blob: 0103f811cc252f9749b389bf95a0071ccb4dd1fd [file] [log] [blame]
/* bnx2fc_hwi.c: QLogic Linux FCoE offload driver.
* This file contains the code that low level functions that interact
* with 57712 FCoE firmware.
*
* Copyright (c) 2008-2013 Broadcom Corporation
* Copyright (c) 2014-2016 QLogic Corporation
* Copyright (c) 2016-2017 Cavium Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Written by: Bhanu Prakash Gollapudi (bprakash@broadcom.com)
*/
#include "bnx2fc.h"
DECLARE_PER_CPU(struct bnx2fc_percpu_s, bnx2fc_percpu);
static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba,
struct fcoe_kcqe *new_cqe_kcqe);
static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba,
struct fcoe_kcqe *ofld_kcqe);
static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba,
struct fcoe_kcqe *ofld_kcqe);
static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code);
static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba,
struct fcoe_kcqe *destroy_kcqe);
int bnx2fc_send_stat_req(struct bnx2fc_hba *hba)
{
struct fcoe_kwqe_stat stat_req;
struct kwqe *kwqe_arr[2];
int num_kwqes = 1;
int rc = 0;
memset(&stat_req, 0x00, sizeof(struct fcoe_kwqe_stat));
stat_req.hdr.op_code = FCOE_KWQE_OPCODE_STAT;
stat_req.hdr.flags =
(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
stat_req.stat_params_addr_lo = (u32) hba->stats_buf_dma;
stat_req.stat_params_addr_hi = (u32) ((u64)hba->stats_buf_dma >> 32);
kwqe_arr[0] = (struct kwqe *) &stat_req;
if (hba->cnic && hba->cnic->submit_kwqes)
rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
return rc;
}
/**
* bnx2fc_send_fw_fcoe_init_msg - initiates initial handshake with FCoE f/w
*
* @hba: adapter structure pointer
*
* Send down FCoE firmware init KWQEs which initiates the initial handshake
* with the f/w.
*
*/
int bnx2fc_send_fw_fcoe_init_msg(struct bnx2fc_hba *hba)
{
struct fcoe_kwqe_init1 fcoe_init1;
struct fcoe_kwqe_init2 fcoe_init2;
struct fcoe_kwqe_init3 fcoe_init3;
struct kwqe *kwqe_arr[3];
int num_kwqes = 3;
int rc = 0;
if (!hba->cnic) {
printk(KERN_ERR PFX "hba->cnic NULL during fcoe fw init\n");
return -ENODEV;
}
/* fill init1 KWQE */
memset(&fcoe_init1, 0x00, sizeof(struct fcoe_kwqe_init1));
fcoe_init1.hdr.op_code = FCOE_KWQE_OPCODE_INIT1;
fcoe_init1.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
fcoe_init1.num_tasks = hba->max_tasks;
fcoe_init1.sq_num_wqes = BNX2FC_SQ_WQES_MAX;
fcoe_init1.rq_num_wqes = BNX2FC_RQ_WQES_MAX;
fcoe_init1.rq_buffer_log_size = BNX2FC_RQ_BUF_LOG_SZ;
fcoe_init1.cq_num_wqes = BNX2FC_CQ_WQES_MAX;
fcoe_init1.dummy_buffer_addr_lo = (u32) hba->dummy_buf_dma;
fcoe_init1.dummy_buffer_addr_hi = (u32) ((u64)hba->dummy_buf_dma >> 32);
fcoe_init1.task_list_pbl_addr_lo = (u32) hba->task_ctx_bd_dma;
fcoe_init1.task_list_pbl_addr_hi =
(u32) ((u64) hba->task_ctx_bd_dma >> 32);
fcoe_init1.mtu = BNX2FC_MINI_JUMBO_MTU;
fcoe_init1.flags = (PAGE_SHIFT <<
FCOE_KWQE_INIT1_LOG_PAGE_SIZE_SHIFT);
fcoe_init1.num_sessions_log = BNX2FC_NUM_MAX_SESS_LOG;
/* fill init2 KWQE */
memset(&fcoe_init2, 0x00, sizeof(struct fcoe_kwqe_init2));
fcoe_init2.hdr.op_code = FCOE_KWQE_OPCODE_INIT2;
fcoe_init2.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
fcoe_init2.hsi_major_version = FCOE_HSI_MAJOR_VERSION;
fcoe_init2.hsi_minor_version = FCOE_HSI_MINOR_VERSION;
fcoe_init2.hash_tbl_pbl_addr_lo = (u32) hba->hash_tbl_pbl_dma;
fcoe_init2.hash_tbl_pbl_addr_hi = (u32)
((u64) hba->hash_tbl_pbl_dma >> 32);
fcoe_init2.t2_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_dma;
fcoe_init2.t2_hash_tbl_addr_hi = (u32)
((u64) hba->t2_hash_tbl_dma >> 32);
fcoe_init2.t2_ptr_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_ptr_dma;
fcoe_init2.t2_ptr_hash_tbl_addr_hi = (u32)
((u64) hba->t2_hash_tbl_ptr_dma >> 32);
fcoe_init2.free_list_count = BNX2FC_NUM_MAX_SESS;
/* fill init3 KWQE */
memset(&fcoe_init3, 0x00, sizeof(struct fcoe_kwqe_init3));
fcoe_init3.hdr.op_code = FCOE_KWQE_OPCODE_INIT3;
fcoe_init3.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
fcoe_init3.error_bit_map_lo = 0xffffffff;
fcoe_init3.error_bit_map_hi = 0xffffffff;
/*
* enable both cached connection and cached tasks
* 0 = none, 1 = cached connection, 2 = cached tasks, 3 = both
*/
fcoe_init3.perf_config = 3;
kwqe_arr[0] = (struct kwqe *) &fcoe_init1;
kwqe_arr[1] = (struct kwqe *) &fcoe_init2;
kwqe_arr[2] = (struct kwqe *) &fcoe_init3;
if (hba->cnic && hba->cnic->submit_kwqes)
rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
return rc;
}
int bnx2fc_send_fw_fcoe_destroy_msg(struct bnx2fc_hba *hba)
{
struct fcoe_kwqe_destroy fcoe_destroy;
struct kwqe *kwqe_arr[2];
int num_kwqes = 1;
int rc = -1;
/* fill destroy KWQE */
memset(&fcoe_destroy, 0x00, sizeof(struct fcoe_kwqe_destroy));
fcoe_destroy.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY;
fcoe_destroy.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
kwqe_arr[0] = (struct kwqe *) &fcoe_destroy;
if (hba->cnic && hba->cnic->submit_kwqes)
rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
return rc;
}
/**
* bnx2fc_send_session_ofld_req - initiates FCoE Session offload process
*
* @port: port structure pointer
* @tgt: bnx2fc_rport structure pointer
*/
int bnx2fc_send_session_ofld_req(struct fcoe_port *port,
struct bnx2fc_rport *tgt)
{
struct fc_lport *lport = port->lport;
struct bnx2fc_interface *interface = port->priv;
struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
struct bnx2fc_hba *hba = interface->hba;
struct kwqe *kwqe_arr[4];
struct fcoe_kwqe_conn_offload1 ofld_req1;
struct fcoe_kwqe_conn_offload2 ofld_req2;
struct fcoe_kwqe_conn_offload3 ofld_req3;
struct fcoe_kwqe_conn_offload4 ofld_req4;
struct fc_rport_priv *rdata = tgt->rdata;
struct fc_rport *rport = tgt->rport;
int num_kwqes = 4;
u32 port_id;
int rc = 0;
u16 conn_id;
/* Initialize offload request 1 structure */
memset(&ofld_req1, 0x00, sizeof(struct fcoe_kwqe_conn_offload1));
ofld_req1.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN1;
ofld_req1.hdr.flags =
(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
conn_id = (u16)tgt->fcoe_conn_id;
ofld_req1.fcoe_conn_id = conn_id;
ofld_req1.sq_addr_lo = (u32) tgt->sq_dma;
ofld_req1.sq_addr_hi = (u32)((u64) tgt->sq_dma >> 32);
ofld_req1.rq_pbl_addr_lo = (u32) tgt->rq_pbl_dma;
ofld_req1.rq_pbl_addr_hi = (u32)((u64) tgt->rq_pbl_dma >> 32);
ofld_req1.rq_first_pbe_addr_lo = (u32) tgt->rq_dma;
ofld_req1.rq_first_pbe_addr_hi =
(u32)((u64) tgt->rq_dma >> 32);
ofld_req1.rq_prod = 0x8000;
/* Initialize offload request 2 structure */
memset(&ofld_req2, 0x00, sizeof(struct fcoe_kwqe_conn_offload2));
ofld_req2.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN2;
ofld_req2.hdr.flags =
(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
ofld_req2.tx_max_fc_pay_len = rdata->maxframe_size;
ofld_req2.cq_addr_lo = (u32) tgt->cq_dma;
ofld_req2.cq_addr_hi = (u32)((u64)tgt->cq_dma >> 32);
ofld_req2.xferq_addr_lo = (u32) tgt->xferq_dma;
ofld_req2.xferq_addr_hi = (u32)((u64)tgt->xferq_dma >> 32);
ofld_req2.conn_db_addr_lo = (u32)tgt->conn_db_dma;
ofld_req2.conn_db_addr_hi = (u32)((u64)tgt->conn_db_dma >> 32);
/* Initialize offload request 3 structure */
memset(&ofld_req3, 0x00, sizeof(struct fcoe_kwqe_conn_offload3));
ofld_req3.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN3;
ofld_req3.hdr.flags =
(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
ofld_req3.vlan_tag = interface->vlan_id <<
