blob: 46208ececbb6acd6e723cc9b8331a49d72e27bb2 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* EP93XX PATA controller driver.
*
* Copyright (c) 2012, Metasoft s.c.
* Rafal Prylowski <prylowski@metasoft.pl>
*
* Based on pata_scc.c, pata_icside.c and on earlier version of EP93XX
* PATA driver by Lennert Buytenhek and Alessandro Zummo.
* Read/Write timings, resource management and other improvements
* from driver by Joao Ramos and Bartlomiej Zolnierkiewicz.
* DMA engine support based on spi-ep93xx.c by Mika Westerberg.
*
* Original copyrights:
*
* Support for Cirrus Logic's EP93xx (EP9312, EP9315) CPUs
* PATA host controller driver.
*
* Copyright (c) 2009, Bartlomiej Zolnierkiewicz
*
* Heavily based on the ep93xx-ide.c driver:
*
* Copyright (c) 2009, Joao Ramos <joao.ramos@inov.pt>
* INESC Inovacao (INOV)
*
* EP93XX PATA controller driver.
* Copyright (C) 2007 Lennert Buytenhek <buytenh@wantstofly.org>
*
* An ATA driver for the Cirrus Logic EP93xx PATA controller.
*
* Based on an earlier version by Alessandro Zummo, which is:
* Copyright (C) 2006 Tower Technologies
*/
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blkdev.h>
#include <scsi/scsi_host.h>
#include <linux/ata.h>
#include <linux/libata.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/ktime.h>
#include <linux/platform_data/dma-ep93xx.h>
#include <linux/soc/cirrus/ep93xx.h>
#define DRV_NAME "ep93xx-ide"
#define DRV_VERSION "1.0"
enum {
/* IDE Control Register */
IDECTRL = 0x00,
IDECTRL_CS0N = (1 << 0),
IDECTRL_CS1N = (1 << 1),
IDECTRL_DIORN = (1 << 5),
IDECTRL_DIOWN = (1 << 6),
IDECTRL_INTRQ = (1 << 9),
IDECTRL_IORDY = (1 << 10),
/*
* the device IDE register to be accessed is selected through
* IDECTRL register's specific bitfields 'DA', 'CS1N' and 'CS0N':
* b4 b3 b2 b1 b0
* A2 A1 A0 CS1N CS0N
* the values filled in this structure allows the value to be directly
* ORed to the IDECTRL register, hence giving directly the A[2:0] and
* CS1N/CS0N values for each IDE register.
* The values correspond to the transformation:
* ((real IDE address) << 2) | CS1N value << 1 | CS0N value
*/
IDECTRL_ADDR_CMD = 0 + 2, /* CS1 */
IDECTRL_ADDR_DATA = (ATA_REG_DATA << 2) + 2,
IDECTRL_ADDR_ERROR = (ATA_REG_ERR << 2) + 2,
IDECTRL_ADDR_FEATURE = (ATA_REG_FEATURE << 2) + 2,
IDECTRL_ADDR_NSECT = (ATA_REG_NSECT << 2) + 2,
IDECTRL_ADDR_LBAL = (ATA_REG_LBAL << 2) + 2,
IDECTRL_ADDR_LBAM = (ATA_REG_LBAM << 2) + 2,
IDECTRL_ADDR_LBAH = (ATA_REG_LBAH << 2) + 2,
IDECTRL_ADDR_DEVICE = (ATA_REG_DEVICE << 2) + 2,
IDECTRL_ADDR_STATUS = (ATA_REG_STATUS << 2) + 2,
IDECTRL_ADDR_COMMAND = (ATA_REG_CMD << 2) + 2,
IDECTRL_ADDR_ALTSTATUS = (0x06 << 2) + 1, /* CS0 */
IDECTRL_ADDR_CTL = (0x06 << 2) + 1, /* CS0 */
/* IDE Configuration Register */
IDECFG = 0x04,
IDECFG_IDEEN = (1 << 0),
IDECFG_PIO = (1 << 1),
IDECFG_MDMA = (1 << 2),
IDECFG_UDMA = (1 << 3),
IDECFG_MODE_SHIFT = 4,
IDECFG_MODE_MASK = (0xf << 4),
IDECFG_WST_SHIFT = 8,
