq;
u16 mem_freq;
u16 display_sr;
u16 display_hpll_disable;
u16 cursor_sr;
u16 cursor_hpll_disable;
};
#define to_intel_atomic_state(x) container_of(x, struct intel_atomic_state, base)
#define to_intel_crtc(x) container_of(x, struct intel_crtc, base)
#define to_intel_crtc_state(x) container_of(x, struct intel_crtc_state, uapi)
#define to_intel_connector(x) container_of(x, struct intel_connector, base)
#define to_intel_encoder(x) container_of(x, struct intel_encoder, base)
#define to_intel_framebuffer(x) container_of(x, struct intel_framebuffer, base)
#define to_intel_plane(x) container_of(x, struct intel_plane, base)
#define to_intel_plane_state(x) container_of(x, struct intel_plane_state, uapi)
#define intel_fb_obj(x) ((x) ? to_intel_bo((x)->obj[0]) : NULL)
struct intel_hdmi {
i915_reg_t hdmi_reg;
int ddc_bus;
struct {
enum drm_dp_dual_mode_type type;
int max_tmds_clock;
} dp_dual_mode;
bool has_hdmi_sink;
bool has_audio;
struct intel_connector *attached_connector;
struct cec_notifier *cec_notifier;
};
struct intel_dp_mst_encoder;
/*
* enum link_m_n_set:
* When platform provides two set of M_N registers for dp, we can
* program them and switch between them incase of DRRS.
* But When only one such register is provided, we have to program the
* required divider value on that registers itself based on the DRRS state.
*
* M1_N1 : Program dp_m_n on M1_N1 registers
* dp_m2_n2 on M2_N2 registers (If supported)
*
* M2_N2 : Program dp_m2_n2 on M1_N1 registers
* M2_N2 registers are not supported
*/
enum link_m_n_set {
/* Sets the m1_n1 and m2_n2 */
M1_N1 = 0,
M2_N2
};
struct intel_dp_compliance_data {
unsigned long edid;
u8 video_pattern;
u16 hdisplay, vdisplay;
u8 bpc;
struct drm_dp_phy_test_params phytest;
};
struct intel_dp_compliance {
unsigned long test_type;
struct intel_dp_compliance_data test_data;
bool test_active;
int test_link_rate;
u8 test_lane_count;
};
struct intel_dp_pcon_frl {
bool is_trained;
int trained_rate_gbps;
};
struct intel_pps {
int panel_power_up_delay;
int panel_power_down_delay;
int panel_power_cycle_delay;
int backlight_on_delay;
int backlight_off_delay;
struct delayed_work panel_vdd_work;
bool want_panel_vdd;
unsigned long last_power_on;
unsigned long last_backlight_off;
ktime_t panel_power_off_time;
intel_wakeref_t vdd_wakeref;
/*
* Pipe whose power sequencer is currently locked into
* this port. Only relevant on VLV/CHV.
*/
enum pipe pps_pipe;
/*
* Pipe currently driving the port. Used for preventing
* the use of the PPS for any pipe currentrly driving
* external DP as that will mess things up on VLV.
*/
enum pipe active_pipe;
/*
* Set if the sequencer may be reset due to a power transition,
* requiring a reinitialization. Only relevant on BXT.
