blob: d2656581a60853ae21f519afc967e7359fa33869 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
//
// regmap based irq_chip
//
// Copyright 2011 Wolfson Microelectronics plc
//
// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
#include <linux/device.h>
#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include "internal.h"
struct regmap_irq_chip_data {
struct mutex lock;
struct irq_chip irq_chip;
struct regmap *map;
const struct regmap_irq_chip *chip;
int irq_base;
struct irq_domain *domain;
int irq;
int wake_count;
void *status_reg_buf;
unsigned int *main_status_buf;
unsigned int *status_buf;
unsigned int *mask_buf;
unsigned int *mask_buf_def;
unsigned int *wake_buf;
unsigned int *type_buf;
unsigned int *type_buf_def;
unsigned int **virt_buf;
unsigned int irq_reg_stride;
unsigned int type_reg_stride;
bool clear_status:1;
};
static int sub_irq_reg(struct regmap_irq_chip_data *data,
unsigned int base_reg, int i)
{
const struct regmap_irq_chip *chip = data->chip;
struct regmap *map = data->map;
struct regmap_irq_sub_irq_map *subreg;
unsigned int offset;
int reg = 0;
if (!chip->sub_reg_offsets || !chip->not_fixed_stride) {
/* Assume linear mapping */
reg = base_reg + (i * map->reg_stride * data->irq_reg_stride);
} else {
subreg = &chip->sub_reg_offsets[i];
offset = subreg->offset[0];
reg = base_reg + offset;
}
return reg;
}
static inline const
struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
int irq)
{
return &data->chip->irqs[irq];
}
static void regmap_irq_lock(struct irq_data *data)
{
struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
mutex_lock(&d->lock);
}
static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
unsigned int reg, unsigned int mask,
unsigned int val)
{
if (d->chip->mask_writeonly)
return regmap_write_bits(d->map, reg, mask, val);
else
return regmap_update_bits(d->map, reg, mask, val);
}
static void regmap_irq_sync_unlock(struct irq_data *data)
{
struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
struct regmap *map = d->map;
int i, j, ret;
u32 reg;
u32 unmask_offset;
u32 val;
if (d->chip->runtime_pm) {
ret = pm_runtime_get_sync(map->dev);
if (ret < 0)
dev_err(map->dev, "IRQ sync failed to resume: %d\n",
ret);
}
if (d->clear_status) {
for (i = 0; i < d->chip->num_regs; i++) {
reg = sub_irq_reg(d, d->chip->status_base, i);
ret = regmap_read(map, reg, &val);
if (ret)
dev_err(d->map->dev,
"Failed to clear the interrupt status bits\n");
}
d->clear_status = false;
}
/*
* If there's been a change in the mask write it back to the
* hardware. We rely on the use of the regmap core cache to
* suppress pointless writes.
*/
for (i = 0; i < d->chip->num_regs; i++) {
if (!d->chip->mask_base)
continue;
reg = sub_irq_reg(d, d->chip->mask_base, i);
if (d->chip->mask_invert) {
ret = regmap_irq_update_bits(d, reg,
d->mask_buf_def[i], ~d->mask_buf[i]);
} else if (d->chip->unmask_base) {
/* set mask with mask_base register */
ret = regmap_irq_update_bits(d, reg,
d->mask_buf_def[i], ~d->mask_buf[i]);
if (ret < 0)
dev_err(d->map->dev,
"Failed to sync unmasks in %x\n",
reg);
unmask_offset = d->chip->unmask_base -
d->chip->mask_base;
/* clear mask with unmask_base register */
