blob: e2a39fdaf623e45cd9ddf918bc0876ebbd0e4b0e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Intel Keem Bay OCS AES Crypto Driver.
*
* Copyright (C) 2018-2020 Intel Corporation
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/types.h>
#include <crypto/aes.h>
#include <crypto/engine.h>
#include <crypto/gcm.h>
#include <crypto/scatterwalk.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/skcipher.h>
#include "ocs-aes.h"
#define KMB_OCS_PRIORITY 350
#define DRV_NAME "keembay-ocs-aes"
#define OCS_AES_MIN_KEY_SIZE 16
#define OCS_AES_MAX_KEY_SIZE 32
#define OCS_AES_KEYSIZE_128 16
#define OCS_AES_KEYSIZE_192 24
#define OCS_AES_KEYSIZE_256 32
#define OCS_SM4_KEY_SIZE 16
/**
* struct ocs_aes_tctx - OCS AES Transform context
* @engine_ctx: Engine context.
* @aes_dev: The OCS AES device.
* @key: AES/SM4 key.
* @key_len: The length (in bytes) of @key.
* @cipher: OCS cipher to use (either AES or SM4).
* @sw_cipher: The cipher to use as fallback.
* @use_fallback: Whether or not fallback cipher should be used.
*/
struct ocs_aes_tctx {
struct crypto_engine_ctx engine_ctx;
struct ocs_aes_dev *aes_dev;
u8 key[OCS_AES_KEYSIZE_256];
unsigned int key_len;
enum ocs_cipher cipher;
union {
struct crypto_sync_skcipher *sk;
struct crypto_aead *aead;
} sw_cipher;
bool use_fallback;
};
/**
* struct ocs_aes_rctx - OCS AES Request context.
* @instruction: Instruction to be executed (encrypt / decrypt).
* @mode: Mode to use (ECB, CBC, CTR, CCm, GCM, CTS)
* @src_nents: Number of source SG entries.
* @dst_nents: Number of destination SG entries.
* @src_dma_count: The number of DMA-mapped entries of the source SG.
* @dst_dma_count: The number of DMA-mapped entries of the destination SG.
* @in_place: Whether or not this is an in place request, i.e.,
* src_sg == dst_sg.
* @src_dll: OCS DMA linked list for input data.
* @dst_dll: OCS DMA linked list for output data.
* @last_ct_blk: Buffer to hold last cipher text block (only used in CBC
* mode).
* @cts_swap: Whether or not CTS swap must be performed.
* @aad_src_dll: OCS DMA linked list for input AAD data.
* @aad_dst_dll: OCS DMA linked list for output AAD data.
* @in_tag: Buffer to hold input encrypted tag (only used for
* CCM/GCM decrypt).
* @out_tag: Buffer to hold output encrypted / decrypted tag (only
* used for GCM encrypt / decrypt).
*/
struct ocs_aes_rctx {
/* Fields common across all modes. */
enum ocs_instruction instruction;
enum ocs_mode mode;
int src_nents;
int dst_nents;
int src_dma_count;
int dst_dma_count;
bool in_place;
struct ocs_dll_desc src_dll;
struct ocs_dll_desc dst_dll;
/* CBC specific */
u8 last_ct_blk[AES_BLOCK_SIZE];
/* CTS specific */
int cts_swap;
/* CCM/GCM specific */
struct ocs_dll_desc aad_src_dll;
struct ocs_dll_desc aad_dst_dll;
u8 in_tag[AES_BLOCK_SIZE];
/* GCM specific */
u8 out_tag[AES_BLOCK_SIZE];
};
/* Driver data. */
struct ocs_aes_drv {
struct list_head dev_list;
spinlock_t lock; /* Protects dev_list. */
};
static struct ocs_aes_drv ocs_aes = {
.dev_list = LIST_HEAD_INIT(ocs_aes.dev_list),
.lock = __SPIN_LOCK_UNLOCKED(ocs_aes.lock),
};
static struct ocs_aes_dev *kmb_ocs_aes_find_dev(struct ocs_aes_tctx *tctx)
{
struct ocs_aes_dev *aes_dev;
spin_lock(&ocs_aes.lock);
if (tctx->aes_dev) {
aes_dev = tctx->aes_dev;
goto exit;
}
/* Only a single OCS device available */
aes_dev = list_first_entry(&ocs_aes.dev_list, struct ocs_aes_dev, list);
tctx->aes_dev = aes_dev;
exit:
spin_unlock(&ocs_aes.lock);
return aes_dev;
}
/*
* Ensure key is 128-bit or 256-bit for AES or 128-bit for SM4 and an actual
* key is being passed in.
*
* Return: 0 if key is valid, -EINVAL otherwise.
*/
static int check_key(const u8 *in_key, size_t key_len, enum ocs_cipher cipher)
{
if (!in_key)
return -EINVAL;
/* For AES, only 128-byte or 256-byte keys are supported. */
if (cipher == OCS_AES && (key_len == OCS_AES_KEYSIZE_128 ||
key_len == OCS_AES_KEYSIZE_256))
return 0;
/* For SM4, only 128-byte keys are supported. */
if (cipher == OCS_SM4 && key_len == OCS_AES_KEYSIZE_128)
return 0;
/* Everything else is unsupported. */
return -EINVAL;
}
/* Save key into transformation context. */
static int save_key(struct ocs_aes_tctx *tctx, const u8 *in_key, size_t key_len,
enum ocs_cipher cipher)
{
int ret;
ret = check_key(in_key, key_len, cipher);
if (ret)
return ret;
memcpy(tctx->key, in_key, key_len);
tctx->key_len = key_len;
tctx->cipher = cipher;
return 0;
}
/* Set key for symmetric cypher. */
static int kmb_ocs_sk_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
size_t key_len, enum ocs_cipher cipher)
{
struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm);
/* Fallback is used for AES with 192-bit key. */
tctx->use_fallback = (cipher == OCS_AES &&
key_len == OCS_AES_KEYSIZE_192);
if (!tctx->use_fallback)
return save_key(tctx, in_key, key_len, cipher);
crypto_sync_skcipher_clear_flags(tctx->sw_cipher.sk,
CRYPTO_TFM_REQ_MASK);
crypto_sync_skcipher_set_flags(tctx->sw_cipher.sk,
tfm->base.crt_flags &
CRYPTO_TFM_REQ_MASK);
return crypto_sync_skcipher_setkey(tctx->sw_cipher.sk, in_key, key_len);
}
/* Set key for AEAD cipher. */
static int kmb_ocs_aead_set_key(struct crypto_aead *tfm, const u8 *in_key,
size_t key_len, enum ocs_cipher cipher)
{
struct ocs_aes_tctx *tctx = crypto_aead_ctx(tfm);
/* Fallback is used for AES with 192-bit key. */
tctx->use_fallback = (cipher == OCS_AES &&
key_len == OCS_AES_KEYSIZE_192);
if (!tctx->use_fallback)
return save_key(tctx, in_key, key_len, cipher);
crypto_aead_clear_flags(tctx->sw_cipher.aead, CRYPTO_TFM_REQ_MASK);
crypto_aead_set_flags(tctx->sw_cipher.aead,
crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
return crypto_aead_setkey(tctx->sw_cipher.aead, in_key, key_len);
}
/* Swap two AES blocks in SG lists. */
static void sg_swap_blocks(struct scatterlist *sgl, unsigned int nents,
off_t blk1_offset, off_t blk2_offset)
{
u8 tmp_buf1[AES_BLOCK_SIZE], tmp_buf2[AES_BLOCK_SIZE];
/*
* No easy way to copy within sg list, so copy both blocks to temporary
* buffers first.