*/
bool pps_reset;
struct edp_power_seq pps_delays;
};
struct intel_psr {
/* Mutex for PSR state of the transcoder */
struct mutex lock;
#define I915_PSR_DEBUG_MODE_MASK 0x0f
#define I915_PSR_DEBUG_DEFAULT 0x00
#define I915_PSR_DEBUG_DISABLE 0x01
#define I915_PSR_DEBUG_ENABLE 0x02
#define I915_PSR_DEBUG_FORCE_PSR1 0x03
#define I915_PSR_DEBUG_ENABLE_SEL_FETCH 0x4
#define I915_PSR_DEBUG_IRQ 0x10
u32 debug;
bool sink_support;
bool source_support;
bool enabled;
bool paused;
enum pipe pipe;
enum transcoder transcoder;
bool active;
struct work_struct work;
unsigned int busy_frontbuffer_bits;
bool sink_psr2_support;
bool link_standby;
bool colorimetry_support;
bool psr2_enabled;
bool psr2_sel_fetch_enabled;
bool req_psr2_sdp_prior_scanline;
u8 sink_sync_latency;
ktime_t last_entry_attempt;
ktime_t last_exit;
bool sink_not_reliable;
bool irq_aux_error;
u16 su_w_granularity;
u16 su_y_granularity;
u32 dc3co_exitline;
u32 dc3co_exit_delay;
struct delayed_work dc3co_work;
};
struct intel_dp {
i915_reg_t output_reg;
u32 DP;
int link_rate;
u8 lane_count;
u8 sink_count;
bool link_trained;
bool has_hdmi_sink;
bool has_audio;
bool reset_link_params;
bool use_max_params;
u8 dpcd[DP_RECEIVER_CAP_SIZE];
u8 psr_dpcd[EDP_PSR_RECEIVER_CAP_SIZE];
u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS];
u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE];
u8 lttpr_common_caps[DP_LTTPR_COMMON_CAP_SIZE];
u8 lttpr_phy_caps[DP_MAX_LTTPR_COUNT][DP_LTTPR_PHY_CAP_SIZE];
u8 fec_capable;
u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE];
/* source rates */
int num_source_rates;
const int *source_rates;
/* sink rates as reported by DP_MAX_LINK_RATE/DP_SUPPORTED_LINK_RATES */
int num_sink_rates;
int sink_rates[DP_MAX_SUPPORTED_RATES];
bool use_rate_select;
/* intersection of source and sink rates */
int num_common_rates;
int common_rates[DP_MAX_SUPPORTED_RATES];
/* Max lane count for the current link */
int max_link_lane_count;
/* Max rate for the current link */
int max_link_rate;
int mso_link_count;
int mso_pixel_overlap;
/* sink or branch descriptor */
struct drm_dp_desc desc;
struct drm_dp_aux aux;
u32 aux_busy_last_status;
u8 train_set[4];
struct intel_pps pps;
bool is_mst;
int active_mst_links;
/* connector directly attached - won't be use for modeset in mst world */
struct intel_connector *attached_connector;
/* mst connector list */
struct intel_dp_mst_encoder *mst_encoders[I915_MAX_PIPES];
struct drm_dp_mst_topology_mgr mst_mgr;
u32 (*get_aux_clock_divider)(struct intel_dp *dp, int index);
/*
* This function returns the value we have to program the AUX_CTL
* register with to kick off an AUX transaction.
*/
u32 (*get_aux_send_ctl)(struct intel_dp *dp, int send_bytes,
u32 aux_clock_divider);
i915_reg_t (*aux_ch_ctl_reg)(struct intel_dp *dp);
i915_reg_t (*aux_ch_data_reg)(struct intel_dp *dp, int index);
/* This is called before a link training is starterd */
void (*prepare_link_retrain)(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state);
void (*set_link_train)(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
u8 dp_train_pat);
void (*set_idle_link_train)(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state);
u8 (*preemph_max)(struct intel_dp *intel_dp);
u8 (*voltage_max)(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state);
/* Displayport compliance testing */
struct intel_dp_compliance compliance;
/* Downstream facing port caps */
struct {
int min_tmds_clock, max_tmds_clock;
int max_dotclock;
int pcon_max_frl_bw;
u8 max_bpc;
bool ycbcr_444_to_420;
bool rgb_to_ycbcr;