ret = regmap_irq_update_bits(d,
reg + unmask_offset,
d->mask_buf_def[i],
d->mask_buf[i]);
} else {
ret = regmap_irq_update_bits(d, reg,
d->mask_buf_def[i], d->mask_buf[i]);
}
if (ret != 0)
dev_err(d->map->dev, "Failed to sync masks in %x\n",
reg);
reg = sub_irq_reg(d, d->chip->wake_base, i);
if (d->wake_buf) {
if (d->chip->wake_invert)
ret = regmap_irq_update_bits(d, reg,
d->mask_buf_def[i],
~d->wake_buf[i]);
else
ret = regmap_irq_update_bits(d, reg,
d->mask_buf_def[i],
d->wake_buf[i]);
if (ret != 0)
dev_err(d->map->dev,
"Failed to sync wakes in %x: %d\n",
reg, ret);
}
if (!d->chip->init_ack_masked)
continue;
/*
* Ack all the masked interrupts unconditionally,
* OR if there is masked interrupt which hasn't been Acked,
* it'll be ignored in irq handler, then may introduce irq storm
*/
if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
reg = sub_irq_reg(d, d->chip->ack_base, i);
/* some chips ack by write 0 */
if (d->chip->ack_invert)
ret = regmap_write(map, reg, ~d->mask_buf[i]);
else
ret = regmap_write(map, reg, d->mask_buf[i]);
if (d->chip->clear_ack) {
if (d->chip->ack_invert && !ret)
ret = regmap_write(map, reg,
d->mask_buf[i]);
else if (!ret)
ret = regmap_write(map, reg,
~d->mask_buf[i]);
}
if (ret != 0)
dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
reg, ret);
}
}
/* Don't update the type bits if we're using mask bits for irq type. */
if (!d->chip->type_in_mask) {
for (i = 0; i < d->chip->num_type_reg; i++) {
if (!d->type_buf_def[i])
continue;
reg = sub_irq_reg(d, d->chip->type_base, i);
if (d->chip->type_invert)
ret = regmap_irq_update_bits(d, reg,
d->type_buf_def[i], ~d->type_buf[i]);
else
ret = regmap_irq_update_bits(d, reg,
d->type_buf_def[i], d->type_buf[i]);
if (ret != 0)
dev_err(d->map->dev, "Failed to sync type in %x\n",
reg);
}
}
if (d->chip->num_virt_regs) {
for (i = 0; i < d->chip->num_virt_regs; i++) {
for (j = 0; j < d->chip->num_regs; j++) {
reg = sub_irq_reg(d, d->chip->virt_reg_base[i],
j);
ret = regmap_write(map, reg, d->virt_buf[i][j]);
if (ret != 0)
dev_err(d->map->dev,
"Failed to write virt 0x%x: %d\n",
reg, ret);
}
}
}
if (d->chip->runtime_pm)
pm_runtime_put(map->dev);
/* If we've changed our wakeup count propagate it to the parent */
if (d->wake_count < 0)
for (i = d->wake_count; i < 0; i++)
irq_set_irq_wake(d->irq, 0);
else if (d->wake_count > 0)
for (i = 0; i < d->wake_count; i++)
irq_set_irq_wake(d->irq, 1);
d->wake_count = 0;
mutex_unlock(&d->lock);
}
static void regmap_irq_enable(struct irq_data *data)
{
struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
struct regmap *map = d->map;
const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
unsigned int mask, type;
type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
/*
* The type_in_mask flag means that the underlying hardware uses
* separate mask bits for rising and falling edge interrupts, but
* we want to make them into a single virtual interrupt with
* configurable edge.
*
* If the interrupt we're enabling defines the falling or rising
* masks then instead of using the regular mask bits for this
* interrupt, use the value previously written to the type buffer
* at the corresponding offset in regmap_irq_set_type().
*/
if (d->chip->type_in_mask && type)
mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
else
mask = irq_data->mask;
if (d->chip->clear_on_unmask)
d->clear_status = true;
d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
}
static void regmap_irq_disable(struct irq_data *data)
{
struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
struct regmap *map = d->map;
const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
}
static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
{
struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
struct regmap *map = d->map;
const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
int reg;
const struct regmap_irq_type *t = &irq_data->type;
if ((t->types_supported & type) != type)
return 0;
reg = t->type_reg_offset / map->reg_stride;
if (t->type_reg_mask)
d->type_buf[reg] &= ~t->type_reg_mask;
else
d->type_buf[reg] &= ~(t->type_falling_val |
t->type_rising_val |
t->type_level_low_val |
t->type_level_high_val);
switch (type) {
case IRQ_TYPE_EDGE_FALLING:
d->type_buf[reg] |= t->type_falling_val;
break;
case IRQ_TYPE_EDGE_RISING:
d->type_buf[reg] |= t->type_rising_val;
break;
case IRQ_TYPE_EDGE_BOTH:
d->type_buf[reg] |= (t->type_falling_val |
t->type_rising_val);
break;
case IRQ_TYPE_LEVEL_HIGH:
d->type_buf[reg] |= t->type_level_high_val;
break;
case IRQ_TYPE_LEVEL_LOW:
d->type_buf[reg] |= t->type_level_low_val;
break;
default:
return -EINVAL;
}
if (d->chip->set_type_virt)
return d->chip->set_type_virt(d->virt_buf, type, data->hwirq,
reg);
return 0;
}
static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
{
struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
struct regmap *map = d->map;
const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
if (on) {
if (d->wake_buf)
d->wake_buf[irq_data->reg_offset / map->reg_stride]
&= ~irq_data->mask;
d->wake_count++;
} else {
if (d->wake_buf)
d->wake_buf[irq_data->reg_offset / map->reg_stride]
|= irq_data->mask;
d->wake_count--;
}
return 0;
}
static const struct irq_chip regmap_irq_chip = {
.irq_bus_lock = regmap_irq_lock,
.irq_bus_sync_unlock = regmap_irq_sync_unlock,
.irq_disable = regmap_irq_disable,
.irq_enable = regmap_irq_enable,
.irq_set_type = regmap_irq_set_type,
.irq_set_wake = regmap_irq_set_wake,
};
static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
unsigned int b)
{
const struct regmap_irq_chip *chip = data->chip;
struct regmap *map = data->map;
struct regmap_irq_sub_irq_map *subreg;
int i, ret = 0;
if (!chip->sub_reg_offsets) {
/* Assume linear mapping */
ret = regmap_read(map, chip->status_base +
(b * map->reg_stride * data->irq_reg_stride),
&data->status_buf[b]);
} else {
subreg = &chip->sub_reg_offsets[b];
for (i = 0; i < subreg->num_regs; i++) {
unsigned int offset = subreg->offset[i];
if (chip->not_fixed_stride)
ret = regmap_read(map,
chip->status_base + offset,
&data->status_buf[b]);
else
ret = regmap_read(map,
chip->status_base + offset,
&data->status_buf[offset]);
if (ret)
break;
}
}
return ret;
}
static irqreturn_t regmap_irq_thread(int irq, void *d)
{
struct regmap_irq_chip_data *data = d;
const struct regmap_irq_chip *chip = data->chip;
struct regmap *map = data->map;
int ret, i;
bool handled = false;
u32 reg;
if (chip->handle_pre_irq)
chip->handle_pre_irq(chip->irq_drv_data);
if (chip->runtime_pm) {
ret = pm_runtime_get_sync(map->dev);
if (ret < 0) {
dev_err(map->dev, "IRQ thread failed to resume: %d\n",
ret);
goto exit;
}
}
/*
* Read only registers with active IRQs if the chip has 'main status
* register'. Else read in the statuses, using a single bulk read if
* possible in order to reduce the I/O overheads.
*/
if (chip->num_main_regs) {
unsigned int max_main_bits;
unsigned long size;
size = chip->num_regs * sizeof(unsigned int);
max_main_bits = (chip->num_main_status_bits) ?
chip->num_main_status_bits : chip->num_regs;
/* Clear the status buf as we don't read all status regs */
memset(data->status_buf, 0, size);
/* We could support bulk read for main status registers
* but I don't expect to see devices with really many main
* status registers so let's only support single reads for the
* sake of simplicity. and add bulk reads only if needed
*/
for (i = 0; i < chip->num_main_regs; i++) {
ret = regmap_read(map, chip->main_status +
(i * map->reg_stride
* data->irq_reg_stride),
&data->main_status_buf[i]);
if (ret) {
dev_err(map->dev,
"Failed to read IRQ status %d\n",
ret);
goto exit;
}
}
/* Read sub registers with active IRQs */
for (i = 0; i < chip->num_main_regs; i++) {
unsigned int b;
const unsigned long mreg = data->main_status_buf[i];
for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
if (i * map->format.val_bytes * 8 + b >
max_main_bits)
break;
ret = read_sub_irq_data(data, b);
if (ret != 0) {
dev_err(map->dev,
"Failed to read IRQ status %d\n",
ret);
goto exit;
}
}
}
} else if (!map->use_single_read && map->reg_stride == 1 &&
data->irq_reg_stride == 1) {
u8 *buf8 = data->status_reg_buf;
u16 *buf16 = data->status_reg_buf;
u32 *buf32 = data->status_reg_buf;
BUG_ON(!data->status_reg_buf);
ret = regmap_bulk_read(map, chip->status_base,
data->status_reg_buf,
chip->num_regs);
if (ret != 0) {
dev_err(map->dev, "Failed to read IRQ status: %d\n",
ret);
goto exit;
}
for (i = 0; i < data->chip->num_regs; i++) {
switch (map->format.val_bytes) {
case 1:
data->status_buf[i] = buf8[i];
break;
case 2:
data->status_buf[i] = buf16[i];
break;
case 4:
data->status_buf[i] = buf32[i];
break;
default:
BUG();
goto exit;
}
}
} else {
for (i = 0; i < data->chip->num_regs; i++) {
unsigned int reg = sub_irq_reg(data,
data->chip->status_base, i);
ret = regmap_read(map, reg, &data->status_buf[i]);
if (ret != 0) {
dev_err(map->dev,
"Failed to read IRQ status: %d\n",
ret);
goto exit;
}
}
}
if (chip->status_invert)
for (i = 0; i < data->chip->num_regs; i++)
data->status_buf[i] = ~data->status_buf[i];
/*
* Ignore masked IRQs and ack if we need to; we ack early so
* there is no race between handling and acknowleding the
* interrupt. We assume that typically few of the interrupts
* will fire simultaneously so don't worry about overhead from
* doing a write per register.
*/
for (i = 0; i < data->chip->num_regs; i++) {
data->status_buf[i] &= ~data->mask_buf[i];
if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
reg = sub_irq_reg(data, data->chip->ack_base, i);
if (chip->ack_invert)
ret = regmap_write(map, reg,
~data->status_buf[i]);
else
ret = regmap_write(map, reg,
data->status_buf[i]);
if (chip->clear_ack) {
if (chip->ack_invert && !ret)
ret = regmap_write(map, reg,
data->status_buf[i]);
else if (!ret)
ret = regmap_write(map, reg,
~data->status_buf[i]);
}
if (ret != 0)
dev_err(map->dev, "Failed to ack 0x%x: %d\n",
reg, ret);
}
}
for (i = 0; i < chip->num_irqs; i++) {
if (data->status_buf[chip->irqs[i].reg_offset /
map->reg_stride] & chip->irqs[i].mask) {
handle_nested_irq(irq_find_mapping(data->domain, i));
handled = true;
}
}
exit:
if (chip->runtime_pm)
pm_runtime_put(map->dev);
if (chip->handle_post_irq)
chip->handle_post_irq(chip->irq_drv_data);
if (handled)
return IRQ_HANDLED;
else
return IRQ_NONE;
}
static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
irq_hw_number_t hw)
{
struct regmap_irq_chip_data *data = h->host_data;
irq_set_chip_data(virq, data);
irq_set_chip(virq, &data->irq_chip);
irq_set_nested_thread(virq, 1);
irq_set_parent(virq, data->irq);
irq_set_noprobe(virq);
return 0;
}
static const struct irq_domain_ops regmap_domain_ops = {
.map = regmap_irq_map,
.xlate = irq_domain_xlate_onetwocell,
};
/**
* regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
*
* @fwnode: The firmware node where the IRQ domain should be added to.
* @map: The regmap for the device.
* @irq: The IRQ the device uses to signal interrupts.
* @irq_flags: The IRQF_ flags to use for the primary interrupt.
* @irq_base: Allocate at specific IRQ number if irq_base > 0.
* @chip: Configuration for the interrupt controller.
* @data: Runtime data structure for the controller, allocated on success.
*
* Returns 0 on success or an errno on failure.
*
* In order for this to be efficient the chip really should use a
* register cache. The chip driver is responsible for restoring the
* register values used by the IRQ controller over suspend and resume.
*/
int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
struct regmap *map, int irq,
int irq_flags, int irq_base,
const struct regmap_irq_chip *chip,
struct regmap_irq_chip_data **data)
{
struct regmap_irq_chip_data *d;
int i;
int ret = -ENOMEM;
int num_type_reg;
u32 reg;
u32 unmask_offset;
if (chip->num_regs <= 0)
return -EINVAL;
if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
return -EINVAL;
for (i = 0; i < chip->num_irqs; i++) {
if (chip->irqs[i].reg_offset % map->reg_stride)
return -EINVAL;
if (chip->irqs[i].reg_offset / map->reg_stride >=
chip->num_regs)
return -EINVAL;
}
if (chip->not_fixed_stride) {
for (i = 0; i < chip->num_regs; i++)
if (chip->sub_reg_offsets[i].num_regs != 1)
return -EINVAL;
}
if (irq_base) {
irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
if (irq_base < 0) {
dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
irq_base);
return irq_base;
}
}
d = kzalloc(sizeof(*d), GFP_KERNEL);
if (!d)
return -ENOMEM;
if (chip->num_main_regs) {
d->main_status_buf = kcalloc(chip->num_main_regs,
sizeof(unsigned int),
GFP_KERNEL);
if (!d->main_status_buf)
goto err_alloc;
}
d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
GFP_KERNEL);
if (!d->status_buf)
goto err_alloc;
d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
GFP_KERNEL);
if (!d->mask_buf)
goto err_alloc;
d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
GFP_KERNEL);
if (!d->mask_buf_def)
goto err_alloc;
if (chip->wake_base) {
d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
GFP_KERNEL);
if (!d->wake_buf)
goto err_alloc;
}
num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
if (num_type_reg) {
d->type_buf_def = kcalloc(num_type_reg,
sizeof(unsigned int), GFP_KERNEL);
if (!d->type_buf_def)
goto err_alloc;
d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
GFP_KERNEL);
if (!d->type_buf)
goto err_alloc;
}
if (chip->num_virt_regs) {
/*
* Create virt_buf[chip->num_extra_config_regs][chip->num_regs]
*/
d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf),
GFP_KERNEL);
if (!d->virt_buf)
goto err_alloc;
for (i = 0; i < chip->num_virt_regs; i++) {
d->virt_buf[i] = kcalloc(chip->num_regs,
sizeof(unsigned int),
GFP_KERNEL);
if (!d->virt_buf[i])
goto err_alloc;
}
}
d->irq_chip = regmap_irq_chip;
d->irq_chip.name = chip->name;
d->irq = irq;
d->map = map;
d->chip = chip;
d->irq_base = irq_base;
if (chip->irq_reg_stride)
d->irq_reg_stride = chip->irq_reg_stride;
else
d->irq_reg_stride = 1;
if (chip->type_reg_stride)
d->type_reg_stride = chip->type_reg_stride;
else
d->type_reg_stride = 1;
if (!map->use_single_read && map->reg_stride == 1 &&
d->irq_reg_stride == 1) {
d->status_reg_buf = kmalloc_array(chip->num_regs,
map->format.val_bytes,
GFP_KERNEL);
if (!d->status_reg_buf)
goto err_alloc;
}
mutex_init(&d->lock);
for (i = 0; i < chip->num_irqs; i++)
d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
|= chip->irqs[i].mask;
/* Mask all the interrupts by default */
for (i = 0; i < chip->num_regs; i++) {
d->mask_buf[i] = d->mask_buf_def[i];
if (!chip->mask_base)
continue;
reg = sub_irq_reg(d, d->chip->mask_base, i);
if (chip->mask_invert)
ret = regmap_irq_update_bits(d, reg,
d->mask_buf[i], ~d->mask_buf[i]);
else if (d->chip->unmask_base) {
unmask_offset = d->chip->unmask_base -
d->chip->mask_base;
ret = regmap_irq_update_bits(d,
reg + unmask_offset,
d->mask_buf[i],
d->mask_buf[i]);
} else
ret = regmap_irq_update_bits(d, reg,
d->mask_buf[i], d->mask_buf[i]);
if (ret != 0) {
dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
reg, ret);
goto err_alloc;
}
if (!chip->init_ack_masked)
continue;
/* Ack masked but set interrupts */
reg = sub_irq_reg(d, d->chip->status_base, i);
ret = regmap_read(map, reg, &d->status_buf[i]);
if (ret != 0) {
dev_err(map->dev, "Failed to read IRQ status: %d\n",
ret);
goto err_alloc;
}
if (chip->status_invert)
d->status_buf[i] = ~d->status_buf[i];
if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
reg = sub_irq_reg(d, d->chip->ack_base, i);
if (chip->ack_invert)
ret = regmap_write(map, reg,
~(d->status_buf[i] & d->mask_buf[i]));
else
ret = regmap_write(map, reg,
d->status_buf[i] & d->mask_buf[i]);
if (chip->clear_ack) {
if (chip->ack_invert && !ret)
ret = regmap_write(map, reg,
(d->status_buf[i] &
d->mask_buf[i]));
else if (!ret)
ret = regmap_write(map, reg,
~(d->status_buf[i] &
d->mask_buf[i]));
}
if (ret != 0) {
dev_err(map->dev, "Failed to ack 0x%x: %d\n",
reg, ret);
goto err_alloc;
}
}
}
/* Wake is disabled by default */
if (d->wake_buf) {
for (i = 0; i < chip->num_regs; i++) {
d->wake_buf[i] = d->mask_buf_def[i];
reg = sub_irq_reg(d, d->chip->wake_base, i);
if (chip->wake_invert)
ret = regmap_irq_update_bits(d, reg,
d->mask_buf_def[i],
0);
else
ret = regmap_irq_update_bits(d, reg,
d->mask_buf_def[i],
d->wake_buf[i]);
if (ret != 0) {
dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
reg, ret);
goto err_alloc;
}
}
}
if (chip->num_type_reg && !chip->type_in_mask) {
for (i = 0; i < chip->num_type_reg; ++i) {
reg = sub_irq_reg(d, d->chip->type_base, i);
ret = regmap_read(map, reg, &d->type_buf_def[i]);
if (d->chip->type_invert)
d->type_buf_def[i] = ~d->type_buf_def[i];
if (ret) {
dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
reg, ret);
goto err_alloc;
}
}
}
if (irq_base)
d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
irq_base, 0,
&regmap_domain_ops, d);
else
d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
&regmap_domain_ops, d);
if (!d->domain) {
dev_err(map->dev, "Failed to create IRQ domain\n");
ret = -ENOMEM;
goto err_alloc;
}
ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
irq_flags | IRQF_ONESHOT,
chip->name, d);
if (ret != 0) {
dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
irq, chip->name, ret);
goto err_domain;
}
*data = d;
return 0;
err_domain:
/* Should really dispose of the domain but... */
err_alloc:
kfree(d->type_buf);
kfree(d->type_buf_def);
kfree(d->wake_buf);
kfree(d->mask_buf_def);
kfree(d->mask_buf);
kfree(d->status_buf);
kfree(d->status_reg_buf);
if (d->virt_buf) {
for (i = 0; i < chip->num_virt_regs; i++)
kfree(d->virt_buf[i]);
kfree(d->virt_buf);
}
kfree(d);
return ret;
}
EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
/**
* regmap_add_irq_chip() - Use standard regmap IRQ controller handling
*
* @map: The regmap for the device.
* @irq: The IRQ the device uses to signal interrupts.
* @irq_flags: The IRQF_ flags to use for the primary interrupt.
* @irq_base: Allocate at specific IRQ number if irq_base > 0.
* @chip: Configuration for the interrupt controller.
* @data: Runtime data structure for the controller, allocated on success.
*
* Returns 0 on success or an errno on failure.
*
* This is the same as regmap_add_irq_chip_fwnode, except that the firmware
* node of the regmap is used.
*/
int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
int irq_base, const struct regmap_irq_chip *chip,
struct regmap_irq_chip_data **data)
{
return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
irq_flags, irq_base, chip, data);
}
EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
/**
* regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
*
* @irq: Primary IRQ for the device
* @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
*
* This function also disposes of all mapped IRQs on the chip.
*/
void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
{
unsigned int virq;
int hwirq;
if (!d)
return;
free_irq(irq, d);
/* Dispose all virtual irq from irq domain before removing it */
for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
/* Ignore hwirq if holes in the IRQ list */
if (!d->chip->irqs[hwirq].mask)
continue;
/*
* Find the virtual irq of hwirq on chip and if it is
* there then dispose it
*/
virq = irq_find_mapping(d->domain, hwirq);
if (virq)
irq_dispose_mapping(virq);
}
irq_domain_remove(d->domain);
kfree(d->type_buf);
kfree(d->type_buf_def);
kfree(d->wake_buf);
kfree(d->mask_buf_def);
kfree(d->mask_buf);
kfree(d->status_reg_buf);
kfree(d->status_buf);
kfree(d);
}
EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
static void devm_regmap_irq_chip_release(struct device *dev, void *res)
{
struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
regmap_del_irq_chip(d->irq, d);
}
static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
{
struct regmap_irq_chip_data **r = res;
if (!r || !*r) {
WARN_ON(!r || !*r);
return 0;
}
return *r == data;
}
/**
* devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
*
* @dev: The device pointer on which irq_chip belongs to.
* @fwnode: The firmware node where the IRQ domain should be added to.
* @map: The regmap for the device.
* @irq: The IRQ the device uses to signal interrupts
* @irq_flags: The IRQF_ flags to use for the primary interrupt.
* @irq_base: Allocate at specific IRQ number if irq_base > 0.
* @chip: Configuration for the interrupt controller.
* @data: Runtime data structure for the controller, allocated on success
*
* Returns 0 on success or an errno on failure.
*
* The &regmap_irq_chip_data will be automatically released when the device is
* unbound.
*/
int devm_regmap_add_irq_chip_fwnode(struct device *dev,
struct fwnode_handle *fwnode,
struct regmap *map, int irq,
int irq_flags, int irq_base,
const struct regmap_irq_chip *chip,
struct regmap_irq_chip_data **data)
{
struct regmap_irq_chip_data **ptr, *d;
int ret;
ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
GFP_KERNEL);
if (!ptr)
return -ENOMEM;
ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
chip, &d);
if (ret < 0) {
devres_free(ptr);
return ret;
}
*ptr = d;
devres_add(dev, ptr);
*data = d;
return 0;
}
EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
/**
* devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
*
* @dev: The device pointer on which irq_chip belongs to.
* @map: The regmap for the device.
* @irq: The IRQ the device uses to signal interrupts
* @irq_flags: The IRQF_ flags to use for the primary interrupt.
* @irq_base: Allocate at specific IRQ number if irq_base > 0.
* @chip: Configuration for the interrupt controller.
* @data: Runtime data structure for the controller, allocated on success
*
* Returns 0 on success or an errno on failure.
*
* The &regmap_irq_chip_data will be automatically released when the device is
* unbound.
*/
int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
int irq_flags, int irq_base,
const struct regmap_irq_chip *chip,
struct regmap_irq_chip_data **data)
{
return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
irq, irq_flags, irq_base, chip,
data);
}
EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
/**
* devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
*
* @dev: Device for which which resource was allocated.
* @irq: Primary IRQ for the device.
* @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
*
* A resource managed version of regmap_del_irq_chip().
*/
void devm_regmap_del_irq_chip(struct device *dev, int irq,
struct regmap_irq_chip_data *data)
{
int rc;
WARN_ON(irq != data->irq);
rc = devres_release(dev, devm_regmap_irq_chip_release,
devm_regmap_irq_chip_match, data);
if (rc != 0)
WARN_ON(rc);
}
EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
/**
* regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
*
* @data: regmap irq controller to operate on.
*
* Useful for drivers to request their own IRQs.
*/
int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
{
WARN_ON(!data->irq_base);
return data->irq_base;
}
EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
/**
* regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
*
* @data: regmap irq controller to operate on.
* @irq: index of the interrupt requested in the chip IRQs.
*
* Useful for drivers to request their own IRQs.
*/
int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
{
/* Handle holes in the IRQ list */
if (!data->chip->irqs[irq].mask)
return -EINVAL;
return irq_create_mapping(data->domain, irq);
}
EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
/**
* regmap_irq_get_domain() - Retrieve the irq_domain for the chip
*
* @data: regmap_irq controller to operate on.
*
* Useful for drivers to request their own IRQs and for integration
* with subsystems. For ease of integration NULL is accepted as a
* domain, allowing devices to just call this even if no domain is
* allocated.
*/
struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
{
if (data)
return data->domain;
else
return NULL;
}
EXPORT_SYMBOL_GPL(regmap_irq_get_domain);