*/
sg_pcopy_to_buffer(sgl, nents, tmp_buf1, AES_BLOCK_SIZE, blk1_offset);
sg_pcopy_to_buffer(sgl, nents, tmp_buf2, AES_BLOCK_SIZE, blk2_offset);
sg_pcopy_from_buffer(sgl, nents, tmp_buf1, AES_BLOCK_SIZE, blk2_offset);
sg_pcopy_from_buffer(sgl, nents, tmp_buf2, AES_BLOCK_SIZE, blk1_offset);
}
/* Initialize request context to default values. */
static void ocs_aes_init_rctx(struct ocs_aes_rctx *rctx)
{
/* Zero everything. */
memset(rctx, 0, sizeof(*rctx));
/* Set initial value for DMA addresses. */
rctx->src_dll.dma_addr = DMA_MAPPING_ERROR;
rctx->dst_dll.dma_addr = DMA_MAPPING_ERROR;
rctx->aad_src_dll.dma_addr = DMA_MAPPING_ERROR;
rctx->aad_dst_dll.dma_addr = DMA_MAPPING_ERROR;
}
static int kmb_ocs_sk_validate_input(struct skcipher_request *req,
enum ocs_mode mode)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
int iv_size = crypto_skcipher_ivsize(tfm);
switch (mode) {
case OCS_MODE_ECB:
/* Ensure input length is multiple of block size */
if (req->cryptlen % AES_BLOCK_SIZE != 0)
return -EINVAL;
return 0;
case OCS_MODE_CBC:
/* Ensure input length is multiple of block size */
if (req->cryptlen % AES_BLOCK_SIZE != 0)
return -EINVAL;
/* Ensure IV is present and block size in length */
if (!req->iv || iv_size != AES_BLOCK_SIZE)
return -EINVAL;
/*
* NOTE: Since req->cryptlen == 0 case was already handled in
* kmb_ocs_sk_common(), the above two conditions also guarantee
* that: cryptlen >= iv_size
*/
return 0;
case OCS_MODE_CTR:
/* Ensure IV is present and block size in length */
if (!req->iv || iv_size != AES_BLOCK_SIZE)
return -EINVAL;
return 0;
case OCS_MODE_CTS:
/* Ensure input length >= block size */
if (req->cryptlen < AES_BLOCK_SIZE)
return -EINVAL;
/* Ensure IV is present and block size in length */
if (!req->iv || iv_size != AES_BLOCK_SIZE)
return -EINVAL;
return 0;
default:
return -EINVAL;
}
}
/*
* Called by encrypt() / decrypt() skcipher functions.
*
* Use fallback if needed, otherwise initialize context and enqueue request
* into engine.
*/
static int kmb_ocs_sk_common(struct skcipher_request *req,
enum ocs_cipher cipher,
enum ocs_instruction instruction,
enum ocs_mode mode)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct ocs_aes_rctx *rctx = skcipher_request_ctx(req);
struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm);
struct ocs_aes_dev *aes_dev;
int rc;
if (tctx->use_fallback) {
SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, tctx->sw_cipher.sk);
skcipher_request_set_sync_tfm(subreq, tctx->sw_cipher.sk);
skcipher_request_set_callback(subreq, req->base.flags, NULL,
NULL);
skcipher_request_set_crypt(subreq, req->src, req->dst,
req->cryptlen, req->iv);
if (instruction == OCS_ENCRYPT)
rc = crypto_skcipher_encrypt(subreq);
else
rc = crypto_skcipher_decrypt(subreq);
skcipher_request_zero(subreq);
return rc;
}
/*
* If cryptlen == 0, no processing needed for ECB, CBC and CTR.
*
* For CTS continue: kmb_ocs_sk_validate_input() will return -EINVAL.
*/
if (!req->cryptlen && mode != OCS_MODE_CTS)
return 0;
rc = kmb_ocs_sk_validate_input(req, mode);
if (rc)
return rc;
aes_dev = kmb_ocs_aes_find_dev(tctx);
if (!aes_dev)
return -ENODEV;
if (cipher != tctx->cipher)
return -EINVAL;
ocs_aes_init_rctx(rctx);
rctx->instruction = instruction;
rctx->mode = mode;
return crypto_transfer_skcipher_request_to_engine(aes_dev->engine, req);
}
static void cleanup_ocs_dma_linked_list(struct device *dev,
struct ocs_dll_desc *dll)
{
if (dll->vaddr)
dma_free_coherent(dev, dll->size, dll->vaddr, dll->dma_addr);
dll->vaddr = NULL;
dll->size = 0;
dll->dma_addr = DMA_MAPPING_ERROR;
}
static void kmb_ocs_sk_dma_cleanup(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct ocs_aes_rctx *rctx = skcipher_request_ctx(req);
struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm);
struct device *dev = tctx->aes_dev->dev;
if (rctx->src_dma_count) {
dma_unmap_sg(dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
rctx->src_dma_count = 0;
}
if (rctx->dst_dma_count) {
dma_unmap_sg(dev, req->dst, rctx->dst_nents, rctx->in_place ?
DMA_BIDIRECTIONAL :
DMA_FROM_DEVICE);
rctx->dst_dma_count = 0;
}
/* Clean up OCS DMA linked lists */
cleanup_ocs_dma_linked_list(dev, &rctx->src_dll);
cleanup_ocs_dma_linked_list(dev, &rctx->dst_dll);
}
static int kmb_ocs_sk_prepare_inplace(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct ocs_aes_rctx *rctx = skcipher_request_ctx(req);
struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm);
int iv_size = crypto_skcipher_ivsize(tfm);
int rc;
/*
* For CBC decrypt, save last block (iv) to last_ct_blk buffer.