FCOE_KWQE_CONN_OFFLOAD3_VLAN_ID_SHIFT;
ofld_req3.vlan_tag |= 3 << FCOE_KWQE_CONN_OFFLOAD3_PRIORITY_SHIFT;
port_id = fc_host_port_id(lport->host);
if (port_id == 0) {
BNX2FC_HBA_DBG(lport, "ofld_req: port_id = 0, link down?\n");
return -EINVAL;
}
/*
* Store s_id of the initiator for further reference. This will
* be used during disable/destroy during linkdown processing as
* when the lport is reset, the port_id also is reset to 0
*/
tgt->sid = port_id;
ofld_req3.s_id[0] = (port_id & 0x000000FF);
ofld_req3.s_id[1] = (port_id & 0x0000FF00) >> 8;
ofld_req3.s_id[2] = (port_id & 0x00FF0000) >> 16;
port_id = rport->port_id;
ofld_req3.d_id[0] = (port_id & 0x000000FF);
ofld_req3.d_id[1] = (port_id & 0x0000FF00) >> 8;
ofld_req3.d_id[2] = (port_id & 0x00FF0000) >> 16;
ofld_req3.tx_total_conc_seqs = rdata->max_seq;
ofld_req3.tx_max_conc_seqs_c3 = rdata->max_seq;
ofld_req3.rx_max_fc_pay_len = lport->mfs;
ofld_req3.rx_total_conc_seqs = BNX2FC_MAX_SEQS;
ofld_req3.rx_max_conc_seqs_c3 = BNX2FC_MAX_SEQS;
ofld_req3.rx_open_seqs_exch_c3 = 1;
ofld_req3.confq_first_pbe_addr_lo = tgt->confq_dma;
ofld_req3.confq_first_pbe_addr_hi = (u32)((u64) tgt->confq_dma >> 32);
/* set mul_n_port_ids supported flag to 0, until it is supported */
ofld_req3.flags = 0;
/*
ofld_req3.flags |= (((lport->send_sp_features & FC_SP_FT_MNA) ? 1:0) <<
FCOE_KWQE_CONN_OFFLOAD3_B_MUL_N_PORT_IDS_SHIFT);
*/
/* Info from PLOGI response */
ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_EDTR) ? 1 : 0) <<
FCOE_KWQE_CONN_OFFLOAD3_B_E_D_TOV_RES_SHIFT);
ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_SEQC) ? 1 : 0) <<
FCOE_KWQE_CONN_OFFLOAD3_B_CONT_INCR_SEQ_CNT_SHIFT);
/*
* Info from PRLI response, this info is used for sequence level error
* recovery support
*/
if (tgt->dev_type == TYPE_TAPE) {
ofld_req3.flags |= 1 <<
FCOE_KWQE_CONN_OFFLOAD3_B_CONF_REQ_SHIFT;
ofld_req3.flags |= (((rdata->flags & FC_RP_FLAGS_REC_SUPPORTED)
? 1 : 0) <<
FCOE_KWQE_CONN_OFFLOAD3_B_REC_VALID_SHIFT);
}
/* vlan flag */
ofld_req3.flags |= (interface->vlan_enabled <<
FCOE_KWQE_CONN_OFFLOAD3_B_VLAN_FLAG_SHIFT);
/* C2_VALID and ACK flags are not set as they are not supported */
/* Initialize offload request 4 structure */
memset(&ofld_req4, 0x00, sizeof(struct fcoe_kwqe_conn_offload4));
ofld_req4.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN4;
ofld_req4.hdr.flags =
(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
ofld_req4.e_d_tov_timer_val = lport->e_d_tov / 20;
ofld_req4.src_mac_addr_lo[0] = port->data_src_addr[5];
/* local mac */
ofld_req4.src_mac_addr_lo[1] = port->data_src_addr[4];
ofld_req4.src_mac_addr_mid[0] = port->data_src_addr[3];
ofld_req4.src_mac_addr_mid[1] = port->data_src_addr[2];
ofld_req4.src_mac_addr_hi[0] = port->data_src_addr[1];
ofld_req4.src_mac_addr_hi[1] = port->data_src_addr[0];
ofld_req4.dst_mac_addr_lo[0] = ctlr->dest_addr[5];
/* fcf mac */
ofld_req4.dst_mac_addr_lo[1] = ctlr->dest_addr[4];
ofld_req4.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
ofld_req4.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
ofld_req4.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
ofld_req4.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
ofld_req4.lcq_addr_lo = (u32) tgt->lcq_dma;
ofld_req4.lcq_addr_hi = (u32)((u64) tgt->lcq_dma >> 32);
ofld_req4.confq_pbl_base_addr_lo = (u32) tgt->confq_pbl_dma;
ofld_req4.confq_pbl_base_addr_hi =
(u32)((u64) tgt->confq_pbl_dma >> 32);
kwqe_arr[0] = (struct kwqe *) &ofld_req1;
kwqe_arr[1] = (struct kwqe *) &ofld_req2;
kwqe_arr[2] = (struct kwqe *) &ofld_req3;
kwqe_arr[3] = (struct kwqe *) &ofld_req4;
if (hba->cnic && hba->cnic->submit_kwqes)
rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
return rc;
}
/**
* bnx2fc_send_session_enable_req - initiates FCoE Session enablement
*
* @port: port structure pointer
* @tgt: bnx2fc_rport structure pointer
*/
int bnx2fc_send_session_enable_req(struct fcoe_port *port,
struct bnx2fc_rport *tgt)
{
struct kwqe *kwqe_arr[2];
struct bnx2fc_interface *interface = port->priv;
struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
struct bnx2fc_hba *hba = interface->hba;
struct fcoe_kwqe_conn_enable_disable enbl_req;
struct fc_lport *lport = port->lport;
struct fc_rport *rport = tgt->rport;
int num_kwqes = 1;
int rc = 0;
u32 port_id;
memset(&enbl_req, 0x00,
sizeof(struct fcoe_kwqe_conn_enable_disable));
enbl_req.hdr.op_code = FCOE_KWQE_OPCODE_ENABLE_CONN;
enbl_req.hdr.flags =
(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
enbl_req.src_mac_addr_lo[0] = port->data_src_addr[5];
/* local mac */
enbl_req.src_mac_addr_lo[1] = port->data_src_addr[4];
enbl_req.src_mac_addr_mid[0] = port->data_src_addr[3];
enbl_req.src_mac_addr_mid[1] = port->data_src_addr[2];
enbl_req.src_mac_addr_hi[0] = port->data_src_addr[1];
enbl_req.src_mac_addr_hi[1] = port->data_src_addr[0];
memcpy(tgt->src_addr, port->data_src_addr, ETH_ALEN);
enbl_req.dst_mac_addr_lo[0] = ctlr->dest_addr[5];
enbl_req.dst_mac_addr_lo[1] = ctlr->dest_addr[4];
enbl_req.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
enbl_req.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
enbl_req.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
enbl_req.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
port_id = fc_host_port_id(lport->host);
if (port_id != tgt->sid) {
printk(KERN_ERR PFX "WARN: enable_req port_id = 0x%x,"
"sid = 0x%x\n", port_id, tgt->sid);
port_id = tgt->sid;
}
enbl_req.s_id[0] = (port_id & 0x000000FF);
enbl_req.s_id[1] = (port_id & 0x0000FF00) >> 8;
enbl_req.s_id[2] = (port_id & 0x00FF0000) >> 16;
port_id = rport->port_id;
enbl_req.d_id[0] = (port_id & 0x000000FF);
enbl_req.d_id[1] = (port_id & 0x0000FF00) >> 8;
enbl_req.d_id[2] = (port_id & 0x00FF0000) >> 16;
enbl_req.vlan_tag = interface->vlan_id <<
FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT;
enbl_req.vlan_tag |= 3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT;
enbl_req.vlan_flag = interface->vlan_enabled;
enbl_req.context_id = tgt->context_id;
enbl_req.conn_id = tgt->fcoe_conn_id;
kwqe_arr[0] = (struct kwqe *) &enbl_req;
if (hba->cnic && hba->cnic->submit_kwqes)
rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
return rc;
}
/**
* bnx2fc_send_session_disable_req - initiates FCoE Session disable
*
* @port: port structure pointer
* @tgt: bnx2fc_rport structure pointer
*/
int bnx2fc_send_session_disable_req(struct fcoe_port *port,
struct bnx2fc_rport *tgt)
{
struct bnx2fc_interface *interface = port->priv;
struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
struct bnx2fc_hba *hba = interface->hba;
struct fcoe_kwqe_conn_enable_disable disable_req;
struct kwqe *kwqe_arr[2];
struct fc_rport *rport = tgt->rport;
int num_kwqes = 1;
int rc = 0;
u32 port_id;
memset(&disable_req, 0x00,
sizeof(struct fcoe_kwqe_conn_enable_disable));
disable_req.hdr.op_code = FCOE_KWQE_OPCODE_DISABLE_CONN;
disable_req.hdr.flags =
(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
disable_req.src_mac_addr_lo[0] = tgt->src_addr[5];
disable_req.src_mac_addr_lo[1] = tgt->src_addr[4];
disable_req.src_mac_addr_mid[0] = tgt->src_addr[3];
disable_req.src_mac_addr_mid[1] = tgt->src_addr[2];
disable_req.src_mac_addr_hi[0] = tgt->src_addr[1];
disable_req.src_mac_addr_hi[1] = tgt->src_addr[0];
disable_req.dst_mac_addr_lo[0] = ctlr->dest_addr[5];
disable_req.dst_mac_addr_lo[1] = ctlr->dest_addr[4];
