blob: 6c804102528b1760f9cbe57b5a72e3e6e99d443f [file] [log] [blame]
/*
* Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Zhi Wang <zhi.a.wang@intel.com>
*
* Contributors:
* Ping Gao <ping.a.gao@intel.com>
* Tina Zhang <tina.zhang@intel.com>
* Chanbin Du <changbin.du@intel.com>
* Min He <min.he@intel.com>
* Bing Niu <bing.niu@intel.com>
* Zhenyu Wang <zhenyuw@linux.intel.com>
*
*/
#include <linux/kthread.h>
#include "gem/i915_gem_pm.h"
#include "gt/intel_context.h"
#include "gt/intel_execlists_submission.h"
#include "gt/intel_lrc.h"
#include "gt/intel_ring.h"
#include "i915_drv.h"
#include "i915_gem_gtt.h"
#include "gvt.h"
#define RING_CTX_OFF(x) \
offsetof(struct execlist_ring_context, x)
static void set_context_pdp_root_pointer(
struct execlist_ring_context *ring_context,
u32 pdp[8])
{
int i;
for (i = 0; i < 8; i++)
ring_context->pdps[i].val = pdp[7 - i];
}
static void update_shadow_pdps(struct intel_vgpu_workload *workload)
{
struct execlist_ring_context *shadow_ring_context;
struct intel_context *ctx = workload->req->context;
if (WARN_ON(!workload->shadow_mm))
return;
if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
return;
shadow_ring_context = (struct execlist_ring_context *)ctx->lrc_reg_state;
set_context_pdp_root_pointer(shadow_ring_context,
(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
}
/*
* when populating shadow ctx from guest, we should not overrride oa related
* registers, so that they will not be overlapped by guest oa configs. Thus
* made it possible to capture oa data from host for both host and guests.
*/
static void sr_oa_regs(struct intel_vgpu_workload *workload,
u32 *reg_state, bool save)
{
struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915;
u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
int i = 0;
u32 flex_mmio[] = {
i915_mmio_reg_offset(EU_PERF_CNTL0),
i915_mmio_reg_offset(EU_PERF_CNTL1),
i915_mmio_reg_offset(EU_PERF_CNTL2),
i915_mmio_reg_offset(EU_PERF_CNTL3),
i915_mmio_reg_offset(EU_PERF_CNTL4),
i915_mmio_reg_offset(EU_PERF_CNTL5),
i915_mmio_reg_offset(EU_PERF_CNTL6),
};
if (workload->engine->id != RCS0)
return;
if (save) {
workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
u32 state_offset = ctx_flexeu0 + i * 2;
workload->flex_mmio[i] = reg_state[state_offset + 1];
}
} else {
reg_state[ctx_oactxctrl] =
i915_mmio_reg_offset(GEN8_OACTXCONTROL);
reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
u32 state_offset = ctx_flexeu0 + i * 2;
u32 mmio = flex_mmio[i];
reg_state[state_offset] = mmio;
reg_state[state_offset + 1] = workload->flex_mmio[i];
}
}
}
static int populate_shadow_context(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
struct intel_gvt *gvt = vgpu->gvt;
struct intel_context *ctx = workload->req->context;
struct execlist_ring_context *shadow_ring_context;
void *dst;
void *context_base;
unsigned long context_gpa, context_page_num;
unsigned long gpa_base; /* first gpa of consecutive GPAs */
unsigned long gpa_size; /* size of consecutive GPAs */
struct intel_vgpu_submission *s = &vgpu->submission;
int i;
bool skip = false;
int ring_id = workload->engine->id;
int ret;
GEM_BUG_ON(!intel_context_is_pinned(ctx));
context_base = (void *) ctx->lrc_reg_state -
(LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
shadow_ring_context = (void *) ctx->lrc_reg_state;
sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
#define COPY_REG(name) \
intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
#define COPY_REG_MASKED(name) {\
intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
+ RING_CTX_OFF(name.val),\
&shadow_ring_context->name.val, 4);\
shadow_ring_context->name.val |= 0xffff << 16;\
}
COPY_REG_MASKED(ctx_ctrl);
COPY_REG(ctx_timestamp);
if (workload->engine->id == RCS0) {
COPY_REG(bb_per_ctx_ptr);
COPY_REG(rcs_indirect_ctx);
COPY_REG(rcs_indirect_ctx_offset);
} else if (workload->engine->id == BCS0)
intel_gvt_hypervisor_read_gpa(vgpu,
workload->ring_context_gpa +
BCS_TILE_REGISTER_VAL_OFFSET,
(void *)shadow_ring_context +
BCS_TILE_REGISTER_VAL_OFFSET, 4);
#undef COPY_REG
#undef COPY_REG_MASKED
/* don't copy Ring Context (the first 0x50 dwords),
* only copy the Engine Context part from guest
*/
intel_gvt_hypervisor_read_gpa(vgpu,
workload->ring_context_gpa +
RING_CTX_SIZE,
(void *)shadow_ring_context +
RING_CTX_SIZE,
I915_GTT_PAGE_SIZE - RING_CTX_SIZE);
sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx",
workload->engine->name, workload->ctx_desc.lrca,
workload->ctx_desc.context_id,
workload->ring_context_gpa);
/* only need to ensure this context is not pinned/unpinned during the
* period from last submission to this this submission.
* Upon reaching this function, the currently submitted context is not
* supposed to get unpinned. If a misbehaving guest driver ever does
* this, it would corrupt itself.
*/
if (s->last_ctx[ring_id].valid &&
(s->last_ctx[ring_id].lrca ==
workload->ctx_desc.lrca) &&
(s->last_ctx[ring_id].ring_context_gpa ==
workload->ring_context_gpa))
skip = true;
s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca;
s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa;
if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip)
return 0;
s->last_ctx[ring_id].valid = false;
context_page_num = workload->engine->context_size;
context_page_num = context_page_num >> PAGE_SHIFT;
if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0)
context_page_num = 19;
/* find consecutive GPAs from gma until the first inconsecutive GPA.