*
* Note: if we are here, we already checked that cryptlen >= iv_size
* and iv_size == AES_BLOCK_SIZE (i.e., the size of last_ct_blk); see
* kmb_ocs_sk_validate_input().
*/
if (rctx->mode == OCS_MODE_CBC && rctx->instruction == OCS_DECRYPT)
scatterwalk_map_and_copy(rctx->last_ct_blk, req->src,
req->cryptlen - iv_size, iv_size, 0);
/* For CTS decrypt, swap last two blocks, if needed. */
if (rctx->cts_swap && rctx->instruction == OCS_DECRYPT)
sg_swap_blocks(req->dst, rctx->dst_nents,
req->cryptlen - AES_BLOCK_SIZE,
req->cryptlen - (2 * AES_BLOCK_SIZE));
/* src and dst buffers are the same, use bidirectional DMA mapping. */
rctx->dst_dma_count = dma_map_sg(tctx->aes_dev->dev, req->dst,
rctx->dst_nents, DMA_BIDIRECTIONAL);
if (rctx->dst_dma_count == 0) {
dev_err(tctx->aes_dev->dev, "Failed to map destination sg\n");
return -ENOMEM;
}
/* Create DST linked list */
rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->dst,
rctx->dst_dma_count, &rctx->dst_dll,
req->cryptlen, 0);
if (rc)
return rc;
/*
* If descriptor creation was successful, set the src_dll.dma_addr to
* the value of dst_dll.dma_addr, as we do in-place AES operation on
* the src.
*/
rctx->src_dll.dma_addr = rctx->dst_dll.dma_addr;
return 0;
}
static int kmb_ocs_sk_prepare_notinplace(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct ocs_aes_rctx *rctx = skcipher_request_ctx(req);
struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm);
int rc;
rctx->src_nents = sg_nents_for_len(req->src, req->cryptlen);
if (rctx->src_nents < 0)
return -EBADMSG;
/* Map SRC SG. */
rctx->src_dma_count = dma_map_sg(tctx->aes_dev->dev, req->src,
rctx->src_nents, DMA_TO_DEVICE);
if (rctx->src_dma_count == 0) {
dev_err(tctx->aes_dev->dev, "Failed to map source sg\n");
return -ENOMEM;
}
/* Create SRC linked list */
rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->src,
rctx->src_dma_count, &rctx->src_dll,
req->cryptlen, 0);
if (rc)
return rc;
/* Map DST SG. */
rctx->dst_dma_count = dma_map_sg(tctx->aes_dev->dev, req->dst,
rctx->dst_nents, DMA_FROM_DEVICE);
if (rctx->dst_dma_count == 0) {
dev_err(tctx->aes_dev->dev, "Failed to map destination sg\n");
return -ENOMEM;
}
/* Create DST linked list */
rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->dst,
rctx->dst_dma_count, &rctx->dst_dll,
req->cryptlen, 0);
if (rc)
return rc;
/* If this is not a CTS decrypt operation with swapping, we are done. */
if (!(rctx->cts_swap && rctx->instruction == OCS_DECRYPT))
return 0;
/*
* Otherwise, we have to copy src to dst (as we cannot modify src).
* Use OCS AES bypass mode to copy src to dst via DMA.
*
* NOTE: for anything other than small data sizes this is rather
* inefficient.
*/
rc = ocs_aes_bypass_op(tctx->aes_dev, rctx->dst_dll.dma_addr,
rctx->src_dll.dma_addr, req->cryptlen);
if (rc)
return rc;
/*
* Now dst == src, so clean up what we did so far and use in_place
* logic.
*/
kmb_ocs_sk_dma_cleanup(req);
rctx->in_place = true;
return kmb_ocs_sk_prepare_inplace(req);
}
static int kmb_ocs_sk_run(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct ocs_aes_rctx *rctx = skcipher_request_ctx(req);
struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm);
struct ocs_aes_dev *aes_dev = tctx->aes_dev;
int iv_size = crypto_skcipher_ivsize(tfm);
int rc;
rctx->dst_nents = sg_nents_for_len(req->dst, req->cryptlen);
if (rctx->dst_nents < 0)
return -EBADMSG;
/*
* If 2 blocks or greater, and multiple of block size swap last two
* blocks to be compatible with other crypto API CTS implementations:
* OCS mode uses CBC-CS2, whereas other crypto API implementations use
* CBC-CS3.
* CBC-CS2 and CBC-CS3 defined by:
* https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a-add.pdf
*/
rctx->cts_swap = (rctx->mode == OCS_MODE_CTS &&
req->cryptlen > AES_BLOCK_SIZE &&
req->cryptlen % AES_BLOCK_SIZE == 0);
rctx->in_place = (req->src == req->dst);
if (rctx->in_place)
rc = kmb_ocs_sk_prepare_inplace(req);
else
rc = kmb_ocs_sk_prepare_notinplace(req);
if (rc)
goto error;
rc = ocs_aes_op(aes_dev, rctx->mode, tctx->cipher, rctx->instruction,
rctx->dst_dll.dma_addr, rctx->src_dll.dma_addr,
req->cryptlen, req->iv, iv_size);
if (rc)
goto error;
/* Clean-up DMA before further processing output. */
kmb_ocs_sk_dma_cleanup(req);
/* For CTS Encrypt, swap last 2 blocks, if needed. */
if (rctx->cts_swap && rctx->instruction == OCS_ENCRYPT) {
sg_swap_blocks(req->dst, rctx->dst_nents,
req->cryptlen - AES_BLOCK_SIZE,
req->cryptlen - (2 * AES_BLOCK_SIZE));
return 0;
}
/* For CBC copy IV to req->IV. */
if (rctx->mode == OCS_MODE_CBC) {
/* CBC encrypt case. */
if (rctx->instruction == OCS_ENCRYPT) {
scatterwalk_map_and_copy(req->iv, req->dst,
req->cryptlen - iv_size,
iv_size, 0);
return 0;
}
/* CBC decrypt case. */
if (rctx->in_place)
memcpy(req->iv, rctx->last_ct_blk, iv_size);
else
scatterwalk_map_and_copy(req->iv, req->src,
req->cryptlen - iv_size,
iv_size, 0);
return 0;
}
/* For all other modes there's nothing to do. */
return 0;
error:
kmb_ocs_sk_dma_cleanup(req);
return rc;
}
static int kmb_ocs_aead_validate_input(struct aead_request *req,
enum ocs_instruction instruction,
enum ocs_mode mode)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
int tag_size = crypto_aead_authsize(tfm);
int iv_size = crypto_aead_ivsize(tfm);
/* For decrypt crytplen == len(PT) + len(tag). */
if (instruction == OCS_DECRYPT && req->cryptlen < tag_size)
return -EINVAL;
/* IV is mandatory. */
if (!req->iv)
return -EINVAL;
switch (mode) {
case OCS_MODE_GCM:
if (iv_size != GCM_AES_IV_SIZE)
return -EINVAL;
return 0;
case OCS_MODE_CCM:
/* Ensure IV is present and block size in length */
if (iv_size != AES_BLOCK_SIZE)
return -EINVAL;
return 0;
default:
return -EINVAL;
}
}
/*
* Called by encrypt() / decrypt() aead functions.
