| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _LINUX_MMZONE_H |
| #define _LINUX_MMZONE_H |
| |
| #ifndef __ASSEMBLY__ |
| #ifndef __GENERATING_BOUNDS_H |
| |
| #include <linux/spinlock.h> |
| #include <linux/list.h> |
| #include <linux/wait.h> |
| #include <linux/bitops.h> |
| #include <linux/cache.h> |
| #include <linux/threads.h> |
| #include <linux/numa.h> |
| #include <linux/init.h> |
| #include <linux/seqlock.h> |
| #include <linux/nodemask.h> |
| #include <linux/pageblock-flags.h> |
| #include <linux/page-flags-layout.h> |
| #include <linux/atomic.h> |
| #include <linux/mm_types.h> |
| #include <linux/page-flags.h> |
| #include <linux/local_lock.h> |
| #include <asm/page.h> |
| |
| /* Free memory management - zoned buddy allocator. */ |
| #ifndef CONFIG_FORCE_MAX_ZONEORDER |
| #define MAX_ORDER 11 |
| #else |
| #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER |
| #endif |
| #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) |
| |
| /* |
| * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed |
| * costly to service. That is between allocation orders which should |
| * coalesce naturally under reasonable reclaim pressure and those which |
| * will not. |
| */ |
| #define PAGE_ALLOC_COSTLY_ORDER 3 |
| |
| enum migratetype { |
| MIGRATE_UNMOVABLE, |
| MIGRATE_MOVABLE, |
| MIGRATE_RECLAIMABLE, |
| MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ |
| MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, |
| #ifdef CONFIG_CMA |
| /* |
| * MIGRATE_CMA migration type is designed to mimic the way |
| * ZONE_MOVABLE works. Only movable pages can be allocated |
| * from MIGRATE_CMA pageblocks and page allocator never |
| * implicitly change migration type of MIGRATE_CMA pageblock. |
| * |
| * The way to use it is to change migratetype of a range of |
| * pageblocks to MIGRATE_CMA which can be done by |
| * __free_pageblock_cma() function. What is important though |
| * is that a range of pageblocks must be aligned to |
| * MAX_ORDER_NR_PAGES should biggest page be bigger than |
| * a single pageblock. |
| */ |
| MIGRATE_CMA, |
| #endif |
| #ifdef CONFIG_MEMORY_ISOLATION |
| MIGRATE_ISOLATE, /* can't allocate from here */ |
| #endif |
| MIGRATE_TYPES |
| }; |
| |
| /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ |
| extern const char * const migratetype_names[MIGRATE_TYPES]; |
| |
| #ifdef CONFIG_CMA |
| # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) |
| # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) |
| #else |
| # define is_migrate_cma(migratetype) false |
| # define is_migrate_cma_page(_page) false |
| #endif |
| |
| static inline bool is_migrate_movable(int mt) |
| { |
| return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; |
| } |
| |
| #define for_each_migratetype_order(order, type) \ |
| for (order = 0; order < MAX_ORDER; order++) \ |
| for (type = 0; type < MIGRATE_TYPES; type++) |
| |
| extern int page_group_by_mobility_disabled; |
| |
| #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) |
| |
| #define get_pageblock_migratetype(page) \ |
| get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) |
| |
| struct free_area { |
| struct list_head free_list[MIGRATE_TYPES]; |
| unsigned long nr_free; |
| }; |
| |
| static inline struct page *get_page_from_free_area(struct free_area *area, |
| int migratetype) |
| { |
| return list_first_entry_or_null(&area->free_list[migratetype], |
| struct page, lru); |
| } |
| |
| static inline bool free_area_empty(struct free_area *area, int migratetype) |
| { |
| return list_empty(&area->free_list[migratetype]); |
| } |
| |
| struct pglist_data; |
| |
| /* |
| * Add a wild amount of padding here to ensure data fall into separate |
| * cachelines. There are very few zone structures in the machine, so space |
| * consumption is not a concern here. |
| */ |
| #if defined(CONFIG_SMP) |
| struct zone_padding { |
| char x[0]; |
| } ____cacheline_internodealigned_in_smp; |
| #define ZONE_PADDING(name) struct zone_padding name; |
| #else |
| #define ZONE_PADDING(name) |
| #endif |
| |
| #ifdef CONFIG_NUMA |
| enum numa_stat_item { |
| NUMA_HIT, /* allocated in intended node */ |
| NUMA_MISS, /* allocated in non intended node */ |
| NUMA_FOREIGN, /* was intended here, hit elsewhere */ |
| NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ |
| NUMA_LOCAL, /* allocation from local node */ |
| NUMA_OTHER, /* allocation from other node */ |
| NR_VM_NUMA_EVENT_ITEMS |
| }; |
| #else |
| #define NR_VM_NUMA_EVENT_ITEMS 0 |
| #endif |
| |
| enum zone_stat_item { |
| /* First 128 byte cacheline (assuming 64 bit words) */ |
| NR_FREE_PAGES, |
| NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ |
| NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, |
| NR_ZONE_ACTIVE_ANON, |
| NR_ZONE_INACTIVE_FILE, |
| NR_ZONE_ACTIVE_FILE, |
| NR_ZONE_UNEVICTABLE, |
| NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ |
| NR_MLOCK, /* mlock()ed pages found and moved off LRU */ |
| /* Second 128 byte cacheline */ |
| NR_BOUNCE, |
| #if IS_ENABLED(CONFIG_ZSMALLOC) |
| NR_ZSPAGES, /* allocated in zsmalloc */ |
| #endif |
| NR_FREE_CMA_PAGES, |
| NR_VM_ZONE_STAT_ITEMS }; |
| |
| enum node_stat_item { |
| NR_LRU_BASE, |
| NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ |
| NR_ACTIVE_ANON, /* " " " " " */ |
| NR_INACTIVE_FILE, /* " " " " " */ |
| NR_ACTIVE_FILE, /* " " " " " */ |
| NR_UNEVICTABLE, /* " " " " " */ |
| NR_SLAB_RECLAIMABLE_B, |
| NR_SLAB_UNRECLAIMABLE_B, |
| NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ |
| NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ |
| WORKINGSET_NODES, |
| WORKINGSET_REFAULT_BASE, |
| WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, |
| WORKINGSET_REFAULT_FILE, |
| WORKINGSET_ACTIVATE_BASE, |
| WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, |
| WORKINGSET_ACTIVATE_FILE, |
| WORKINGSET_RESTORE_BASE, |
| WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, |
| WORKINGSET_RESTORE_FILE, |
| WORKINGSET_NODERECLAIM, |
| NR_ANON_MAPPED, /* Mapped anonymous pages */ |
| NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. |
| only modified from process context */ |
| NR_FILE_PAGES, |
| NR_FILE_DIRTY, |
| NR_WRITEBACK, |
| NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ |
| NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ |
| NR_SHMEM_THPS, |
| NR_SHMEM_PMDMAPPED, |
| NR_FILE_THPS, |
| NR_FILE_PMDMAPPED, |
| NR_ANON_THPS, |
| NR_VMSCAN_WRITE, |
| NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ |
| NR_DIRTIED, /* page dirtyings since bootup */ |
| NR_WRITTEN, /* page writings since bootup */ |
| NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ |
| NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ |
| NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ |
| NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ |
| NR_KERNEL_STACK_KB, /* measured in KiB */ |
| #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) |
| NR_KERNEL_SCS_KB, /* measured in KiB */ |
| #endif |
| NR_PAGETABLE, /* used for pagetables */ |
| #ifdef CONFIG_SWAP |
| NR_SWAPCACHE, |
| #endif |
| NR_VM_NODE_STAT_ITEMS |
| }; |
| |
| /* |
| * Returns true if the item should be printed in THPs (/proc/vmstat |
| * currently prints number of anon, file and shmem THPs. But the item |
| * is charged in pages). |
| */ |
| static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) |
| { |
| if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) |
| return false; |
| |
| return item == NR_ANON_THPS || |
| item == NR_FILE_THPS || |
| item == NR_SHMEM_THPS || |
| item == NR_SHMEM_PMDMAPPED || |
| item == NR_FILE_PMDMAPPED; |
| } |
| |
| /* |
| * Returns true if the value is measured in bytes (most vmstat values are |
| * measured in pages). This defines the API part, the internal representation |
| * might be different. |
| */ |
| static __always_inline bool vmstat_item_in_bytes(int idx) |
| { |
| /* |
| * Global and per-node slab counters track slab pages. |
| * It's expected that changes are multiples of PAGE_SIZE. |
| * Internally values are stored in pages. |
| * |
| * Per-memcg and per-lruvec counters track memory, consumed |
| * by individual slab objects. These counters are actually |
| * byte-precise. |
| */ |
| return (idx == NR_SLAB_RECLAIMABLE_B || |
| idx == NR_SLAB_UNRECLAIMABLE_B); |
| } |
| |
| /* |
| * We do arithmetic on the LRU lists in various places in the code, |
| * so it is important to keep the active lists LRU_ACTIVE higher in |
| * the array than the corresponding inactive lists, and to keep |
| * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. |
| * |
| * This has to be kept in sync with the statistics in zone_stat_item |
| * above and the descriptions in vmstat_text in mm/vmstat.c |
| */ |
| #define LRU_BASE 0 |
| #define LRU_ACTIVE 1 |
| #define LRU_FILE 2 |
| |
| enum lru_list { |
| LRU_INACTIVE_ANON = LRU_BASE, |
| LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, |
| LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, |
| LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, |
| LRU_UNEVICTABLE, |
| NR_LRU_LISTS |
| }; |
| |
| enum vmscan_throttle_state { |
| VMSCAN_THROTTLE_WRITEBACK, |
| VMSCAN_THROTTLE_ISOLATED, |
| VMSCAN_THROTTLE_NOPROGRESS, |
| NR_VMSCAN_THROTTLE, |
| }; |
| |
| #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) |
| |
| #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) |
| |
| static inline bool is_file_lru(enum lru_list lru) |
| { |
| return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); |
| } |
| |
| static inline bool is_active_lru(enum lru_list lru) |
| { |
| return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); |
| } |
| |
| #define ANON_AND_FILE 2 |
| |
| enum lruvec_flags { |
| LRUVEC_CONGESTED, /* lruvec has many dirty pages |
| * backed by a congested BDI |
| */ |
| }; |
| |
| struct lruvec { |
| struct list_head lists[NR_LRU_LISTS]; |
| /* per lruvec lru_lock for memcg */ |
| spinlock_t lru_lock; |
| /* |
| * These track the cost of reclaiming one LRU - file or anon - |
| * over the other. As the observed cost of reclaiming one LRU |
| * increases, the reclaim scan balance tips toward the other. |
| */ |
| unsigned long anon_cost; |
| unsigned long file_cost; |
| /* Non-resident age, driven by LRU movement */ |
| atomic_long_t nonresident_age; |
| /* Refaults at the time of last reclaim cycle */ |
| unsigned long refaults[ANON_AND_FILE]; |
| /* Various lruvec state flags (enum lruvec_flags) */ |
| unsigned long flags; |
| #ifdef CONFIG_MEMCG |
| struct pglist_data *pgdat; |
| #endif |
| }; |
| |
| /* Isolate unmapped pages */ |
| #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) |
| /* Isolate for asynchronous migration */ |
| #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) |
| /* Isolate unevictable pages */ |
| #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) |
| |
| /* LRU Isolation modes. */ |
| typedef unsigned __bitwise isolate_mode_t; |
| |
| enum zone_watermarks { |
| WMARK_MIN, |
| WMARK_LOW, |
| WMARK_HIGH, |
| NR_WMARK |
| }; |
| |
| /* |
| * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER plus one additional |
| * for pageblock size for THP if configured. |
| */ |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| #define NR_PCP_THP 1 |
| #else |
| #define NR_PCP_THP 0 |
| #endif |
| #define NR_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1 + NR_PCP_THP)) |
| |
| /* |
| * Shift to encode migratetype and order in the same integer, with order |
| * in the least significant bits. |
| */ |
| #define NR_PCP_ORDER_WIDTH 8 |
| #define NR_PCP_ORDER_MASK ((1<<NR_PCP_ORDER_WIDTH) - 1) |
| |
| #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) |
| #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) |
| #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) |
| #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) |
| |
| /* Fields and list protected by pagesets local_lock in page_alloc.c */ |
| struct per_cpu_pages { |
| int count; /* number of pages in the list */ |
| int high; /* high watermark, emptying needed */ |
| int batch; /* chunk size for buddy add/remove */ |
| short free_factor; /* batch scaling factor during free */ |
| #ifdef CONFIG_NUMA |
| short expire; /* When 0, remote pagesets are drained */ |
| #endif |
| |
| /* Lists of pages, one per migrate type stored on the pcp-lists */ |
| struct list_head lists[NR_PCP_LISTS]; |
| }; |
| |
| struct per_cpu_zonestat { |
| #ifdef CONFIG_SMP |
| s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; |
| s8 stat_threshold; |
| #endif |
| #ifdef CONFIG_NUMA |
| /* |
| * Low priority inaccurate counters that are only folded |
| * on demand. Use a large type to avoid the overhead of |
| * folding during refresh_cpu_vm_stats. |
| */ |
| unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; |
| #endif |
| }; |
| |
| struct per_cpu_nodestat { |
| s8 stat_threshold; |
| s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; |