disable_req.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
disable_req.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
disable_req.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
disable_req.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
port_id = tgt->sid;
disable_req.s_id[0] = (port_id & 0x000000FF);
disable_req.s_id[1] = (port_id & 0x0000FF00) >> 8;
disable_req.s_id[2] = (port_id & 0x00FF0000) >> 16;
port_id = rport->port_id;
disable_req.d_id[0] = (port_id & 0x000000FF);
disable_req.d_id[1] = (port_id & 0x0000FF00) >> 8;
disable_req.d_id[2] = (port_id & 0x00FF0000) >> 16;
disable_req.context_id = tgt->context_id;
disable_req.conn_id = tgt->fcoe_conn_id;
disable_req.vlan_tag = interface->vlan_id <<
FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT;
disable_req.vlan_tag |=
3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT;
disable_req.vlan_flag = interface->vlan_enabled;
kwqe_arr[0] = (struct kwqe *) &disable_req;
if (hba->cnic && hba->cnic->submit_kwqes)
rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
return rc;
}
/**
* bnx2fc_send_session_destroy_req - initiates FCoE Session destroy
*
* @hba: adapter structure pointer
* @tgt: bnx2fc_rport structure pointer
*/
int bnx2fc_send_session_destroy_req(struct bnx2fc_hba *hba,
struct bnx2fc_rport *tgt)
{
struct fcoe_kwqe_conn_destroy destroy_req;
struct kwqe *kwqe_arr[2];
int num_kwqes = 1;
int rc = 0;
memset(&destroy_req, 0x00, sizeof(struct fcoe_kwqe_conn_destroy));
destroy_req.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY_CONN;
destroy_req.hdr.flags =
(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
destroy_req.context_id = tgt->context_id;
destroy_req.conn_id = tgt->fcoe_conn_id;
kwqe_arr[0] = (struct kwqe *) &destroy_req;
if (hba->cnic && hba->cnic->submit_kwqes)
rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
return rc;
}
static bool is_valid_lport(struct bnx2fc_hba *hba, struct fc_lport *lport)
{
struct bnx2fc_lport *blport;
spin_lock_bh(&hba->hba_lock);
list_for_each_entry(blport, &hba->vports, list) {
if (blport->lport == lport) {
spin_unlock_bh(&hba->hba_lock);
return true;
}
}
spin_unlock_bh(&hba->hba_lock);
return false;
}
static void bnx2fc_unsol_els_work(struct work_struct *work)
{
struct bnx2fc_unsol_els *unsol_els;
struct fc_lport *lport;
struct bnx2fc_hba *hba;
struct fc_frame *fp;
unsol_els = container_of(work, struct bnx2fc_unsol_els, unsol_els_work);
lport = unsol_els->lport;
fp = unsol_els->fp;
hba = unsol_els->hba;
if (is_valid_lport(hba, lport))
fc_exch_recv(lport, fp);
kfree(unsol_els);
}
void bnx2fc_process_l2_frame_compl(struct bnx2fc_rport *tgt,
unsigned char *buf,
u32 frame_len, u16 l2_oxid)
{
struct fcoe_port *port = tgt->port;
struct fc_lport *lport = port->lport;
struct bnx2fc_interface *interface = port->priv;
struct bnx2fc_unsol_els *unsol_els;
struct fc_frame_header *fh;
struct fc_frame *fp;
struct sk_buff *skb;
u32 payload_len;
u32 crc;
u8 op;
unsol_els = kzalloc(sizeof(*unsol_els), GFP_ATOMIC);
if (!unsol_els) {
BNX2FC_TGT_DBG(tgt, "Unable to allocate unsol_work\n");
return;
}
BNX2FC_TGT_DBG(tgt, "l2_frame_compl l2_oxid = 0x%x, frame_len = %d\n",
l2_oxid, frame_len);
payload_len = frame_len - sizeof(struct fc_frame_header);
fp = fc_frame_alloc(lport, payload_len);
if (!fp) {
printk(KERN_ERR PFX "fc_frame_alloc failure\n");
kfree(unsol_els);
return;
}
fh = (struct fc_frame_header *) fc_frame_header_get(fp);
/* Copy FC Frame header and payload into the frame */
memcpy(fh, buf, frame_len);
if (l2_oxid != FC_XID_UNKNOWN)
fh->fh_ox_id = htons(l2_oxid);
skb = fp_skb(fp);
if ((fh->fh_r_ctl == FC_RCTL_ELS_REQ) ||
(fh->fh_r_ctl == FC_RCTL_ELS_REP)) {
if (fh->fh_type == FC_TYPE_ELS) {
op = fc_frame_payload_op(fp);
if ((op == ELS_TEST) || (op == ELS_ESTC) ||
(op == ELS_FAN) || (op == ELS_CSU)) {
/*
* No need to reply for these
* ELS requests
*/
printk(KERN_ERR PFX "dropping ELS 0x%x\n", op);
kfree_skb(skb);
kfree(unsol_els);
return;
}
}
crc = fcoe_fc_crc(fp);
fc_frame_init(fp);
fr_dev(fp) = lport;
fr_sof(fp) = FC_SOF_I3;
fr_eof(fp) = FC_EOF_T;
fr_crc(fp) = cpu_to_le32(~crc);
unsol_els->lport = lport;
unsol_els->hba = interface->hba;
unsol_els->fp = fp;
INIT_WORK(&unsol_els->unsol_els_work, bnx2fc_unsol_els_work);
queue_work(bnx2fc_wq, &unsol_els->unsol_els_work);
} else {
BNX2FC_HBA_DBG(lport, "fh_r_ctl = 0x%x\n", fh->fh_r_ctl);
kfree_skb(skb);
kfree(unsol_els);
}
}
static void bnx2fc_process_unsol_compl(struct bnx2fc_rport *tgt, u16 wqe)
{
u8 num_rq;
struct fcoe_err_report_entry *err_entry;
unsigned char *rq_data;
unsigned char *buf = NULL, *buf1;
int i;
u16 xid;
u32 frame_len, len;
struct bnx2fc_cmd *io_req = NULL;
struct bnx2fc_interface *interface = tgt->port->priv;
struct bnx2fc_hba *hba = interface->hba;
int rc = 0;
u64 err_warn_bit_map;
u8 err_warn = 0xff;
BNX2FC_TGT_DBG(tgt, "Entered UNSOL COMPLETION wqe = 0x%x\n", wqe);
switch (wqe & FCOE_UNSOLICITED_CQE_SUBTYPE) {
case FCOE_UNSOLICITED_FRAME_CQE_TYPE:
frame_len = (wqe & FCOE_UNSOLICITED_CQE_PKT_LEN) >>
FCOE_UNSOLICITED_CQE_PKT_LEN_SHIFT;
num_rq = (frame_len + BNX2FC_RQ_BUF_SZ - 1) / BNX2FC_RQ_BUF_SZ;
spin_lock_bh(&tgt->tgt_lock);
rq_data = (unsigned char *)bnx2fc_get_next_rqe(tgt, num_rq);
spin_unlock_bh(&tgt->tgt_lock);
if (rq_data) {
buf = rq_data;
} else {
buf1 = buf = kmalloc((num_rq * BNX2FC_RQ_BUF_SZ),
GFP_ATOMIC);
if (!buf1) {
BNX2FC_TGT_DBG(tgt, "Memory alloc failure\n");
break;
}
for (i = 0; i < num_rq; i++) {
spin_lock_bh(&tgt->tgt_lock);
rq_data = (unsigned char *)
bnx2fc_get_next_rqe(tgt, 1);
spin_unlock_bh(&tgt->tgt_lock);
len = BNX2FC_RQ_BUF_SZ;
memcpy(buf1, rq_data, len);
buf1 += len;
}
}
bnx2fc_process_l2_frame_compl(tgt, buf, frame_len,
FC_XID_UNKNOWN);
if (buf != rq_data)
kfree(buf);
spin_lock_bh(&tgt->tgt_lock);
bnx2fc_return_rqe(tgt, num_rq);
spin_unlock_bh(&tgt->tgt_lock);
break;
case FCOE_ERROR_DETECTION_CQE_TYPE:
/*
* In case of error reporting CQE a single RQ entry
* is consumed.
*/
spin_lock_bh(&tgt->tgt_lock);
num_rq = 1;
err_entry = (struct fcoe_err_report_entry *)
bnx2fc_get_next_rqe(tgt, 1);
xid = err_entry->fc_hdr.ox_id;
BNX2FC_TGT_DBG(tgt, "Unsol Error Frame OX_ID = 0x%x\n", xid);
BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x\n",
err_entry->data.err_warn_bitmap_hi,
err_entry->data.err_warn_bitmap_lo);
BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x\n",
err_entry->data.tx_buf_off, err_entry->data.rx_buf_off);
if (xid > hba->max_xid) {
BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n",
xid);
goto ret_err_rqe;
}
io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
if (!io_req)
goto ret_err_rqe;
if (io_req->cmd_type != BNX2FC_SCSI_CMD) {
printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n");
goto ret_err_rqe;
}
if (test_and_clear_bit(BNX2FC_FLAG_IO_CLEANUP,
&io_req->req_flags)) {
BNX2FC_IO_DBG(io_req, "unsol_err: cleanup in "
"progress.. ignore unsol err\n");
goto ret_err_rqe;
}
err_warn_bit_map = (u64)
((u64)err_entry->data.err_warn_bitmap_hi << 32) |
(u64)err_entry->data.err_warn_bitmap_lo;
for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) {
if (err_warn_bit_map & (u64)((u64)1 << i)) {
err_warn = i;
break;
}
}
/*
* If ABTS is already in progress, and FW error is
* received after that, do not cancel the timeout_work
* and let the error recovery continue by explicitly
* logging out the target, when the ABTS eventually
* times out.
*/
if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
printk(KERN_ERR PFX "err_warn: io_req (0x%x) already "
"in ABTS processing\n", xid);
goto ret_err_rqe;
}
BNX2FC_TGT_DBG(tgt, "err = 0x%x\n", err_warn);
if (tgt->dev_type != TYPE_TAPE)
goto skip_rec;
switch (err_warn) {
case FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION:
case FCOE_ERROR_CODE_DATA_OOO_RO:
case FCOE_ERROR_CODE_COMMON_INCORRECT_SEQ_CNT:
case FCOE_ERROR_CODE_DATA_SOFI3_SEQ_ACTIVE_SET:
case FCOE_ERROR_CODE_FCP_RSP_OPENED_SEQ:
case FCOE_ERROR_CODE_DATA_SOFN_SEQ_ACTIVE_RESET:
BNX2FC_TGT_DBG(tgt, "REC TOV popped for xid - 0x%x\n",
xid);
memcpy(&io_req->err_entry, err_entry,
sizeof(struct fcoe_err_report_entry));
if (!test_bit(BNX2FC_FLAG_SRR_SENT,
&io_req->req_flags)) {
spin_unlock_bh(&tgt->tgt_lock);
rc = bnx2fc_send_rec(io_req);
spin_lock_bh(&tgt->tgt_lock);
if (rc)
goto skip_rec;
} else
printk(KERN_ERR PFX "SRR in progress\n");
goto ret_err_rqe;
default:
break;
}
skip_rec:
set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags);
/*
* Cancel the timeout_work, as we received IO
* completion with FW error.
*/
if (cancel_delayed_work(&io_req->timeout_work))
kref_put(&io_req->refcount, bnx2fc_cmd_release);
rc = bnx2fc_initiate_abts(io_req);
if (rc != SUCCESS) {
printk(KERN_ERR PFX "err_warn: initiate_abts "
"failed xid = 0x%x. issue cleanup\n",
io_req->xid);
bnx2fc_initiate_cleanup(io_req);
}
ret_err_rqe:
bnx2fc_return_rqe(tgt, 1);
spin_unlock_bh(&tgt->tgt_lock);
break;
case FCOE_WARNING_DETECTION_CQE_TYPE:
/*
*In case of warning reporting CQE a single RQ entry
* is consumes.
*/
spin_lock_bh(&tgt->tgt_lock);
num_rq = 1;
err_entry = (struct fcoe_err_report_entry *)
bnx2fc_get_next_rqe(tgt, 1);
xid = cpu_to_be16(err_entry->fc_hdr.ox_id);
BNX2FC_TGT_DBG(tgt, "Unsol Warning Frame OX_ID = 0x%x\n", xid);
BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x",
err_entry->data.err_warn_bitmap_hi,
err_entry->data.err_warn_bitmap_lo);
BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x",
err_entry->data.tx_buf_off, err_entry->data.rx_buf_off);
if (xid > hba->max_xid) {
BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n", xid);
goto ret_warn_rqe;
}
err_warn_bit_map = (u64)
((u64)err_entry->data.err_warn_bitmap_hi << 32) |
(u64)err_entry->data.err_warn_bitmap_lo;
for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) {
if (err_warn_bit_map & ((u64)1 << i)) {
err_warn = i;
break;
}
}
BNX2FC_TGT_DBG(tgt, "warn = 0x%x\n", err_warn);
io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
if (!io_req)
goto ret_warn_rqe;
if (io_req->cmd_type != BNX2FC_SCSI_CMD) {
printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n");
goto ret_warn_rqe;
}
memcpy(&io_req->err_entry, err_entry,
sizeof(struct fcoe_err_report_entry));
if (err_warn == FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION)
/* REC_TOV is not a warning code */
BUG_ON(1);
else
BNX2FC_TGT_DBG(tgt, "Unsolicited warning\n");
ret_warn_rqe:
bnx2fc_return_rqe(tgt, 1);
spin_unlock_bh(&tgt->tgt_lock);
break;
default:
printk(KERN_ERR PFX "Unsol Compl: Invalid CQE Subtype\n");
break;
}
}
void bnx2fc_process_cq_compl(struct bnx2fc_rport *tgt, u16 wqe,
unsigned char *rq_data, u8 num_rq,
struct fcoe_task_ctx_entry *task)
{
struct fcoe_port *port = tgt->port;
struct bnx2fc_interface *interface = port->priv;
struct bnx2fc_hba *hba = interface->hba;
struct bnx2fc_cmd *io_req;
u16 xid;
u8 cmd_type;
u8 rx_state = 0;
spin_lock_bh(&tgt->tgt_lock);
xid = wqe & FCOE_PEND_WQ_CQE_TASK_ID;
io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
if (io_req == NULL) {
printk(KERN_ERR PFX "ERROR? cq_compl - io_req is NULL\n");
spin_unlock_bh(&tgt->tgt_lock);
return;
}
/* Timestamp IO completion time */
cmd_type = io_req->cmd_type;
rx_state = ((task->rxwr_txrd.var_ctx.rx_flags &
FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE) >>
FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE_SHIFT);
/* Process other IO completion types */
switch (cmd_type) {
case BNX2FC_SCSI_CMD:
if (rx_state == FCOE_TASK_RX_STATE_COMPLETED) {
bnx2fc_process_scsi_cmd_compl(io_req, task, num_rq,
rq_data);
spin_unlock_bh(&tgt->tgt_lock);
return;
}
if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED)
bnx2fc_process_abts_compl(io_req, task, num_rq);
else if (rx_state ==
FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED)
bnx2fc_process_cleanup_compl(io_req, task, num_rq);
else
printk(KERN_ERR PFX "Invalid rx state - %d\n",
rx_state);
break;
case BNX2FC_TASK_MGMT_CMD:
BNX2FC_IO_DBG(io_req, "Processing TM complete\n");
bnx2fc_process_tm_compl(io_req, task, num_rq, rq_data);
break;
case BNX2FC_ABTS:
/*
* ABTS request received by firmware. ABTS response
* will be delivered to the task belonging to the IO
* that was aborted
*/
BNX2FC_IO_DBG(io_req, "cq_compl- ABTS sent out by fw\n");
kref_put(&io_req->refcount, bnx2fc_cmd_release);
break;
case BNX2FC_ELS:
if (rx_state == FCOE_TASK_RX_STATE_COMPLETED)
bnx2fc_process_els_compl(io_req, task, num_rq);
else if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED)
bnx2fc_process_abts_compl(io_req, task, num_rq);
else if (rx_state ==
FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED)
bnx2fc_process_cleanup_compl(io_req, task, num_rq);
else
printk(KERN_ERR PFX "Invalid rx state = %d\n",
rx_state);
break;
case BNX2FC_CLEANUP:
BNX2FC_IO_DBG(io_req, "cq_compl- cleanup resp rcvd\n");
kref_put(&io_req->refcount, bnx2fc_cmd_release);
break;
case BNX2FC_SEQ_CLEANUP:
BNX2FC_IO_DBG(io_req, "cq_compl(0x%x) - seq cleanup resp\n",
io_req->xid);
bnx2fc_process_seq_cleanup_compl(io_req, task, rx_state);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
break;
default:
printk(KERN_ERR PFX "Invalid cmd_type %d\n", cmd_type);
break;
}
spin_unlock_bh(&tgt->tgt_lock);
}
void bnx2fc_arm_cq(struct bnx2fc_rport *tgt)
{
struct b577xx_fcoe_rx_doorbell *rx_db = &tgt->rx_db;
u32 msg;
wmb();
rx_db->doorbell_cq_cons = tgt->cq_cons_idx | (tgt->cq_curr_toggle_bit <<
FCOE_CQE_TOGGLE_BIT_SHIFT);
msg = *((u32 *)rx_db);
writel(cpu_to_le32(msg), tgt->ctx_base);
}
static struct bnx2fc_work *bnx2fc_alloc_work(struct bnx2fc_rport *tgt, u16 wqe,
unsigned char *rq_data, u8 num_rq,
struct fcoe_task_ctx_entry *task)
{
struct bnx2fc_work *work;
work = kzalloc(sizeof(struct bnx2fc_work), GFP_ATOMIC);
if (!work)
return NULL;
INIT_LIST_HEAD(&work->list);
work->tgt = tgt;
work->wqe = wqe;
work->num_rq = num_rq;
work->task = task;
if (rq_data)
memcpy(work->rq_data, rq_data, BNX2FC_RQ_BUF_SZ);
return work;
}
/* Pending work request completion */
static bool bnx2fc_pending_work(struct bnx2fc_rport *tgt, unsigned int wqe)
{
unsigned int cpu = wqe % num_possible_cpus();
struct bnx2fc_percpu_s *fps;
struct bnx2fc_work *work;
struct fcoe_task_ctx_entry *task;
struct fcoe_task_ctx_entry *task_page;
struct fcoe_port *port = tgt->port;
struct bnx2fc_interface *interface = port->priv;
struct bnx2fc_hba *hba = interface->hba;
unsigned char *rq_data = NULL;
unsigned char rq_data_buff[BNX2FC_RQ_BUF_SZ];
int task_idx, index;
u16 xid;
u8 num_rq;
int i;
xid = wqe & FCOE_PEND_WQ_CQE_TASK_ID;
if (xid >= hba->max_tasks) {
pr_err(PFX "ERROR:xid out of range\n");
return false;
}
task_idx = xid / BNX2FC_TASKS_PER_PAGE;
index = xid % BNX2FC_TASKS_PER_PAGE;
task_page = (struct fcoe_task_ctx_entry *)hba->task_ctx[task_idx];
task = &task_page[index];
num_rq = ((task->rxwr_txrd.var_ctx.rx_flags &
FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE) >>
FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE_SHIFT);
memset(rq_data_buff, 0, BNX2FC_RQ_BUF_SZ);
if (!num_rq)
goto num_rq_zero;
rq_data = bnx2fc_get_next_rqe(tgt, 1);
if (num_rq > 1) {
/* We do not need extra sense data */
for (i = 1; i < num_rq; i++)
bnx2fc_get_next_rqe(tgt, 1);
}
if (rq_data)
memcpy(rq_data_buff, rq_data, BNX2FC_RQ_BUF_SZ);
/* return RQ entries */
for (i = 0; i < num_rq; i++)
bnx2fc_return_rqe(tgt, 1);
num_rq_zero:
fps = &per_cpu(bnx2fc_percpu, cpu);
spin_lock_bh(&fps->fp_work_lock);
if (fps->iothread) {
work = bnx2fc_alloc_work(tgt, wqe, rq_data_buff,
num_rq, task);
if (work) {
list_add_tail(&work->list, &fps->work_list);
wake_up_process(fps->iothread);
spin_unlock_bh(&fps->fp_work_lock);
return true;
}
}
spin_unlock_bh(&fps->fp_work_lock);
bnx2fc_process_cq_compl(tgt, wqe,
rq_data_buff, num_rq, task);
return true;
}
int bnx2fc_process_new_cqes(struct bnx2fc_rport *tgt)
{
struct fcoe_cqe *cq;
u32 cq_cons;
struct fcoe_cqe *cqe;
u32 num_free_sqes = 0;
u32 num_cqes = 0;
u16 wqe;
/*
* cq_lock is a low contention lock used to protect
* the CQ data structure from being freed up during
* the upload operation
*/
spin_lock_bh(&tgt->cq_lock);
if (!tgt->cq) {
printk(KERN_ERR PFX "process_new_cqes: cq is NULL\n");
spin_unlock_bh(&tgt->cq_lock);
return 0;
}
cq = tgt->cq;
cq_cons = tgt->cq_cons_idx;
cqe = &cq[cq_cons];
while (((wqe = cqe->wqe) & FCOE_CQE_TOGGLE_BIT) ==
(tgt->cq_curr_toggle_bit <<
FCOE_CQE_TOGGLE_BIT_SHIFT)) {
/* new entry on the cq */
if (wqe & FCOE_CQE_CQE_TYPE) {
/* Unsolicited event notification */
bnx2fc_process_unsol_compl(tgt, wqe);
} else {
if (bnx2fc_pending_work(tgt, wqe))
num_free_sqes++;
}
cqe++;
tgt->cq_cons_idx++;
num_cqes++;
if (tgt->cq_cons_idx == BNX2FC_CQ_WQES_MAX) {
tgt->cq_cons_idx = 0;
cqe = cq;
tgt->cq_curr_toggle_bit =
1 - tgt->cq_curr_toggle_bit;
}
}
if (num_cqes) {
/* Arm CQ only if doorbell is mapped */
if (tgt->ctx_base)
bnx2fc_arm_cq(tgt);
atomic_add(num_free_sqes, &tgt->free_sqes);
}
spin_unlock_bh(&tgt->cq_lock);
return 0;
}
/**
* bnx2fc_fastpath_notification - process global event queue (KCQ)
*
* @hba: adapter structure pointer
* @new_cqe_kcqe: pointer to newly DMA'd KCQ entry
*
* Fast path event notification handler
*/
static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba,
struct fcoe_kcqe *new_cqe_kcqe)
{
u32 conn_id = new_cqe_kcqe->fcoe_conn_id;
struct bnx2fc_rport *tgt = hba->tgt_ofld_list[conn_id];
if (!tgt) {
printk(KERN_ERR PFX "conn_id 0x%x not valid\n", conn_id);
return;
}
bnx2fc_process_new_cqes(tgt);
}
/**
* bnx2fc_process_ofld_cmpl - process FCoE session offload completion
*
* @hba: adapter structure pointer
* @ofld_kcqe: connection offload kcqe pointer
*
* handle session offload completion, enable the session if offload is
* successful.
*/
static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba,
struct fcoe_kcqe *ofld_kcqe)
{
struct bnx2fc_rport *tgt;
struct bnx2fc_interface *interface;
u32 conn_id;
u32 context_id;
conn_id = ofld_kcqe->fcoe_conn_id;
context_id = ofld_kcqe->fcoe_conn_context_id;
tgt = hba->tgt_ofld_list[conn_id];
if (!tgt) {
printk(KERN_ALERT PFX "ERROR:ofld_cmpl: No pending ofld req\n");
return;
}
BNX2FC_TGT_DBG(tgt, "Entered ofld compl - context_id = 0x%x\n",
ofld_kcqe->fcoe_conn_context_id);
interface = tgt->port->priv;
if (hba != interface->hba) {
printk(KERN_ERR PFX "ERROR:ofld_cmpl: HBA mis-match\n");
goto ofld_cmpl_err;
}
/*
* cnic has allocated a context_id for this session; use this
* while enabling the session.
*/
tgt->context_id = context_id;
if (ofld_kcqe->completion_status) {
if (ofld_kcqe->completion_status ==
FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE) {
printk(KERN_ERR PFX "unable to allocate FCoE context "
"resources\n");
set_bit(BNX2FC_FLAG_CTX_ALLOC_FAILURE, &tgt->flags);
}
} else {
/* FW offload request successfully completed */
set_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags);
}
ofld_cmpl_err:
set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags);
wake_up_interruptible(&tgt->ofld_wait);
}
/**
* bnx2fc_process_enable_conn_cmpl - process FCoE session enable completion
*
* @hba: adapter structure pointer
* @ofld_kcqe: connection offload kcqe pointer
*
* handle session enable completion, mark the rport as ready
*/
static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba,
struct fcoe_kcqe *ofld_kcqe)
{
struct bnx2fc_rport *tgt;
struct bnx2fc_interface *interface;
u32 conn_id;
u32 context_id;
context_id = ofld_kcqe->fcoe_conn_context_id;
conn_id = ofld_kcqe->fcoe_conn_id;
tgt = hba->tgt_ofld_list[conn_id];
if (!tgt) {
printk(KERN_ERR PFX "ERROR:enbl_cmpl: No pending ofld req\n");
return;
}
BNX2FC_TGT_DBG(tgt, "Enable compl - context_id = 0x%x\n",
ofld_kcqe->fcoe_conn_context_id);
/*
* context_id should be the same for this target during offload
* and enable
*/
if (tgt->context_id != context_id) {
printk(KERN_ERR PFX "context id mis-match\n");
return;
}
interface = tgt->port->priv;
if (hba != interface->hba) {
printk(KERN_ERR PFX "bnx2fc-enbl_cmpl: HBA mis-match\n");
goto enbl_cmpl_err;
}
if (!ofld_kcqe->completion_status)
/* enable successful - rport ready for issuing IOs */
set_bit(BNX2FC_FLAG_ENABLED, &tgt->flags);
enbl_cmpl_err:
set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags);
wake_up_interruptible(&tgt->ofld_wait);
}
static void bnx2fc_process_conn_disable_cmpl(struct bnx2fc_hba *hba,
struct fcoe_kcqe *disable_kcqe)
{
struct bnx2fc_rport *tgt;
u32 conn_id;
conn_id = disable_kcqe->fcoe_conn_id;
tgt = hba->tgt_ofld_list[conn_id];
if (!tgt) {
printk(KERN_ERR PFX "ERROR: disable_cmpl: No disable req\n");
return;
}
BNX2FC_TGT_DBG(tgt, PFX "disable_cmpl: conn_id %d\n", conn_id);
if (disable_kcqe->completion_status) {
printk(KERN_ERR PFX "Disable failed with cmpl status %d\n",
disable_kcqe->completion_status);
set_bit(BNX2FC_FLAG_DISABLE_FAILED, &tgt->flags);
set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
wake_up_interruptible(&tgt->upld_wait);
} else {
/* disable successful */
BNX2FC_TGT_DBG(tgt, "disable successful\n");
clear_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags);
clear_bit(BNX2FC_FLAG_ENABLED, &tgt->flags);
set_bit(BNX2FC_FLAG_DISABLED, &tgt->flags);
set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
wake_up_interruptible(&tgt->upld_wait);
}
}
static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba,
struct fcoe_kcqe *destroy_kcqe)
{
struct bnx2fc_rport *tgt;
u32 conn_id;
conn_id = destroy_kcqe->fcoe_conn_id;
tgt = hba->tgt_ofld_list[conn_id];
if (!tgt) {
printk(KERN_ERR PFX "destroy_cmpl: No destroy req\n");
return;
}
BNX2FC_TGT_DBG(tgt, "destroy_cmpl: conn_id %d\n", conn_id);
if (destroy_kcqe->completion_status) {
printk(KERN_ERR PFX "Destroy conn failed, cmpl status %d\n",
destroy_kcqe->completion_status);
return;
} else {
/* destroy successful */
BNX2FC_TGT_DBG(tgt, "upload successful\n");
clear_bit(BNX2FC_FLAG_DISABLED, &tgt->flags);
set_bit(BNX2FC_FLAG_DESTROYED, &tgt->flags);
set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
wake_up_interruptible(&tgt->upld_wait);
}
}
static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code)
{
switch (err_code) {
case FCOE_KCQE_COMPLETION_STATUS_INVALID_OPCODE:
printk(KERN_ERR PFX "init_failure due to invalid opcode\n");
break;
case FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE:
printk(KERN_ERR PFX "init failed due to ctx alloc failure\n");
break;
case FCOE_KCQE_COMPLETION_STATUS_NIC_ERROR:
printk(KERN_ERR PFX "init_failure due to NIC error\n");
break;
case FCOE_KCQE_COMPLETION_STATUS_ERROR:
printk(KERN_ERR PFX "init failure due to compl status err\n");
break;