*
* Use fallback if needed, otherwise initialize context and enqueue request
* into engine.
*/
static int kmb_ocs_aead_common(struct aead_request *req,
enum ocs_cipher cipher,
enum ocs_instruction instruction,
enum ocs_mode mode)
{
struct ocs_aes_tctx *tctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
struct ocs_aes_rctx *rctx = aead_request_ctx(req);
struct ocs_aes_dev *dd;
int rc;
if (tctx->use_fallback) {
struct aead_request *subreq = aead_request_ctx(req);
aead_request_set_tfm(subreq, tctx->sw_cipher.aead);
aead_request_set_callback(subreq, req->base.flags,
req->base.complete, req->base.data);
aead_request_set_crypt(subreq, req->src, req->dst,
req->cryptlen, req->iv);
aead_request_set_ad(subreq, req->assoclen);
rc = crypto_aead_setauthsize(tctx->sw_cipher.aead,
crypto_aead_authsize(crypto_aead_reqtfm(req)));
if (rc)
return rc;
return (instruction == OCS_ENCRYPT) ?
crypto_aead_encrypt(subreq) :
crypto_aead_decrypt(subreq);
}
rc = kmb_ocs_aead_validate_input(req, instruction, mode);
if (rc)
return rc;
dd = kmb_ocs_aes_find_dev(tctx);
if (!dd)
return -ENODEV;
if (cipher != tctx->cipher)
return -EINVAL;
ocs_aes_init_rctx(rctx);
rctx->instruction = instruction;
rctx->mode = mode;
return crypto_transfer_aead_request_to_engine(dd->engine, req);
}
static void kmb_ocs_aead_dma_cleanup(struct aead_request *req)
{
struct ocs_aes_tctx *tctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
struct ocs_aes_rctx *rctx = aead_request_ctx(req);
struct device *dev = tctx->aes_dev->dev;
if (rctx->src_dma_count) {
dma_unmap_sg(dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
rctx->src_dma_count = 0;
}
if (rctx->dst_dma_count) {
dma_unmap_sg(dev, req->dst, rctx->dst_nents, rctx->in_place ?
DMA_BIDIRECTIONAL :
DMA_FROM_DEVICE);
rctx->dst_dma_count = 0;
}
/* Clean up OCS DMA linked lists */
cleanup_ocs_dma_linked_list(dev, &rctx->src_dll);
cleanup_ocs_dma_linked_list(dev, &rctx->dst_dll);
cleanup_ocs_dma_linked_list(dev, &rctx->aad_src_dll);
cleanup_ocs_dma_linked_list(dev, &rctx->aad_dst_dll);
}
/**
* kmb_ocs_aead_dma_prepare() - Do DMA mapping for AEAD processing.
* @req: The AEAD request being processed.
* @src_dll_size: Where to store the length of the data mapped into the
* src_dll OCS DMA list.
*
* Do the following:
* - DMA map req->src and req->dst
* - Initialize the following OCS DMA linked lists: rctx->src_dll,
* rctx->dst_dll, rctx->aad_src_dll and rxtc->aad_dst_dll.
*
* Return: 0 on success, negative error code otherwise.
*/
static int kmb_ocs_aead_dma_prepare(struct aead_request *req, u32 *src_dll_size)
{
struct ocs_aes_tctx *tctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
const int tag_size = crypto_aead_authsize(crypto_aead_reqtfm(req));
struct ocs_aes_rctx *rctx = aead_request_ctx(req);
u32 in_size; /* The length of the data to be mapped by src_dll. */
u32 out_size; /* The length of the data to be mapped by dst_dll. */
u32 dst_size; /* The length of the data in dst_sg. */
int rc;
/* Get number of entries in input data SG list. */
rctx->src_nents = sg_nents_for_len(req->src,
req->assoclen + req->cryptlen);
if (rctx->src_nents < 0)
return -EBADMSG;
if (rctx->instruction == OCS_DECRYPT) {
/*
* For decrypt:
* - src sg list is: AAD|CT|tag
* - dst sg list expects: AAD|PT
*
* in_size == len(CT); out_size == len(PT)
*/
/* req->cryptlen includes both CT and tag. */
in_size = req->cryptlen - tag_size;
/* out_size = PT size == CT size */
out_size = in_size;
/* len(dst_sg) == len(AAD) + len(PT) */
dst_size = req->assoclen + out_size;
/*
* Copy tag from source SG list to 'in_tag' buffer.
*
* Note: this needs to be done here, before DMA mapping src_sg.
*/
sg_pcopy_to_buffer(req->src, rctx->src_nents, rctx->in_tag,
tag_size, req->assoclen + in_size);
} else { /* OCS_ENCRYPT */
/*
* For encrypt:
* src sg list is: AAD|PT
* dst sg list expects: AAD|CT|tag
*/
/* in_size == len(PT) */
in_size = req->cryptlen;
/*
* In CCM mode the OCS engine appends the tag to the ciphertext,
* but in GCM mode the tag must be read from the tag registers
* and appended manually below
*/
out_size = (rctx->mode == OCS_MODE_CCM) ? in_size + tag_size :
in_size;
/* len(dst_sg) == len(AAD) + len(CT) + len(tag) */
dst_size = req->assoclen + in_size + tag_size;
}
*src_dll_size = in_size;
/* Get number of entries in output data SG list. */
rctx->dst_nents = sg_nents_for_len(req->dst, dst_size);
if (rctx->dst_nents < 0)
return -EBADMSG;
rctx->in_place = (req->src == req->dst) ? 1 : 0;
/* Map destination; use bidirectional mapping for in-place case. */
rctx->dst_dma_count = dma_map_sg(tctx->aes_dev->dev, req->dst,
rctx->dst_nents,
rctx->in_place ? DMA_BIDIRECTIONAL :
DMA_FROM_DEVICE);
if (rctx->dst_dma_count == 0 && rctx->dst_nents != 0) {
dev_err(tctx->aes_dev->dev, "Failed to map destination sg\n");
return -ENOMEM;
}
/* Create AAD DST list: maps dst[0:AAD_SIZE-1]. */
rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->dst,
rctx->dst_dma_count,
&rctx->aad_dst_dll, req->assoclen,
0);
if (rc)
return rc;
/* Create DST list: maps dst[AAD_SIZE:out_size] */
rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->dst,
rctx->dst_dma_count, &rctx->dst_dll,
out_size, req->assoclen);
if (rc)
return rc;
if (rctx->in_place) {
/* If this is not CCM encrypt, we are done. */
if (!(rctx->mode == OCS_MODE_CCM &&
rctx->instruction == OCS_ENCRYPT)) {
/*
* SRC and DST are the same, so re-use the same DMA
* addresses (to avoid allocating new DMA lists
* identical to the dst ones).
