| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef __LINUX_PREEMPT_H |
| #define __LINUX_PREEMPT_H |
| |
| /* |
| * include/linux/preempt.h - macros for accessing and manipulating |
| * preempt_count (used for kernel preemption, interrupt count, etc.) |
| */ |
| |
| #include <linux/linkage.h> |
| #include <linux/list.h> |
| |
| /* |
| * We put the hardirq and softirq counter into the preemption |
| * counter. The bitmask has the following meaning: |
| * |
| * - bits 0-7 are the preemption count (max preemption depth: 256) |
| * - bits 8-15 are the softirq count (max # of softirqs: 256) |
| * |
| * The hardirq count could in theory be the same as the number of |
| * interrupts in the system, but we run all interrupt handlers with |
| * interrupts disabled, so we cannot have nesting interrupts. Though |
| * there are a few palaeontologic drivers which reenable interrupts in |
| * the handler, so we need more than one bit here. |
| * |
| * PREEMPT_MASK: 0x000000ff |
| * SOFTIRQ_MASK: 0x0000ff00 |
| * HARDIRQ_MASK: 0x000f0000 |
| * NMI_MASK: 0x00f00000 |
| * PREEMPT_NEED_RESCHED: 0x80000000 |
| */ |
| #define PREEMPT_BITS 8 |
| #define SOFTIRQ_BITS 8 |
| #define HARDIRQ_BITS 4 |
| #define NMI_BITS 4 |
| |
| #define PREEMPT_SHIFT 0 |
| #define SOFTIRQ_SHIFT (PREEMPT_SHIFT + PREEMPT_BITS) |
| #define HARDIRQ_SHIFT (SOFTIRQ_SHIFT + SOFTIRQ_BITS) |
| #define NMI_SHIFT (HARDIRQ_SHIFT + HARDIRQ_BITS) |
| |
| #define __IRQ_MASK(x) ((1UL << (x))-1) |
| |
| #define PREEMPT_MASK (__IRQ_MASK(PREEMPT_BITS) << PREEMPT_SHIFT) |
| #define SOFTIRQ_MASK (__IRQ_MASK(SOFTIRQ_BITS) << SOFTIRQ_SHIFT) |
| #define HARDIRQ_MASK (__IRQ_MASK(HARDIRQ_BITS) << HARDIRQ_SHIFT) |
| #define NMI_MASK (__IRQ_MASK(NMI_BITS) << NMI_SHIFT) |
| |
| #define PREEMPT_OFFSET (1UL << PREEMPT_SHIFT) |
| #define SOFTIRQ_OFFSET (1UL << SOFTIRQ_SHIFT) |
| #define HARDIRQ_OFFSET (1UL << HARDIRQ_SHIFT) |
| #define NMI_OFFSET (1UL << NMI_SHIFT) |
| |
| #define SOFTIRQ_DISABLE_OFFSET (2 * SOFTIRQ_OFFSET) |
| |
| #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) |
| |
| /* |
| * Disable preemption until the scheduler is running -- use an unconditional |
| * value so that it also works on !PREEMPT_COUNT kernels. |
| * |
| * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). |
| */ |
| #define INIT_PREEMPT_COUNT PREEMPT_OFFSET |
| |
| /* |
| * Initial preempt_count value; reflects the preempt_count schedule invariant |
| * which states that during context switches: |
| * |
| * preempt_count() == 2*PREEMPT_DISABLE_OFFSET |
| * |
| * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. |
| * Note: See finish_task_switch(). |
| */ |
| #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) |
| |
| /* preempt_count() and related functions, depends on PREEMPT_NEED_RESCHED */ |
| #include <asm/preempt.h> |
| |
| /** |
| * interrupt_context_level - return interrupt context level |
| * |
| * Returns the current interrupt context level. |
| * 0 - normal context |
| * 1 - softirq context |
| * 2 - hardirq context |
| * 3 - NMI context |
| */ |
| static __always_inline unsigned char interrupt_context_level(void) |
| { |
| unsigned long pc = preempt_count(); |
| unsigned char level = 0; |
| |
| level += !!(pc & (NMI_MASK)); |
| level += !!(pc & (NMI_MASK | HARDIRQ_MASK)); |
| level += !!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)); |
| |
| return level; |
| } |
| |
| #define nmi_count() (preempt_count() & NMI_MASK) |
| #define hardirq_count() (preempt_count() & HARDIRQ_MASK) |
| #ifdef CONFIG_PREEMPT_RT |
| # define softirq_count() (current->softirq_disable_cnt & SOFTIRQ_MASK) |
| #else |
| # define softirq_count() (preempt_count() & SOFTIRQ_MASK) |
| #endif |
| #define irq_count() (nmi_count() | hardirq_count() | softirq_count()) |
| |
| /* |
| * Macros to retrieve the current execution context: |
| * |
| * in_nmi() - We're in NMI context |
| * in_hardirq() - We're in hard IRQ context |
| * in_serving_softirq() - We're in softirq context |
| * in_task() - We're in task context |
| */ |
| #define in_nmi() (nmi_count()) |
| #define in_hardirq() (hardirq_count()) |
| #define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET) |
| #define in_task() (!(in_nmi() | in_hardirq() | in_serving_softirq())) |
| |
| /* |
| * The following macros are deprecated and should not be used in new code: |
| * in_irq() - Obsolete version of in_hardirq() |
| * in_softirq() - We have BH disabled, or are processing softirqs |
| * in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled |
| */ |
| #define in_irq() (hardirq_count()) |
| #define in_softirq() (softirq_count()) |
| #define in_interrupt() (irq_count()) |
| |
| /* |
| * The preempt_count offset after preempt_disable(); |
| */ |
| #if defined(CONFIG_PREEMPT_COUNT) |
| # define PREEMPT_DISABLE_OFFSET PREEMPT_OFFSET |
| #else |
| # define PREEMPT_DISABLE_OFFSET 0 |
| #endif |
| |
| /* |
| * The preempt_count offset after spin_lock() |
| */ |
| #if !defined(CONFIG_PREEMPT_RT) |
| #define PREEMPT_LOCK_OFFSET PREEMPT_DISABLE_OFFSET |
| #else |
| /* Locks on RT do not disable preemption */ |
| #define PREEMPT_LOCK_OFFSET 0 |
| #endif |
| |
| /* |
| * The preempt_count offset needed for things like: |
| * |
| * spin_lock_bh() |
| * |
| * Which need to disable both preemption (CONFIG_PREEMPT_COUNT) and |
| * softirqs, such that unlock sequences of: |
| * |
| * spin_unlock(); |
| * local_bh_enable(); |
| * |
| * Work as expected. |
| */ |
| #define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_LOCK_OFFSET) |
| |
| /* |
| * Are we running in atomic context? WARNING: this macro cannot |
| * always detect atomic context; in particular, it cannot know about |
| * held spinlocks in non-preemptible kernels. Thus it should not be |
| * used in the general case to determine whether sleeping is possible. |
| * Do not use in_atomic() in driver code. |
| */ |
| #define in_atomic() (preempt_count() != 0) |
| |
| /* |
| * Check whether we were atomic before we did preempt_disable(): |
| * (used by the scheduler) |
| */ |
| #define in_atomic_preempt_off() (preempt_count() != PREEMPT_DISABLE_OFFSET) |
| |
| #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) |
| extern void preempt_count_add(int val); |
| extern void preempt_count_sub(int val); |
| #define preempt_count_dec_and_test() \ |
| ({ preempt_count_sub(1); should_resched(0); }) |
| #else |
| #define preempt_count_add(val) __preempt_count_add(val) |
| #define preempt_count_sub(val) __preempt_count_sub(val) |
| #define preempt_count_dec_and_test() __preempt_count_dec_and_test() |
| #endif |
| |
| #define __preempt_count_inc() __preempt_count_add(1) |
| #define __preempt_count_dec() __preempt_count_sub(1) |
| |
| #define preempt_count_inc() preempt_count_add(1) |
| #define preempt_count_dec() preempt_count_sub(1) |
| |
| #ifdef CONFIG_PREEMPT_COUNT |
| |
| #define preempt_disable() \ |
| do { \ |
| preempt_count_inc(); \ |
| barrier(); \ |
| } while (0) |
| |
| #define sched_preempt_enable_no_resched() \ |
| do { \ |
| barrier(); \ |
| preempt_count_dec(); \ |
| } while (0) |
| |
| #define preempt_enable_no_resched() sched_preempt_enable_no_resched() |
| |
| #define preemptible() (preempt_count() == 0 && !irqs_disabled()) |
| |
| #ifdef CONFIG_PREEMPTION |
| #define preempt_enable() \ |
| do { \ |
| barrier(); \ |
| if (unlikely(preempt_count_dec_and_test())) \ |
| __preempt_schedule(); \ |
| } while (0) |
| |
| #define preempt_enable_notrace() \ |
| do { \ |
| barrier(); \ |
| if (unlikely(__preempt_count_dec_and_test())) \ |
| __preempt_schedule_notrace(); \ |
| } while (0) |
| |
| #define preempt_check_resched() \ |
| do { \ |
| if (should_resched(0)) \ |
| __preempt_schedule(); \ |
| } while (0) |
| |
| #else /* !CONFIG_PREEMPTION */ |
| #define preempt_enable() \ |
| do { \ |
| barrier(); \ |
| preempt_count_dec(); \ |
| } while (0) |
| |
| #define preempt_enable_notrace() \ |
| do { \ |
| barrier(); \ |
| __preempt_count_dec(); \ |
| } while (0) |
| |
| #define preempt_check_resched() do { } while (0) |
| #endif /* CONFIG_PREEMPTION */ |
| |
| #define preempt_disable_notrace() \ |
| do { \ |
| __preempt_count_inc(); \ |
| barrier(); \ |
| } while (0) |
| |
| #define preempt_enable_no_resched_notrace() \ |
| do { \ |
| barrier(); \ |
| __preempt_count_dec(); \ |
| } while (0) |
| |
| #else /* !CONFIG_PREEMPT_COUNT */ |
| |
| /* |
| * Even if we don't have any preemption, we need preempt disable/enable |
| * to be barriers, so that we don't have things like get_user/put_user |
| * that can cause faults and scheduling migrate into our preempt-protected |
| * region. |
| */ |
| #define preempt_disable() barrier() |
| #define sched_preempt_enable_no_resched() barrier() |
| #define preempt_enable_no_resched() barrier() |
| #define preempt_enable() barrier() |
| #define preempt_check_resched() do { } while (0) |
| |
| #define preempt_disable_notrace() barrier() |
| #define preempt_enable_no_resched_notrace() barrier() |
| #define preempt_enable_notrace() barrier() |
| #define preemptible() 0 |
| |
| #endif /* CONFIG_PREEMPT_COUNT */ |
| |
| #ifdef MODULE |
| /* |
| * Modules have no business playing preemption tricks. |
| */ |
| #undef sched_preempt_enable_no_resched |
| #undef preempt_enable_no_resched |
| #undef preempt_enable_no_resched_notrace |
| #undef preempt_check_resched |
| #endif |
| |
| #define preempt_set_need_resched() \ |
| do { \ |
| set_preempt_need_resched(); \ |
| } while (0) |
| #define preempt_fold_need_resched() \ |
| do { \ |
| if (tif_need_resched()) \ |
| set_preempt_need_resched(); \ |
| } while (0) |
| |
| #ifdef CONFIG_PREEMPT_NOTIFIERS |
| |
| struct preempt_notifier; |
| |
| /** |
| * preempt_ops - notifiers called when a task is preempted and rescheduled |
| * @sched_in: we're about to be rescheduled: |
| * notifier: struct preempt_notifier for the task being scheduled |
| * cpu: cpu we're scheduled on |
| * @sched_out: we've just been preempted |
| * notifier: struct preempt_notifier for the task being preempted |
| * next: the task that's kicking us out |
| * |
| * Please note that sched_in and out are called under different |
| * contexts. sched_out is called with rq lock held and irq disabled |
| * while sched_in is called without rq lock and irq enabled. This |
| * difference is intentional and depended upon by its users. |
| */ |
| struct preempt_ops { |
| void (*sched_in)(struct preempt_notifier *notifier, int cpu); |
| void (*sched_out)(struct preempt_notifier *notifier, |
| struct task_struct *next); |
| }; |
| |
| /** |
| * preempt_notifier - key for installing preemption notifiers |
| * @link: internal use |
| * @ops: defines the notifier functions to be called |
| * |
| * Usually used in conjunction with container_of(). |
| */ |
| struct preempt_notifier { |
| struct hlist_node link; |
| struct preempt_ops *ops; |
| }; |
| |
| void preempt_notifier_inc(void); |
| void preempt_notifier_dec(void); |
| void preempt_notifier_register(struct preempt_notifier *notifier); |
| void preempt_notifier_unregister(struct preempt_notifier *notifier); |
| |
| static inline void preempt_notifier_init(struct preempt_notifier *notifier, |
| struct preempt_ops *ops) |
| { |
| INIT_HLIST_NODE(¬ifier->link); |
| notifier->ops = ops; |
| } |
| |
| #endif |
| |
| #ifdef CONFIG_SMP |
| |
| /* |
| * Migrate-Disable and why it is undesired. |
| * |
| * When a preempted task becomes elegible to run under the ideal model (IOW it |
| * becomes one of the M highest priority tasks), it might still have to wait |
| * for the preemptee's migrate_disable() section to complete. Thereby suffering |
| * a reduction in bandwidth in the exact duration of the migrate_disable() |
| * section. |
| * |
| * Per this argument, the change from preempt_disable() to migrate_disable() |
| * gets us: |
| * |
| * - a higher priority tasks gains reduced wake-up latency; with preempt_disable() |
| * it would have had to wait for the lower priority task. |
| * |
| * - a lower priority tasks; which under preempt_disable() could've instantly |
| * migrated away when another CPU becomes available, is now constrained |
| * by the ability to push the higher priority task away, which might itself be |
| * in a migrate_disable() section, reducing it's available bandwidth. |
| * |
| * IOW it trades latency / moves the interference term, but it stays in the |
| * system, and as long as it remains unbounded, the system is not fully |
| * deterministic. |
| * |
| * |
| * The reason we have it anyway. |
| * |
| * PREEMPT_RT breaks a number of assumptions traditionally held. By forcing a |
| * number of primitives into becoming preemptible, they would also allow |
| * migration. This turns out to break a bunch of per-cpu usage. To this end, |
| * all these primitives employ migirate_disable() to restore this implicit |
| * assumption. |
| * |
| * This is a 'temporary' work-around at best. The correct solution is getting |
| * rid of the above assumptions and reworking the code to employ explicit |
| * per-cpu locking or short preempt-disable regions. |
| * |
| * The end goal must be to get rid of migrate_disable(), alternatively we need |
| * a schedulability theory that does not depend on abritrary migration. |
| * |
| * |
| * Notes on the implementation. |
| * |
| * The implementation is particularly tricky since existing code patterns |
| * dictate neither migrate_disable() nor migrate_enable() is allowed to block. |
| * This means that it cannot use cpus_read_lock() to serialize against hotplug, |
| * nor can it easily migrate itself into a pending affinity mask change on |
| * migrate_enable(). |
| * |
| * |
| * Note: even non-work-conserving schedulers like semi-partitioned depends on |
| * migration, so migrate_disable() is not only a problem for |
| * work-conserving schedulers. |
| * |
| */ |
| extern void migrate_disable(void); |
| extern void migrate_enable(void); |
| |
| #else |
| |
| static inline void migrate_disable(void) { } |
| static inline void migrate_enable(void) { } |
| |
| #endif /* CONFIG_SMP */ |
| |
| #endif /* __LINUX_PREEMPT_H */ |