| }; |
| |
| #endif /* !__GENERATING_BOUNDS.H */ |
| |
| enum zone_type { |
| /* |
| * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able |
| * to DMA to all of the addressable memory (ZONE_NORMAL). |
| * On architectures where this area covers the whole 32 bit address |
| * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller |
| * DMA addressing constraints. This distinction is important as a 32bit |
| * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit |
| * platforms may need both zones as they support peripherals with |
| * different DMA addressing limitations. |
| */ |
| #ifdef CONFIG_ZONE_DMA |
| ZONE_DMA, |
| #endif |
| #ifdef CONFIG_ZONE_DMA32 |
| ZONE_DMA32, |
| #endif |
| /* |
| * Normal addressable memory is in ZONE_NORMAL. DMA operations can be |
| * performed on pages in ZONE_NORMAL if the DMA devices support |
| * transfers to all addressable memory. |
| */ |
| ZONE_NORMAL, |
| #ifdef CONFIG_HIGHMEM |
| /* |
| * A memory area that is only addressable by the kernel through |
| * mapping portions into its own address space. This is for example |
| * used by i386 to allow the kernel to address the memory beyond |
| * 900MB. The kernel will set up special mappings (page |
| * table entries on i386) for each page that the kernel needs to |
| * access. |
| */ |
| ZONE_HIGHMEM, |
| #endif |
| /* |
| * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains |
| * movable pages with few exceptional cases described below. Main use |
| * cases for ZONE_MOVABLE are to make memory offlining/unplug more |
| * likely to succeed, and to locally limit unmovable allocations - e.g., |
| * to increase the number of THP/huge pages. Notable special cases are: |
| * |
| * 1. Pinned pages: (long-term) pinning of movable pages might |
| * essentially turn such pages unmovable. Therefore, we do not allow |
| * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and |
| * faulted, they come from the right zone right away. However, it is |
| * still possible that address space already has pages in |
| * ZONE_MOVABLE at the time when pages are pinned (i.e. user has |
| * touches that memory before pinning). In such case we migrate them |
| * to a different zone. When migration fails - pinning fails. |
| * 2. memblock allocations: kernelcore/movablecore setups might create |
| * situations where ZONE_MOVABLE contains unmovable allocations |
| * after boot. Memory offlining and allocations fail early. |
| * 3. Memory holes: kernelcore/movablecore setups might create very rare |
| * situations where ZONE_MOVABLE contains memory holes after boot, |
| * for example, if we have sections that are only partially |
| * populated. Memory offlining and allocations fail early. |
| * 4. PG_hwpoison pages: while poisoned pages can be skipped during |
| * memory offlining, such pages cannot be allocated. |
| * 5. Unmovable PG_offline pages: in paravirtualized environments, |
| * hotplugged memory blocks might only partially be managed by the |
| * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The |
| * parts not manged by the buddy are unmovable PG_offline pages. In |
| * some cases (virtio-mem), such pages can be skipped during |
| * memory offlining, however, cannot be moved/allocated. These |
| * techniques might use alloc_contig_range() to hide previously |
| * exposed pages from the buddy again (e.g., to implement some sort |
| * of memory unplug in virtio-mem). |
| * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create |
| * situations where ZERO_PAGE(0) which is allocated differently |
| * on different platforms may end up in a movable zone. ZERO_PAGE(0) |
| * cannot be migrated. |
| * 7. Memory-hotplug: when using memmap_on_memory and onlining the |
| * memory to the MOVABLE zone, the vmemmap pages are also placed in |
| * such zone. Such pages cannot be really moved around as they are |
| * self-stored in the range, but they are treated as movable when |
| * the range they describe is about to be offlined. |
| * |
| * In general, no unmovable allocations that degrade memory offlining |
| * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) |
| * have to expect that migrating pages in ZONE_MOVABLE can fail (even |
| * if has_unmovable_pages() states that there are no unmovable pages, |
| * there can be false negatives). |
| */ |
| ZONE_MOVABLE, |
| #ifdef CONFIG_ZONE_DEVICE |
| ZONE_DEVICE, |
| #endif |
| __MAX_NR_ZONES |
| |
| }; |
| |
| #ifndef __GENERATING_BOUNDS_H |
| |
| #define ASYNC_AND_SYNC 2 |
| |
| struct zone { |
| /* Read-mostly fields */ |
| |
| /* zone watermarks, access with *_wmark_pages(zone) macros */ |
| unsigned long _watermark[NR_WMARK]; |
| unsigned long watermark_boost; |
| |
| unsigned long nr_reserved_highatomic; |
| |
| /* |
| * We don't know if the memory that we're going to allocate will be |
| * freeable or/and it will be released eventually, so to avoid totally |
| * wasting several GB of ram we must reserve some of the lower zone |
| * memory (otherwise we risk to run OOM on the lower zones despite |
| * there being tons of freeable ram on the higher zones). This array is |
| * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl |
| * changes. |
| */ |
| long lowmem_reserve[MAX_NR_ZONES]; |
| |
| #ifdef CONFIG_NUMA |
| int node; |
| #endif |
| struct pglist_data *zone_pgdat; |
| struct per_cpu_pages __percpu *per_cpu_pageset; |
| struct per_cpu_zonestat __percpu *per_cpu_zonestats; |
| /* |
| * the high and batch values are copied to individual pagesets for |
| * faster access |
| */ |
| int pageset_high; |
| int pageset_batch; |
| |
| #ifndef CONFIG_SPARSEMEM |
| /* |
| * Flags for a pageblock_nr_pages block. See pageblock-flags.h. |
| * In SPARSEMEM, this map is stored in struct mem_section |
| */ |
| unsigned long *pageblock_flags; |
| #endif /* CONFIG_SPARSEMEM */ |
| |
| /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ |
| unsigned long zone_start_pfn; |
| |
| /* |
| * spanned_pages is the total pages spanned by the zone, including |
| * holes, which is calculated as: |
| * spanned_pages = zone_end_pfn - zone_start_pfn; |
| * |
| * present_pages is physical pages existing within the zone, which |
| * is calculated as: |
| * present_pages = spanned_pages - absent_pages(pages in holes); |
| * |
| * present_early_pages is present pages existing within the zone |
| * located on memory available since early boot, excluding hotplugged |
| * memory. |
| * |