IDECFG_WST_MASK = (0x3 << 8),
/* MDMA Operation Register */
IDEMDMAOP = 0x08,
/* UDMA Operation Register */
IDEUDMAOP = 0x0c,
IDEUDMAOP_UEN = (1 << 0),
IDEUDMAOP_RWOP = (1 << 1),
/* PIO/MDMA/UDMA Data Registers */
IDEDATAOUT = 0x10,
IDEDATAIN = 0x14,
IDEMDMADATAOUT = 0x18,
IDEMDMADATAIN = 0x1c,
IDEUDMADATAOUT = 0x20,
IDEUDMADATAIN = 0x24,
/* UDMA Status Register */
IDEUDMASTS = 0x28,
IDEUDMASTS_DMAIDE = (1 << 16),
IDEUDMASTS_INTIDE = (1 << 17),
IDEUDMASTS_SBUSY = (1 << 18),
IDEUDMASTS_NDO = (1 << 24),
IDEUDMASTS_NDI = (1 << 25),
IDEUDMASTS_N4X = (1 << 26),
/* UDMA Debug Status Register */
IDEUDMADEBUG = 0x2c,
};
struct ep93xx_pata_data {
const struct platform_device *pdev;
void __iomem *ide_base;
struct ata_timing t;
bool iordy;
unsigned long udma_in_phys;
unsigned long udma_out_phys;
struct dma_chan *dma_rx_channel;
struct ep93xx_dma_data dma_rx_data;
struct dma_chan *dma_tx_channel;
struct ep93xx_dma_data dma_tx_data;
};
static void ep93xx_pata_clear_regs(void __iomem *base)
{
writel(IDECTRL_CS0N | IDECTRL_CS1N | IDECTRL_DIORN |
IDECTRL_DIOWN, base + IDECTRL);
writel(0, base + IDECFG);
writel(0, base + IDEMDMAOP);
writel(0, base + IDEUDMAOP);
writel(0, base + IDEDATAOUT);
writel(0, base + IDEDATAIN);
writel(0, base + IDEMDMADATAOUT);
writel(0, base + IDEMDMADATAIN);
writel(0, base + IDEUDMADATAOUT);
writel(0, base + IDEUDMADATAIN);
writel(0, base + IDEUDMADEBUG);
}
static bool ep93xx_pata_check_iordy(void __iomem *base)
{
return !!(readl(base + IDECTRL) & IDECTRL_IORDY);
}
/*
* According to EP93xx User's Guide, WST field of IDECFG specifies number
* of HCLK cycles to hold the data bus after a PIO write operation.
* It should be programmed to guarantee following delays:
*
* PIO Mode [ns]
* 0 30
* 1 20
* 2 15
* 3 10
* 4 5
*
* Maximum possible value for HCLK is 100MHz.
*/
static int ep93xx_pata_get_wst(int pio_mode)
{
int val;
if (pio_mode == 0)
val = 3;
else if (pio_mode < 3)
val = 2;
else
val = 1;
return val << IDECFG_WST_SHIFT;
}
static void ep93xx_pata_enable_pio(void __iomem *base, int pio_mode)
{
writel(IDECFG_IDEEN | IDECFG_PIO |
ep93xx_pata_get_wst(pio_mode) |
(pio_mode << IDECFG_MODE_SHIFT), base + IDECFG);
}
/*
* Based on delay loop found in mach-pxa/mp900.c.
*
* Single iteration should take 5 cpu cycles. This is 25ns assuming the
* fastest ep93xx cpu speed (200MHz) and is better optimized for PIO4 timings
* than eg. 20ns.
*/
static void ep93xx_pata_delay(unsigned long count)
{
__asm__ volatile (
"0:\n"
"mov r0, r0\n"
"subs %0, %1, #1\n"
"bge 0b\n"
: "=r" (count)
: "0" (count)
);
}
static unsigned long ep93xx_pata_wait_for_iordy(void __iomem *base,
unsigned long t2)
{
/*
* According to ATA specification, IORDY pin can be first sampled
* tA = 35ns after activation of DIOR-/DIOW-. Maximum IORDY pulse
* width is tB = 1250ns.
*
* We are already t2 delay loop iterations after activation of
* DIOR-/DIOW-, so we set timeout to (1250 + 35) / 25 - t2 additional
* delay loop iterations.