*/
rctx->src_dll.dma_addr = rctx->dst_dll.dma_addr;
rctx->aad_src_dll.dma_addr = rctx->aad_dst_dll.dma_addr;
return 0;
}
/*
* For CCM encrypt the input and output linked lists contain
* different amounts of data, so, we need to create different
* SRC and AAD SRC lists, even for the in-place case.
*/
rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->dst,
rctx->dst_dma_count,
&rctx->aad_src_dll,
req->assoclen, 0);
if (rc)
return rc;
rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->dst,
rctx->dst_dma_count,
&rctx->src_dll, in_size,
req->assoclen);
if (rc)
return rc;
return 0;
}
/* Not in-place case. */
/* Map source SG. */
rctx->src_dma_count = dma_map_sg(tctx->aes_dev->dev, req->src,
rctx->src_nents, DMA_TO_DEVICE);
if (rctx->src_dma_count == 0 && rctx->src_nents != 0) {
dev_err(tctx->aes_dev->dev, "Failed to map source sg\n");
return -ENOMEM;
}
/* Create AAD SRC list. */
rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->src,
rctx->src_dma_count,
&rctx->aad_src_dll,
req->assoclen, 0);
if (rc)
return rc;
/* Create SRC list. */
rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->src,
rctx->src_dma_count,
&rctx->src_dll, in_size,
req->assoclen);
if (rc)
return rc;
if (req->assoclen == 0)
return 0;
/* Copy AAD from src sg to dst sg using OCS DMA. */
rc = ocs_aes_bypass_op(tctx->aes_dev, rctx->aad_dst_dll.dma_addr,
rctx->aad_src_dll.dma_addr, req->cryptlen);
if (rc)
dev_err(tctx->aes_dev->dev,
"Failed to copy source AAD to destination AAD\n");
return rc;
}
static int kmb_ocs_aead_run(struct aead_request *req)
{
struct ocs_aes_tctx *tctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
const int tag_size = crypto_aead_authsize(crypto_aead_reqtfm(req));
struct ocs_aes_rctx *rctx = aead_request_ctx(req);
u32 in_size; /* The length of the data mapped by src_dll. */
int rc;
rc = kmb_ocs_aead_dma_prepare(req, &in_size);
if (rc)
goto exit;
/* For CCM, we just call the OCS processing and we are done. */
if (rctx->mode == OCS_MODE_CCM) {
rc = ocs_aes_ccm_op(tctx->aes_dev, tctx->cipher,
rctx->instruction, rctx->dst_dll.dma_addr,
rctx->src_dll.dma_addr, in_size,
req->iv,
rctx->aad_src_dll.dma_addr, req->assoclen,
rctx->in_tag, tag_size);
goto exit;
}
/* GCM case; invoke OCS processing. */
rc = ocs_aes_gcm_op(tctx->aes_dev, tctx->cipher,
rctx->instruction,
rctx->dst_dll.dma_addr,
rctx->src_dll.dma_addr, in_size,
req->iv,
rctx->aad_src_dll.dma_addr, req->assoclen,
rctx->out_tag, tag_size);
if (rc)
goto exit;
/* For GCM decrypt, we have to compare in_tag with out_tag. */
if (rctx->instruction == OCS_DECRYPT) {
rc = memcmp(rctx->in_tag, rctx->out_tag, tag_size) ?
-EBADMSG : 0;
goto exit;
}
/* For GCM encrypt, we must manually copy out_tag to DST sg. */
/* Clean-up must be called before the sg_pcopy_from_buffer() below. */
kmb_ocs_aead_dma_cleanup(req);
/* Copy tag to destination sg after AAD and CT. */
sg_pcopy_from_buffer(req->dst, rctx->dst_nents, rctx->out_tag,
tag_size, req->assoclen + req->cryptlen);
/* Return directly as DMA cleanup already done. */
return 0;
exit:
kmb_ocs_aead_dma_cleanup(req);
return rc;
}
static int kmb_ocs_aes_sk_do_one_request(struct crypto_engine *engine,
void *areq)
{
struct skcipher_request *req =
container_of(areq, struct skcipher_request, base);
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm);
int err;
if (!tctx->aes_dev) {
err = -ENODEV;
goto exit;
}
err = ocs_aes_set_key(tctx->aes_dev, tctx->key_len, tctx->key,
tctx->cipher);
if (err)
goto exit;
err = kmb_ocs_sk_run(req);
exit:
crypto_finalize_skcipher_request(engine, req, err);
return 0;
}
static int kmb_ocs_aes_aead_do_one_request(struct crypto_engine *engine,
void *areq)
{
struct aead_request *req = container_of(areq,
struct aead_request, base);
struct ocs_aes_tctx *tctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
int err;
if (!tctx->aes_dev)
return -ENODEV;
err = ocs_aes_set_key(tctx->aes_dev, tctx->key_len, tctx->key,
tctx->cipher);
if (err)
goto exit;
err = kmb_ocs_aead_run(req);
exit:
crypto_finalize_aead_request(tctx->aes_dev->engine, req, err);
return 0;
}
static int kmb_ocs_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
unsigned int key_len)
{
return kmb_ocs_sk_set_key(tfm, in_key, key_len, OCS_AES);
}
static int kmb_ocs_aes_aead_set_key(struct crypto_aead *tfm, const u8 *in_key,
unsigned int key_len)
{
return kmb_ocs_aead_set_key(tfm, in_key, key_len, OCS_AES);
}
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB
static int kmb_ocs_aes_ecb_encrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_AES, OCS_ENCRYPT, OCS_MODE_ECB);
}
static int kmb_ocs_aes_ecb_decrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_AES, OCS_DECRYPT, OCS_MODE_ECB);
}
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB */
static int kmb_ocs_aes_cbc_encrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_AES, OCS_ENCRYPT, OCS_MODE_CBC);
}
static int kmb_ocs_aes_cbc_decrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_AES, OCS_DECRYPT, OCS_MODE_CBC);
}
static int kmb_ocs_aes_ctr_encrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_AES, OCS_ENCRYPT, OCS_MODE_CTR);
}
static int kmb_ocs_aes_ctr_decrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_AES, OCS_DECRYPT, OCS_MODE_CTR);
}
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS
static int kmb_ocs_aes_cts_encrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_AES, OCS_ENCRYPT, OCS_MODE_CTS);
}
static int kmb_ocs_aes_cts_decrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_AES, OCS_DECRYPT, OCS_MODE_CTS);
}
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS */
static int kmb_ocs_aes_gcm_encrypt(struct aead_request *req)
{
return kmb_ocs_aead_common(req, OCS_AES, OCS_ENCRYPT, OCS_MODE_GCM);
}
static int kmb_ocs_aes_gcm_decrypt(struct aead_request *req)
{
return kmb_ocs_aead_common(req, OCS_AES, OCS_DECRYPT, OCS_MODE_GCM);
}
static int kmb_ocs_aes_ccm_encrypt(struct aead_request *req)