case FCOE_KCQE_COMPLETION_STATUS_WRONG_HSI_VERSION:
printk(KERN_ERR PFX "init failure due to HSI mismatch\n");
break;
default:
printk(KERN_ERR PFX "Unknown Error code %d\n", err_code);
}
}
/**
* bnx2fc_indicate_kcqe() - process KCQE
*
* @context: adapter structure pointer
* @kcq: kcqe pointer
* @num_cqe: Number of completion queue elements
*
* Generic KCQ event handler
*/
void bnx2fc_indicate_kcqe(void *context, struct kcqe *kcq[],
u32 num_cqe)
{
struct bnx2fc_hba *hba = (struct bnx2fc_hba *)context;
int i = 0;
struct fcoe_kcqe *kcqe = NULL;
while (i < num_cqe) {
kcqe = (struct fcoe_kcqe *) kcq[i++];
switch (kcqe->op_code) {
case FCOE_KCQE_OPCODE_CQ_EVENT_NOTIFICATION:
bnx2fc_fastpath_notification(hba, kcqe);
break;
case FCOE_KCQE_OPCODE_OFFLOAD_CONN:
bnx2fc_process_ofld_cmpl(hba, kcqe);
break;
case FCOE_KCQE_OPCODE_ENABLE_CONN:
bnx2fc_process_enable_conn_cmpl(hba, kcqe);
break;
case FCOE_KCQE_OPCODE_INIT_FUNC:
if (kcqe->completion_status !=
FCOE_KCQE_COMPLETION_STATUS_SUCCESS) {
bnx2fc_init_failure(hba,
kcqe->completion_status);
} else {
set_bit(ADAPTER_STATE_UP, &hba->adapter_state);
bnx2fc_get_link_state(hba);
printk(KERN_INFO PFX "[%.2x]: FCOE_INIT passed\n",
(u8)hba->pcidev->bus->number);
}
break;
case FCOE_KCQE_OPCODE_DESTROY_FUNC:
if (kcqe->completion_status !=
FCOE_KCQE_COMPLETION_STATUS_SUCCESS) {
printk(KERN_ERR PFX "DESTROY failed\n");
} else {
printk(KERN_ERR PFX "DESTROY success\n");
}
set_bit(BNX2FC_FLAG_DESTROY_CMPL, &hba->flags);
wake_up_interruptible(&hba->destroy_wait);
break;
case FCOE_KCQE_OPCODE_DISABLE_CONN:
bnx2fc_process_conn_disable_cmpl(hba, kcqe);
break;
case FCOE_KCQE_OPCODE_DESTROY_CONN:
bnx2fc_process_conn_destroy_cmpl(hba, kcqe);
break;
case FCOE_KCQE_OPCODE_STAT_FUNC:
if (kcqe->completion_status !=
FCOE_KCQE_COMPLETION_STATUS_SUCCESS)
printk(KERN_ERR PFX "STAT failed\n");
complete(&hba->stat_req_done);
break;
case FCOE_KCQE_OPCODE_FCOE_ERROR:
default:
printk(KERN_ERR PFX "unknown opcode 0x%x\n",
kcqe->op_code);
}
}
}
void bnx2fc_add_2_sq(struct bnx2fc_rport *tgt, u16 xid)
{
struct fcoe_sqe *sqe;
sqe = &tgt->sq[tgt->sq_prod_idx];
/* Fill SQ WQE */
sqe->wqe = xid << FCOE_SQE_TASK_ID_SHIFT;
sqe->wqe |= tgt->sq_curr_toggle_bit << FCOE_SQE_TOGGLE_BIT_SHIFT;
/* Advance SQ Prod Idx */
if (++tgt->sq_prod_idx == BNX2FC_SQ_WQES_MAX) {
tgt->sq_prod_idx = 0;
tgt->sq_curr_toggle_bit = 1 - tgt->sq_curr_toggle_bit;
}
}
void bnx2fc_ring_doorbell(struct bnx2fc_rport *tgt)
{
struct b577xx_doorbell_set_prod *sq_db = &tgt->sq_db;
u32 msg;
wmb();
sq_db->prod = tgt->sq_prod_idx |
(tgt->sq_curr_toggle_bit << 15);
msg = *((u32 *)sq_db);
writel(cpu_to_le32(msg), tgt->ctx_base);
}
int bnx2fc_map_doorbell(struct bnx2fc_rport *tgt)
{
u32 context_id = tgt->context_id;
struct fcoe_port *port = tgt->port;
u32 reg_off;
resource_size_t reg_base;
struct bnx2fc_interface *interface = port->priv;
struct bnx2fc_hba *hba = interface->hba;
reg_base = pci_resource_start(hba->pcidev,
BNX2X_DOORBELL_PCI_BAR);
reg_off = (1 << BNX2X_DB_SHIFT) * (context_id & 0x1FFFF);
tgt->ctx_base = ioremap(reg_base + reg_off, 4);
if (!tgt->ctx_base)
return -ENOMEM;
return 0;
}
char *bnx2fc_get_next_rqe(struct bnx2fc_rport *tgt, u8 num_items)
{
char *buf = (char *)tgt->rq + (tgt->rq_cons_idx * BNX2FC_RQ_BUF_SZ);
if (tgt->rq_cons_idx + num_items > BNX2FC_RQ_WQES_MAX)
return NULL;
tgt->rq_cons_idx += num_items;
if (tgt->rq_cons_idx >= BNX2FC_RQ_WQES_MAX)
tgt->rq_cons_idx -= BNX2FC_RQ_WQES_MAX;
return buf;
}
void bnx2fc_return_rqe(struct bnx2fc_rport *tgt, u8 num_items)
{
/* return the rq buffer */
u32 next_prod_idx = tgt->rq_prod_idx + num_items;
if ((next_prod_idx & 0x7fff) == BNX2FC_RQ_WQES_MAX) {
/* Wrap around RQ */
next_prod_idx += 0x8000 - BNX2FC_RQ_WQES_MAX;
}
tgt->rq_prod_idx = next_prod_idx;
tgt->conn_db->rq_prod = tgt->rq_prod_idx;
}
void bnx2fc_init_seq_cleanup_task(struct bnx2fc_cmd *seq_clnp_req,
struct fcoe_task_ctx_entry *task,
struct bnx2fc_cmd *orig_io_req,
u32 offset)
{
struct scsi_cmnd *sc_cmd = orig_io_req->sc_cmd;
struct bnx2fc_rport *tgt = seq_clnp_req->tgt;
struct fcoe_bd_ctx *bd = orig_io_req->bd_tbl->bd_tbl;
struct fcoe_ext_mul_sges_ctx *sgl;
u8 task_type = FCOE_TASK_TYPE_SEQUENCE_CLEANUP;
u8 orig_task_type;
u16 orig_xid = orig_io_req->xid;
u32 context_id = tgt->context_id;
u64 phys_addr = (u64)orig_io_req->bd_tbl->bd_tbl_dma;
u32 orig_offset = offset;
int bd_count;
int i;
memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
if (sc_cmd->sc_data_direction == DMA_TO_DEVICE)
orig_task_type = FCOE_TASK_TYPE_WRITE;
else
orig_task_type = FCOE_TASK_TYPE_READ;
/* Tx flags */
task->txwr_rxrd.const_ctx.tx_flags =
FCOE_TASK_TX_STATE_SEQUENCE_CLEANUP <<
FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
/* init flags */
task->txwr_rxrd.const_ctx.init_flags = task_type <<
FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
task->rxwr_txrd.const_ctx.init_flags = context_id <<
FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
task->rxwr_txrd.const_ctx.init_flags = context_id <<
FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid;
task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_seq_cnt = 0;
task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_data_offset = offset;
bd_count = orig_io_req->bd_tbl->bd_valid;
/* obtain the appropriate bd entry from relative offset */
for (i = 0; i < bd_count; i++) {
if (offset < bd[i].buf_len)
break;
offset -= bd[i].buf_len;
}
phys_addr += (i * sizeof(struct fcoe_bd_ctx));
if (orig_task_type == FCOE_TASK_TYPE_WRITE) {
task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
(u32)phys_addr;
task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
(u32)((u64)phys_addr >> 32);
task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size =
bd_count;
task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_off =
offset; /* adjusted offset */
task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_idx = i;
} else {
/* Multiple SGEs were used for this IO */
sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
sgl->mul_sgl.cur_sge_addr.lo = (u32)phys_addr;
sgl->mul_sgl.cur_sge_addr.hi = (u32)((u64)phys_addr >> 32);
sgl->mul_sgl.sgl_size = bd_count;
sgl->mul_sgl.cur_sge_off = offset; /*adjusted offset */
sgl->mul_sgl.cur_sge_idx = i;
memset(&task->rxwr_only.rx_seq_ctx, 0,
sizeof(struct fcoe_rx_seq_ctx));
task->rxwr_only.rx_seq_ctx.low_exp_ro = orig_offset;
task->rxwr_only.rx_seq_ctx.high_exp_ro = orig_offset;
}
}
void bnx2fc_init_cleanup_task(struct bnx2fc_cmd *io_req,
struct fcoe_task_ctx_entry *task,
u16 orig_xid)
{
u8 task_type = FCOE_TASK_TYPE_EXCHANGE_CLEANUP;
struct bnx2fc_rport *tgt = io_req->tgt;
u32 context_id = tgt->context_id;
memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
/* Tx Write Rx Read */
/* init flags */
task->txwr_rxrd.const_ctx.init_flags = task_type <<
FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
if (tgt->dev_type == TYPE_TAPE)
task->txwr_rxrd.const_ctx.init_flags |=
FCOE_TASK_DEV_TYPE_TAPE <<
FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
else
task->txwr_rxrd.const_ctx.init_flags |=
FCOE_TASK_DEV_TYPE_DISK <<
FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid;
/* Tx flags */
task->txwr_rxrd.const_ctx.tx_flags =
FCOE_TASK_TX_STATE_EXCHANGE_CLEANUP <<
FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
/* Rx Read Tx Write */
task->rxwr_txrd.const_ctx.init_flags = context_id <<
FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
}
void bnx2fc_init_mp_task(struct bnx2fc_cmd *io_req,
struct fcoe_task_ctx_entry *task)
{
struct bnx2fc_mp_req *mp_req = &(io_req->mp_req);