*/
unsigned long start = (1250 + 35) / 25 - t2;
unsigned long counter = start;
while (!ep93xx_pata_check_iordy(base) && counter--)
ep93xx_pata_delay(1);
return start - counter;
}
/* common part at start of ep93xx_pata_read/write() */
static void ep93xx_pata_rw_begin(void __iomem *base, unsigned long addr,
unsigned long t1)
{
writel(IDECTRL_DIOWN | IDECTRL_DIORN | addr, base + IDECTRL);
ep93xx_pata_delay(t1);
}
/* common part at end of ep93xx_pata_read/write() */
static void ep93xx_pata_rw_end(void __iomem *base, unsigned long addr,
bool iordy, unsigned long t0, unsigned long t2,
unsigned long t2i)
{
ep93xx_pata_delay(t2);
/* lengthen t2 if needed */
if (iordy)
t2 += ep93xx_pata_wait_for_iordy(base, t2);
writel(IDECTRL_DIOWN | IDECTRL_DIORN | addr, base + IDECTRL);
if (t0 > t2 && t0 - t2 > t2i)
ep93xx_pata_delay(t0 - t2);
else
ep93xx_pata_delay(t2i);
}
static u16 ep93xx_pata_read(struct ep93xx_pata_data *drv_data,
unsigned long addr,
bool reg)
{
void __iomem *base = drv_data->ide_base;
const struct ata_timing *t = &drv_data->t;
unsigned long t0 = reg ? t->cyc8b : t->cycle;
unsigned long t2 = reg ? t->act8b : t->active;
unsigned long t2i = reg ? t->rec8b : t->recover;
ep93xx_pata_rw_begin(base, addr, t->setup);
writel(IDECTRL_DIOWN | addr, base + IDECTRL);
/*
* The IDEDATAIN register is loaded from the DD pins at the positive
* edge of the DIORN signal. (EP93xx UG p27-14)
*/
ep93xx_pata_rw_end(base, addr, drv_data->iordy, t0, t2, t2i);
return readl(base + IDEDATAIN);
}
/* IDE register read */
static u16 ep93xx_pata_read_reg(struct ep93xx_pata_data *drv_data,
unsigned long addr)
{
return ep93xx_pata_read(drv_data, addr, true);
}
/* PIO data read */
static u16 ep93xx_pata_read_data(struct ep93xx_pata_data *drv_data,
unsigned long addr)
{
return ep93xx_pata_read(drv_data, addr, false);
}
static void ep93xx_pata_write(struct ep93xx_pata_data *drv_data,
u16 value, unsigned long addr,
bool reg)
{
void __iomem *base = drv_data->ide_base;
const struct ata_timing *t = &drv_data->t;
unsigned long t0 = reg ? t->cyc8b : t->cycle;
unsigned long t2 = reg ? t->act8b : t->active;
unsigned long t2i = reg ? t->rec8b : t->recover;
ep93xx_pata_rw_begin(base, addr, t->setup);
/*
* Value from IDEDATAOUT register is driven onto the DD pins when
* DIOWN is low. (EP93xx UG p27-13)
*/
writel(value, base + IDEDATAOUT);
writel(IDECTRL_DIORN | addr, base + IDECTRL);
ep93xx_pata_rw_end(base, addr, drv_data->iordy, t0, t2, t2i);
}
/* IDE register write */
static void ep93xx_pata_write_reg(struct ep93xx_pata_data *drv_data,
u16 value, unsigned long addr)
{
ep93xx_pata_write(drv_data, value, addr, true);
}
/* PIO data write */
static void ep93xx_pata_write_data(struct ep93xx_pata_data *drv_data,
u16 value, unsigned long addr)
{
ep93xx_pata_write(drv_data, value, addr, false);
}
static void ep93xx_pata_set_piomode(struct ata_port *ap,
struct ata_device *adev)
{
struct ep93xx_pata_data *drv_data = ap->host->private_data;
struct ata_device *pair = ata_dev_pair(adev);
/*
* Calculate timings for the delay loop, assuming ep93xx cpu speed
* is 200MHz (maximum possible for ep93xx). If actual cpu speed is
* slower, we will wait a bit longer in each delay.
* Additional division of cpu speed by 5, because single iteration
* of our delay loop takes 5 cpu cycles (25ns).