| * managed_pages is present pages managed by the buddy system, which |
| * is calculated as (reserved_pages includes pages allocated by the |
| * bootmem allocator): |
| * managed_pages = present_pages - reserved_pages; |
| * |
| * cma pages is present pages that are assigned for CMA use |
| * (MIGRATE_CMA). |
| * |
| * So present_pages may be used by memory hotplug or memory power |
| * management logic to figure out unmanaged pages by checking |
| * (present_pages - managed_pages). And managed_pages should be used |
| * by page allocator and vm scanner to calculate all kinds of watermarks |
| * and thresholds. |
| * |
| * Locking rules: |
| * |
| * zone_start_pfn and spanned_pages are protected by span_seqlock. |
| * It is a seqlock because it has to be read outside of zone->lock, |
| * and it is done in the main allocator path. But, it is written |
| * quite infrequently. |
| * |
| * The span_seq lock is declared along with zone->lock because it is |
| * frequently read in proximity to zone->lock. It's good to |
| * give them a chance of being in the same cacheline. |
| * |
| * Write access to present_pages at runtime should be protected by |
| * mem_hotplug_begin/end(). Any reader who can't tolerant drift of |
| * present_pages should get_online_mems() to get a stable value. |
| */ |
| atomic_long_t managed_pages; |
| unsigned long spanned_pages; |
| unsigned long present_pages; |
| #if defined(CONFIG_MEMORY_HOTPLUG) |
| unsigned long present_early_pages; |
| #endif |
| #ifdef CONFIG_CMA |
| unsigned long cma_pages; |
| #endif |
| |
| const char *name; |
| |
| #ifdef CONFIG_MEMORY_ISOLATION |
| /* |
| * Number of isolated pageblock. It is used to solve incorrect |
| * freepage counting problem due to racy retrieving migratetype |
| * of pageblock. Protected by zone->lock. |
| */ |
| unsigned long nr_isolate_pageblock; |
| #endif |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| /* see spanned/present_pages for more description */ |
| seqlock_t span_seqlock; |
| #endif |
| |
| int initialized; |
| |
| /* Write-intensive fields used from the page allocator */ |
| ZONE_PADDING(_pad1_) |
| |
| /* free areas of different sizes */ |
| struct free_area free_area[MAX_ORDER]; |
| |
| /* zone flags, see below */ |
| unsigned long flags; |
| |
| /* Primarily protects free_area */ |
| spinlock_t lock; |
| |
| /* Write-intensive fields used by compaction and vmstats. */ |
| ZONE_PADDING(_pad2_) |
| |
| /* |
| * When free pages are below this point, additional steps are taken |
| * when reading the number of free pages to avoid per-cpu counter |
| * drift allowing watermarks to be breached |
| */ |
| unsigned long percpu_drift_mark; |
| |
| #if defined CONFIG_COMPACTION || defined CONFIG_CMA |
| /* pfn where compaction free scanner should start */ |
| unsigned long compact_cached_free_pfn; |
| /* pfn where compaction migration scanner should start */ |
| unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; |
| unsigned long compact_init_migrate_pfn; |
| unsigned long compact_init_free_pfn; |
| #endif |
| |
| #ifdef CONFIG_COMPACTION |
| /* |
| * On compaction failure, 1<<compact_defer_shift compactions |
| * are skipped before trying again. The number attempted since |
| * last failure is tracked with compact_considered. |
| * compact_order_failed is the minimum compaction failed order. |
| */ |
| unsigned int compact_considered; |
| unsigned int compact_defer_shift; |
| int compact_order_failed; |
| #endif |
| |
| #if defined CONFIG_COMPACTION || defined CONFIG_CMA |
| /* Set to true when the PG_migrate_skip bits should be cleared */ |
| bool compact_blockskip_flush; |
| #endif |
| |
| bool contiguous; |
| |
| ZONE_PADDING(_pad3_) |
| /* Zone statistics */ |
| atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; |
| atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; |
| } ____cacheline_internodealigned_in_smp; |
| |
| enum pgdat_flags { |
| PGDAT_DIRTY, /* reclaim scanning has recently found |
| * many dirty file pages at the tail |
| * of the LRU. |
| */ |
| PGDAT_WRITEBACK, /* reclaim scanning has recently found |
| * many pages under writeback |
| */ |
| PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ |
| }; |
| |
| enum zone_flags { |
| ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. |
| * Cleared when kswapd is woken. |
| */ |
| ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ |
| }; |
| |
| static inline unsigned long zone_managed_pages(struct zone *zone) |
| { |
| return (unsigned long)atomic_long_read(&zone->managed_pages); |
| } |
| |
| static inline unsigned long zone_cma_pages(struct zone *zone) |
| { |
| #ifdef CONFIG_CMA |
| return zone->cma_pages; |
| #else |
| return 0; |
| #endif |
| } |
| |
| static inline unsigned long zone_end_pfn(const struct zone *zone) |
| { |
| return zone->zone_start_pfn + zone->spanned_pages; |
| } |
| |
| static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) |
| { |
| return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); |
| } |
| |
| static inline bool zone_is_initialized(struct zone *zone) |
| { |
| return zone->initialized; |
| } |
| |
| static inline bool zone_is_empty(struct zone *zone) |
| { |
| return zone->spanned_pages == 0; |
| } |
| |
| /* |
| * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty |
| * intersection with the given zone |
| */ |
| static inline bool zone_intersects(struct zone *zone, |
| unsigned long start_pfn, unsigned long nr_pages) |
| { |
| if (zone_is_empty(zone)) |
| return false; |
| if (start_pfn >= zone_end_pfn(zone) || |
| start_pfn + nr_pages <= zone->zone_start_pfn) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * The "priority" of VM scanning is how much of the queues we will scan in one |
| * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the |
| * queues ("queue_length >> 12") during an aging round. |
| */ |
| #define DEF_PRIORITY 12 |
| |
| /* Maximum number of zones on a zonelist */ |
| #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) |
| |
| enum { |
| ZONELIST_FALLBACK, /* zonelist with fallback */ |
| #ifdef CONFIG_NUMA |
| /* |
| * The NUMA zonelists are doubled because we need zonelists that |
| * restrict the allocations to a single node for __GFP_THISNODE. |
| */ |
| ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ |
| #endif |
| MAX_ZONELISTS |
| }; |
| |
| /* |
| * This struct contains information about a zone in a zonelist. It is stored |
| * here to avoid dereferences into large structures and lookups of tables |
