| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _LINUX_MIN_HEAP_H |
| #define _LINUX_MIN_HEAP_H |
| |
| #include <linux/bug.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| |
| /** |
| * struct min_heap - Data structure to hold a min-heap. |
| * @data: Start of array holding the heap elements. |
| * @nr: Number of elements currently in the heap. |
| * @size: Maximum number of elements that can be held in current storage. |
| */ |
| struct min_heap { |
| void *data; |
| int nr; |
| int size; |
| }; |
| |
| /** |
| * struct min_heap_callbacks - Data/functions to customise the min_heap. |
| * @elem_size: The nr of each element in bytes. |
| * @less: Partial order function for this heap. |
| * @swp: Swap elements function. |
| */ |
| struct min_heap_callbacks { |
| int elem_size; |
| bool (*less)(const void *lhs, const void *rhs); |
| void (*swp)(void *lhs, void *rhs); |
| }; |
| |
| /* Sift the element at pos down the heap. */ |
| static __always_inline |
| void min_heapify(struct min_heap *heap, int pos, |
| const struct min_heap_callbacks *func) |
| { |
| void *left, *right, *parent, *smallest; |
| void *data = heap->data; |
| |
| for (;;) { |
| if (pos * 2 + 1 >= heap->nr) |
| break; |
| |
| left = data + ((pos * 2 + 1) * func->elem_size); |
| parent = data + (pos * func->elem_size); |
| smallest = parent; |
| if (func->less(left, smallest)) |
| smallest = left; |
| |
| if (pos * 2 + 2 < heap->nr) { |
| right = data + ((pos * 2 + 2) * func->elem_size); |
| if (func->less(right, smallest)) |
| smallest = right; |
| } |
| if (smallest == parent) |
| break; |
| func->swp(smallest, parent); |
| if (smallest == left) |
| pos = (pos * 2) + 1; |
| else |
| pos = (pos * 2) + 2; |
| } |
| } |
| |
| /* Floyd's approach to heapification that is O(nr). */ |
| static __always_inline |
| void min_heapify_all(struct min_heap *heap, |
| const struct min_heap_callbacks *func) |
| { |
| int i; |
| |
| for (i = heap->nr / 2; i >= 0; i--) |
| min_heapify(heap, i, func); |
| } |
| |
| /* Remove minimum element from the heap, O(log2(nr)). */ |
| static __always_inline |
| void min_heap_pop(struct min_heap *heap, |
| const struct min_heap_callbacks *func) |
| { |
| void *data = heap->data; |
| |
| if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap")) |
| return; |
| |
| /* Place last element at the root (position 0) and then sift down. */ |
| heap->nr--; |
| memcpy(data, data + (heap->nr * func->elem_size), func->elem_size); |
| min_heapify(heap, 0, func); |
| } |
| |
| /* |
| * Remove the minimum element and then push the given element. The |
| * implementation performs 1 sift (O(log2(nr))) and is therefore more |
| * efficient than a pop followed by a push that does 2. |
| */ |
| static __always_inline |
| void min_heap_pop_push(struct min_heap *heap, |
| const void *element, |
| const struct min_heap_callbacks *func) |
| { |
| memcpy(heap->data, element, func->elem_size); |
| min_heapify(heap, 0, func); |
| } |
| |
| /* Push an element on to the heap, O(log2(nr)). */ |
| static __always_inline |
| void min_heap_push(struct min_heap *heap, const void *element, |
| const struct min_heap_callbacks *func) |
| { |
| void *data = heap->data; |
| void *child, *parent; |
| int pos; |
| |
| if (WARN_ONCE(heap->nr >= heap->size, "Pushing on a full heap")) |
| return; |
| |
| /* Place at the end of data. */ |
| pos = heap->nr; |
| memcpy(data + (pos * func->elem_size), element, func->elem_size); |
| heap->nr++; |
| |
| /* Sift child at pos up. */ |
| for (; pos > 0; pos = (pos - 1) / 2) { |
| child = data + (pos * func->elem_size); |
| parent = data + ((pos - 1) / 2) * func->elem_size; |
| if (func->less(parent, child)) |
| break; |
| func->swp(parent, child); |
| } |
| } |
| |
| #endif /* _LINUX_MIN_HEAP_H */ |