struct bnx2fc_rport *tgt = io_req->tgt;
struct fc_frame_header *fc_hdr;
struct fcoe_ext_mul_sges_ctx *sgl;
u8 task_type = 0;
u64 *hdr;
u64 temp_hdr[3];
u32 context_id;
/* Obtain task_type */
if ((io_req->cmd_type == BNX2FC_TASK_MGMT_CMD) ||
(io_req->cmd_type == BNX2FC_ELS)) {
task_type = FCOE_TASK_TYPE_MIDPATH;
} else if (io_req->cmd_type == BNX2FC_ABTS) {
task_type = FCOE_TASK_TYPE_ABTS;
}
memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
/* Setup the task from io_req for easy reference */
io_req->task = task;
BNX2FC_IO_DBG(io_req, "Init MP task for cmd_type = %d task_type = %d\n",
io_req->cmd_type, task_type);
/* Tx only */
if ((task_type == FCOE_TASK_TYPE_MIDPATH) ||
(task_type == FCOE_TASK_TYPE_UNSOLICITED)) {
task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
(u32)mp_req->mp_req_bd_dma;
task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
(u32)((u64)mp_req->mp_req_bd_dma >> 32);
task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size = 1;
}
/* Tx Write Rx Read */
/* init flags */
task->txwr_rxrd.const_ctx.init_flags = task_type <<
FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
if (tgt->dev_type == TYPE_TAPE)
task->txwr_rxrd.const_ctx.init_flags |=
FCOE_TASK_DEV_TYPE_TAPE <<
FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
else
task->txwr_rxrd.const_ctx.init_flags |=
FCOE_TASK_DEV_TYPE_DISK <<
FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
/* tx flags */
task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_INIT <<
FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
/* Rx Write Tx Read */
task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len;
/* rx flags */
task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
context_id = tgt->context_id;
task->rxwr_txrd.const_ctx.init_flags = context_id <<
FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
fc_hdr = &(mp_req->req_fc_hdr);
if (task_type == FCOE_TASK_TYPE_MIDPATH) {
fc_hdr->fh_ox_id = cpu_to_be16(io_req->xid);
fc_hdr->fh_rx_id = htons(0xffff);
task->rxwr_txrd.var_ctx.rx_id = 0xffff;
} else if (task_type == FCOE_TASK_TYPE_UNSOLICITED) {
fc_hdr->fh_rx_id = cpu_to_be16(io_req->xid);
}
/* Fill FC Header into middle path buffer */
hdr = (u64 *) &task->txwr_rxrd.union_ctx.tx_frame.fc_hdr;
memcpy(temp_hdr, fc_hdr, sizeof(temp_hdr));
hdr[0] = cpu_to_be64(temp_hdr[0]);
hdr[1] = cpu_to_be64(temp_hdr[1]);
hdr[2] = cpu_to_be64(temp_hdr[2]);
/* Rx Only */
if (task_type == FCOE_TASK_TYPE_MIDPATH) {
sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
sgl->mul_sgl.cur_sge_addr.lo = (u32)mp_req->mp_resp_bd_dma;
sgl->mul_sgl.cur_sge_addr.hi =
(u32)((u64)mp_req->mp_resp_bd_dma >> 32);
sgl->mul_sgl.sgl_size = 1;
}
}
void bnx2fc_init_task(struct bnx2fc_cmd *io_req,
struct fcoe_task_ctx_entry *task)
{
u8 task_type;
struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
struct io_bdt *bd_tbl = io_req->bd_tbl;
struct bnx2fc_rport *tgt = io_req->tgt;
struct fcoe_cached_sge_ctx *cached_sge;
struct fcoe_ext_mul_sges_ctx *sgl;
int dev_type = tgt->dev_type;
u64 *fcp_cmnd;
u64 tmp_fcp_cmnd[4];
u32 context_id;
int cnt, i;
int bd_count;
memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
/* Setup the task from io_req for easy reference */
io_req->task = task;
if (sc_cmd->sc_data_direction == DMA_TO_DEVICE)
task_type = FCOE_TASK_TYPE_WRITE;
else
task_type = FCOE_TASK_TYPE_READ;
/* Tx only */
bd_count = bd_tbl->bd_valid;
cached_sge = &task->rxwr_only.union_ctx.read_info.sgl_ctx.cached_sge;
if (task_type == FCOE_TASK_TYPE_WRITE) {
if ((dev_type == TYPE_DISK) && (bd_count == 1)) {
struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.lo =
cached_sge->cur_buf_addr.lo =
fcoe_bd_tbl->buf_addr_lo;
task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.hi =
cached_sge->cur_buf_addr.hi =
fcoe_bd_tbl->buf_addr_hi;
task->txwr_only.sgl_ctx.cached_sge.cur_buf_rem =
cached_sge->cur_buf_rem =
fcoe_bd_tbl->buf_len;
task->txwr_rxrd.const_ctx.init_flags |= 1 <<
FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
} else {
task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
(u32)bd_tbl->bd_tbl_dma;
task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
(u32)((u64)bd_tbl->bd_tbl_dma >> 32);
task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size =
bd_tbl->bd_valid;
}
}
/*Tx Write Rx Read */
/* Init state to NORMAL */
task->txwr_rxrd.const_ctx.init_flags |= task_type <<
FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
if (dev_type == TYPE_TAPE) {
task->txwr_rxrd.const_ctx.init_flags |=
FCOE_TASK_DEV_TYPE_TAPE <<
FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
io_req->rec_retry = 0;
io_req->rec_retry = 0;
} else
task->txwr_rxrd.const_ctx.init_flags |=
FCOE_TASK_DEV_TYPE_DISK <<
FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
/* tx flags */
task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_NORMAL <<
FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
/* Set initial seq counter */
task->txwr_rxrd.union_ctx.tx_seq.ctx.seq_cnt = 1;
/* Fill FCP_CMND IU */
fcp_cmnd = (u64 *)
task->txwr_rxrd.union_ctx.fcp_cmd.opaque;
bnx2fc_build_fcp_cmnd(io_req, (struct fcp_cmnd *)&tmp_fcp_cmnd);
/* swap fcp_cmnd */
cnt = sizeof(struct fcp_cmnd) / sizeof(u64);
for (i = 0; i < cnt; i++) {
*fcp_cmnd = cpu_to_be64(tmp_fcp_cmnd[i]);
fcp_cmnd++;
}
/* Rx Write Tx Read */
task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len;
context_id = tgt->context_id;
task->rxwr_txrd.const_ctx.init_flags = context_id <<
FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
/* rx flags */
/* Set state to "waiting for the first packet" */
task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
task->rxwr_txrd.var_ctx.rx_id = 0xffff;
/* Rx Only */
if (task_type != FCOE_TASK_TYPE_READ)
return;
sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
bd_count = bd_tbl->bd_valid;
if (dev_type == TYPE_DISK) {
if (bd_count == 1) {
struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo;
cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi;
cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len;
task->txwr_rxrd.const_ctx.init_flags |= 1 <<
FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
} else if (bd_count == 2) {
struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo;
cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi;
cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len;
fcoe_bd_tbl++;
cached_sge->second_buf_addr.lo =
fcoe_bd_tbl->buf_addr_lo;
cached_sge->second_buf_addr.hi =
fcoe_bd_tbl->buf_addr_hi;
cached_sge->second_buf_rem = fcoe_bd_tbl->buf_len;
task->txwr_rxrd.const_ctx.init_flags |= 1 <<
FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
} else {
sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma;
sgl->mul_sgl.cur_sge_addr.hi =
(u32)((u64)bd_tbl->bd_tbl_dma >> 32);
sgl->mul_sgl.sgl_size = bd_count;
}
} else {
sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma;
sgl->mul_sgl.cur_sge_addr.hi =
(u32)((u64)bd_tbl->bd_tbl_dma >> 32);
sgl->mul_sgl.sgl_size = bd_count;
}
}
/**
* bnx2fc_setup_task_ctx - allocate and map task context
*
* @hba: pointer to adapter structure
*
* allocate memory for task context, and associated BD table to be used
* by firmware
*
*/
int bnx2fc_setup_task_ctx(struct bnx2fc_hba *hba)
{
int rc = 0;
struct regpair *task_ctx_bdt;
dma_addr_t addr;
int task_ctx_arr_sz;
int i;
/*
* Allocate task context bd table. A page size of bd table
* can map 256 buffers. Each buffer contains 32 task context
* entries. Hence the limit with one page is 8192 task context
* entries.