* read from the continuous GPAs into dst virtual address
*/
gpa_size = 0;
for (i = 2; i < context_page_num; i++) {
context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
(u32)((workload->ctx_desc.lrca + i) <<
I915_GTT_PAGE_SHIFT));
if (context_gpa == INTEL_GVT_INVALID_ADDR) {
gvt_vgpu_err("Invalid guest context descriptor\n");
return -EFAULT;
}
if (gpa_size == 0) {
gpa_base = context_gpa;
dst = context_base + (i << I915_GTT_PAGE_SHIFT);
} else if (context_gpa != gpa_base + gpa_size)
goto read;
gpa_size += I915_GTT_PAGE_SIZE;
if (i == context_page_num - 1)
goto read;
continue;
read:
intel_gvt_hypervisor_read_gpa(vgpu, gpa_base, dst, gpa_size);
gpa_base = context_gpa;
gpa_size = I915_GTT_PAGE_SIZE;
dst = context_base + (i << I915_GTT_PAGE_SHIFT);
}
ret = intel_gvt_scan_engine_context(workload);
if (ret) {
gvt_vgpu_err("invalid cmd found in guest context pages\n");
return ret;
}
s->last_ctx[ring_id].valid = true;
return 0;
}
static inline bool is_gvt_request(struct i915_request *rq)
{
return intel_context_force_single_submission(rq->context);
}
static void save_ring_hw_state(struct intel_vgpu *vgpu,
const struct intel_engine_cs *engine)
{
struct intel_uncore *uncore = engine->uncore;
i915_reg_t reg;
reg = RING_INSTDONE(engine->mmio_base);
vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
intel_uncore_read(uncore, reg);
reg = RING_ACTHD(engine->mmio_base);
vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
intel_uncore_read(uncore, reg);
reg = RING_ACTHD_UDW(engine->mmio_base);
vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
intel_uncore_read(uncore, reg);
}
static int shadow_context_status_change(struct notifier_block *nb,
unsigned long action, void *data)
{
struct i915_request *rq = data;
struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
shadow_ctx_notifier_block[rq->engine->id]);
struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
enum intel_engine_id ring_id = rq->engine->id;
struct intel_vgpu_workload *workload;
unsigned long flags;
if (!is_gvt_request(rq)) {
spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
if (action == INTEL_CONTEXT_SCHEDULE_IN &&
scheduler->engine_owner[ring_id]) {
/* Switch ring from vGPU to host. */
intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
NULL, rq->engine);
scheduler->engine_owner[ring_id] = NULL;
}
spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
return NOTIFY_OK;
}
workload = scheduler->current_workload[ring_id];
if (unlikely(!workload))
return NOTIFY_OK;
switch (action) {
case INTEL_CONTEXT_SCHEDULE_IN:
spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
if (workload->vgpu != scheduler->engine_owner[ring_id]) {
/* Switch ring from host to vGPU or vGPU to vGPU. */
intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
workload->vgpu, rq->engine);
scheduler->engine_owner[ring_id] = workload->vgpu;
} else
gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
ring_id, workload->vgpu->id);
spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
atomic_set(&workload->shadow_ctx_active, 1);
break;
case INTEL_CONTEXT_SCHEDULE_OUT:
save_ring_hw_state(workload->vgpu, rq->engine);
atomic_set(&workload->shadow_ctx_active, 0);
break;
case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
save_ring_hw_state(workload->vgpu, rq->engine);
break;
default:
WARN_ON(1);
return NOTIFY_OK;
}
wake_up(&workload->shadow_ctx_status_wq);
return NOTIFY_OK;
}
static void
shadow_context_descriptor_update(struct intel_context *ce,
struct intel_vgpu_workload *workload)
{
u64 desc = ce->lrc.desc;
/*
* Update bits 0-11 of the context descriptor which includes flags
* like GEN8_CTX_* cached in desc_template
*/
desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT);
desc |= (u64)workload->ctx_desc.addressing_mode <<
GEN8_CTX_ADDRESSING_MODE_SHIFT;
ce->lrc.desc = desc;
}
static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
struct i915_request *req = workload->req;
void *shadow_ring_buffer_va;
u32 *cs;
int err;
if (GRAPHICS_VER(req->engine->i915) == 9 && is_inhibit_context(req->context))
intel_vgpu_restore_inhibit_context(vgpu, req);
/*
* To track whether a request has started on HW, we can emit a
* breadcrumb at the beginning of the request and check its
* timeline's HWSP to see if the breadcrumb has advanced past the
* start of this request. Actually, the request must have the
* init_breadcrumb if its timeline set has_init_bread_crumb, or the
* scheduler might get a wrong state of it during reset. Since the
* requests from gvt always set the has_init_breadcrumb flag, here
* need to do the emit_init_breadcrumb for all the requests.