{
return kmb_ocs_aead_common(req, OCS_AES, OCS_ENCRYPT, OCS_MODE_CCM);
}
static int kmb_ocs_aes_ccm_decrypt(struct aead_request *req)
{
return kmb_ocs_aead_common(req, OCS_AES, OCS_DECRYPT, OCS_MODE_CCM);
}
static int kmb_ocs_sm4_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
unsigned int key_len)
{
return kmb_ocs_sk_set_key(tfm, in_key, key_len, OCS_SM4);
}
static int kmb_ocs_sm4_aead_set_key(struct crypto_aead *tfm, const u8 *in_key,
unsigned int key_len)
{
return kmb_ocs_aead_set_key(tfm, in_key, key_len, OCS_SM4);
}
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB
static int kmb_ocs_sm4_ecb_encrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_SM4, OCS_ENCRYPT, OCS_MODE_ECB);
}
static int kmb_ocs_sm4_ecb_decrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_SM4, OCS_DECRYPT, OCS_MODE_ECB);
}
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB */
static int kmb_ocs_sm4_cbc_encrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_SM4, OCS_ENCRYPT, OCS_MODE_CBC);
}
static int kmb_ocs_sm4_cbc_decrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_SM4, OCS_DECRYPT, OCS_MODE_CBC);
}
static int kmb_ocs_sm4_ctr_encrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_SM4, OCS_ENCRYPT, OCS_MODE_CTR);
}
static int kmb_ocs_sm4_ctr_decrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_SM4, OCS_DECRYPT, OCS_MODE_CTR);
}
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS
static int kmb_ocs_sm4_cts_encrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_SM4, OCS_ENCRYPT, OCS_MODE_CTS);
}
static int kmb_ocs_sm4_cts_decrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_SM4, OCS_DECRYPT, OCS_MODE_CTS);
}
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS */
static int kmb_ocs_sm4_gcm_encrypt(struct aead_request *req)
{
return kmb_ocs_aead_common(req, OCS_SM4, OCS_ENCRYPT, OCS_MODE_GCM);
}
static int kmb_ocs_sm4_gcm_decrypt(struct aead_request *req)
{
return kmb_ocs_aead_common(req, OCS_SM4, OCS_DECRYPT, OCS_MODE_GCM);
}
static int kmb_ocs_sm4_ccm_encrypt(struct aead_request *req)
{
return kmb_ocs_aead_common(req, OCS_SM4, OCS_ENCRYPT, OCS_MODE_CCM);
}
static int kmb_ocs_sm4_ccm_decrypt(struct aead_request *req)
{
return kmb_ocs_aead_common(req, OCS_SM4, OCS_DECRYPT, OCS_MODE_CCM);
}
static inline int ocs_common_init(struct ocs_aes_tctx *tctx)
{
tctx->engine_ctx.op.prepare_request = NULL;
tctx->engine_ctx.op.do_one_request = kmb_ocs_aes_sk_do_one_request;
tctx->engine_ctx.op.unprepare_request = NULL;
return 0;
}
static int ocs_aes_init_tfm(struct crypto_skcipher *tfm)
{
const char *alg_name = crypto_tfm_alg_name(&tfm->base);
struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm);
struct crypto_sync_skcipher *blk;
/* set fallback cipher in case it will be needed */
blk = crypto_alloc_sync_skcipher(alg_name, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(blk))
return PTR_ERR(blk);
tctx->sw_cipher.sk = blk;
crypto_skcipher_set_reqsize(tfm, sizeof(struct ocs_aes_rctx));
return ocs_common_init(tctx);
}
static int ocs_sm4_init_tfm(struct crypto_skcipher *tfm)
{
struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm);
crypto_skcipher_set_reqsize(tfm, sizeof(struct ocs_aes_rctx));
return ocs_common_init(tctx);
}
static inline void clear_key(struct ocs_aes_tctx *tctx)
{
memzero_explicit(tctx->key, OCS_AES_KEYSIZE_256);
/* Zero key registers if set */
if (tctx->aes_dev)
ocs_aes_set_key(tctx->aes_dev, OCS_AES_KEYSIZE_256,
tctx->key, OCS_AES);
}
static void ocs_exit_tfm(struct crypto_skcipher *tfm)
{
struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm);
clear_key(tctx);
if (tctx->sw_cipher.sk) {
crypto_free_sync_skcipher(tctx->sw_cipher.sk);
tctx->sw_cipher.sk = NULL;
}
}
static inline int ocs_common_aead_init(struct ocs_aes_tctx *tctx)
{
tctx->engine_ctx.op.prepare_request = NULL;
tctx->engine_ctx.op.do_one_request = kmb_ocs_aes_aead_do_one_request;
tctx->engine_ctx.op.unprepare_request = NULL;
return 0;
}
static int ocs_aes_aead_cra_init(struct crypto_aead *tfm)
{
const char *alg_name = crypto_tfm_alg_name(&tfm->base);
struct ocs_aes_tctx *tctx = crypto_aead_ctx(tfm);
struct crypto_aead *blk;
/* Set fallback cipher in case it will be needed */
blk = crypto_alloc_aead(alg_name, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(blk))
return PTR_ERR(blk);
tctx->sw_cipher.aead = blk;
crypto_aead_set_reqsize(tfm,
max(sizeof(struct ocs_aes_rctx),
(sizeof(struct aead_request) +
crypto_aead_reqsize(tctx->sw_cipher.aead))));
return ocs_common_aead_init(tctx);
}
static int kmb_ocs_aead_ccm_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
switch (authsize) {
case 4:
case 6:
case 8:
case 10:
case 12:
case 14:
case 16:
return 0;
default:
return -EINVAL;
}
}
static int kmb_ocs_aead_gcm_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
return crypto_gcm_check_authsize(authsize);
}
static int ocs_sm4_aead_cra_init(struct crypto_aead *tfm)
{
struct ocs_aes_tctx *tctx = crypto_aead_ctx(tfm);
crypto_aead_set_reqsize(tfm, sizeof(struct ocs_aes_rctx));
return ocs_common_aead_init(tctx);
}
static void ocs_aead_cra_exit(struct crypto_aead *tfm)
{
struct ocs_aes_tctx *tctx = crypto_aead_ctx(tfm);
clear_key(tctx);
if (tctx->sw_cipher.aead) {
crypto_free_aead(tctx->sw_cipher.aead);
tctx->sw_cipher.aead = NULL;
}
}
static struct skcipher_alg algs[] = {
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB
{
.base.cra_name = "ecb(aes)",
.base.cra_driver_name = "ecb-aes-keembay-ocs",
.base.cra_priority = KMB_OCS_PRIORITY,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.base.cra_module = THIS_MODULE,
.base.cra_alignmask = 0,
.min_keysize = OCS_AES_MIN_KEY_SIZE,
.max_keysize = OCS_AES_MAX_KEY_SIZE,
.setkey = kmb_ocs_aes_set_key,
.encrypt = kmb_ocs_aes_ecb_encrypt,
.decrypt = kmb_ocs_aes_ecb_decrypt,
.init = ocs_aes_init_tfm,
.exit = ocs_exit_tfm,
},
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB */
{
.base.cra_name = "cbc(aes)",
.base.cra_driver_name = "cbc-aes-keembay-ocs",
.base.cra_priority = KMB_OCS_PRIORITY,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.base.cra_module = THIS_MODULE,
.base.cra_alignmask = 0,
.min_keysize = OCS_AES_MIN_KEY_SIZE,
.max_keysize = OCS_AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = kmb_ocs_aes_set_key,
.encrypt = kmb_ocs_aes_cbc_encrypt,
.decrypt = kmb_ocs_aes_cbc_decrypt,
.init = ocs_aes_init_tfm,
.exit = ocs_exit_tfm,
},
{
.base.cra_name = "ctr(aes)",
.base.cra_driver_name = "ctr-aes-keembay-ocs",
.base.cra_priority = KMB_OCS_PRIORITY,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.base.cra_module = THIS_MODULE,
.base.cra_alignmask = 0,
.min_keysize = OCS_AES_MIN_KEY_SIZE,
.max_keysize = OCS_AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = kmb_ocs_aes_set_key,
.encrypt = kmb_ocs_aes_ctr_encrypt,
.decrypt = kmb_ocs_aes_ctr_decrypt,
.init = ocs_aes_init_tfm,
.exit = ocs_exit_tfm,
},
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS
{
.base.cra_name = "cts(cbc(aes))",
.base.cra_driver_name = "cts-aes-keembay-ocs",
.base.cra_priority = KMB_OCS_PRIORITY,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.base.cra_module = THIS_MODULE,
.base.cra_alignmask = 0,
.min_keysize = OCS_AES_MIN_KEY_SIZE,
.max_keysize = OCS_AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = kmb_ocs_aes_set_key,
.encrypt = kmb_ocs_aes_cts_encrypt,
.decrypt = kmb_ocs_aes_cts_decrypt,
.init = ocs_aes_init_tfm,
.exit = ocs_exit_tfm,
},
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS */
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB
{
.base.cra_name = "ecb(sm4)",
.base.cra_driver_name = "ecb-sm4-keembay-ocs",
.base.cra_priority = KMB_OCS_PRIORITY,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.base.cra_module = THIS_MODULE,
.base.cra_alignmask = 0,
.min_keysize = OCS_SM4_KEY_SIZE,
.max_keysize = OCS_SM4_KEY_SIZE,
.setkey = kmb_ocs_sm4_set_key,
.encrypt = kmb_ocs_sm4_ecb_encrypt,
.decrypt = kmb_ocs_sm4_ecb_decrypt,
.init = ocs_sm4_init_tfm,
.exit = ocs_exit_tfm,
},
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB */
{
.base.cra_name = "cbc(sm4)",
.base.cra_driver_name = "cbc-sm4-keembay-ocs",
.base.cra_priority = KMB_OCS_PRIORITY,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.base.cra_module = THIS_MODULE,
.base.cra_alignmask = 0,
.min_keysize = OCS_SM4_KEY_SIZE,
.max_keysize = OCS_SM4_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = kmb_ocs_sm4_set_key,
.encrypt = kmb_ocs_sm4_cbc_encrypt,
.decrypt = kmb_ocs_sm4_cbc_decrypt,
.init = ocs_sm4_init_tfm,
.exit = ocs_exit_tfm,
},
{
.base.cra_name = "ctr(sm4)",
.base.cra_driver_name = "ctr-sm4-keembay-ocs",
.base.cra_priority = KMB_OCS_PRIORITY,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.base.cra_module = THIS_MODULE,
.base.cra_alignmask = 0,
.min_keysize = OCS_SM4_KEY_SIZE,
.max_keysize = OCS_SM4_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = kmb_ocs_sm4_set_key,
.encrypt = kmb_ocs_sm4_ctr_encrypt,
.decrypt = kmb_ocs_sm4_ctr_decrypt,
.init = ocs_sm4_init_tfm,
.exit = ocs_exit_tfm,
},
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS
{
.base.cra_name = "cts(cbc(sm4))",
.base.cra_driver_name = "cts-sm4-keembay-ocs",
.base.cra_priority = KMB_OCS_PRIORITY,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.base.cra_module = THIS_MODULE,
.base.cra_alignmask = 0,
.min_keysize = OCS_SM4_KEY_SIZE,
.max_keysize = OCS_SM4_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = kmb_ocs_sm4_set_key,
.encrypt = kmb_ocs_sm4_cts_encrypt,
.decrypt = kmb_ocs_sm4_cts_decrypt,
.init = ocs_sm4_init_tfm,
.exit = ocs_exit_tfm,
}
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS */
};
static struct aead_alg algs_aead[] = {
{
.base = {
.cra_name = "gcm(aes)",
.cra_driver_name = "gcm-aes-keembay-ocs",
.cra_priority = KMB_OCS_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.init = ocs_aes_aead_cra_init,
.exit = ocs_aead_cra_exit,
.ivsize = GCM_AES_IV_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.setauthsize = kmb_ocs_aead_gcm_setauthsize,
.setkey = kmb_ocs_aes_aead_set_key,
.encrypt = kmb_ocs_aes_gcm_encrypt,
.decrypt = kmb_ocs_aes_gcm_decrypt,
},
{
.base = {
.cra_name = "ccm(aes)",
.cra_driver_name = "ccm-aes-keembay-ocs",
.cra_priority = KMB_OCS_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.init = ocs_aes_aead_cra_init,
.exit = ocs_aead_cra_exit,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.setauthsize = kmb_ocs_aead_ccm_setauthsize,
.setkey = kmb_ocs_aes_aead_set_key,
.encrypt = kmb_ocs_aes_ccm_encrypt,
.decrypt = kmb_ocs_aes_ccm_decrypt,
},
{
.base = {
.cra_name = "gcm(sm4)",
.cra_driver_name = "gcm-sm4-keembay-ocs",
.cra_priority = KMB_OCS_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.init = ocs_sm4_aead_cra_init,
.exit = ocs_aead_cra_exit,
.ivsize = GCM_AES_IV_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.setauthsize = kmb_ocs_aead_gcm_setauthsize,
.setkey = kmb_ocs_sm4_aead_set_key,
.encrypt = kmb_ocs_sm4_gcm_encrypt,
.decrypt = kmb_ocs_sm4_gcm_decrypt,
},
{
.base = {
.cra_name = "ccm(sm4)",
.cra_driver_name = "ccm-sm4-keembay-ocs",
.cra_priority = KMB_OCS_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.init = ocs_sm4_aead_cra_init,
.exit = ocs_aead_cra_exit,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.setauthsize = kmb_ocs_aead_ccm_setauthsize,
.setkey = kmb_ocs_sm4_aead_set_key,
.encrypt = kmb_ocs_sm4_ccm_encrypt,
.decrypt = kmb_ocs_sm4_ccm_decrypt,
}
};
static void unregister_aes_algs(struct ocs_aes_dev *aes_dev)
{
crypto_unregister_aeads(algs_aead, ARRAY_SIZE(algs_aead));
crypto_unregister_skciphers(algs, ARRAY_SIZE(algs));
}
static int register_aes_algs(struct ocs_aes_dev *aes_dev)
{
int ret;
/*
* If any algorithm fails to register, all preceding algorithms that
* were successfully registered will be automatically unregistered.