*/
hba->task_ctx_bd_tbl = dma_alloc_coherent(&hba->pcidev->dev,
PAGE_SIZE,
&hba->task_ctx_bd_dma,
GFP_KERNEL);
if (!hba->task_ctx_bd_tbl) {
printk(KERN_ERR PFX "unable to allocate task context BDT\n");
rc = -1;
goto out;
}
/*
* Allocate task_ctx which is an array of pointers pointing to
* a page containing 32 task contexts
*/
task_ctx_arr_sz = (hba->max_tasks / BNX2FC_TASKS_PER_PAGE);
hba->task_ctx = kzalloc((task_ctx_arr_sz * sizeof(void *)),
GFP_KERNEL);
if (!hba->task_ctx) {
printk(KERN_ERR PFX "unable to allocate task context array\n");
rc = -1;
goto out1;
}
/*
* Allocate task_ctx_dma which is an array of dma addresses
*/
hba->task_ctx_dma = kmalloc((task_ctx_arr_sz *
sizeof(dma_addr_t)), GFP_KERNEL);
if (!hba->task_ctx_dma) {
printk(KERN_ERR PFX "unable to alloc context mapping array\n");
rc = -1;
goto out2;
}
task_ctx_bdt = (struct regpair *)hba->task_ctx_bd_tbl;
for (i = 0; i < task_ctx_arr_sz; i++) {
hba->task_ctx[i] = dma_alloc_coherent(&hba->pcidev->dev,
PAGE_SIZE,
&hba->task_ctx_dma[i],
GFP_KERNEL);
if (!hba->task_ctx[i]) {
printk(KERN_ERR PFX "unable to alloc task context\n");
rc = -1;
goto out3;
}
addr = (u64)hba->task_ctx_dma[i];
task_ctx_bdt->hi = cpu_to_le32((u64)addr >> 32);
task_ctx_bdt->lo = cpu_to_le32((u32)addr);
task_ctx_bdt++;
}
return 0;
out3:
for (i = 0; i < task_ctx_arr_sz; i++) {
if (hba->task_ctx[i]) {
dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
hba->task_ctx[i], hba->task_ctx_dma[i]);
hba->task_ctx[i] = NULL;
}
}
kfree(hba->task_ctx_dma);
hba->task_ctx_dma = NULL;
out2:
kfree(hba->task_ctx);
hba->task_ctx = NULL;
out1:
dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
hba->task_ctx_bd_tbl, hba->task_ctx_bd_dma);
hba->task_ctx_bd_tbl = NULL;
out:
return rc;
}
void bnx2fc_free_task_ctx(struct bnx2fc_hba *hba)
{
int task_ctx_arr_sz;
int i;
if (hba->task_ctx_bd_tbl) {
dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
hba->task_ctx_bd_tbl,
hba->task_ctx_bd_dma);
hba->task_ctx_bd_tbl = NULL;
}
task_ctx_arr_sz = (hba->max_tasks / BNX2FC_TASKS_PER_PAGE);
if (hba->task_ctx) {
for (i = 0; i < task_ctx_arr_sz; i++) {
if (hba->task_ctx[i]) {
dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
hba->task_ctx[i],
hba->task_ctx_dma[i]);
hba->task_ctx[i] = NULL;
}
}
kfree(hba->task_ctx);
hba->task_ctx = NULL;
}
kfree(hba->task_ctx_dma);
hba->task_ctx_dma = NULL;
}
static void bnx2fc_free_hash_table(struct bnx2fc_hba *hba)
{
int i;
int segment_count;
u32 *pbl;
if (hba->hash_tbl_segments) {
pbl = hba->hash_tbl_pbl;
if (pbl) {
segment_count = hba->hash_tbl_segment_count;
for (i = 0; i < segment_count; ++i) {
dma_addr_t dma_address;
dma_address = le32_to_cpu(*pbl);
++pbl;
dma_address += ((u64)le32_to_cpu(*pbl)) << 32;
++pbl;
dma_free_coherent(&hba->pcidev->dev,
BNX2FC_HASH_TBL_CHUNK_SIZE,
hba->hash_tbl_segments[i],
dma_address);
}
}
kfree(hba->hash_tbl_segments);
hba->hash_tbl_segments = NULL;
}
if (hba->hash_tbl_pbl) {
dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
hba->hash_tbl_pbl,
hba->hash_tbl_pbl_dma);
hba->hash_tbl_pbl = NULL;
}
}
static int bnx2fc_allocate_hash_table(struct bnx2fc_hba *hba)
{
int i;
int hash_table_size;
int segment_count;
int segment_array_size;
int dma_segment_array_size;
dma_addr_t *dma_segment_array;
u32 *pbl;
hash_table_size = BNX2FC_NUM_MAX_SESS * BNX2FC_MAX_ROWS_IN_HASH_TBL *
sizeof(struct fcoe_hash_table_entry);
segment_count = hash_table_size + BNX2FC_HASH_TBL_CHUNK_SIZE - 1;
segment_count /= BNX2FC_HASH_TBL_CHUNK_SIZE;
hba->hash_tbl_segment_count = segment_count;
segment_array_size = segment_count * sizeof(*hba->hash_tbl_segments);
hba->hash_tbl_segments = kzalloc(segment_array_size, GFP_KERNEL);
if (!hba->hash_tbl_segments) {
printk(KERN_ERR PFX "hash table pointers alloc failed\n");
return -ENOMEM;
}
dma_segment_array_size = segment_count * sizeof(*dma_segment_array);
dma_segment_array = kzalloc(dma_segment_array_size, GFP_KERNEL);
if (!dma_segment_array) {
printk(KERN_ERR PFX "hash table pointers (dma) alloc failed\n");
goto cleanup_ht;
}
for (i = 0; i < segment_count; ++i) {
hba->hash_tbl_segments[i] = dma_alloc_coherent(&hba->pcidev->dev,
BNX2FC_HASH_TBL_CHUNK_SIZE,
&dma_segment_array[i],
GFP_KERNEL);
if (!hba->hash_tbl_segments[i]) {
printk(KERN_ERR PFX "hash segment alloc failed\n");
goto cleanup_dma;
}
}
hba->hash_tbl_pbl = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE,
&hba->hash_tbl_pbl_dma,
GFP_KERNEL);
if (!hba->hash_tbl_pbl) {
printk(KERN_ERR PFX "hash table pbl alloc failed\n");
goto cleanup_dma;
}
pbl = hba->hash_tbl_pbl;
for (i = 0; i < segment_count; ++i) {
u64 paddr = dma_segment_array[i];
*pbl = cpu_to_le32((u32) paddr);
++pbl;
*pbl = cpu_to_le32((u32) (paddr >> 32));
++pbl;
}
pbl = hba->hash_tbl_pbl;
i = 0;
while (*pbl && *(pbl + 1)) {
++pbl;
++pbl;
++i;
}
kfree(dma_segment_array);
return 0;
cleanup_dma:
for (i = 0; i < segment_count; ++i) {
if (hba->hash_tbl_segments[i])
dma_free_coherent(&hba->pcidev->dev,
BNX2FC_HASH_TBL_CHUNK_SIZE,
hba->hash_tbl_segments[i],
dma_segment_array[i]);
}
kfree(dma_segment_array);
cleanup_ht:
kfree(hba->hash_tbl_segments);
hba->hash_tbl_segments = NULL;
return -ENOMEM;
}
/**
* bnx2fc_setup_fw_resc - Allocate and map hash table and dummy buffer
*
* @hba: Pointer to adapter structure
*
*/
int bnx2fc_setup_fw_resc(struct bnx2fc_hba *hba)
{
u64 addr;
u32 mem_size;
int i;
if (bnx2fc_allocate_hash_table(hba))
return -ENOMEM;
mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair);
hba->t2_hash_tbl_ptr = dma_alloc_coherent(&hba->pcidev->dev, mem_size,
&hba->t2_hash_tbl_ptr_dma,
GFP_KERNEL);
if (!hba->t2_hash_tbl_ptr) {
printk(KERN_ERR PFX "unable to allocate t2 hash table ptr\n");
bnx2fc_free_fw_resc(hba);
return -ENOMEM;
}
mem_size = BNX2FC_NUM_MAX_SESS *
sizeof(struct fcoe_t2_hash_table_entry);
hba->t2_hash_tbl = dma_alloc_coherent(&hba->pcidev->dev, mem_size,
&hba->t2_hash_tbl_dma,
GFP_KERNEL);
if (!hba->t2_hash_tbl) {
printk(KERN_ERR PFX "unable to allocate t2 hash table\n");
bnx2fc_free_fw_resc(hba);
return -ENOMEM;
}
for (i = 0; i < BNX2FC_NUM_MAX_SESS; i++) {
addr = (unsigned long) hba->t2_hash_tbl_dma +
((i+1) * sizeof(struct fcoe_t2_hash_table_entry));
hba->t2_hash_tbl[i].next.lo = addr & 0xffffffff;
hba->t2_hash_tbl[i].next.hi = addr >> 32;
}
hba->dummy_buffer = dma_alloc_coherent(&hba->pcidev->dev,
PAGE_SIZE, &hba->dummy_buf_dma,
GFP_KERNEL);
if (!hba->dummy_buffer) {
printk(KERN_ERR PFX "unable to alloc MP Dummy Buffer\n");
bnx2fc_free_fw_resc(hba);
return -ENOMEM;
}
hba->stats_buffer = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE,
&hba->stats_buf_dma,
GFP_KERNEL);
if (!hba->stats_buffer) {
printk(KERN_ERR PFX "unable to alloc Stats Buffer\n");
bnx2fc_free_fw_resc(hba);
return -ENOMEM;
}
return 0;
}
void bnx2fc_free_fw_resc(struct bnx2fc_hba *hba)
{
u32 mem_size;
if (hba->stats_buffer) {
dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
hba->stats_buffer, hba->stats_buf_dma);
hba->stats_buffer = NULL;
}
if (hba->dummy_buffer) {
dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
hba->dummy_buffer, hba->dummy_buf_dma);
hba->dummy_buffer = NULL;
}
if (hba->t2_hash_tbl_ptr) {
mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair);
dma_free_coherent(&hba->pcidev->dev, mem_size,
hba->t2_hash_tbl_ptr,
hba->t2_hash_tbl_ptr_dma);
hba->t2_hash_tbl_ptr = NULL;
}
if (hba->t2_hash_tbl) {
mem_size = BNX2FC_NUM_MAX_SESS *
sizeof(struct fcoe_t2_hash_table_entry);
dma_free_coherent(&hba->pcidev->dev, mem_size,
hba->t2_hash_tbl, hba->t2_hash_tbl_dma);
hba->t2_hash_tbl = NULL;
}
bnx2fc_free_hash_table(hba);
}