*/
if (req->engine->emit_init_breadcrumb) {
err = req->engine->emit_init_breadcrumb(req);
if (err) {
gvt_vgpu_err("fail to emit init breadcrumb\n");
return err;
}
}
/* allocate shadow ring buffer */
cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
if (IS_ERR(cs)) {
gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n",
workload->rb_len);
return PTR_ERR(cs);
}
shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
/* get shadow ring buffer va */
workload->shadow_ring_buffer_va = cs;
memcpy(cs, shadow_ring_buffer_va,
workload->rb_len);
cs += workload->rb_len / sizeof(u32);
intel_ring_advance(workload->req, cs);
return 0;
}
static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
{
if (!wa_ctx->indirect_ctx.obj)
return;
i915_gem_object_lock(wa_ctx->indirect_ctx.obj, NULL);
i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
i915_gem_object_unlock(wa_ctx->indirect_ctx.obj);
i915_gem_object_put(wa_ctx->indirect_ctx.obj);
wa_ctx->indirect_ctx.obj = NULL;
wa_ctx->indirect_ctx.shadow_va = NULL;
}
static void set_dma_address(struct i915_page_directory *pd, dma_addr_t addr)
{
struct scatterlist *sg = pd->pt.base->mm.pages->sgl;
/* This is not a good idea */
sg->dma_address = addr;
}
static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
struct intel_context *ce)
{
struct intel_vgpu_mm *mm = workload->shadow_mm;
struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
int i = 0;
if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
set_dma_address(ppgtt->pd, mm->ppgtt_mm.shadow_pdps[0]);
} else {
for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
struct i915_page_directory * const pd =
i915_pd_entry(ppgtt->pd, i);
/* skip now as current i915 ppgtt alloc won't allocate
top level pdp for non 4-level table, won't impact
shadow ppgtt. */
if (!pd)
break;
set_dma_address(pd, mm->ppgtt_mm.shadow_pdps[i]);
}
}
}
static int
intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
struct intel_vgpu_submission *s = &vgpu->submission;
struct i915_request *rq;
if (workload->req)
return 0;
rq = i915_request_create(s->shadow[workload->engine->id]);
if (IS_ERR(rq)) {
gvt_vgpu_err("fail to allocate gem request\n");
return PTR_ERR(rq);
}
workload->req = i915_request_get(rq);
return 0;
}
/**
* intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
* shadow it as well, include ringbuffer,wa_ctx and ctx.
* @workload: an abstract entity for each execlist submission.
*
* This function is called before the workload submitting to i915, to make
* sure the content of the workload is valid.
*/
int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
struct intel_vgpu_submission *s = &vgpu->submission;
int ret;
lockdep_assert_held(&vgpu->vgpu_lock);
if (workload->shadow)
return 0;
if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated))
shadow_context_descriptor_update(s->shadow[workload->engine->id],
workload);
ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
if (ret)
return ret;
if (workload->engine->id == RCS0 &&
workload->wa_ctx.indirect_ctx.size) {
ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
if (ret)
goto err_shadow;
}
workload->shadow = true;
return 0;
err_shadow:
release_shadow_wa_ctx(&workload->wa_ctx);
return ret;
}
static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
{
struct intel_gvt *gvt = workload->vgpu->gvt;
const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
struct intel_vgpu_shadow_bb *bb;
struct i915_gem_ww_ctx ww;
int ret;
list_for_each_entry(bb, &workload->shadow_bb, list) {
/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
* is only updated into ring_scan_buffer, not real ring address
* allocated in later copy_workload_to_ring_buffer. pls be noted
* shadow_ring_buffer_va is now pointed to real ring buffer va
* in copy_workload_to_ring_buffer.
*/
if (bb->bb_offset)
bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
+ bb->bb_offset;
/*
* For non-priv bb, scan&shadow is only for
* debugging purpose, so the content of shadow bb
* is the same as original bb. Therefore,
* here, rather than switch to shadow bb's gma
* address, we directly use original batch buffer's
* gma address, and send original bb to hardware
* directly
*/
if (!bb->ppgtt) {
i915_gem_ww_ctx_init(&ww, false);
retry:
i915_gem_object_lock(bb->obj, &ww);
bb->vma = i915_gem_object_ggtt_pin_ww(bb->obj, &ww,
NULL, 0, 0, 0);
if (IS_ERR(bb->vma)) {
ret = PTR_ERR(bb->vma);
if (ret == -EDEADLK) {
ret = i915_gem_ww_ctx_backoff(&ww);
if (!ret)
goto retry;
}
goto err;
}
/* relocate shadow batch buffer */
bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
if (gmadr_bytes == 8)
bb->bb_start_cmd_va[2] = 0;
ret = i915_vma_move_to_active(bb->vma,
workload->req,
0);
if (ret)
goto err;
/* No one is going to touch shadow bb from now on. */
i915_gem_object_flush_map(bb->obj);
i915_gem_ww_ctx_fini(&ww);
}
}
return 0;
err:
i915_gem_ww_ctx_fini(&ww);
release_shadow_batch_buffer(workload);
return ret;
}
static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
{
struct intel_vgpu_workload *workload =
container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
struct i915_request *rq = workload->req;
struct execlist_ring_context *shadow_ring_context =
(struct execlist_ring_context *)rq->context->lrc_reg_state;
shadow_ring_context->bb_per_ctx_ptr.val =
(shadow_ring_context->bb_per_ctx_ptr.val &
(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
shadow_ring_context->rcs_indirect_ctx.val =
(shadow_ring_context->rcs_indirect_ctx.val &
(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
}
static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
{
struct i915_vma *vma;
unsigned char *per_ctx_va =
(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
wa_ctx->indirect_ctx.size;
struct i915_gem_ww_ctx ww;
int ret;
if (wa_ctx->indirect_ctx.size == 0)
return 0;
i915_gem_ww_ctx_init(&ww, false);
retry:
i915_gem_object_lock(wa_ctx->indirect_ctx.obj, &ww);
vma = i915_gem_object_ggtt_pin_ww(wa_ctx->indirect_ctx.obj, &ww, NULL,
0, CACHELINE_BYTES, 0);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
if (ret == -EDEADLK) {
ret = i915_gem_ww_ctx_backoff(&ww);
if (!ret)
goto retry;
}
return ret;
}
i915_gem_ww_ctx_fini(&ww);
/* FIXME: we are not tracking our pinned VMA leaving it
* up to the core to fix up the stray pin_count upon
* free.
*/
wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
memset(per_ctx_va, 0, CACHELINE_BYTES);
update_wa_ctx_2_shadow_ctx(wa_ctx);
return 0;
}
static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
{
vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) =
workload->rb_start;
}
static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
{
struct intel_vgpu_shadow_bb *bb, *pos;
if (list_empty(&workload->shadow_bb))
return;
bb = list_first_entry(&workload->shadow_bb,
struct intel_vgpu_shadow_bb, list);
list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
if (bb->obj) {
i915_gem_object_lock(bb->obj, NULL);
if (bb->va && !IS_ERR(bb->va))
i915_gem_object_unpin_map(bb->obj);
if (bb->vma && !IS_ERR(bb->vma))
i915_vma_unpin(bb->vma);
i915_gem_object_unlock(bb->obj);
i915_gem_object_put(bb->obj);
}
list_del(&bb->list);
kfree(bb);
}
}
static int
intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
struct intel_vgpu_mm *m;
int ret = 0;
ret = intel_vgpu_pin_mm(workload->shadow_mm);
if (ret) {
gvt_vgpu_err("fail to vgpu pin mm\n");
return ret;
}
if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
!workload->shadow_mm->ppgtt_mm.shadowed) {
gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
return -EINVAL;
}
if (!list_empty(&workload->lri_shadow_mm)) {
list_for_each_entry(m, &workload->lri_shadow_mm,
ppgtt_mm.link) {
ret = intel_vgpu_pin_mm(m);
if (ret) {
list_for_each_entry_from_reverse(m,
&workload->lri_shadow_mm,
ppgtt_mm.link)
intel_vgpu_unpin_mm(m);
gvt_vgpu_err("LRI shadow ppgtt fail to pin\n");
break;
}
}
}
if (ret)
intel_vgpu_unpin_mm(workload->shadow_mm);
return ret;
}
static void
intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload *workload)
{
struct intel_vgpu_mm *m;
if (!list_empty(&workload->lri_shadow_mm)) {
list_for_each_entry(m, &workload->lri_shadow_mm,
ppgtt_mm.link)
intel_vgpu_unpin_mm(m);
}
intel_vgpu_unpin_mm(workload->shadow_mm);
}
static int prepare_workload(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
struct intel_vgpu_submission *s = &vgpu->submission;
int ret = 0;
ret = intel_vgpu_shadow_mm_pin(workload);
if (ret) {
gvt_vgpu_err("fail to pin shadow mm\n");
return ret;
}
update_shadow_pdps(workload);
set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]);
ret = intel_vgpu_sync_oos_pages(workload->vgpu);
if (ret) {
gvt_vgpu_err("fail to vgpu sync oos pages\n");
goto err_unpin_mm;
}
ret = intel_vgpu_flush_post_shadow(workload->vgpu);
if (ret) {
gvt_vgpu_err("fail to flush post shadow\n");
goto err_unpin_mm;
}
ret = copy_workload_to_ring_buffer(workload);
if (ret) {
gvt_vgpu_err("fail to generate request\n");
goto err_unpin_mm;
}
ret = prepare_shadow_batch_buffer(workload);
if (ret) {
gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
goto err_unpin_mm;
}
ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
if (ret) {
gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
goto err_shadow_batch;
}
if (workload->prepare) {
ret = workload->prepare(workload);
if (ret)
goto err_shadow_wa_ctx;
}
return 0;
err_shadow_wa_ctx:
release_shadow_wa_ctx(&workload->wa_ctx);
err_shadow_batch:
release_shadow_batch_buffer(workload);
err_unpin_mm:
intel_vgpu_shadow_mm_unpin(workload);
return ret;
}
static int dispatch_workload(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
struct i915_request *rq;
int ret;
gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
workload->engine->name, workload);
mutex_lock(&vgpu->vgpu_lock);
ret = intel_gvt_workload_req_alloc(workload);
if (ret)
goto err_req;
ret = intel_gvt_scan_and_shadow_workload(workload);
if (ret)
goto out;
ret = populate_shadow_context(workload);
if (ret) {
release_shadow_wa_ctx(&workload->wa_ctx);
goto out;
}
ret = prepare_workload(workload);
out:
if (ret) {
/* We might still need to add request with
* clean ctx to retire it properly..
*/
rq = fetch_and_zero(&workload->req);
i915_request_put(rq);
}
if (!IS_ERR_OR_NULL(workload->req)) {
gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
workload->engine->name, workload->req);
i915_request_add(workload->req);
workload->dispatched = true;
}
err_req:
if (ret)
workload->status = ret;
mutex_unlock(&vgpu->vgpu_lock);
return ret;
}
static struct intel_vgpu_workload *
pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine)
{
struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
struct intel_vgpu_workload *workload = NULL;
mutex_lock(&gvt->sched_lock);
/*
* no current vgpu / will be scheduled out / no workload
* bail out
*/
if (!scheduler->current_vgpu) {
gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name);
goto out;
}
if (scheduler->need_reschedule) {
gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name);
goto out;
}
if (!scheduler->current_vgpu->active ||
list_empty(workload_q_head(scheduler->current_vgpu, engine)))
goto out;
/*
* still have current workload, maybe the workload disptacher
* fail to submit it for some reason, resubmit it.
*/
if (scheduler->current_workload[engine->id]) {
workload = scheduler->current_workload[engine->id];
gvt_dbg_sched("ring %s still have current workload %p\n",
engine->name, workload);
goto out;
}
/*
* pick a workload as current workload
* once current workload is set, schedule policy routines
* will wait the current workload is finished when trying to
* schedule out a vgpu.