| */ |
| struct zoneref { |
| struct zone *zone; /* Pointer to actual zone */ |
| int zone_idx; /* zone_idx(zoneref->zone) */ |
| }; |
| |
| /* |
| * One allocation request operates on a zonelist. A zonelist |
| * is a list of zones, the first one is the 'goal' of the |
| * allocation, the other zones are fallback zones, in decreasing |
| * priority. |
| * |
| * To speed the reading of the zonelist, the zonerefs contain the zone index |
| * of the entry being read. Helper functions to access information given |
| * a struct zoneref are |
| * |
| * zonelist_zone() - Return the struct zone * for an entry in _zonerefs |
| * zonelist_zone_idx() - Return the index of the zone for an entry |
| * zonelist_node_idx() - Return the index of the node for an entry |
| */ |
| struct zonelist { |
| struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; |
| }; |
| |
| /* |
| * The array of struct pages for flatmem. |
| * It must be declared for SPARSEMEM as well because there are configurations |
| * that rely on that. |
| */ |
| extern struct page *mem_map; |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| struct deferred_split { |
| spinlock_t split_queue_lock; |
| struct list_head split_queue; |
| unsigned long split_queue_len; |
| }; |
| #endif |
| |
| /* |
| * On NUMA machines, each NUMA node would have a pg_data_t to describe |
| * it's memory layout. On UMA machines there is a single pglist_data which |
| * describes the whole memory. |
| * |
| * Memory statistics and page replacement data structures are maintained on a |
| * per-zone basis. |
| */ |
| typedef struct pglist_data { |
| /* |
| * node_zones contains just the zones for THIS node. Not all of the |
| * zones may be populated, but it is the full list. It is referenced by |
| * this node's node_zonelists as well as other node's node_zonelists. |
| */ |
| struct zone node_zones[MAX_NR_ZONES]; |
| |
| /* |
| * node_zonelists contains references to all zones in all nodes. |
| * Generally the first zones will be references to this node's |
| * node_zones. |
| */ |
| struct zonelist node_zonelists[MAX_ZONELISTS]; |
| |
| int nr_zones; /* number of populated zones in this node */ |
| #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ |
| struct page *node_mem_map; |
| #ifdef CONFIG_PAGE_EXTENSION |
| struct page_ext *node_page_ext; |
| #endif |
| #endif |
| #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) |
| /* |
| * Must be held any time you expect node_start_pfn, |
| * node_present_pages, node_spanned_pages or nr_zones to stay constant. |
| * Also synchronizes pgdat->first_deferred_pfn during deferred page |
| * init. |
| * |
| * pgdat_resize_lock() and pgdat_resize_unlock() are provided to |
| * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG |
| * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. |
| * |
| * Nests above zone->lock and zone->span_seqlock |
| */ |
| spinlock_t node_size_lock; |
| #endif |
| unsigned long node_start_pfn; |
| unsigned long node_present_pages; /* total number of physical pages */ |
| unsigned long node_spanned_pages; /* total size of physical page |
| range, including holes */ |
| int node_id; |
| wait_queue_head_t kswapd_wait; |
| wait_queue_head_t pfmemalloc_wait; |
| |
| /* workqueues for throttling reclaim for different reasons. */ |
| wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; |
| |
| atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ |
| unsigned long nr_reclaim_start; /* nr pages written while throttled |
| * when throttling started. */ |
| struct task_struct *kswapd; /* Protected by |
| mem_hotplug_begin/end() */ |
| int kswapd_order; |
| enum zone_type kswapd_highest_zoneidx; |
| |
| int kswapd_failures; /* Number of 'reclaimed == 0' runs */ |
| |
| #ifdef CONFIG_COMPACTION |
| int kcompactd_max_order; |
| enum zone_type kcompactd_highest_zoneidx; |
| wait_queue_head_t kcompactd_wait; |
| struct task_struct *kcompactd; |
| bool proactive_compact_trigger; |
| #endif |
| /* |
| * This is a per-node reserve of pages that are not available |
| * to userspace allocations. |
| */ |
| unsigned long totalreserve_pages; |
| |
| #ifdef CONFIG_NUMA |
| /* |
| * node reclaim becomes active if more unmapped pages exist. |
| */ |
| unsigned long min_unmapped_pages; |
| unsigned long min_slab_pages; |
| #endif /* CONFIG_NUMA */ |
| |
| /* Write-intensive fields used by page reclaim */ |
| ZONE_PADDING(_pad1_) |
| |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
| /* |
| * If memory initialisation on large machines is deferred then this |
| * is the first PFN that needs to be initialised. |
| */ |
| unsigned long first_deferred_pfn; |
| #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| struct deferred_split deferred_split_queue; |
| #endif |
| |
| /* Fields commonly accessed by the page reclaim scanner */ |
| |
| /* |
| * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. |
| * |
| * Use mem_cgroup_lruvec() to look up lruvecs. |
| */ |
| struct lruvec __lruvec; |
| |
| unsigned long flags; |
| |
| ZONE_PADDING(_pad2_) |
| |
| /* Per-node vmstats */ |
| struct per_cpu_nodestat __percpu *per_cpu_nodestats; |
| atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; |
| } pg_data_t; |
| |
| #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) |
| #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) |
| #ifdef CONFIG_FLATMEM |
| #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) |
| #else |
| #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) |
| #endif |
| #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) |
| |
| #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) |
| #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) |
| |
| static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) |
| { |
| return pgdat->node_start_pfn + pgdat->node_spanned_pages; |
| } |
| |
| static inline bool pgdat_is_empty(pg_data_t *pgdat) |
| { |
| return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; |
| } |
| |
| #include <linux/memory_hotplug.h> |
| |
| void build_all_zonelists(pg_data_t *pgdat); |
| void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, |
| enum zone_type highest_zoneidx); |
| bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, |
| int highest_zoneidx, unsigned int alloc_flags, |
| long free_pages); |
| bool zone_watermark_ok(struct zone *z, unsigned int order, |
| unsigned long mark, int highest_zoneidx, |
| unsigned int alloc_flags); |