} dfp;
/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
struct pm_qos_request pm_qos;
/* Display stream compression testing */
bool force_dsc_en;
int force_dsc_bpp;
bool hobl_failed;
bool hobl_active;
struct intel_dp_pcon_frl frl;
struct intel_psr psr;
};
enum lspcon_vendor {
LSPCON_VENDOR_MCA,
LSPCON_VENDOR_PARADE
};
struct intel_lspcon {
bool active;
bool hdr_supported;
enum drm_lspcon_mode mode;
enum lspcon_vendor vendor;
};
struct intel_digital_port {
struct intel_encoder base;
u32 saved_port_bits;
struct intel_dp dp;
struct intel_hdmi hdmi;
struct intel_lspcon lspcon;
enum irqreturn (*hpd_pulse)(struct intel_digital_port *, bool);
bool release_cl2_override;
u8 max_lanes;
/* Used for DP and ICL+ TypeC/DP and TypeC/HDMI ports. */
enum aux_ch aux_ch;
enum intel_display_power_domain ddi_io_power_domain;
intel_wakeref_t ddi_io_wakeref;
intel_wakeref_t aux_wakeref;
struct mutex tc_lock; /* protects the TypeC port mode */
intel_wakeref_t tc_lock_wakeref;
enum intel_display_power_domain tc_lock_power_domain;
struct delayed_work tc_disconnect_phy_work;
int tc_link_refcount;
bool tc_legacy_port:1;
char tc_port_name[8];
enum tc_port_mode tc_mode;
enum phy_fia tc_phy_fia;
u8 tc_phy_fia_idx;
/* protects num_hdcp_streams reference count, hdcp_port_data and hdcp_auth_status */
struct mutex hdcp_mutex;
/* the number of pipes using HDCP signalling out of this port */
unsigned int num_hdcp_streams;
/* port HDCP auth status */
bool hdcp_auth_status;
/* HDCP port data need to pass to security f/w */
struct hdcp_port_data hdcp_port_data;
/* Whether the MST topology supports HDCP Type 1 Content */
bool hdcp_mst_type1_capable;
void (*write_infoframe)(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
unsigned int type,
const void *frame, ssize_t len);
void (*read_infoframe)(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
unsigned int type,
void *frame, ssize_t len);
void (*set_infoframes)(struct intel_encoder *encoder,
bool enable,
const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state);
u32 (*infoframes_enabled)(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config);
bool (*connected)(struct intel_encoder *encoder);
};
struct intel_dp_mst_encoder {
struct intel_encoder base;
enum pipe pipe;
struct intel_digital_port *primary;
struct intel_connector *connector;
};
static inline enum dpio_channel
vlv_dig_port_to_channel(struct intel_digital_port *dig_port)
{
switch (dig_port->base.port) {
case PORT_B:
case PORT_D:
return DPIO_CH0;
case PORT_C:
return DPIO_CH1;
default:
BUG();
}
}
static inline enum dpio_phy
vlv_dig_port_to_phy(struct intel_digital_port *dig_port)
{
switch (dig_port->base.port) {
case PORT_B:
case PORT_C:
return DPIO_PHY0;
case PORT_D:
return DPIO_PHY1;
default:
BUG();
}
}
static inline enum dpio_channel
vlv_pipe_to_channel(enum pipe pipe)
{
switch (pipe) {
case PIPE_A:
case PIPE_C:
return DPIO_CH0;
case PIPE_B:
return DPIO_CH1;
default:
BUG();
}
}
static inline bool intel_pipe_valid(struct drm_i915_private *i915, enum pipe pipe)
{
return (pipe >= 0 &&
pipe < ARRAY_SIZE(i915->pipe_to_crtc_mapping) &&
INTEL_INFO(i915)->pipe_mask & BIT(pipe) &&
i915->pipe_to_crtc_mapping[pipe]);
}
static inline struct intel_crtc *
intel_get_first_crtc(struct drm_i915_private *dev_priv)
{
return to_intel_crtc(drm_crtc_from_index(&dev_priv->drm, 0));
}
static inline struct intel_crtc *
intel_get_crtc_for_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
{
/* pipe_to_crtc_mapping may have hole on any of 3 display pipe system */
drm_WARN_ON(&dev_priv->drm,