*/
scheduler->current_workload[engine->id] =
list_first_entry(workload_q_head(scheduler->current_vgpu,
engine),
struct intel_vgpu_workload, list);
workload = scheduler->current_workload[engine->id];
gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload);
atomic_inc(&workload->vgpu->submission.running_workload_num);
out:
mutex_unlock(&gvt->sched_lock);
return workload;
}
static void update_guest_pdps(struct intel_vgpu *vgpu,
u64 ring_context_gpa, u32 pdp[8])
{
u64 gpa;
int i;
gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
for (i = 0; i < 8; i++)
intel_gvt_hypervisor_write_gpa(vgpu,
gpa + i * 8, &pdp[7 - i], 4);
}
static __maybe_unused bool
check_shadow_context_ppgtt(struct execlist_ring_context *c, struct intel_vgpu_mm *m)
{
if (m->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
u64 shadow_pdp = c->pdps[7].val | (u64) c->pdps[6].val << 32;
if (shadow_pdp != m->ppgtt_mm.shadow_pdps[0]) {
gvt_dbg_mm("4-level context ppgtt not match LRI command\n");
return false;
}
return true;
} else {
/* see comment in LRI handler in cmd_parser.c */
gvt_dbg_mm("invalid shadow mm type\n");
return false;
}
}
static void update_guest_context(struct intel_vgpu_workload *workload)
{
struct i915_request *rq = workload->req;
struct intel_vgpu *vgpu = workload->vgpu;
struct execlist_ring_context *shadow_ring_context;
struct intel_context *ctx = workload->req->context;
void *context_base;
void *src;
unsigned long context_gpa, context_page_num;
unsigned long gpa_base; /* first gpa of consecutive GPAs */
unsigned long gpa_size; /* size of consecutive GPAs*/
int i;
u32 ring_base;
u32 head, tail;
u16 wrap_count;
gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
workload->ctx_desc.lrca);
GEM_BUG_ON(!intel_context_is_pinned(ctx));
head = workload->rb_head;
tail = workload->rb_tail;
wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
if (tail < head) {
if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
wrap_count = 0;
else
wrap_count += 1;
}
head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
ring_base = rq->engine->mmio_base;
vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
context_page_num = rq->engine->context_size;
context_page_num = context_page_num >> PAGE_SHIFT;
if (IS_BROADWELL(rq->engine->i915) && rq->engine->id == RCS0)
context_page_num = 19;
context_base = (void *) ctx->lrc_reg_state -
(LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
/* find consecutive GPAs from gma until the first inconsecutive GPA.
* write to the consecutive GPAs from src virtual address
*/
gpa_size = 0;
for (i = 2; i < context_page_num; i++) {
context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
(u32)((workload->ctx_desc.lrca + i) <<
I915_GTT_PAGE_SHIFT));
if (context_gpa == INTEL_GVT_INVALID_ADDR) {
gvt_vgpu_err("invalid guest context descriptor\n");
return;
}
if (gpa_size == 0) {
gpa_base = context_gpa;
src = context_base + (i << I915_GTT_PAGE_SHIFT);
} else if (context_gpa != gpa_base + gpa_size)
goto write;
gpa_size += I915_GTT_PAGE_SIZE;
if (i == context_page_num - 1)
goto write;
continue;
write:
intel_gvt_hypervisor_write_gpa(vgpu, gpa_base, src, gpa_size);
gpa_base = context_gpa;
gpa_size = I915_GTT_PAGE_SIZE;
src = context_base + (i << I915_GTT_PAGE_SHIFT);
}
intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
shadow_ring_context = (void *) ctx->lrc_reg_state;
if (!list_empty(&workload->lri_shadow_mm)) {
struct intel_vgpu_mm *m = list_last_entry(&workload->lri_shadow_mm,
struct intel_vgpu_mm,
ppgtt_mm.link);
GEM_BUG_ON(!check_shadow_context_ppgtt(shadow_ring_context, m));
update_guest_pdps(vgpu, workload->ring_context_gpa,
(void *)m->ppgtt_mm.guest_pdps);
}
#define COPY_REG(name) \
intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
COPY_REG(ctx_ctrl);
COPY_REG(ctx_timestamp);
#undef COPY_REG
intel_gvt_hypervisor_write_gpa(vgpu,
workload->ring_context_gpa +
sizeof(*shadow_ring_context),
(void *)shadow_ring_context +
sizeof(*shadow_ring_context),
I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
}
void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
intel_engine_mask_t engine_mask)
{
struct intel_vgpu_submission *s = &vgpu->submission;
struct intel_engine_cs *engine;
struct intel_vgpu_workload *pos, *n;
intel_engine_mask_t tmp;
/* free the unsubmited workloads in the queues. */
for_each_engine_masked(engine, vgpu->gvt->gt, engine_mask, tmp) {
list_for_each_entry_safe(pos, n,
&s->workload_q_head[engine->id], list) {
list_del_init(&pos->list);
intel_vgpu_destroy_workload(pos);
}
clear_bit(engine->id, s->shadow_ctx_desc_updated);
}
}
static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
{
struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
struct intel_vgpu_workload *workload =
scheduler->current_workload[ring_id];
struct intel_vgpu *vgpu = workload->vgpu;
struct intel_vgpu_submission *s = &vgpu->submission;
struct i915_request *rq = workload->req;
int event;
mutex_lock(&vgpu->vgpu_lock);
mutex_lock(&gvt->sched_lock);
/* For the workload w/ request, needs to wait for the context
* switch to make sure request is completed.
* For the workload w/o request, directly complete the workload.
*/
if (rq) {
wait_event(workload->shadow_ctx_status_wq,
!atomic_read(&workload->shadow_ctx_active));
/* If this request caused GPU hang, req->fence.error will
* be set to -EIO. Use -EIO to set workload status so
* that when this request caused GPU hang, didn't trigger
* context switch interrupt to guest.
*/
if (likely(workload->status == -EINPROGRESS)) {
if (workload->req->fence.error == -EIO)
workload->status = -EIO;
else
workload->status = 0;
}
if (!workload->status &&
!(vgpu->resetting_eng & BIT(ring_id))) {
update_guest_context(workload);
for_each_set_bit(event, workload->pending_events,
INTEL_GVT_EVENT_MAX)
intel_vgpu_trigger_virtual_event(vgpu, event);
}
i915_request_put(fetch_and_zero(&workload->req));
}
gvt_dbg_sched("ring id %d complete workload %p status %d\n",
ring_id, workload, workload->status);
scheduler->current_workload[ring_id] = NULL;
list_del_init(&workload->list);
if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
/* if workload->status is not successful means HW GPU
* has occurred GPU hang or something wrong with i915/GVT,
* and GVT won't inject context switch interrupt to guest.