| bool zone_watermark_ok_safe(struct zone *z, unsigned int order, |
| unsigned long mark, int highest_zoneidx); |
| /* |
| * Memory initialization context, use to differentiate memory added by |
| * the platform statically or via memory hotplug interface. |
| */ |
| enum meminit_context { |
| MEMINIT_EARLY, |
| MEMINIT_HOTPLUG, |
| }; |
| |
| extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, |
| unsigned long size); |
| |
| extern void lruvec_init(struct lruvec *lruvec); |
| |
| static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) |
| { |
| #ifdef CONFIG_MEMCG |
| return lruvec->pgdat; |
| #else |
| return container_of(lruvec, struct pglist_data, __lruvec); |
| #endif |
| } |
| |
| #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
| int local_memory_node(int node_id); |
| #else |
| static inline int local_memory_node(int node_id) { return node_id; }; |
| #endif |
| |
| /* |
| * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. |
| */ |
| #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) |
| |
| #ifdef CONFIG_ZONE_DEVICE |
| static inline bool zone_is_zone_device(struct zone *zone) |
| { |
| return zone_idx(zone) == ZONE_DEVICE; |
| } |
| #else |
| static inline bool zone_is_zone_device(struct zone *zone) |
| { |
| return false; |
| } |
| #endif |
| |
| /* |
| * Returns true if a zone has pages managed by the buddy allocator. |
| * All the reclaim decisions have to use this function rather than |
| * populated_zone(). If the whole zone is reserved then we can easily |
| * end up with populated_zone() && !managed_zone(). |
| */ |
| static inline bool managed_zone(struct zone *zone) |
| { |
| return zone_managed_pages(zone); |
| } |
| |
| /* Returns true if a zone has memory */ |
| static inline bool populated_zone(struct zone *zone) |
| { |
| return zone->present_pages; |
| } |
| |
| #ifdef CONFIG_NUMA |
| static inline int zone_to_nid(struct zone *zone) |
| { |
| return zone->node; |
| } |
| |
| static inline void zone_set_nid(struct zone *zone, int nid) |
| { |
| zone->node = nid; |
| } |
| #else |
| static inline int zone_to_nid(struct zone *zone) |
| { |
| return 0; |
| } |
| |
| static inline void zone_set_nid(struct zone *zone, int nid) {} |
| #endif |
| |
| extern int movable_zone; |
| |
| static inline int is_highmem_idx(enum zone_type idx) |
| { |
| #ifdef CONFIG_HIGHMEM |
| return (idx == ZONE_HIGHMEM || |
| (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); |
| #else |
| return 0; |
| #endif |
| } |
| |
| /** |
| * is_highmem - helper function to quickly check if a struct zone is a |
| * highmem zone or not. This is an attempt to keep references |
| * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. |
| * @zone: pointer to struct zone variable |
| * Return: 1 for a highmem zone, 0 otherwise |
| */ |
| static inline int is_highmem(struct zone *zone) |
| { |
| #ifdef CONFIG_HIGHMEM |
| return is_highmem_idx(zone_idx(zone)); |
| #else |
| return 0; |
| #endif |
| } |
| |
| /* These two functions are used to setup the per zone pages min values */ |
| struct ctl_table; |
| |
| int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *, |
| loff_t *); |
| int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *, |
| size_t *, loff_t *); |
| extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; |
| int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *, |
| size_t *, loff_t *); |
| int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int, |
| void *, size_t *, loff_t *); |
| int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, |
| void *, size_t *, loff_t *); |
| int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, |
| void *, size_t *, loff_t *); |
| int numa_zonelist_order_handler(struct ctl_table *, int, |
| void *, size_t *, loff_t *); |
| extern int percpu_pagelist_high_fraction; |
| extern char numa_zonelist_order[]; |
| #define NUMA_ZONELIST_ORDER_LEN 16 |
| |
| #ifndef CONFIG_NUMA |
| |
| extern struct pglist_data contig_page_data; |
| static inline struct pglist_data *NODE_DATA(int nid) |
| { |
| return &contig_page_data; |
| } |
| #define NODE_MEM_MAP(nid) mem_map |
| |
| #else /* CONFIG_NUMA */ |
| |
| #include <asm/mmzone.h> |
| |
| #endif /* !CONFIG_NUMA */ |
| |
| extern struct pglist_data *first_online_pgdat(void); |
| extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); |
| extern struct zone *next_zone(struct zone *zone); |
| |
| /** |
| * for_each_online_pgdat - helper macro to iterate over all online nodes |
| * @pgdat: pointer to a pg_data_t variable |
| */ |
| #define for_each_online_pgdat(pgdat) \ |
| for (pgdat = first_online_pgdat(); \ |
| pgdat; \ |
| pgdat = next_online_pgdat(pgdat)) |
| /** |
| * for_each_zone - helper macro to iterate over all memory zones |
| * @zone: pointer to struct zone variable |
| * |
| * The user only needs to declare the zone variable, for_each_zone |
| * fills it in. |
| */ |
| #define for_each_zone(zone) \ |
| for (zone = (first_online_pgdat())->node_zones; \ |
| zone; \ |
| zone = next_zone(zone)) |
| |
| #define for_each_populated_zone(zone) \ |
| for (zone = (first_online_pgdat())->node_zones; \ |
| zone; \ |
| zone = next_zone(zone)) \ |
| if (!populated_zone(zone)) \ |
| ; /* do nothing */ \ |
| else |
| |
| static inline struct zone *zonelist_zone(struct zoneref *zoneref) |
| { |
| return zoneref->zone; |
| } |
| |
| static inline int zonelist_zone_idx(struct zoneref *zoneref) |
| { |
| return zoneref->zone_idx; |
| } |
| |
| static inline int zonelist_node_idx(struct zoneref *zoneref) |
| { |
| return zone_to_nid(zoneref->zone); |
| } |
| |
| struct zoneref *__next_zones_zonelist(struct zoneref *z, |
| enum zone_type highest_zoneidx, |
| nodemask_t *nodes); |
| |
| /** |
| * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point |
| * @z: The cursor used as a starting point for the search |
| * @highest_zoneidx: The zone index of the highest zone to return |
| * @nodes: An optional nodemask to filter the zonelist with |
| * |
| * This function returns the next zone at or below a given zone index that is |
| * within the allowed nodemask using a cursor as the starting point for the |
| * search. The zoneref returned is a cursor that represents the current zone |
| * being examined. It should be advanced by one before calling |
| * next_zones_zonelist again. |
| * |
| * Return: the next zone at or below highest_zoneidx within the allowed |
| * nodemask using a cursor within a zonelist as a starting point |
| */ |