!(INTEL_INFO(dev_priv)->pipe_mask & BIT(pipe)));
return dev_priv->pipe_to_crtc_mapping[pipe];
}
static inline struct intel_crtc *
intel_get_crtc_for_plane(struct drm_i915_private *dev_priv, enum i9xx_plane_id plane)
{
return dev_priv->plane_to_crtc_mapping[plane];
}
struct intel_load_detect_pipe {
struct drm_atomic_state *restore_state;
};
static inline struct intel_encoder *
intel_attached_encoder(struct intel_connector *connector)
{
return connector->encoder;
}
static inline bool intel_encoder_is_dig_port(struct intel_encoder *encoder)
{
switch (encoder->type) {
case INTEL_OUTPUT_DDI:
case INTEL_OUTPUT_DP:
case INTEL_OUTPUT_EDP:
case INTEL_OUTPUT_HDMI:
return true;
default:
return false;
}
}
static inline bool intel_encoder_is_mst(struct intel_encoder *encoder)
{
return encoder->type == INTEL_OUTPUT_DP_MST;
}
static inline struct intel_dp_mst_encoder *
enc_to_mst(struct intel_encoder *encoder)
{
return container_of(&encoder->base, struct intel_dp_mst_encoder,
base.base);
}
static inline struct intel_digital_port *
enc_to_dig_port(struct intel_encoder *encoder)
{
struct intel_encoder *intel_encoder = encoder;
if (intel_encoder_is_dig_port(intel_encoder))
return container_of(&encoder->base, struct intel_digital_port,
base.base);
else if (intel_encoder_is_mst(intel_encoder))
return enc_to_mst(encoder)->primary;
else
return NULL;
}
static inline struct intel_digital_port *
intel_attached_dig_port(struct intel_connector *connector)
{
return enc_to_dig_port(intel_attached_encoder(connector));
}
static inline struct intel_hdmi *
enc_to_intel_hdmi(struct intel_encoder *encoder)
{
return &enc_to_dig_port(encoder)->hdmi;
}
static inline struct intel_hdmi *
intel_attached_hdmi(struct intel_connector *connector)
{
return enc_to_intel_hdmi(intel_attached_encoder(connector));
}
static inline struct intel_dp *enc_to_intel_dp(struct intel_encoder *encoder)
{
return &enc_to_dig_port(encoder)->dp;
}
static inline struct intel_dp *intel_attached_dp(struct intel_connector *connector)
{
return enc_to_intel_dp(intel_attached_encoder(connector));
}
static inline bool intel_encoder_is_dp(struct intel_encoder *encoder)
{
switch (encoder->type) {
case INTEL_OUTPUT_DP:
case INTEL_OUTPUT_EDP:
return true;
case INTEL_OUTPUT_DDI:
/* Skip pure HDMI/DVI DDI encoders */
return i915_mmio_reg_valid(enc_to_intel_dp(encoder)->output_reg);
default:
return false;
}
}
static inline struct intel_lspcon *
enc_to_intel_lspcon(struct intel_encoder *encoder)
{
return &enc_to_dig_port(encoder)->lspcon;
}
static inline struct intel_digital_port *
dp_to_dig_port(struct intel_dp *intel_dp)
{
return container_of(intel_dp, struct intel_digital_port, dp);
}
static inline struct intel_lspcon *
dp_to_lspcon(struct intel_dp *intel_dp)
{
return &dp_to_dig_port(intel_dp)->lspcon;
}
static inline struct drm_i915_private *
dp_to_i915(struct intel_dp *intel_dp)
{
return to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
}
#define CAN_PSR(intel_dp) ((intel_dp)->psr.sink_support && \
(intel_dp)->psr.source_support)
static inline bool intel_encoder_can_psr(struct intel_encoder *encoder)
{
if (!intel_encoder_is_dp(encoder))
return false;
return CAN_PSR(enc_to_intel_dp(encoder));
}
static inline struct intel_digital_port *
hdmi_to_dig_port(struct intel_hdmi *intel_hdmi)
{
return container_of(intel_hdmi, struct intel_digital_port, hdmi);
}
static inline struct intel_plane_state *
intel_atomic_get_plane_state(struct intel_atomic_state *state,
struct intel_plane *plane)
{
struct drm_plane_state *ret =
drm_atomic_get_plane_state(&state->base, &plane->base);