* So this error is a vGPU hang actually to the guest.
* According to this we should emunlate a vGPU hang. If
* there are pending workloads which are already submitted
* from guest, we should clean them up like HW GPU does.
*
* if it is in middle of engine resetting, the pending
* workloads won't be submitted to HW GPU and will be
* cleaned up during the resetting process later, so doing
* the workload clean up here doesn't have any impact.
**/
intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
}
workload->complete(workload);
intel_vgpu_shadow_mm_unpin(workload);
intel_vgpu_destroy_workload(workload);
atomic_dec(&s->running_workload_num);
wake_up(&scheduler->workload_complete_wq);
if (gvt->scheduler.need_reschedule)
intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
mutex_unlock(&gvt->sched_lock);
mutex_unlock(&vgpu->vgpu_lock);
}
static int workload_thread(void *arg)
{
struct intel_engine_cs *engine = arg;
const bool need_force_wake = GRAPHICS_VER(engine->i915) >= 9;
struct intel_gvt *gvt = engine->i915->gvt;
struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
struct intel_vgpu_workload *workload = NULL;
struct intel_vgpu *vgpu = NULL;
int ret;
DEFINE_WAIT_FUNC(wait, woken_wake_function);
gvt_dbg_core("workload thread for ring %s started\n", engine->name);
while (!kthread_should_stop()) {
intel_wakeref_t wakeref;
add_wait_queue(&scheduler->waitq[engine->id], &wait);
do {
workload = pick_next_workload(gvt, engine);
if (workload)
break;
wait_woken(&wait, TASK_INTERRUPTIBLE,
MAX_SCHEDULE_TIMEOUT);
} while (!kthread_should_stop());
remove_wait_queue(&scheduler->waitq[engine->id], &wait);
if (!workload)
break;
gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
engine->name, workload,
workload->vgpu->id);
wakeref = intel_runtime_pm_get(engine->uncore->rpm);
gvt_dbg_sched("ring %s will dispatch workload %p\n",
engine->name, workload);
if (need_force_wake)
intel_uncore_forcewake_get(engine->uncore,
FORCEWAKE_ALL);
/*
* Update the vReg of the vGPU which submitted this
* workload. The vGPU may use these registers for checking
* the context state. The value comes from GPU commands
* in this workload.
*/
update_vreg_in_ctx(workload);
ret = dispatch_workload(workload);
if (ret) {
vgpu = workload->vgpu;
gvt_vgpu_err("fail to dispatch workload, skip\n");
goto complete;
}
gvt_dbg_sched("ring %s wait workload %p\n",
engine->name, workload);
i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
complete:
gvt_dbg_sched("will complete workload %p, status: %d\n",
workload, workload->status);
complete_current_workload(gvt, engine->id);
if (need_force_wake)
intel_uncore_forcewake_put(engine->uncore,
FORCEWAKE_ALL);
intel_runtime_pm_put(engine->uncore->rpm, wakeref);
if (ret && (vgpu_is_vm_unhealthy(ret)))
enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
}
return 0;
}
void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
{
struct intel_vgpu_submission *s = &vgpu->submission;
struct intel_gvt *gvt = vgpu->gvt;
struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
if (atomic_read(&s->running_workload_num)) {
gvt_dbg_sched("wait vgpu idle\n");
wait_event(scheduler->workload_complete_wq,
!atomic_read(&s->running_workload_num));
}
}
void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
{
struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
struct intel_engine_cs *engine;
enum intel_engine_id i;
gvt_dbg_core("clean workload scheduler\n");
for_each_engine(engine, gvt->gt, i) {
atomic_notifier_chain_unregister(
&engine->context_status_notifier,
&gvt->shadow_ctx_notifier_block[i]);
kthread_stop(scheduler->thread[i]);
}
}
int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
{
struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
struct intel_engine_cs *engine;
enum intel_engine_id i;
int ret;
gvt_dbg_core("init workload scheduler\n");
init_waitqueue_head(&scheduler->workload_complete_wq);
for_each_engine(engine, gvt->gt, i) {
init_waitqueue_head(&scheduler->waitq[i]);
scheduler->thread[i] = kthread_run(workload_thread, engine,
"gvt:%s", engine->name);
if (IS_ERR(scheduler->thread[i])) {
gvt_err("fail to create workload thread\n");
ret = PTR_ERR(scheduler->thread[i]);
goto err;
}
gvt->shadow_ctx_notifier_block[i].notifier_call =
shadow_context_status_change;
atomic_notifier_chain_register(&engine->context_status_notifier,
&gvt->shadow_ctx_notifier_block[i]);
}
return 0;
err:
intel_gvt_clean_workload_scheduler(gvt);
return ret;
}
static void
i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
struct i915_ppgtt *ppgtt)
{
int i;
if (i915_vm_is_4lvl(&ppgtt->vm)) {
set_dma_address(ppgtt->pd, s->i915_context_pml4);
} else {
for (i = 0; i < GEN8_3LVL_PDPES; i++) {
struct i915_page_directory * const pd =
i915_pd_entry(ppgtt->pd, i);
set_dma_address(pd, s->i915_context_pdps[i]);
}
}
}
/**
* intel_vgpu_clean_submission - free submission-related resource for vGPU
* @vgpu: a vGPU
*
* This function is called when a vGPU is being destroyed.
*
*/
void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
{
struct intel_vgpu_submission *s = &vgpu->submission;
struct intel_engine_cs *engine;
enum intel_engine_id id;
intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
for_each_engine(engine, vgpu->gvt->gt, id)
intel_context_put(s->shadow[id]);
kmem_cache_destroy(s->workloads);
}
/**
* intel_vgpu_reset_submission - reset submission-related resource for vGPU
* @vgpu: a vGPU
* @engine_mask: engines expected to be reset
*
* This function is called when a vGPU is being destroyed.
*
*/
void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
intel_engine_mask_t engine_mask)
{
struct intel_vgpu_submission *s = &vgpu->submission;
if (!s->active)
return;
intel_vgpu_clean_workloads(vgpu, engine_mask);
s->ops->reset(vgpu, engine_mask);
}
static void
i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
struct i915_ppgtt *ppgtt)
{
int i;
if (i915_vm_is_4lvl(&ppgtt->vm)) {
s->i915_context_pml4 = px_dma(ppgtt->pd);
} else {
for (i = 0; i < GEN8_3LVL_PDPES; i++) {
struct i915_page_directory * const pd =
i915_pd_entry(ppgtt->pd, i);
s->i915_context_pdps[i] = px_dma(pd);
}
}
}
/**
* intel_vgpu_setup_submission - setup submission-related resource for vGPU
* @vgpu: a vGPU
*
* This function is called when a vGPU is being created.
*
* Returns:
* Zero on success, negative error code if failed.
*
*/
int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
{
struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
struct intel_vgpu_submission *s = &vgpu->submission;
struct intel_engine_cs *engine;
struct i915_ppgtt *ppgtt;
enum intel_engine_id i;
int ret;
ppgtt = i915_ppgtt_create(&i915->gt, I915_BO_ALLOC_PM_EARLY);
if (IS_ERR(ppgtt))
return PTR_ERR(ppgtt);
i915_context_ppgtt_root_save(s, ppgtt);
for_each_engine(engine, vgpu->gvt->gt, i) {
struct intel_context *ce;
INIT_LIST_HEAD(&s->workload_q_head[i]);
s->shadow[i] = ERR_PTR(-EINVAL);
ce = intel_context_create(engine);
if (IS_ERR(ce)) {
ret = PTR_ERR(ce);
goto out_shadow_ctx;
}
i915_vm_put(ce->vm);
ce->vm = i915_vm_get(&ppgtt->vm);
intel_context_set_single_submission(ce);
/* Max ring buffer size */
if (!intel_uc_wants_guc_submission(&engine->gt->uc))
ce->ring_size = SZ_2M;
s->shadow[i] = ce;
}
bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
sizeof(struct intel_vgpu_workload), 0,
SLAB_HWCACHE_ALIGN,
offsetof(struct intel_vgpu_workload, rb_tail),
sizeof_field(struct intel_vgpu_workload, rb_tail),
NULL);
if (!s->workloads) {
ret = -ENOMEM;
goto out_shadow_ctx;
}
atomic_set(&s->running_workload_num, 0);
bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
memset(s->last_ctx, 0, sizeof(s->last_ctx));
i915_vm_put(&ppgtt->vm);
return 0;
out_shadow_ctx:
i915_context_ppgtt_root_restore(s, ppgtt);
for_each_engine(engine, vgpu->gvt->gt, i) {
if (IS_ERR(s->shadow[i]))
break;
intel_context_put(s->shadow[i]);
}
i915_vm_put(&ppgtt->vm);
return ret;
}
/**
* intel_vgpu_select_submission_ops - select virtual submission interface
* @vgpu: a vGPU
* @engine_mask: either ALL_ENGINES or target engine mask
* @interface: expected vGPU virtual submission interface
*
* This function is called when guest configures submission interface.
*
* Returns:
* Zero on success, negative error code if failed.
*
*/
int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
intel_engine_mask_t engine_mask,
unsigned int interface)
{
struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
struct intel_vgpu_submission *s = &vgpu->submission;
const struct intel_vgpu_submission_ops *ops[] = {
[INTEL_VGPU_EXECLIST_SUBMISSION] =
&intel_vgpu_execlist_submission_ops,
};
int ret;
if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops)))
return -EINVAL;
if (drm_WARN_ON(&i915->drm,
interface == 0 && engine_mask != ALL_ENGINES))
return -EINVAL;
if (s->active)
s->ops->clean(vgpu, engine_mask);
if (interface == 0) {
s->ops = NULL;
s->virtual_submission_interface = 0;
s->active = false;
gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
return 0;
}
ret = ops[interface]->init(vgpu, engine_mask);
if (ret)
return ret;
s->ops = ops[interface];
s->virtual_submission_interface = interface;
s->active = true;
gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
vgpu->id, s->ops->name);
return 0;
}
/**
* intel_vgpu_destroy_workload - destroy a vGPU workload
* @workload: workload to destroy
*
* This function is called when destroy a vGPU workload.
*
*/
void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
{
struct intel_vgpu_submission *s = &workload->vgpu->submission;
intel_context_unpin(s->shadow[workload->engine->id]);
release_shadow_batch_buffer(workload);
release_shadow_wa_ctx(&workload->wa_ctx);
if (!list_empty(&workload->lri_shadow_mm)) {
struct intel_vgpu_mm *m, *mm;
list_for_each_entry_safe(m, mm, &workload->lri_shadow_mm,
ppgtt_mm.link) {
list_del(&m->ppgtt_mm.link);
intel_vgpu_mm_put(m);
}
}
GEM_BUG_ON(!list_empty(&workload->lri_shadow_mm));
if (workload->shadow_mm)
intel_vgpu_mm_put(workload->shadow_mm);
kmem_cache_free(s->workloads, workload);
}
static struct intel_vgpu_workload *
alloc_workload(struct intel_vgpu *vgpu)
{
struct intel_vgpu_submission *s = &vgpu->submission;
struct intel_vgpu_workload *workload;
workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
if (!workload)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&workload->list);
INIT_LIST_HEAD(&workload->shadow_bb);
INIT_LIST_HEAD(&workload->lri_shadow_mm);
init_waitqueue_head(&workload->shadow_ctx_status_wq);
atomic_set(&workload->shadow_ctx_active, 0);
workload->status = -EINPROGRESS;
workload->vgpu = vgpu;
return workload;
}
#define RING_CTX_OFF(x) \
offsetof(struct execlist_ring_context, x)
static void read_guest_pdps(struct intel_vgpu *vgpu,
u64 ring_context_gpa, u32 pdp[8])
{
u64 gpa;
int i;
gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
for (i = 0; i < 8; i++)
intel_gvt_hypervisor_read_gpa(vgpu,
gpa + i * 8, &pdp[7 - i], 4);
}
static int prepare_mm(struct intel_vgpu_workload *workload)
{
struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
struct intel_vgpu_mm *mm;
struct intel_vgpu *vgpu = workload->vgpu;
enum intel_gvt_gtt_type root_entry_type;
u64 pdps[GVT_RING_CTX_NR_PDPS];
switch (desc->addressing_mode) {
case 1: /* legacy 32-bit */
root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
break;
case 3: /* legacy 64-bit */
root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
break;
default:
gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
return -EINVAL;
}
read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
if (IS_ERR(mm))
return PTR_ERR(mm);
workload->shadow_mm = mm;
return 0;
}
#define same_context(a, b) (((a)->context_id == (b)->context_id) && \
((a)->lrca == (b)->lrca))
/**
* intel_vgpu_create_workload - create a vGPU workload
* @vgpu: a vGPU
* @engine: the engine
* @desc: a guest context descriptor
*
* This function is called when creating a vGPU workload.
*
* Returns:
* struct intel_vgpu_workload * on success, negative error code in
* pointer if failed.
*
*/
struct intel_vgpu_workload *
intel_vgpu_create_workload(struct intel_vgpu *vgpu,
const struct intel_engine_cs *engine,
struct execlist_ctx_descriptor_format *desc)
{
struct intel_vgpu_submission *s = &vgpu->submission;
struct list_head *q = workload_q_head(vgpu, engine);
struct intel_vgpu_workload *last_workload = NULL;
struct intel_vgpu_workload *workload = NULL;
u64 ring_context_gpa;
u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
u32 guest_head;
int ret;
ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
return ERR_PTR(-EINVAL);
}
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
RING_CTX_OFF(ring_header.val), &head, 4);
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
RING_CTX_OFF(ring_tail.val), &tail, 4);
guest_head = head;
head &= RB_HEAD_OFF_MASK;
tail &= RB_TAIL_OFF_MASK;
list_for_each_entry_reverse(last_workload, q, list) {
if (same_context(&last_workload->ctx_desc, desc)) {
gvt_dbg_el("ring %s cur workload == last\n",
engine->name);
gvt_dbg_el("ctx head %x real head %lx\n", head,
last_workload->rb_tail);
/*
* cannot use guest context head pointer here,
* as it might not be updated at this time
*/
head = last_workload->rb_tail;
break;
}
}
gvt_dbg_el("ring %s begin a new workload\n", engine->name);
/* record some ring buffer register values for scan and shadow */
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
RING_CTX_OFF(rb_start.val), &start, 4);
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
if (!intel_gvt_ggtt_validate_range(vgpu, start,
_RING_CTL_BUF_SIZE(ctl))) {
gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
return ERR_PTR(-EINVAL);
}
workload = alloc_workload(vgpu);
if (IS_ERR(workload))
return workload;
workload->engine = engine;
workload->ctx_desc = *desc;
workload->ring_context_gpa = ring_context_gpa;
workload->rb_head = head;
workload->guest_rb_head = guest_head;
workload->rb_tail = tail;
workload->rb_start = start;
workload->rb_ctl = ctl;
if (engine->id == RCS0) {
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
workload->wa_ctx.indirect_ctx.guest_gma =
indirect_ctx & INDIRECT_CTX_ADDR_MASK;
workload->wa_ctx.indirect_ctx.size =
(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
CACHELINE_BYTES;
if (workload->wa_ctx.indirect_ctx.size != 0) {
if (!intel_gvt_ggtt_validate_range(vgpu,
workload->wa_ctx.indirect_ctx.guest_gma,
workload->wa_ctx.indirect_ctx.size)) {
gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
workload->wa_ctx.indirect_ctx.guest_gma);
kmem_cache_free(s->workloads, workload);
return ERR_PTR(-EINVAL);
}
}
workload->wa_ctx.per_ctx.guest_gma =
per_ctx & PER_CTX_ADDR_MASK;
workload->wa_ctx.per_ctx.valid = per_ctx & 1;
if (workload->wa_ctx.per_ctx.valid) {
if (!intel_gvt_ggtt_validate_range(vgpu,
workload->wa_ctx.per_ctx.guest_gma,
CACHELINE_BYTES)) {
gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
workload->wa_ctx.per_ctx.guest_gma);
kmem_cache_free(s->workloads, workload);
return ERR_PTR(-EINVAL);
}
}
}
gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
workload, engine->name, head, tail, start, ctl);
ret = prepare_mm(workload);
if (ret) {
kmem_cache_free(s->workloads, workload);
return ERR_PTR(ret);
}
/* Only scan and shadow the first workload in the queue
* as there is only one pre-allocated buf-obj for shadow.
*/
if (list_empty(q)) {
intel_wakeref_t wakeref;
with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref)
ret = intel_gvt_scan_and_shadow_workload(workload);
}
if (ret) {
if (vgpu_is_vm_unhealthy(ret))
enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
intel_vgpu_destroy_workload(workload);
return ERR_PTR(ret);
}
ret = intel_context_pin(s->shadow[engine->id]);
if (ret) {
intel_vgpu_destroy_workload(workload);
return ERR_PTR(ret);
}
return workload;
}
/**
* intel_vgpu_queue_workload - Qeue a vGPU workload
* @workload: the workload to queue in
*/
void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
{
list_add_tail(&workload->list,
workload_q_head(workload->vgpu, workload->engine));
intel_gvt_kick_schedule(workload->vgpu->gvt);
wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]);
}