*/
unsigned long T = 1000000 / (200 / 5);
ata_timing_compute(adev, adev->pio_mode, &drv_data->t, T, 0);
if (pair && pair->pio_mode) {
struct ata_timing t;
ata_timing_compute(pair, pair->pio_mode, &t, T, 0);
ata_timing_merge(&t, &drv_data->t, &drv_data->t,
ATA_TIMING_SETUP | ATA_TIMING_8BIT);
}
drv_data->iordy = ata_pio_need_iordy(adev);
ep93xx_pata_enable_pio(drv_data->ide_base,
adev->pio_mode - XFER_PIO_0);
}
/* Note: original code is ata_sff_check_status */
static u8 ep93xx_pata_check_status(struct ata_port *ap)
{
struct ep93xx_pata_data *drv_data = ap->host->private_data;
return ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_STATUS);
}
static u8 ep93xx_pata_check_altstatus(struct ata_port *ap)
{
struct ep93xx_pata_data *drv_data = ap->host->private_data;
return ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_ALTSTATUS);
}
/* Note: original code is ata_sff_tf_load */
static void ep93xx_pata_tf_load(struct ata_port *ap,
const struct ata_taskfile *tf)
{
struct ep93xx_pata_data *drv_data = ap->host->private_data;
unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
if (tf->ctl != ap->last_ctl) {
ep93xx_pata_write_reg(drv_data, tf->ctl, IDECTRL_ADDR_CTL);
ap->last_ctl = tf->ctl;
ata_wait_idle(ap);
}
if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
ep93xx_pata_write_reg(drv_data, tf->hob_feature,
IDECTRL_ADDR_FEATURE);
ep93xx_pata_write_reg(drv_data, tf->hob_nsect,
IDECTRL_ADDR_NSECT);
ep93xx_pata_write_reg(drv_data, tf->hob_lbal,
IDECTRL_ADDR_LBAL);
ep93xx_pata_write_reg(drv_data, tf->hob_lbam,
IDECTRL_ADDR_LBAM);
ep93xx_pata_write_reg(drv_data, tf->hob_lbah,
IDECTRL_ADDR_LBAH);
}
if (is_addr) {
ep93xx_pata_write_reg(drv_data, tf->feature,
IDECTRL_ADDR_FEATURE);
ep93xx_pata_write_reg(drv_data, tf->nsect, IDECTRL_ADDR_NSECT);
ep93xx_pata_write_reg(drv_data, tf->lbal, IDECTRL_ADDR_LBAL);
ep93xx_pata_write_reg(drv_data, tf->lbam, IDECTRL_ADDR_LBAM);
ep93xx_pata_write_reg(drv_data, tf->lbah, IDECTRL_ADDR_LBAH);
}
if (tf->flags & ATA_TFLAG_DEVICE)
ep93xx_pata_write_reg(drv_data, tf->device,
IDECTRL_ADDR_DEVICE);
ata_wait_idle(ap);
}
/* Note: original code is ata_sff_tf_read */
static void ep93xx_pata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
{
struct ep93xx_pata_data *drv_data = ap->host->private_data;
tf->command = ep93xx_pata_check_status(ap);
tf->feature = ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_FEATURE);
tf->nsect = ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_NSECT);
tf->lbal = ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_LBAL);
tf->lbam = ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_LBAM);
tf->lbah = ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_LBAH);
tf->device = ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_DEVICE);
if (tf->flags & ATA_TFLAG_LBA48) {
ep93xx_pata_write_reg(drv_data, tf->ctl | ATA_HOB,
IDECTRL_ADDR_CTL);
tf->hob_feature = ep93xx_pata_read_reg(drv_data,
IDECTRL_ADDR_FEATURE);
tf->hob_nsect = ep93xx_pata_read_reg(drv_data,
IDECTRL_ADDR_NSECT);
tf->hob_lbal = ep93xx_pata_read_reg(drv_data,
IDECTRL_ADDR_LBAL);
tf->hob_lbam = ep93xx_pata_read_reg(drv_data,
IDECTRL_ADDR_LBAM);
tf->hob_lbah = ep93xx_pata_read_reg(drv_data,
IDECTRL_ADDR_LBAH);
ep93xx_pata_write_reg(drv_data, tf->ctl, IDECTRL_ADDR_CTL);
ap->last_ctl = tf->ctl;
}
}
/* Note: original code is ata_sff_exec_command */
static void ep93xx_pata_exec_command(struct ata_port *ap,
const struct ata_taskfile *tf)
{
struct ep93xx_pata_data *drv_data = ap->host->private_data;
ep93xx_pata_write_reg(drv_data, tf->command,
IDECTRL_ADDR_COMMAND);
ata_sff_pause(ap);
}
/* Note: original code is ata_sff_dev_select */
static void ep93xx_pata_dev_select(struct ata_port *ap, unsigned int device)
{
struct ep93xx_pata_data *drv_data = ap->host->private_data;
u8 tmp = ATA_DEVICE_OBS;
if (device != 0)
tmp |= ATA_DEV1;
ep93xx_pata_write_reg(drv_data, tmp, IDECTRL_ADDR_DEVICE);
ata_sff_pause(ap); /* needed; also flushes, for mmio */
}
/* Note: original code is ata_sff_set_devctl */
static void ep93xx_pata_set_devctl(struct ata_port *ap, u8 ctl)
{
struct ep93xx_pata_data *drv_data = ap->host->private_data;
ep93xx_pata_write_reg(drv_data, ctl, IDECTRL_ADDR_CTL);
}
/* Note: original code is ata_sff_data_xfer */
static unsigned int ep93xx_pata_data_xfer(struct ata_queued_cmd *qc,
unsigned char *buf,
unsigned int buflen, int rw)
{
struct ata_port *ap = qc->dev->link->ap;
struct ep93xx_pata_data *drv_data = ap->host->private_data;
u16 *data = (u16 *)buf;
unsigned int words = buflen >> 1;
/* Transfer multiple of 2 bytes */
while (words--)
if (rw == READ)
*data++ = cpu_to_le16(
ep93xx_pata_read_data(
drv_data, IDECTRL_ADDR_DATA));
else
ep93xx_pata_write_data(drv_data, le16_to_cpu(*data++),
IDECTRL_ADDR_DATA);
/* Transfer trailing 1 byte, if any. */
if (unlikely(buflen & 0x01)) {
unsigned char pad[2] = { };
buf += buflen - 1;
if (rw == READ) {
*pad = cpu_to_le16(
ep93xx_pata_read_data(
drv_data, IDECTRL_ADDR_DATA));
*buf = pad[0];
} else {
pad[0] = *buf;
ep93xx_pata_write_data(drv_data, le16_to_cpu(*pad),
IDECTRL_ADDR_DATA);
}
words++;
}
return words << 1;
}
/* Note: original code is ata_devchk */
static bool ep93xx_pata_device_is_present(struct ata_port *ap,
unsigned int device)
{
struct ep93xx_pata_data *drv_data = ap->host->private_data;
u8 nsect, lbal;
ap->ops->sff_dev_select(ap, device);
ep93xx_pata_write_reg(drv_data, 0x55, IDECTRL_ADDR_NSECT);
ep93xx_pata_write_reg(drv_data, 0xaa, IDECTRL_ADDR_LBAL);
ep93xx_pata_write_reg(drv_data, 0xaa, IDECTRL_ADDR_NSECT);
ep93xx_pata_write_reg(drv_data, 0x55, IDECTRL_ADDR_LBAL);
ep93xx_pata_write_reg(drv_data, 0x55, IDECTRL_ADDR_NSECT);
ep93xx_pata_write_reg(drv_data, 0xaa, IDECTRL_ADDR_LBAL);
nsect = ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_NSECT);
lbal = ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_LBAL);
if ((nsect == 0x55) && (lbal == 0xaa))
return true;
return false;
}
/* Note: original code is ata_sff_wait_after_reset */
static int ep93xx_pata_wait_after_reset(struct ata_link *link,
unsigned int devmask,
unsigned long deadline)
{
struct ata_port *ap = link->ap;
struct ep93xx_pata_data *drv_data = ap->host->private_data;
unsigned int dev0 = devmask & (1 << 0);
unsigned int dev1 = devmask & (1 << 1);
int rc, ret = 0;
ata_msleep(ap, ATA_WAIT_AFTER_RESET);
/* always check readiness of the master device */
rc = ata_sff_wait_ready(link, deadline);
/*
* -ENODEV means the odd clown forgot the D7 pulldown resistor
* and TF status is 0xff, bail out on it too.
*/
if (rc)
return rc;
/*
* if device 1 was found in ata_devchk, wait for register
* access briefly, then wait for BSY to clear.
*/
if (dev1) {
int i;
ap->ops->sff_dev_select(ap, 1);
/*
* Wait for register access. Some ATAPI devices fail
* to set nsect/lbal after reset, so don't waste too
* much time on it. We're gonna wait for !BSY anyway.
*/
for (i = 0; i < 2; i++) {
u8 nsect, lbal;
nsect = ep93xx_pata_read_reg(drv_data,
IDECTRL_ADDR_NSECT);
lbal = ep93xx_pata_read_reg(drv_data,
IDECTRL_ADDR_LBAL);
if (nsect == 1 && lbal == 1)
break;
msleep(50); /* give drive a breather */
}
rc = ata_sff_wait_ready(link, deadline);
if (rc) {
if (rc != -ENODEV)
return rc;
ret = rc;
}
}
/* is all this really necessary? */
ap->ops->sff_dev_select(ap, 0);
if (dev1)
ap->ops->sff_dev_select(ap, 1);
if (dev0)
ap->ops->sff_dev_select(ap, 0);
return ret;
}
/* Note: original code is ata_bus_softreset */
static int ep93xx_pata_bus_softreset(struct ata_port *ap, unsigned int devmask,
unsigned long deadline)
{
struct ep93xx_pata_data *drv_data = ap->host->private_data;
ep93xx_pata_write_reg(drv_data, ap->ctl, IDECTRL_ADDR_CTL);
udelay(20); /* FIXME: flush */
ep93xx_pata_write_reg(drv_data, ap->ctl | ATA_SRST, IDECTRL_ADDR_CTL);
udelay(20); /* FIXME: flush */
ep93xx_pata_write_reg(drv_data, ap->ctl, IDECTRL_ADDR_CTL);
ap->last_ctl = ap->ctl;
return ep93xx_pata_wait_after_reset(&ap->link, devmask, deadline);
}
static void ep93xx_pata_release_dma(struct ep93xx_pata_data *drv_data)
{
if (drv_data->dma_rx_channel) {
dma_release_channel(drv_data->dma_rx_channel);
drv_data->dma_rx_channel = NULL;
}
if (drv_data->dma_tx_channel) {
dma_release_channel(drv_data->dma_tx_channel);
drv_data->dma_tx_channel = NULL;
}
}
static bool ep93xx_pata_dma_filter(struct dma_chan *chan, void *filter_param)
{
if (ep93xx_dma_chan_is_m2p(chan))
return false;
chan->private = filter_param;
return true;
}
static void ep93xx_pata_dma_init(struct ep93xx_pata_data *drv_data)
{
const struct platform_device *pdev = drv_data->pdev;
dma_cap_mask_t mask;
struct dma_slave_config conf;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
/*
* Request two channels for IDE. Another possibility would be
* to request only one channel, and reprogram it's direction at
* start of new transfer.
*/
drv_data->dma_rx_data.port = EP93XX_DMA_IDE;
drv_data->dma_rx_data.direction = DMA_DEV_TO_MEM;
drv_data->dma_rx_data.name = "ep93xx-pata-rx";
drv_data->dma_rx_channel = dma_request_channel(mask,
ep93xx_pata_dma_filter, &drv_data->dma_rx_data);
if (!drv_data->dma_rx_channel)
return;
drv_data->dma_tx_data.port = EP93XX_DMA_IDE;
drv_data->dma_tx_data.direction = DMA_MEM_TO_DEV;
drv_data->dma_tx_data.name = "ep93xx-pata-tx";
drv_data->dma_tx_channel = dma_request_channel(mask,
ep93xx_pata_dma_filter, &drv_data->dma_tx_data);
if (!drv_data->dma_tx_channel) {
dma_release_channel(drv_data->dma_rx_channel);
return;
}
/* Configure receive channel direction and source address */
memset(&conf, 0, sizeof(conf));
conf.direction = DMA_DEV_TO_MEM;
conf.src_addr = drv_data->udma_in_phys;
conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
if (dmaengine_slave_config(drv_data->dma_rx_channel, &conf)) {
dev_err(&pdev->dev, "failed to configure rx dma channel\n");
ep93xx_pata_release_dma(drv_data);
return;
}
/* Configure transmit channel direction and destination address */
memset(&conf, 0, sizeof(conf));
conf.direction = DMA_MEM_TO_DEV;
conf.dst_addr = drv_data->udma_out_phys;
conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
if (dmaengine_slave_config(drv_data->dma_tx_channel, &conf)) {
dev_err(&pdev->dev, "failed to configure tx dma channel\n");
ep93xx_pata_release_dma(drv_data);
}
}
static void ep93xx_pata_dma_start(struct ata_queued_cmd *qc)
{
struct dma_async_tx_descriptor *txd;
struct ep93xx_pata_data *drv_data = qc->ap->host->private_data;
void __iomem *base = drv_data->ide_base;
struct ata_device *adev = qc->dev;
u32 v = qc->dma_dir == DMA_TO_DEVICE ? IDEUDMAOP_RWOP : 0;
struct dma_chan *channel = qc->dma_dir == DMA_TO_DEVICE
? drv_data->dma_tx_channel : drv_data->dma_rx_channel;
txd = dmaengine_prep_slave_sg(channel, qc->sg, qc->n_elem, qc->dma_dir,
DMA_CTRL_ACK);
if (!txd) {
dev_err(qc->ap->dev, "failed to prepare slave for sg dma\n");
return;
}
txd->callback = NULL;
txd->callback_param = NULL;
if (dmaengine_submit(txd) < 0) {
dev_err(qc->ap->dev, "failed to submit dma transfer\n");
return;
}
dma_async_issue_pending(channel);
/*
* When enabling UDMA operation, IDEUDMAOP register needs to be
* programmed in three step sequence:
* 1) set or clear the RWOP bit,
* 2) perform dummy read of the register,
* 3) set the UEN bit.
*/
writel(v, base + IDEUDMAOP);
readl(base + IDEUDMAOP);
writel(v | IDEUDMAOP_UEN, base + IDEUDMAOP);
writel(IDECFG_IDEEN | IDECFG_UDMA |
((adev->xfer_mode - XFER_UDMA_0) << IDECFG_MODE_SHIFT),
base + IDECFG);
}
static void ep93xx_pata_dma_stop(struct ata_queued_cmd *qc)
{
struct ep93xx_pata_data *drv_data = qc->ap->host->private_data;
void __iomem *base = drv_data->ide_base;
/* terminate all dma transfers, if not yet finished */
dmaengine_terminate_all(drv_data->dma_rx_channel);
dmaengine_terminate_all(drv_data->dma_tx_channel);
/*
* To properly stop IDE-DMA, IDEUDMAOP register must to be cleared
* and IDECTRL register must be set to default value.
*/
writel(0, base + IDEUDMAOP);
writel(readl(base + IDECTRL) | IDECTRL_DIOWN | IDECTRL_DIORN |
IDECTRL_CS0N | IDECTRL_CS1N, base + IDECTRL);
ep93xx_pata_enable_pio(drv_data->ide_base,
qc->dev->pio_mode - XFER_PIO_0);
ata_sff_dma_pause(qc->ap);
}
static void ep93xx_pata_dma_setup(struct ata_queued_cmd *qc)
{
qc->ap->ops->sff_exec_command(qc->ap, &qc->tf);
}
static u8 ep93xx_pata_dma_status(struct ata_port *ap)
{
struct ep93xx_pata_data *drv_data = ap->host->private_data;
u32 val = readl(drv_data->ide_base + IDEUDMASTS);
/*
* UDMA Status Register bits:
*
* DMAIDE - DMA request signal from UDMA state machine,
* INTIDE - INT line generated by UDMA because of errors in the
* state machine,
* SBUSY - UDMA state machine busy, not in idle state,
* NDO - error for data-out not completed,
* NDI - error for data-in not completed,
* N4X - error for data transferred not multiplies of four
* 32-bit words.
* (EP93xx UG p27-17)
*/
if (val & IDEUDMASTS_NDO || val & IDEUDMASTS_NDI ||
val & IDEUDMASTS_N4X || val & IDEUDMASTS_INTIDE)
return ATA_DMA_ERR;
/* read INTRQ (INT[3]) pin input state */
if (readl(drv_data->ide_base + IDECTRL) & IDECTRL_INTRQ)
return ATA_DMA_INTR;
if (val & IDEUDMASTS_SBUSY || val & IDEUDMASTS_DMAIDE)
return ATA_DMA_ACTIVE;
return 0;
}
/* Note: original code is ata_sff_softreset */
static int ep93xx_pata_softreset(struct ata_link *al, unsigned int *classes,
unsigned long deadline)
{
struct ata_port *ap = al->ap;
unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
unsigned int devmask = 0;
int rc;
u8 err;
/* determine if device 0/1 are present */
if (ep93xx_pata_device_is_present(ap, 0))
devmask |= (1 << 0);
if (slave_possible && ep93xx_pata_device_is_present(ap, 1))
devmask |= (1 << 1);
/* select device 0 again */
ap->ops->sff_dev_select(al->ap, 0);
/* issue bus reset */
rc = ep93xx_pata_bus_softreset(ap, devmask, deadline);
/* if link is ocuppied, -ENODEV too is an error */
if (rc && (rc != -ENODEV || sata_scr_valid(al))) {
ata_link_err(al, "SRST failed (errno=%d)\n", rc);
return rc;
}
/* determine by signature whether we have ATA or ATAPI devices */
classes[0] = ata_sff_dev_classify(&al->device[0], devmask & (1 << 0),
&err);
if (slave_possible && err != 0x81)
classes[1] = ata_sff_dev_classify(&al->device[1],
devmask & (1 << 1), &err);
return 0;
}
/* Note: original code is ata_sff_drain_fifo */
static void ep93xx_pata_drain_fifo(struct ata_queued_cmd *qc)
{
int count;
struct ata_port *ap;
struct ep93xx_pata_data *drv_data;
/* We only need to flush incoming data when a command was running */
if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
return;
ap = qc->ap;
drv_data = ap->host->private_data;
/* Drain up to 64K of data before we give up this recovery method */
for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
&& count < 65536; count += 2)
ep93xx_pata_read_reg(drv_data, IDECTRL_ADDR_DATA);
/* Can become DEBUG later */
if (count)
ata_port_dbg(ap, "drained %d bytes to clear DRQ.\n", count);
}
static int ep93xx_pata_port_start(struct ata_port *ap)
{
struct ep93xx_pata_data *drv_data = ap->host->private_data;
/*
* Set timings to safe values at startup (= number of ns from ATA
* specification), we'll switch to properly calculated values later.
*/
drv_data->t = *ata_timing_find_mode(XFER_PIO_0);
return 0;
}
static struct scsi_host_template ep93xx_pata_sht = {
ATA_BASE_SHT(DRV_NAME),
/* ep93xx dma implementation limit */
.sg_tablesize = 32,
/* ep93xx dma can't transfer 65536 bytes at once */
.dma_boundary = 0x7fff,
};
static struct ata_port_operations ep93xx_pata_port_ops = {
.inherits = &ata_bmdma_port_ops,
.qc_prep = ata_noop_qc_prep,
.softreset = ep93xx_pata_softreset,
.hardreset = ATA_OP_NULL,
.sff_dev_select = ep93xx_pata_dev_select,
.sff_set_devctl = ep93xx_pata_set_devctl,
.sff_check_status = ep93xx_pata_check_status,
.sff_check_altstatus = ep93xx_pata_check_altstatus,
.sff_tf_load = ep93xx_pata_tf_load,
.sff_tf_read = ep93xx_pata_tf_read,
.sff_exec_command = ep93xx_pata_exec_command,
.sff_data_xfer = ep93xx_pata_data_xfer,
.sff_drain_fifo = ep93xx_pata_drain_fifo,
.sff_irq_clear = ATA_OP_NULL,
.set_piomode = ep93xx_pata_set_piomode,
.bmdma_setup = ep93xx_pata_dma_setup,
.bmdma_start = ep93xx_pata_dma_start,
.bmdma_stop = ep93xx_pata_dma_stop,
.bmdma_status = ep93xx_pata_dma_status,
.cable_detect = ata_cable_unknown,
.port_start = ep93xx_pata_port_start,
};
static int ep93xx_pata_probe(struct platform_device *pdev)
{
struct ep93xx_pata_data *drv_data;
struct ata_host *host;
struct ata_port *ap;
int irq;
struct resource *mem_res;
void __iomem *ide_base;
int err;
err = ep93xx_ide_acquire_gpio(pdev);
if (err)
return err;
/* INT[3] (IRQ_EP93XX_EXT3) line connected as pull down */
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
err = irq;
goto err_rel_gpio;
}
mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
ide_base = devm_ioremap_resource(&pdev->dev, mem_res);
if (IS_ERR(ide_base)) {
err = PTR_ERR(ide_base);
goto err_rel_gpio;
}
drv_data = devm_kzalloc(&pdev->dev, sizeof(*drv_data), GFP_KERNEL);
if (!drv_data) {
err = -ENXIO;
goto err_rel_gpio;
}
drv_data->pdev = pdev;
drv_data->ide_base = ide_base;
drv_data->udma_in_phys = mem_res->start + IDEUDMADATAIN;
drv_data->udma_out_phys = mem_res->start + IDEUDMADATAOUT;
ep93xx_pata_dma_init(drv_data);
/* allocate host */
host = ata_host_alloc(&pdev->dev, 1);
if (!host) {
err = -ENXIO;
goto err_rel_dma;
}
ep93xx_pata_clear_regs(ide_base);
host->private_data = drv_data;
ap = host->ports[0];
ap->dev = &pdev->dev;
ap->ops = &ep93xx_pata_port_ops;
ap->flags |= ATA_FLAG_SLAVE_POSS;
ap->pio_mask = ATA_PIO4;
/*
* Maximum UDMA modes:
* EP931x rev.E0 - UDMA2
* EP931x rev.E1 - UDMA3
* EP931x rev.E2 - UDMA4
*
* MWDMA support was removed from EP931x rev.E2,
* so this driver supports only UDMA modes.
*/
if (drv_data->dma_rx_channel && drv_data->dma_tx_channel) {
int chip_rev = ep93xx_chip_revision();
if (chip_rev == EP93XX_CHIP_REV_E1)
ap->udma_mask = ATA_UDMA3;
else if (chip_rev == EP93XX_CHIP_REV_E2)
ap->udma_mask = ATA_UDMA4;
else
ap->udma_mask = ATA_UDMA2;
}
/* defaults, pio 0 */
ep93xx_pata_enable_pio(ide_base, 0);
dev_info(&pdev->dev, "version " DRV_VERSION "\n");
/* activate host */
err = ata_host_activate(host, irq, ata_bmdma_interrupt, 0,
&ep93xx_pata_sht);
if (err == 0)
return 0;
err_rel_dma:
ep93xx_pata_release_dma(drv_data);
err_rel_gpio:
ep93xx_ide_release_gpio(pdev);
return err;
}
static int ep93xx_pata_remove(struct platform_device *pdev)
{
struct ata_host *host = platform_get_drvdata(pdev);
struct ep93xx_pata_data *drv_data = host->private_data;
ata_host_detach(host);
ep93xx_pata_release_dma(drv_data);
ep93xx_pata_clear_regs(drv_data->ide_base);
ep93xx_ide_release_gpio(pdev);
return 0;
}
static struct platform_driver ep93xx_pata_platform_driver = {
.driver = {
.name = DRV_NAME,
},
.probe = ep93xx_pata_probe,
.remove = ep93xx_pata_remove,
};
module_platform_driver(ep93xx_pata_platform_driver);
MODULE_AUTHOR("Alessandro Zummo, Lennert Buytenhek, Joao Ramos, "
"Bartlomiej Zolnierkiewicz, Rafal Prylowski");
MODULE_DESCRIPTION("low-level driver for cirrus ep93xx IDE controller");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
MODULE_ALIAS("platform:pata_ep93xx");