if (IS_ERR(ret))
return ERR_CAST(ret);
return to_intel_plane_state(ret);
}
static inline struct intel_plane_state *
intel_atomic_get_old_plane_state(struct intel_atomic_state *state,
struct intel_plane *plane)
{
return to_intel_plane_state(drm_atomic_get_old_plane_state(&state->base,
&plane->base));
}
static inline struct intel_plane_state *
intel_atomic_get_new_plane_state(struct intel_atomic_state *state,
struct intel_plane *plane)
{
return to_intel_plane_state(drm_atomic_get_new_plane_state(&state->base,
&plane->base));
}
static inline struct intel_crtc_state *
intel_atomic_get_old_crtc_state(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
return to_intel_crtc_state(drm_atomic_get_old_crtc_state(&state->base,
&crtc->base));
}
static inline struct intel_crtc_state *
intel_atomic_get_new_crtc_state(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
return to_intel_crtc_state(drm_atomic_get_new_crtc_state(&state->base,
&crtc->base));
}
static inline struct intel_digital_connector_state *
intel_atomic_get_new_connector_state(struct intel_atomic_state *state,
struct intel_connector *connector)
{
return to_intel_digital_connector_state(
drm_atomic_get_new_connector_state(&state->base,
&connector->base));
}
static inline struct intel_digital_connector_state *
intel_atomic_get_old_connector_state(struct intel_atomic_state *state,
struct intel_connector *connector)
{
return to_intel_digital_connector_state(
drm_atomic_get_old_connector_state(&state->base,
&connector->base));
}
/* intel_display.c */
static inline bool
intel_crtc_has_type(const struct intel_crtc_state *crtc_state,
enum intel_output_type type)
{
return crtc_state->output_types & (1 << type);
}
static inline bool
intel_crtc_has_dp_encoder(const struct intel_crtc_state *crtc_state)
{
return crtc_state->output_types &
((1 << INTEL_OUTPUT_DP) |
(1 << INTEL_OUTPUT_DP_MST) |
(1 << INTEL_OUTPUT_EDP));
}
static inline bool
intel_crtc_needs_modeset(const struct intel_crtc_state *crtc_state)
{
return drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
}
static inline void
intel_wait_for_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
{
struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
drm_crtc_wait_one_vblank(&crtc->base);
}
static inline void
intel_wait_for_vblank_if_active(struct drm_i915_private *dev_priv, enum pipe pipe)
{
const struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
if (crtc->active)
intel_wait_for_vblank(dev_priv, pipe);
}
static inline bool intel_modifier_uses_dpt(struct drm_i915_private *i915, u64 modifier)
{
return DISPLAY_VER(i915) >= 13 && modifier != DRM_FORMAT_MOD_LINEAR;
}
static inline bool intel_fb_uses_dpt(const struct drm_framebuffer *fb)
{
return fb && intel_modifier_uses_dpt(to_i915(fb->dev), fb->modifier);
}
static inline u32 intel_plane_ggtt_offset(const struct intel_plane_state *plane_state)
{
return i915_ggtt_offset(plane_state->ggtt_vma);
}
static inline struct intel_frontbuffer *
to_intel_frontbuffer(struct drm_framebuffer *fb)
{
return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL;
}
static inline bool is_ccs_modifier(u64 modifier)
{
return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC ||
modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS ||
modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
}
static inline bool is_gen12_ccs_modifier(u64 modifier)
{
return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC ||
modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
}
#endif /* __INTEL_DISPLAY_TYPES_H__ */