| static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, |
| enum zone_type highest_zoneidx, |
| nodemask_t *nodes) |
| { |
| if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) |
| return z; |
| return __next_zones_zonelist(z, highest_zoneidx, nodes); |
| } |
| |
| /** |
| * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist |
| * @zonelist: The zonelist to search for a suitable zone |
| * @highest_zoneidx: The zone index of the highest zone to return |
| * @nodes: An optional nodemask to filter the zonelist with |
| * |
| * This function returns the first zone at or below a given zone index that is |
| * within the allowed nodemask. The zoneref returned is a cursor that can be |
| * used to iterate the zonelist with next_zones_zonelist by advancing it by |
| * one before calling. |
| * |
| * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is |
| * never NULL). This may happen either genuinely, or due to concurrent nodemask |
| * update due to cpuset modification. |
| * |
| * Return: Zoneref pointer for the first suitable zone found |
| */ |
| static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, |
| enum zone_type highest_zoneidx, |
| nodemask_t *nodes) |
| { |
| return next_zones_zonelist(zonelist->_zonerefs, |
| highest_zoneidx, nodes); |
| } |
| |
| /** |
| * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask |
| * @zone: The current zone in the iterator |
| * @z: The current pointer within zonelist->_zonerefs being iterated |
| * @zlist: The zonelist being iterated |
| * @highidx: The zone index of the highest zone to return |
| * @nodemask: Nodemask allowed by the allocator |
| * |
| * This iterator iterates though all zones at or below a given zone index and |
| * within a given nodemask |
| */ |
| #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ |
| for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ |
| zone; \ |
| z = next_zones_zonelist(++z, highidx, nodemask), \ |
| zone = zonelist_zone(z)) |
| |
| #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ |
| for (zone = z->zone; \ |
| zone; \ |
| z = next_zones_zonelist(++z, highidx, nodemask), \ |
| zone = zonelist_zone(z)) |
| |
| |
| /** |
| * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index |
| * @zone: The current zone in the iterator |
| * @z: The current pointer within zonelist->zones being iterated |
| * @zlist: The zonelist being iterated |
| * @highidx: The zone index of the highest zone to return |
| * |
| * This iterator iterates though all zones at or below a given zone index. |
| */ |
| #define for_each_zone_zonelist(zone, z, zlist, highidx) \ |
| for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) |
| |
| /* Whether the 'nodes' are all movable nodes */ |
| static inline bool movable_only_nodes(nodemask_t *nodes) |
| { |
| struct zonelist *zonelist; |
| struct zoneref *z; |
| int nid; |
| |
| if (nodes_empty(*nodes)) |
| return false; |
| |
| /* |
| * We can chose arbitrary node from the nodemask to get a |
| * zonelist as they are interlinked. We just need to find |
| * at least one zone that can satisfy kernel allocations. |
| */ |
| nid = first_node(*nodes); |
| zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; |
| z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); |
| return (!z->zone) ? true : false; |
| } |
| |
| |
| #ifdef CONFIG_SPARSEMEM |
| #include <asm/sparsemem.h> |
| #endif |
| |
| #ifdef CONFIG_FLATMEM |
| #define pfn_to_nid(pfn) (0) |
| #endif |
| |
| #ifdef CONFIG_SPARSEMEM |
| |
| /* |
| * PA_SECTION_SHIFT physical address to/from section number |
| * PFN_SECTION_SHIFT pfn to/from section number |
| */ |
| #define PA_SECTION_SHIFT (SECTION_SIZE_BITS) |
| #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) |
| |
| #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) |
| |
| #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) |
| #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) |
| |
| #define SECTION_BLOCKFLAGS_BITS \ |
| ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) |
| |
| #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS |
| #error Allocator MAX_ORDER exceeds SECTION_SIZE |
| #endif |
| |
| static inline unsigned long pfn_to_section_nr(unsigned long pfn) |
| { |
| return pfn >> PFN_SECTION_SHIFT; |
| } |
| static inline unsigned long section_nr_to_pfn(unsigned long sec) |
| { |
| return sec << PFN_SECTION_SHIFT; |
| } |
| |
| #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) |
| #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) |
| |
| #define SUBSECTION_SHIFT 21 |
| #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) |
| |
| #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) |
| #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) |
| #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) |
| |
| #if SUBSECTION_SHIFT > SECTION_SIZE_BITS |
| #error Subsection size exceeds section size |
| #else |
| #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) |
| #endif |
| |
| #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) |
| #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) |
| |
| struct mem_section_usage { |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); |
| #endif |
| /* See declaration of similar field in struct zone */ |
| unsigned long pageblock_flags[0]; |
| }; |
| |
| void subsection_map_init(unsigned long pfn, unsigned long nr_pages); |
| |
| struct page; |
| struct page_ext; |
| struct mem_section { |
| /* |
| * This is, logically, a pointer to an array of struct |
| * pages. However, it is stored with some other magic. |
| * (see sparse.c::sparse_init_one_section()) |
| * |
| * Additionally during early boot we encode node id of |
| * the location of the section here to guide allocation. |
| * (see sparse.c::memory_present()) |
| * |
| * Making it a UL at least makes someone do a cast |
| * before using it wrong. |
| */ |
| unsigned long section_mem_map; |
| |
| struct mem_section_usage *usage; |
| #ifdef CONFIG_PAGE_EXTENSION |
| /* |
| * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use |
| * section. (see page_ext.h about this.) |
| */ |
| struct page_ext *page_ext; |
| unsigned long pad; |
| #endif |
| /* |
| * WARNING: mem_section must be a power-of-2 in size for the |
| * calculation and use of SECTION_ROOT_MASK to make sense. |
| */ |
| }; |
| |
| #ifdef CONFIG_SPARSEMEM_EXTREME |
| #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) |
| #else |
| #define SECTIONS_PER_ROOT 1 |
| #endif |
| |
| #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) |
| #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) |
| #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) |
| |
| #ifdef CONFIG_SPARSEMEM_EXTREME |
| extern struct mem_section **mem_section; |
| #else |
| extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; |
| #endif |
| |
| static inline unsigned long *section_to_usemap(struct mem_section *ms) |
| { |
| return ms->usage->pageblock_flags; |
| } |
| |
| static inline struct mem_section *__nr_to_section(unsigned long nr) |
| { |
| #ifdef CONFIG_SPARSEMEM_EXTREME |
| if (!mem_section) |
| return NULL; |
| #endif |
| if (!mem_section[SECTION_NR_TO_ROOT(nr)]) |
| return NULL; |
| return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; |
| } |
| extern size_t mem_section_usage_size(void); |
| |
| /* |
| * We use the lower bits of the mem_map pointer to store |
| * a little bit of information. The pointer is calculated |
| * as mem_map - section_nr_to_pfn(pnum). The result is |
| * aligned to the minimum alignment of the two values: |
| * 1. All mem_map arrays are page-aligned. |
| * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT |
| * lowest bits. PFN_SECTION_SHIFT is arch-specific |
| * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the |
| * worst combination is powerpc with 256k pages, |
| * which results in PFN_SECTION_SHIFT equal 6. |
| * To sum it up, at least 6 bits are available. |
| */ |
| #define SECTION_MARKED_PRESENT (1UL<<0) |
| #define SECTION_HAS_MEM_MAP (1UL<<1) |
| #define SECTION_IS_ONLINE (1UL<<2) |
| #define SECTION_IS_EARLY (1UL<<3) |
| #define SECTION_TAINT_ZONE_DEVICE (1UL<<4) |
| #define SECTION_MAP_LAST_BIT (1UL<<5) |
| #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) |
| #define SECTION_NID_SHIFT 6 |
| |
| static inline struct page *__section_mem_map_addr(struct mem_section *section) |
| { |
| unsigned long map = section->section_mem_map; |
| map &= SECTION_MAP_MASK; |
| return (struct page *)map; |
| } |
| |
| static inline int present_section(struct mem_section *section) |
| { |
| return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); |
| } |
| |
| static inline int present_section_nr(unsigned long nr) |
| { |
| return present_section(__nr_to_section(nr)); |
| } |
| |
| static inline int valid_section(struct mem_section *section) |
| { |
| return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); |
| } |
| |
| static inline int early_section(struct mem_section *section) |
| { |
| return (section && (section->section_mem_map & SECTION_IS_EARLY)); |
| } |
| |
| static inline int valid_section_nr(unsigned long nr) |
| { |
| return valid_section(__nr_to_section(nr)); |
| } |
| |
| static inline int online_section(struct mem_section *section) |
| { |
| return (section && (section->section_mem_map & SECTION_IS_ONLINE)); |
| } |
| |
| static inline int online_device_section(struct mem_section *section) |
| { |
| unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; |
| |
| return section && ((section->section_mem_map & flags) == flags); |
| } |
| |
| static inline int online_section_nr(unsigned long nr) |
| { |
| return online_section(__nr_to_section(nr)); |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); |
| void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); |
| #endif |
| |
| static inline struct mem_section *__pfn_to_section(unsigned long pfn) |
| { |
| return __nr_to_section(pfn_to_section_nr(pfn)); |
| } |
| |
| extern unsigned long __highest_present_section_nr; |
| |
| static inline int subsection_map_index(unsigned long pfn) |
| { |
| return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; |
| } |
| |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) |
| { |
| int idx = subsection_map_index(pfn); |
| |
| return test_bit(idx, ms->usage->subsection_map); |
| } |
| #else |
| static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) |
| { |
| return 1; |
| } |
| #endif |
| |
| #ifndef CONFIG_HAVE_ARCH_PFN_VALID |
| /** |
| * pfn_valid - check if there is a valid memory map entry for a PFN |
| * @pfn: the page frame number to check |
| * |
| * Check if there is a valid memory map entry aka struct page for the @pfn. |
| * Note, that availability of the memory map entry does not imply that |
| * there is actual usable memory at that @pfn. The struct page may |
| * represent a hole or an unusable page frame. |
| * |
| * Return: 1 for PFNs that have memory map entries and 0 otherwise |
| */ |
| static inline int pfn_valid(unsigned long pfn) |
| { |
| struct mem_section *ms; |
| |
| /* |
| * Ensure the upper PAGE_SHIFT bits are clear in the |
| * pfn. Else it might lead to false positives when |
| * some of the upper bits are set, but the lower bits |
| * match a valid pfn. |
| */ |
| if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) |
| return 0; |
| |
| if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) |
| return 0; |
| ms = __pfn_to_section(pfn); |
| if (!valid_section(ms)) |
| return 0; |
| /* |
| * Traditionally early sections always returned pfn_valid() for |
| * the entire section-sized span. |
| */ |
| return early_section(ms) || pfn_section_valid(ms, pfn); |
| } |
| #endif |
| |
| static inline int pfn_in_present_section(unsigned long pfn) |
| { |
| if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) |
| return 0; |
| return present_section(__pfn_to_section(pfn)); |
| } |
| |
| static inline unsigned long next_present_section_nr(unsigned long section_nr) |
| { |
| while (++section_nr <= __highest_present_section_nr) { |
| if (present_section_nr(section_nr)) |
| return section_nr; |
| } |
| |
| return -1; |
| } |
| |
| /* |
| * These are _only_ used during initialisation, therefore they |
| * can use __initdata ... They could have names to indicate |
| * this restriction. |
| */ |
| #ifdef CONFIG_NUMA |
| #define pfn_to_nid(pfn) \ |
| ({ \ |
| unsigned long __pfn_to_nid_pfn = (pfn); \ |
| page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ |
| }) |
| #else |
| #define pfn_to_nid(pfn) (0) |
| #endif |
| |
| void sparse_init(void); |
| #else |
| #define sparse_init() do {} while (0) |
| #define sparse_index_init(_sec, _nid) do {} while (0) |
| #define pfn_in_present_section pfn_valid |
| #define subsection_map_init(_pfn, _nr_pages) do {} while (0) |
| #endif /* CONFIG_SPARSEMEM */ |
| |
| #endif /* !__GENERATING_BOUNDS.H */ |
| #endif /* !__ASSEMBLY__ */ |
| #endif /* _LINUX_MMZONE_H */ |