*/
ret = crypto_register_aeads(algs_aead, ARRAY_SIZE(algs_aead));
if (ret)
return ret;
ret = crypto_register_skciphers(algs, ARRAY_SIZE(algs));
if (ret)
crypto_unregister_aeads(algs_aead, ARRAY_SIZE(algs));
return ret;
}
/* Device tree driver match. */
static const struct of_device_id kmb_ocs_aes_of_match[] = {
{
.compatible = "intel,keembay-ocs-aes",
},
{}
};
static int kmb_ocs_aes_remove(struct platform_device *pdev)
{
struct ocs_aes_dev *aes_dev;
aes_dev = platform_get_drvdata(pdev);
if (!aes_dev)
return -ENODEV;
unregister_aes_algs(aes_dev);
spin_lock(&ocs_aes.lock);
list_del(&aes_dev->list);
spin_unlock(&ocs_aes.lock);
crypto_engine_exit(aes_dev->engine);
return 0;
}
static int kmb_ocs_aes_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct ocs_aes_dev *aes_dev;
struct resource *aes_mem;
int rc;
aes_dev = devm_kzalloc(dev, sizeof(*aes_dev), GFP_KERNEL);
if (!aes_dev)
return -ENOMEM;
aes_dev->dev = dev;
platform_set_drvdata(pdev, aes_dev);
rc = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
if (rc) {
dev_err(dev, "Failed to set 32 bit dma mask %d\n", rc);
return rc;
}
/* Get base register address. */
aes_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!aes_mem) {
dev_err(dev, "Could not retrieve io mem resource\n");
return -ENODEV;
}
aes_dev->base_reg = devm_ioremap_resource(&pdev->dev, aes_mem);
if (IS_ERR(aes_dev->base_reg))
return PTR_ERR(aes_dev->base_reg);
/* Get and request IRQ */
aes_dev->irq = platform_get_irq(pdev, 0);
if (aes_dev->irq < 0)
return aes_dev->irq;
rc = devm_request_threaded_irq(dev, aes_dev->irq, ocs_aes_irq_handler,
NULL, 0, "keembay-ocs-aes", aes_dev);
if (rc < 0) {
dev_err(dev, "Could not request IRQ\n");
return rc;
}
INIT_LIST_HEAD(&aes_dev->list);
spin_lock(&ocs_aes.lock);
list_add_tail(&aes_dev->list, &ocs_aes.dev_list);
spin_unlock(&ocs_aes.lock);
init_completion(&aes_dev->irq_completion);
/* Initialize crypto engine */
aes_dev->engine = crypto_engine_alloc_init(dev, true);
if (!aes_dev->engine) {
rc = -ENOMEM;
goto list_del;
}
rc = crypto_engine_start(aes_dev->engine);
if (rc) {
dev_err(dev, "Could not start crypto engine\n");
goto cleanup;
}
rc = register_aes_algs(aes_dev);
if (rc) {
dev_err(dev,
"Could not register OCS algorithms with Crypto API\n");
goto cleanup;
}
return 0;
cleanup:
crypto_engine_exit(aes_dev->engine);
list_del:
spin_lock(&ocs_aes.lock);
list_del(&aes_dev->list);
spin_unlock(&ocs_aes.lock);
return rc;
}
/* The OCS driver is a platform device. */
static struct platform_driver kmb_ocs_aes_driver = {
.probe = kmb_ocs_aes_probe,
.remove = kmb_ocs_aes_remove,
.driver = {
.name = DRV_NAME,
.of_match_table = kmb_ocs_aes_of_match,
},
};
module_platform_driver(kmb_ocs_aes_driver);
MODULE_DESCRIPTION("Intel Keem Bay Offload and Crypto Subsystem (OCS) AES/SM4 Driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS_CRYPTO("cbc-aes-keembay-ocs");
MODULE_ALIAS_CRYPTO("ctr-aes-keembay-ocs");
MODULE_ALIAS_CRYPTO("gcm-aes-keembay-ocs");
MODULE_ALIAS_CRYPTO("ccm-aes-keembay-ocs");
MODULE_ALIAS_CRYPTO("cbc-sm4-keembay-ocs");
MODULE_ALIAS_CRYPTO("ctr-sm4-keembay-ocs");
MODULE_ALIAS_CRYPTO("gcm-sm4-keembay-ocs");
MODULE_ALIAS_CRYPTO("ccm-sm4-keembay-ocs");
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB
MODULE_ALIAS_CRYPTO("ecb-aes-keembay-ocs");
MODULE_ALIAS_CRYPTO("ecb-sm4-keembay-ocs");
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB */
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS
MODULE_ALIAS_CRYPTO("cts-aes-keembay-ocs");
MODULE_ALIAS_CRYPTO("cts-sm4-keembay-ocs");
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS */