blob: 27cbb5b42c7ed96726e2e678367767a084325a32 [file] [log] [blame]
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
/* include DCE11 register header files */
#include "dce/dce_11_0_d.h"
#include "dce/dce_11_0_sh_mask.h"
#include "dc_types.h"
#include "dc_bios_types.h"
#include "dc.h"
#include "include/grph_object_id.h"
#include "include/logger_interface.h"
#include "dce110_timing_generator.h"
#include "timing_generator.h"
#define NUMBER_OF_FRAME_TO_WAIT_ON_TRIGGERED_RESET 10
#define MAX_H_TOTAL (CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1)
#define MAX_V_TOTAL (CRTC_V_TOTAL__CRTC_V_TOTAL_MASKhw + 1)
#define CRTC_REG(reg) (reg + tg110->offsets.crtc)
#define DCP_REG(reg) (reg + tg110->offsets.dcp)
/* Flowing register offsets are same in files of
* dce/dce_11_0_d.h
* dce/vi_polaris10_p/vi_polaris10_d.h
*
* So we can create dce110 timing generator to use it.
*/
/*
* apply_front_porch_workaround
*
* This is a workaround for a bug that has existed since R5xx and has not been
* fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
*/
static void dce110_timing_generator_apply_front_porch_workaround(
struct timing_generator *tg,
struct dc_crtc_timing *timing)
{
if (timing->flags.INTERLACE == 1) {
if (timing->v_front_porch < 2)
timing->v_front_porch = 2;
} else {
if (timing->v_front_porch < 1)
timing->v_front_porch = 1;
}
}
/*
*****************************************************************************
* Function: is_in_vertical_blank
*
* @brief
* check the current status of CRTC to check if we are in Vertical Blank
* regioneased" state
*
* @return
* true if currently in blank region, false otherwise
*
*****************************************************************************
*/
static bool dce110_timing_generator_is_in_vertical_blank(
struct timing_generator *tg)
{
uint32_t addr = 0;
uint32_t value = 0;
uint32_t field = 0;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
addr = CRTC_REG(mmCRTC_STATUS);
value = dm_read_reg(tg->ctx, addr);
field = get_reg_field_value(value, CRTC_STATUS, CRTC_V_BLANK);
return field == 1;
}
void dce110_timing_generator_set_early_control(
struct timing_generator *tg,
uint32_t early_cntl)
{
uint32_t regval;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t address = CRTC_REG(mmCRTC_CONTROL);
regval = dm_read_reg(tg->ctx, address);
set_reg_field_value(regval, early_cntl,
CRTC_CONTROL, CRTC_HBLANK_EARLY_CONTROL);
dm_write_reg(tg->ctx, address, regval);
}
/*
* Enable CRTC
* Enable CRTC - call ASIC Control Object to enable Timing generator.
*/
bool dce110_timing_generator_enable_crtc(struct timing_generator *tg)
{
enum bp_result result;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = 0;
/*
* 3 is used to make sure V_UPDATE occurs at the beginning of the first
* line of vertical front porch
*/
set_reg_field_value(
value,
0,
CRTC_MASTER_UPDATE_MODE,
MASTER_UPDATE_MODE);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE), value);
/* TODO: may want this on to catch underflow */
value = 0;
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_LOCK), value);
result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, true);
return result == BP_RESULT_OK;
}
void dce110_timing_generator_program_blank_color(
struct timing_generator *tg,
const struct tg_color *black_color)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t addr = CRTC_REG(mmCRTC_BLACK_COLOR);
uint32_t value = dm_read_reg(tg->ctx, addr);
set_reg_field_value(
value,
black_color->color_b_cb,
CRTC_BLACK_COLOR,
CRTC_BLACK_COLOR_B_CB);
set_reg_field_value(
value,
black_color->color_g_y,
CRTC_BLACK_COLOR,
CRTC_BLACK_COLOR_G_Y);
set_reg_field_value(
value,
black_color->color_r_cr,
CRTC_BLACK_COLOR,
CRTC_BLACK_COLOR_R_CR);
dm_write_reg(tg->ctx, addr, value);
}
/*
*****************************************************************************
* Function: disable_stereo
*
* @brief
* Disables active stereo on controller
* Frame Packing need to be disabled in vBlank or when CRTC not running
*****************************************************************************
*/
#if 0
@TODOSTEREO
static void disable_stereo(struct timing_generator *tg)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t addr = CRTC_REG(mmCRTC_3D_STRUCTURE_CONTROL);
uint32_t value = 0;
uint32_t test = 0;
uint32_t field = 0;
uint32_t struc_en = 0;
uint32_t struc_stereo_sel_ovr = 0;
value = dm_read_reg(tg->ctx, addr);
struc_en = get_reg_field_value(
value,
CRTC_3D_STRUCTURE_CONTROL,
CRTC_3D_STRUCTURE_EN);
struc_stereo_sel_ovr = get_reg_field_value(
value,
CRTC_3D_STRUCTURE_CONTROL,
CRTC_3D_STRUCTURE_STEREO_SEL_OVR);
/*
* When disabling Frame Packing in 2 step mode, we need to program both
* registers at the same frame
* Programming it in the beginning of VActive makes sure we are ok
*/
if (struc_en != 0 && struc_stereo_sel_ovr == 0) {
tg->funcs->wait_for_vblank(tg);
tg->funcs->wait_for_vactive(tg);
}
value = 0;
dm_write_reg(tg->ctx, addr, value);
addr = tg->regs[IDX_CRTC_STEREO_CONTROL];
dm_write_reg(tg->ctx, addr, value);
}
#endif
/*
* disable_crtc - call ASIC Control Object to disable Timing generator.
*/
bool dce110_timing_generator_disable_crtc(struct timing_generator *tg)
{
enum bp_result result;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, false);
/* Need to make sure stereo is disabled according to the DCE5.0 spec */
/*
* @TODOSTEREO call this when adding stereo support
* tg->funcs->disable_stereo(tg);
*/
return result == BP_RESULT_OK;
}
/*
* program_horz_count_by_2
* Programs DxCRTC_HORZ_COUNT_BY2_EN - 1 for DVI 30bpp mode, 0 otherwise
*/
static void program_horz_count_by_2(
struct timing_generator *tg,
const struct dc_crtc_timing *timing)
{
uint32_t regval;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
regval = dm_read_reg(tg->ctx,
CRTC_REG(mmCRTC_COUNT_CONTROL));
set_reg_field_value(regval, 0, CRTC_COUNT_CONTROL,
CRTC_HORZ_COUNT_BY2_EN);
if (timing->flags.HORZ_COUNT_BY_TWO)
set_reg_field_value(regval, 1, CRTC_COUNT_CONTROL,
CRTC_HORZ_COUNT_BY2_EN);
dm_write_reg(tg->ctx,
CRTC_REG(mmCRTC_COUNT_CONTROL), regval);
}
/*
* program_timing_generator
* Program CRTC Timing Registers - DxCRTC_H_*, DxCRTC_V_*, Pixel repetition.
* Call ASIC Control Object to program Timings.
*/
bool dce110_timing_generator_program_timing_generator(
struct timing_generator *tg,
const struct dc_crtc_timing *dc_crtc_timing)
{
enum bp_result result;
struct bp_hw_crtc_timing_parameters bp_params;
struct dc_crtc_timing patched_crtc_timing;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t vsync_offset = dc_crtc_timing->v_border_bottom +
dc_crtc_timing->v_front_porch;
uint32_t v_sync_start =dc_crtc_timing->v_addressable + vsync_offset;
uint32_t hsync_offset = dc_crtc_timing->h_border_right +
dc_crtc_timing->h_front_porch;
uint32_t h_sync_start = dc_crtc_timing->h_addressable + hsync_offset;
memset(&bp_params, 0, sizeof(struct bp_hw_crtc_timing_parameters));
/* Due to an asic bug we need to apply the Front Porch workaround prior
* to programming the timing.
*/
patched_crtc_timing = *dc_crtc_timing;
dce110_timing_generator_apply_front_porch_workaround(tg, &patched_crtc_timing);
bp_params.controller_id = tg110->controller_id;
bp_params.h_total = patched_crtc_timing.h_total;
bp_params.h_addressable =
patched_crtc_timing.h_addressable;
bp_params.v_total = patched_crtc_timing.v_total;
bp_params.v_addressable = patched_crtc_timing.v_addressable;
bp_params.h_sync_start = h_sync_start;
bp_params.h_sync_width = patched_crtc_timing.h_sync_width;
bp_params.v_sync_start = v_sync_start;
bp_params.v_sync_width = patched_crtc_timing.v_sync_width;
/* Set overscan */
bp_params.h_overscan_left =
patched_crtc_timing.h_border_left;
bp_params.h_overscan_right =
patched_crtc_timing.h_border_right;
bp_params.v_overscan_top = patched_crtc_timing.v_border_top;
bp_params.v_overscan_bottom =
patched_crtc_timing.v_border_bottom;
/* Set flags */
if (patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY == 1)
bp_params.flags.HSYNC_POSITIVE_POLARITY = 1;
if (patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY == 1)
bp_params.flags.VSYNC_POSITIVE_POLARITY = 1;
if (patched_crtc_timing.flags.INTERLACE == 1)
bp_params.flags.INTERLACE = 1;
if (patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1)
bp_params.flags.HORZ_COUNT_BY_TWO = 1;
result = tg->bp->funcs->program_crtc_timing(tg->bp, &bp_params);
program_horz_count_by_2(tg, &patched_crtc_timing);
tg110->base.funcs->enable_advanced_request(tg, true, &patched_crtc_timing);
/* Enable stereo - only when we need to pack 3D frame. Other types
* of stereo handled in explicit call */
return result == BP_RESULT_OK;
}
/*
*****************************************************************************
* Function: set_drr
*
* @brief
* Program dynamic refresh rate registers m_DxCRTC_V_TOTAL_*.
*
* @param [in] pHwCrtcTiming: point to H
* wCrtcTiming struct
*****************************************************************************
*/
void dce110_timing_generator_set_drr(
struct timing_generator *tg,
const struct drr_params *params)
{
/* register values */
uint32_t v_total_min = 0;
uint32_t v_total_max = 0;
uint32_t v_total_cntl = 0;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t addr = 0;
addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
v_total_min = dm_read_reg(tg->ctx, addr);
addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
v_total_max = dm_read_reg(tg->ctx, addr);
addr = CRTC_REG(mmCRTC_V_TOTAL_CONTROL);
v_total_cntl = dm_read_reg(tg->ctx, addr);
if (params != NULL &&
params->vertical_total_max > 0 &&
params->vertical_total_min > 0) {
set_reg_field_value(v_total_max,
params->vertical_total_max - 1,
CRTC_V_TOTAL_MAX,
CRTC_V_TOTAL_MAX);
set_reg_field_value(v_total_min,
params->vertical_total_min - 1,
CRTC_V_TOTAL_MIN,
CRTC_V_TOTAL_MIN);
set_reg_field_value(v_total_cntl,
1,
CRTC_V_TOTAL_CONTROL,
CRTC_V_TOTAL_MIN_SEL);
set_reg_field_value(v_total_cntl,
1,
CRTC_V_TOTAL_CONTROL,
CRTC_V_TOTAL_MAX_SEL);
set_reg_field_value(v_total_cntl,
0,
CRTC_V_TOTAL_CONTROL,
CRTC_FORCE_LOCK_ON_EVENT);
set_reg_field_value(v_total_cntl,
0,
CRTC_V_TOTAL_CONTROL,
CRTC_FORCE_LOCK_TO_MASTER_VSYNC);
set_reg_field_value(v_total_cntl,
0,
CRTC_V_TOTAL_CONTROL,
CRTC_SET_V_TOTAL_MIN_MASK_EN);
set_reg_field_value(v_total_cntl,
0,
CRTC_V_TOTAL_CONTROL,
CRTC_SET_V_TOTAL_MIN_MASK);
} else {
set_reg_field_value(v_total_cntl,
0,
CRTC_V_TOTAL_CONTROL,
CRTC_SET_V_TOTAL_MIN_MASK);
set_reg_field_value(v_total_cntl,
0,
CRTC_V_TOTAL_CONTROL,
CRTC_V_TOTAL_MIN_SEL);
set_reg_field_value(v_total_cntl,
0,
CRTC_V_TOTAL_CONTROL,
CRTC_V_TOTAL_MAX_SEL);
set_reg_field_value(v_total_min,
0,
CRTC_V_TOTAL_MIN,
CRTC_V_TOTAL_MIN);
set_reg_field_value(v_total_max,
0,
CRTC_V_TOTAL_MAX,
CRTC_V_TOTAL_MAX);
set_reg_field_value(v_total_cntl,
0,
CRTC_V_TOTAL_CONTROL,
CRTC_FORCE_LOCK_ON_EVENT);
set_reg_field_value(v_total_cntl,
0,
CRTC_V_TOTAL_CONTROL,
CRTC_FORCE_LOCK_TO_MASTER_VSYNC);
}
addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
dm_write_reg(tg->ctx, addr, v_total_min);
addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
dm_write_reg(tg->ctx, addr, v_total_max);
addr = CRTC_REG(mmCRTC_V_TOTAL_CONTROL);
dm_write_reg(tg->ctx, addr, v_total_cntl);
}
void dce110_timing_generator_set_static_screen_control(
struct timing_generator *tg,
uint32_t event_triggers,
uint32_t num_frames)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t static_screen_cntl = 0;
uint32_t addr = 0;
// By register spec, it only takes 8 bit value
if (num_frames > 0xFF)
num_frames = 0xFF;
addr = CRTC_REG(mmCRTC_STATIC_SCREEN_CONTROL);
static_screen_cntl = dm_read_reg(tg->ctx, addr);
set_reg_field_value(static_screen_cntl,
event_triggers,
CRTC_STATIC_SCREEN_CONTROL,
CRTC_STATIC_SCREEN_EVENT_MASK);
set_reg_field_value(static_screen_cntl,
num_frames,
CRTC_STATIC_SCREEN_CONTROL,
CRTC_STATIC_SCREEN_FRAME_COUNT);
dm_write_reg(tg->ctx, addr, static_screen_cntl);
}
/*
* get_vblank_counter
*
* @brief
* Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
* holds the counter of frames.
*
* @param
* struct timing_generator *tg - [in] timing generator which controls the
* desired CRTC
*
* @return
* Counter of frames, which should equal to number of vblanks.
*/
uint32_t dce110_timing_generator_get_vblank_counter(struct timing_generator *tg)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t addr = CRTC_REG(mmCRTC_STATUS_FRAME_COUNT);
uint32_t value = dm_read_reg(tg->ctx, addr);
uint32_t field = get_reg_field_value(
value, CRTC_STATUS_FRAME_COUNT, CRTC_FRAME_COUNT);
return field;
}
/*
*****************************************************************************
* Function: dce110_timing_generator_get_position
*
* @brief
* Returns CRTC vertical/horizontal counters
*
* @param [out] position
*****************************************************************************
*/
void dce110_timing_generator_get_position(struct timing_generator *tg,
struct crtc_position *position)
{
uint32_t value;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_STATUS_POSITION));
position->horizontal_count = get_reg_field_value(
value,
CRTC_STATUS_POSITION,
CRTC_HORZ_COUNT);
position->vertical_count = get_reg_field_value(
value,
CRTC_STATUS_POSITION,
CRTC_VERT_COUNT);
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_NOM_VERT_POSITION));
position->nominal_vcount = get_reg_field_value(
value,
CRTC_NOM_VERT_POSITION,
CRTC_VERT_COUNT_NOM);
}
/*
*****************************************************************************
* Function: get_crtc_scanoutpos
*
* @brief
* Returns CRTC vertical/horizontal counters
*
* @param [out] vpos, hpos
*****************************************************************************
*/
void dce110_timing_generator_get_crtc_scanoutpos(
struct timing_generator *tg,
uint32_t *v_blank_start,
uint32_t *v_blank_end,
uint32_t *h_position,
uint32_t *v_position)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
struct crtc_position position;
uint32_t value = dm_read_reg(tg->ctx,
CRTC_REG(mmCRTC_V_BLANK_START_END));
*v_blank_start = get_reg_field_value(value,
CRTC_V_BLANK_START_END,
CRTC_V_BLANK_START);
*v_blank_end = get_reg_field_value(value,
CRTC_V_BLANK_START_END,
CRTC_V_BLANK_END);
dce110_timing_generator_get_position(
tg, &position);
*h_position = position.horizontal_count;
*v_position = position.vertical_count;
}
/* TODO: is it safe to assume that mask/shift of Primary and Underlay
* are the same?
* For example: today CRTC_H_TOTAL == CRTCV_H_TOTAL but is it always
* guaranteed? */
void dce110_timing_generator_program_blanking(
struct timing_generator *tg,
const struct dc_crtc_timing *timing)
{
uint32_t vsync_offset = timing->v_border_bottom +
timing->v_front_porch;
uint32_t v_sync_start =timing->v_addressable + vsync_offset;
uint32_t hsync_offset = timing->h_border_right +
timing->h_front_porch;
uint32_t h_sync_start = timing->h_addressable + hsync_offset;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
struct dc_context *ctx = tg->ctx;
uint32_t value = 0;
uint32_t addr = 0;
uint32_t tmp = 0;
addr = CRTC_REG(mmCRTC_H_TOTAL);
value = dm_read_reg(ctx, addr);
set_reg_field_value(
value,
timing->h_total - 1,
CRTC_H_TOTAL,
CRTC_H_TOTAL);
dm_write_reg(ctx, addr, value);
addr = CRTC_REG(mmCRTC_V_TOTAL);
value = dm_read_reg(ctx, addr);
set_reg_field_value(
value,
timing->v_total - 1,
CRTC_V_TOTAL,
CRTC_V_TOTAL);
dm_write_reg(ctx, addr, value);
/* In case of V_TOTAL_CONTROL is on, make sure V_TOTAL_MAX and
* V_TOTAL_MIN are equal to V_TOTAL.
*/
addr = CRTC_REG(mmCRTC_V_TOTAL_MAX);
value = dm_read_reg(ctx, addr);
set_reg_field_value(
value,
timing->v_total - 1,
CRTC_V_TOTAL_MAX,
CRTC_V_TOTAL_MAX);
dm_write_reg(ctx, addr, value);
addr = CRTC_REG(mmCRTC_V_TOTAL_MIN);
value = dm_read_reg(ctx, addr);
set_reg_field_value(
value,
timing->v_total - 1,
CRTC_V_TOTAL_MIN,
CRTC_V_TOTAL_MIN);
dm_write_reg(ctx, addr, value);
addr = CRTC_REG(mmCRTC_H_BLANK_START_END);
value = dm_read_reg(ctx, addr);
tmp = timing->h_total -
(h_sync_start + timing->h_border_left);
set_reg_field_value(
value,
tmp,
CRTC_H_BLANK_START_END,
CRTC_H_BLANK_END);
tmp = tmp + timing->h_addressable +
timing->h_border_left + timing->h_border_right;
set_reg_field_value(
value,
tmp,
CRTC_H_BLANK_START_END,
CRTC_H_BLANK_START);
dm_write_reg(ctx, addr, value);
addr = CRTC_REG(mmCRTC_V_BLANK_START_END);
value = dm_read_reg(ctx, addr);
tmp = timing->v_total - (v_sync_start + timing->v_border_top);
set_reg_field_value(
value,
tmp,
CRTC_V_BLANK_START_END,
CRTC_V_BLANK_END);
tmp = tmp + timing->v_addressable + timing->v_border_top +
timing->v_border_bottom;
set_reg_field_value(
value,
tmp,
CRTC_V_BLANK_START_END,
CRTC_V_BLANK_START);
dm_write_reg(ctx, addr, value);
}
void dce110_timing_generator_set_test_pattern(
struct timing_generator *tg,
/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
* because this is not DP-specific (which is probably somewhere in DP
* encoder) */
enum controller_dp_test_pattern test_pattern,
enum dc_color_depth color_depth)
{
struct dc_context *ctx = tg->ctx;
uint32_t value;
uint32_t addr;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
enum test_pattern_color_format bit_depth;
enum test_pattern_dyn_range dyn_range;
enum test_pattern_mode mode;
/* color ramp generator mixes 16-bits color */
uint32_t src_bpc = 16;
/* requested bpc */
uint32_t dst_bpc;
uint32_t index;
/* RGB values of the color bars.
* Produce two RGB colors: RGB0 - white (all Fs)
* and RGB1 - black (all 0s)
* (three RGB components for two colors)
*/
uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
0x0000, 0x0000};
/* dest color (converted to the specified color format) */
uint16_t dst_color[6];
uint32_t inc_base;
/* translate to bit depth */
switch (color_depth) {
case COLOR_DEPTH_666:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
break;
case COLOR_DEPTH_888:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
break;
case COLOR_DEPTH_101010:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
break;
case COLOR_DEPTH_121212:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
break;
default:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
break;
}
switch (test_pattern) {
case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
{
dyn_range = (test_pattern ==
CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
TEST_PATTERN_DYN_RANGE_CEA :
TEST_PATTERN_DYN_RANGE_VESA);
mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
value = 0;
addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
set_reg_field_value(
value,
6,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_VRES);
set_reg_field_value(
value,
6,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_HRES);
dm_write_reg(ctx, addr, value);
addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
value = 0;
set_reg_field_value(
value,
1,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_EN);
set_reg_field_value(
value,
mode,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_MODE);
set_reg_field_value(
value,
dyn_range,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_DYNAMIC_RANGE);
set_reg_field_value(
value,
bit_depth,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_COLOR_FORMAT);
dm_write_reg(ctx, addr, value);
}
break;
case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
{
mode = (test_pattern ==
CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
TEST_PATTERN_MODE_VERTICALBARS :
TEST_PATTERN_MODE_HORIZONTALBARS);
switch (bit_depth) {
case TEST_PATTERN_COLOR_FORMAT_BPC_6:
dst_bpc = 6;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_8:
dst_bpc = 8;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_10:
dst_bpc = 10;
break;
default:
dst_bpc = 8;
break;
}
/* adjust color to the required colorFormat */
for (index = 0; index < 6; index++) {
/* dst = 2^dstBpc * src / 2^srcBpc = src >>
* (srcBpc - dstBpc);
*/
dst_color[index] =
src_color[index] >> (src_bpc - dst_bpc);
/* CRTC_TEST_PATTERN_DATA has 16 bits,
* lowest 6 are hardwired to ZERO
* color bits should be left aligned aligned to MSB
* XXXXXXXXXX000000 for 10 bit,
* XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
*/
dst_color[index] <<= (16 - dst_bpc);
}
value = 0;
addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
dm_write_reg(ctx, addr, value);
/* We have to write the mask before data, similar to pipeline.
* For example, for 8 bpc, if we want RGB0 to be magenta,
* and RGB1 to be cyan,
* we need to make 7 writes:
* MASK DATA
* 000001 00000000 00000000 set mask to R0
* 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0
* 000100 00000000 00000000 G0 0, 0x0000, set mask to B0
* 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1
* 010000 00000000 00000000 R1 0, 0x0000, set mask to G1
* 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1
* 100000 11111111 00000000 B1 255, 0xFF00
*
* we will make a loop of 6 in which we prepare the mask,
* then write, then prepare the color for next write.
* first iteration will write mask only,
* but each next iteration color prepared in
* previous iteration will be written within new mask,
* the last component will written separately,
* mask is not changing between 6th and 7th write
* and color will be prepared by last iteration
*/
/* write color, color values mask in CRTC_TEST_PATTERN_MASK
* is B1, G1, R1, B0, G0, R0
*/
value = 0;
addr = CRTC_REG(mmCRTC_TEST_PATTERN_COLOR);
for (index = 0; index < 6; index++) {
/* prepare color mask, first write PATTERN_DATA
* will have all zeros
*/
set_reg_field_value(
value,
(1 << index),
CRTC_TEST_PATTERN_COLOR,
CRTC_TEST_PATTERN_MASK);
/* write color component */
dm_write_reg(ctx, addr, value);
/* prepare next color component,
* will be written in the next iteration
*/
set_reg_field_value(
value,
dst_color[index],
CRTC_TEST_PATTERN_COLOR,
CRTC_TEST_PATTERN_DATA);
}
/* write last color component,
* it's been already prepared in the loop
*/
dm_write_reg(ctx, addr, value);
/* enable test pattern */
addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
value = 0;
set_reg_field_value(
value,
1,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_EN);
set_reg_field_value(
value,
mode,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_MODE);
set_reg_field_value(
value,
0,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_DYNAMIC_RANGE);
set_reg_field_value(
value,
bit_depth,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_COLOR_FORMAT);
dm_write_reg(ctx, addr, value);
}
break;
case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
{
mode = (bit_depth ==
TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
TEST_PATTERN_MODE_DUALRAMP_RGB :
TEST_PATTERN_MODE_SINGLERAMP_RGB);
switch (bit_depth) {
case TEST_PATTERN_COLOR_FORMAT_BPC_6:
dst_bpc = 6;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_8:
dst_bpc = 8;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_10:
dst_bpc = 10;
break;
default:
dst_bpc = 8;
break;
}
/* increment for the first ramp for one color gradation
* 1 gradation for 6-bit color is 2^10
* gradations in 16-bit color
*/
inc_base = (src_bpc - dst_bpc);
value = 0;
addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS);
switch (bit_depth) {
case TEST_PATTERN_COLOR_FORMAT_BPC_6:
{
set_reg_field_value(
value,
inc_base,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_INC0);
set_reg_field_value(
value,
0,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_INC1);
set_reg_field_value(
value,
6,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_HRES);
set_reg_field_value(
value,
6,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_VRES);
set_reg_field_value(
value,
0,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_RAMP0_OFFSET);
}
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_8:
{
set_reg_field_value(
value,
inc_base,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_INC0);
set_reg_field_value(
value,
0,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_INC1);
set_reg_field_value(
value,
8,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_HRES);
set_reg_field_value(
value,
6,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_VRES);
set_reg_field_value(
value,
0,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_RAMP0_OFFSET);
}
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_10:
{
set_reg_field_value(
value,
inc_base,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_INC0);
set_reg_field_value(
value,
inc_base + 2,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_INC1);
set_reg_field_value(
value,
8,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_HRES);
set_reg_field_value(
value,
5,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_VRES);
set_reg_field_value(
value,
384 << 6,
CRTC_TEST_PATTERN_PARAMETERS,
CRTC_TEST_PATTERN_RAMP0_OFFSET);
}
break;
default:
break;
}
dm_write_reg(ctx, addr, value);
value = 0;
addr = CRTC_REG(mmCRTC_TEST_PATTERN_COLOR);
dm_write_reg(ctx, addr, value);
/* enable test pattern */
addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL);
value = 0;
set_reg_field_value(
value,
1,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_EN);
set_reg_field_value(
value,
mode,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_MODE);
set_reg_field_value(
value,
0,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_DYNAMIC_RANGE);
/* add color depth translation here */
set_reg_field_value(
value,
bit_depth,
CRTC_TEST_PATTERN_CONTROL,
CRTC_TEST_PATTERN_COLOR_FORMAT);
dm_write_reg(ctx, addr, value);
}
break;
case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
{
value = 0;
dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL), value);
dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_COLOR), value);
dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS),
value);
}
break;
default:
break;
}
}
/*
* dce110_timing_generator_validate_timing
* The timing generators support a maximum display size of is 8192 x 8192 pixels,
* including both active display and blanking periods. Check H Total and V Total.
*/
bool dce110_timing_generator_validate_timing(
struct timing_generator *tg,
const struct dc_crtc_timing *timing,
enum signal_type signal)
{
uint32_t h_blank;
uint32_t h_back_porch, hsync_offset, h_sync_start;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
ASSERT(timing != NULL);
if (!timing)
return false;
hsync_offset = timing->h_border_right + timing->h_front_porch;
h_sync_start = timing->h_addressable + hsync_offset;
/* Currently we don't support 3D, so block all 3D timings */
if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE)
return false;
/* Temporarily blocking interlacing mode until it's supported */
if (timing->flags.INTERLACE == 1)
return false;
/* Check maximum number of pixels supported by Timing Generator
* (Currently will never fail, in order to fail needs display which
* needs more than 8192 horizontal and
* more than 8192 vertical total pixels)
*/
if (timing->h_total > tg110->max_h_total ||
timing->v_total > tg110->max_v_total)
return false;
h_blank = (timing->h_total - timing->h_addressable -
timing->h_border_right -
timing->h_border_left);
if (h_blank < tg110->min_h_blank)
return false;
if (timing->h_front_porch < tg110->min_h_front_porch)
return false;
h_back_porch = h_blank - (h_sync_start -
timing->h_addressable -
timing->h_border_right -
timing->h_sync_width);
if (h_back_porch < tg110->min_h_back_porch)
return false;
return true;
}
/*
* Wait till we are at the beginning of VBlank.
*/
void dce110_timing_generator_wait_for_vblank(struct timing_generator *tg)
{
/* We want to catch beginning of VBlank here, so if the first try are
* in VBlank, we might be very close to Active, in this case wait for
* another frame
*/
while (dce110_timing_generator_is_in_vertical_blank(tg)) {
if (!dce110_timing_generator_is_counter_moving(tg)) {
/* error - no point to wait if counter is not moving */
break;
}
}
while (!dce110_timing_generator_is_in_vertical_blank(tg)) {
if (!dce110_timing_generator_is_counter_moving(tg)) {
/* error - no point to wait if counter is not moving */
break;
}
}
}
/*
* Wait till we are in VActive (anywhere in VActive)
*/
void dce110_timing_generator_wait_for_vactive(struct timing_generator *tg)
{
while (dce110_timing_generator_is_in_vertical_blank(tg)) {
if (!dce110_timing_generator_is_counter_moving(tg)) {
/* error - no point to wait if counter is not moving */
break;
}
}
}
/*
*****************************************************************************
* Function: dce110_timing_generator_setup_global_swap_lock
*
* @brief
* Setups Global Swap Lock group for current pipe
* Pipe can join or leave GSL group, become a TimingServer or TimingClient
*
* @param [in] gsl_params: setup data
*****************************************************************************
*/
void dce110_timing_generator_setup_global_swap_lock(
struct timing_generator *tg,
const struct dcp_gsl_params *gsl_params)
{
uint32_t value;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t address = DCP_REG(mmDCP_GSL_CONTROL);
uint32_t check_point = FLIP_READY_BACK_LOOKUP;
value = dm_read_reg(tg->ctx, address);
/* This pipe will belong to GSL Group zero. */
set_reg_field_value(value,
1,
DCP_GSL_CONTROL,
DCP_GSL0_EN);
set_reg_field_value(value,
gsl_params->gsl_master == tg->inst,
DCP_GSL_CONTROL,
DCP_GSL_MASTER_EN);
set_reg_field_value(value,
HFLIP_READY_DELAY,
DCP_GSL_CONTROL,
DCP_GSL_HSYNC_FLIP_FORCE_DELAY);
/* Keep signal low (pending high) during 6 lines.
* Also defines minimum interval before re-checking signal. */
set_reg_field_value(value,
HFLIP_CHECK_DELAY,
DCP_GSL_CONTROL,
DCP_GSL_HSYNC_FLIP_CHECK_DELAY);
dm_write_reg(tg->ctx, CRTC_REG(mmDCP_GSL_CONTROL), value);
value = 0;
set_reg_field_value(value,
gsl_params->gsl_master,
DCIO_GSL0_CNTL,
DCIO_GSL0_VSYNC_SEL);
set_reg_field_value(value,
0,
DCIO_GSL0_CNTL,
DCIO_GSL0_TIMING_SYNC_SEL);
set_reg_field_value(value,
0,
DCIO_GSL0_CNTL,
DCIO_GSL0_GLOBAL_UNLOCK_SEL);
dm_write_reg(tg->ctx, CRTC_REG(mmDCIO_GSL0_CNTL), value);
{
uint32_t value_crtc_vtotal;
value_crtc_vtotal = dm_read_reg(tg->ctx,
CRTC_REG(mmCRTC_V_TOTAL));
set_reg_field_value(value,
0,/* DCP_GSL_PURPOSE_SURFACE_FLIP */
DCP_GSL_CONTROL,
DCP_GSL_SYNC_SOURCE);
/* Checkpoint relative to end of frame */
check_point = get_reg_field_value(value_crtc_vtotal,
CRTC_V_TOTAL,
CRTC_V_TOTAL);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_GSL_WINDOW), 0);
}
set_reg_field_value(value,
1,
DCP_GSL_CONTROL,
DCP_GSL_DELAY_SURFACE_UPDATE_PENDING);
dm_write_reg(tg->ctx, address, value);
/********************************************************************/
address = CRTC_REG(mmCRTC_GSL_CONTROL);
value = dm_read_reg(tg->ctx, address);
set_reg_field_value(value,
check_point - FLIP_READY_BACK_LOOKUP,
CRTC_GSL_CONTROL,
CRTC_GSL_CHECK_LINE_NUM);
set_reg_field_value(value,
VFLIP_READY_DELAY,
CRTC_GSL_CONTROL,
CRTC_GSL_FORCE_DELAY);
dm_write_reg(tg->ctx, address, value);
}
void dce110_timing_generator_tear_down_global_swap_lock(
struct timing_generator *tg)
{
/* Clear all the register writes done by
* dce110_timing_generator_setup_global_swap_lock
*/
uint32_t value;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t address = DCP_REG(mmDCP_GSL_CONTROL);
value = 0;
/* This pipe will belong to GSL Group zero. */
/* Settig HW default values from reg specs */
set_reg_field_value(value,
0,
DCP_GSL_CONTROL,
DCP_GSL0_EN);
set_reg_field_value(value,
0,
DCP_GSL_CONTROL,
DCP_GSL_MASTER_EN);
set_reg_field_value(value,
0x2,
DCP_GSL_CONTROL,
DCP_GSL_HSYNC_FLIP_FORCE_DELAY);
set_reg_field_value(value,
0x6,
DCP_GSL_CONTROL,
DCP_GSL_HSYNC_FLIP_CHECK_DELAY);
/* Restore DCP_GSL_PURPOSE_SURFACE_FLIP */
{
dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_V_TOTAL));
set_reg_field_value(value,
0,
DCP_GSL_CONTROL,
DCP_GSL_SYNC_SOURCE);
}
set_reg_field_value(value,
0,
DCP_GSL_CONTROL,
DCP_GSL_DELAY_SURFACE_UPDATE_PENDING);
dm_write_reg(tg->ctx, address, value);
/********************************************************************/
address = CRTC_REG(mmCRTC_GSL_CONTROL);
value = 0;
set_reg_field_value(value,
0,
CRTC_GSL_CONTROL,
CRTC_GSL_CHECK_LINE_NUM);
set_reg_field_value(value,
0x2,
CRTC_GSL_CONTROL,
CRTC_GSL_FORCE_DELAY);
dm_write_reg(tg->ctx, address, value);
}
/*
*****************************************************************************
* Function: is_counter_moving
*
* @brief
* check if the timing generator is currently going
*
* @return
* true if currently going, false if currently paused or stopped.
*
*****************************************************************************
*/
bool dce110_timing_generator_is_counter_moving(struct timing_generator *tg)
{
struct crtc_position position1, position2;
tg->funcs->get_position(tg, &position1);
tg->funcs->get_position(tg, &position2);
if (position1.horizontal_count == position2.horizontal_count &&
position1.vertical_count == position2.vertical_count)
return false;
else
return true;
}
void dce110_timing_generator_enable_advanced_request(
struct timing_generator *tg,
bool enable,
const struct dc_crtc_timing *timing)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t addr = CRTC_REG(mmCRTC_START_LINE_CONTROL);
uint32_t value = dm_read_reg(tg->ctx, addr);
if (enable) {
set_reg_field_value(
value,
0,
CRTC_START_LINE_CONTROL,
CRTC_LEGACY_REQUESTOR_EN);
} else {
set_reg_field_value(
value,
1,
CRTC_START_LINE_CONTROL,
CRTC_LEGACY_REQUESTOR_EN);
}
if ((timing->v_sync_width + timing->v_front_porch) <= 3) {
set_reg_field_value(
value,
3,
CRTC_START_LINE_CONTROL,
CRTC_ADVANCED_START_LINE_POSITION);
set_reg_field_value(
value,
0,
CRTC_START_LINE_CONTROL,
CRTC_PREFETCH_EN);
} else {
set_reg_field_value(
value,
4,
CRTC_START_LINE_CONTROL,
CRTC_ADVANCED_START_LINE_POSITION);
set_reg_field_value(
value,
1,
CRTC_START_LINE_CONTROL,
CRTC_PREFETCH_EN);
}
set_reg_field_value(
value,
1,
CRTC_START_LINE_CONTROL,
CRTC_PROGRESSIVE_START_LINE_EARLY);
set_reg_field_value(
value,
1,
CRTC_START_LINE_CONTROL,
CRTC_INTERLACE_START_LINE_EARLY);
dm_write_reg(tg->ctx, addr, value);
}
/*TODO: Figure out if we need this function. */
void dce110_timing_generator_set_lock_master(struct timing_generator *tg,
bool lock)
{
struct dc_context *ctx = tg->ctx;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t addr = CRTC_REG(mmCRTC_MASTER_UPDATE_LOCK);
uint32_t value = dm_read_reg(ctx, addr);
set_reg_field_value(
value,
lock ? 1 : 0,
CRTC_MASTER_UPDATE_LOCK,
MASTER_UPDATE_LOCK);
dm_write_reg(ctx, addr, value);
}
void dce110_timing_generator_enable_reset_trigger(
struct timing_generator *tg,
int source_tg_inst)
{
uint32_t value;
uint32_t rising_edge = 0;
uint32_t falling_edge = 0;
enum trigger_source_select trig_src_select = TRIGGER_SOURCE_SELECT_LOGIC_ZERO;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
/* Setup trigger edge */
{
uint32_t pol_value = dm_read_reg(tg->ctx,
CRTC_REG(mmCRTC_V_SYNC_A_CNTL));
/* Register spec has reversed definition:
* 0 for positive, 1 for negative */
if (get_reg_field_value(pol_value,
CRTC_V_SYNC_A_CNTL,
CRTC_V_SYNC_A_POL) == 0) {
rising_edge = 1;
} else {
falling_edge = 1;
}
}
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
trig_src_select = TRIGGER_SOURCE_SELECT_GSL_GROUP0;
set_reg_field_value(value,
trig_src_select,
CRTC_TRIGB_CNTL,
CRTC_TRIGB_SOURCE_SELECT);
set_reg_field_value(value,
TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
CRTC_TRIGB_CNTL,
CRTC_TRIGB_POLARITY_SELECT);
set_reg_field_value(value,
rising_edge,
CRTC_TRIGB_CNTL,
CRTC_TRIGB_RISING_EDGE_DETECT_CNTL);
set_reg_field_value(value,
falling_edge,
CRTC_TRIGB_CNTL,
CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL);
set_reg_field_value(value,
0, /* send every signal */
CRTC_TRIGB_CNTL,
CRTC_TRIGB_FREQUENCY_SELECT);
set_reg_field_value(value,
0, /* no delay */
CRTC_TRIGB_CNTL,
CRTC_TRIGB_DELAY);
set_reg_field_value(value,
1, /* clear trigger status */
CRTC_TRIGB_CNTL,
CRTC_TRIGB_CLEAR);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
/**************************************************************/
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
set_reg_field_value(value,
2, /* force H count to H_TOTAL and V count to V_TOTAL */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_MODE);
set_reg_field_value(value,
1, /* TriggerB - we never use TriggerA */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_TRIG_SEL);
set_reg_field_value(value,
1, /* clear trigger status */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_CLEAR);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
}
void dce110_timing_generator_enable_crtc_reset(
struct timing_generator *tg,
int source_tg_inst,
struct crtc_trigger_info *crtc_tp)
{
uint32_t value = 0;
uint32_t rising_edge = 0;
uint32_t falling_edge = 0;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
/* Setup trigger edge */
switch (crtc_tp->event) {
case CRTC_EVENT_VSYNC_RISING:
rising_edge = 1;
break;
case CRTC_EVENT_VSYNC_FALLING:
falling_edge = 1;
break;
}
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
set_reg_field_value(value,
source_tg_inst,
CRTC_TRIGB_CNTL,
CRTC_TRIGB_SOURCE_SELECT);
set_reg_field_value(value,
TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
CRTC_TRIGB_CNTL,
CRTC_TRIGB_POLARITY_SELECT);
set_reg_field_value(value,
rising_edge,
CRTC_TRIGB_CNTL,
CRTC_TRIGB_RISING_EDGE_DETECT_CNTL);
set_reg_field_value(value,
falling_edge,
CRTC_TRIGB_CNTL,
CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL);
set_reg_field_value(value,
1, /* clear trigger status */
CRTC_TRIGB_CNTL,
CRTC_TRIGB_CLEAR);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
/**************************************************************/
switch (crtc_tp->delay) {
case TRIGGER_DELAY_NEXT_LINE:
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
set_reg_field_value(value,
0, /* force H count to H_TOTAL and V count to V_TOTAL */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_MODE);
set_reg_field_value(value,
0, /* TriggerB - we never use TriggerA */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_TRIG_SEL);
set_reg_field_value(value,
1, /* clear trigger status */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_CLEAR);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
set_reg_field_value(value,
1,
CRTC_VERT_SYNC_CONTROL,
CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
set_reg_field_value(value,
2,
CRTC_VERT_SYNC_CONTROL,
CRTC_AUTO_FORCE_VSYNC_MODE);
break;
case TRIGGER_DELAY_NEXT_PIXEL:
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
set_reg_field_value(value,
1,
CRTC_VERT_SYNC_CONTROL,
CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
set_reg_field_value(value,
0,
CRTC_VERT_SYNC_CONTROL,
CRTC_AUTO_FORCE_VSYNC_MODE);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL), value);
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
set_reg_field_value(value,
2, /* force H count to H_TOTAL and V count to V_TOTAL */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_MODE);
set_reg_field_value(value,
1, /* TriggerB - we never use TriggerA */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_TRIG_SEL);
set_reg_field_value(value,
1, /* clear trigger status */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_CLEAR);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
break;
}
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE));
set_reg_field_value(value,
2,
CRTC_MASTER_UPDATE_MODE,
MASTER_UPDATE_MODE);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE), value);
}
void dce110_timing_generator_disable_reset_trigger(
struct timing_generator *tg)
{
uint32_t value;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
set_reg_field_value(value,
0, /* force counter now mode is disabled */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_MODE);
set_reg_field_value(value,
1, /* clear trigger status */
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_CLEAR);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value);
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
set_reg_field_value(value,
1,
CRTC_VERT_SYNC_CONTROL,
CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR);
set_reg_field_value(value,
0,
CRTC_VERT_SYNC_CONTROL,
CRTC_AUTO_FORCE_VSYNC_MODE);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL), value);
/********************************************************************/
value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL));
set_reg_field_value(value,
TRIGGER_SOURCE_SELECT_LOGIC_ZERO,
CRTC_TRIGB_CNTL,
CRTC_TRIGB_SOURCE_SELECT);
set_reg_field_value(value,
TRIGGER_POLARITY_SELECT_LOGIC_ZERO,
CRTC_TRIGB_CNTL,
CRTC_TRIGB_POLARITY_SELECT);
set_reg_field_value(value,
1, /* clear trigger status */
CRTC_TRIGB_CNTL,
CRTC_TRIGB_CLEAR);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value);
}
/*
*****************************************************************************
* @brief
* Checks whether CRTC triggered reset occurred
*
* @return
* true if triggered reset occurred, false otherwise
*****************************************************************************
*/
bool dce110_timing_generator_did_triggered_reset_occur(
struct timing_generator *tg)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = dm_read_reg(tg->ctx,
CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL));
uint32_t value1 = dm_read_reg(tg->ctx,
CRTC_REG(mmCRTC_VERT_SYNC_CONTROL));
bool force = get_reg_field_value(value,
CRTC_FORCE_COUNT_NOW_CNTL,
CRTC_FORCE_COUNT_NOW_OCCURRED) != 0;
bool vert_sync = get_reg_field_value(value1,
CRTC_VERT_SYNC_CONTROL,
CRTC_FORCE_VSYNC_NEXT_LINE_OCCURRED) != 0;
return (force || vert_sync);
}
/*
* dce110_timing_generator_disable_vga
* Turn OFF VGA Mode and Timing - DxVGA_CONTROL
* VGA Mode and VGA Timing is used by VBIOS on CRT Monitors;
*/
void dce110_timing_generator_disable_vga(
struct timing_generator *tg)
{
uint32_t addr = 0;
uint32_t value = 0;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
switch (tg110->controller_id) {
case CONTROLLER_ID_D0:
addr = mmD1VGA_CONTROL;
break;
case CONTROLLER_ID_D1:
addr = mmD2VGA_CONTROL;
break;
case CONTROLLER_ID_D2:
addr = mmD3VGA_CONTROL;
break;
case CONTROLLER_ID_D3:
addr = mmD4VGA_CONTROL;
break;
case CONTROLLER_ID_D4:
addr = mmD5VGA_CONTROL;
break;
case CONTROLLER_ID_D5:
addr = mmD6VGA_CONTROL;
break;
default:
break;
}
value = dm_read_reg(tg->ctx, addr);
set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_MODE_ENABLE);
set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_TIMING_SELECT);
set_reg_field_value(
value, 0, D1VGA_CONTROL, D1VGA_SYNC_POLARITY_SELECT);
set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_OVERSCAN_COLOR_EN);
dm_write_reg(tg->ctx, addr, value);
}
/*
* set_overscan_color_black
*
* @param :black_color is one of the color space
* :this routine will set overscan black color according to the color space.
* @return none
*/
void dce110_timing_generator_set_overscan_color_black(
struct timing_generator *tg,
const struct tg_color *color)
{
struct dc_context *ctx = tg->ctx;
uint32_t addr;
uint32_t value = 0;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
set_reg_field_value(
value,
color->color_b_cb,
CRTC_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_BLUE);
set_reg_field_value(
value,
color->color_r_cr,
CRTC_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_RED);
set_reg_field_value(
value,
color->color_g_y,
CRTC_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_GREEN);
addr = CRTC_REG(mmCRTC_OVERSCAN_COLOR);
dm_write_reg(ctx, addr, value);
addr = CRTC_REG(mmCRTC_BLACK_COLOR);
dm_write_reg(ctx, addr, value);
/* This is desirable to have a constant DAC output voltage during the
* blank time that is higher than the 0 volt reference level that the
* DAC outputs when the NBLANK signal
* is asserted low, such as for output to an analog TV. */
addr = CRTC_REG(mmCRTC_BLANK_DATA_COLOR);
dm_write_reg(ctx, addr, value);
/* TO DO we have to program EXT registers and we need to know LB DATA
* format because it is used when more 10 , i.e. 12 bits per color
*
* m_mmDxCRTC_OVERSCAN_COLOR_EXT
* m_mmDxCRTC_BLACK_COLOR_EXT
* m_mmDxCRTC_BLANK_DATA_COLOR_EXT
*/
}
void dce110_tg_program_blank_color(struct timing_generator *tg,
const struct tg_color *black_color)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t addr = CRTC_REG(mmCRTC_BLACK_COLOR);
uint32_t value = dm_read_reg(tg->ctx, addr);
set_reg_field_value(
value,
black_color->color_b_cb,
CRTC_BLACK_COLOR,
CRTC_BLACK_COLOR_B_CB);
set_reg_field_value(
value,
black_color->color_g_y,
CRTC_BLACK_COLOR,
CRTC_BLACK_COLOR_G_Y);
set_reg_field_value(
value,
black_color->color_r_cr,
CRTC_BLACK_COLOR,
CRTC_BLACK_COLOR_R_CR);
dm_write_reg(tg->ctx, addr, value);
addr = CRTC_REG(mmCRTC_BLANK_DATA_COLOR);
dm_write_reg(tg->ctx, addr, value);
}
void dce110_tg_set_overscan_color(struct timing_generator *tg,
const struct tg_color *overscan_color)
{
struct dc_context *ctx = tg->ctx;
uint32_t value = 0;
uint32_t addr;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
set_reg_field_value(
value,
overscan_color->color_b_cb,
CRTC_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_BLUE);
set_reg_field_value(
value,
overscan_color->color_g_y,
CRTC_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_GREEN);
set_reg_field_value(
value,
overscan_color->color_r_cr,
CRTC_OVERSCAN_COLOR,
CRTC_OVERSCAN_COLOR_RED);
addr = CRTC_REG(mmCRTC_OVERSCAN_COLOR);
dm_write_reg(ctx, addr, value);
}
void dce110_tg_program_timing(struct timing_generator *tg,
const struct dc_crtc_timing *timing,
int vready_offset,
int vstartup_start,
int vupdate_offset,
int vupdate_width,
const enum signal_type signal,
bool use_vbios)
{
if (use_vbios)
dce110_timing_generator_program_timing_generator(tg, timing);
else
dce110_timing_generator_program_blanking(tg, timing);
}
bool dce110_tg_is_blanked(struct timing_generator *tg)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL));
if (get_reg_field_value(
value,
CRTC_BLANK_CONTROL,
CRTC_BLANK_DATA_EN) == 1 &&
get_reg_field_value(
value,
CRTC_BLANK_CONTROL,
CRTC_CURRENT_BLANK_STATE) == 1)
return true;
return false;
}
void dce110_tg_set_blank(struct timing_generator *tg,
bool enable_blanking)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t value = 0;
set_reg_field_value(
value,
1,
CRTC_DOUBLE_BUFFER_CONTROL,
CRTC_BLANK_DATA_DOUBLE_BUFFER_EN);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_DOUBLE_BUFFER_CONTROL), value);
value = 0;
if (enable_blanking) {
set_reg_field_value(
value,
1,
CRTC_BLANK_CONTROL,
CRTC_BLANK_DATA_EN);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL), value);
} else
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL), 0);
}
bool dce110_tg_validate_timing(struct timing_generator *tg,
const struct dc_crtc_timing *timing)
{
return dce110_timing_generator_validate_timing(tg, timing, SIGNAL_TYPE_NONE);
}
void dce110_tg_wait_for_state(struct timing_generator *tg,
enum crtc_state state)
{
switch (state) {
case CRTC_STATE_VBLANK:
dce110_timing_generator_wait_for_vblank(tg);
break;
case CRTC_STATE_VACTIVE:
dce110_timing_generator_wait_for_vactive(tg);
break;
default:
break;
}
}
void dce110_tg_set_colors(struct timing_generator *tg,
const struct tg_color *blank_color,
const struct tg_color *overscan_color)
{
if (blank_color != NULL)
dce110_tg_program_blank_color(tg, blank_color);
if (overscan_color != NULL)
dce110_tg_set_overscan_color(tg, overscan_color);
}
/* Gets first line of blank region of the display timing for CRTC
* and programms is as a trigger to fire vertical interrupt
*/
bool dce110_arm_vert_intr(struct timing_generator *tg, uint8_t width)
{
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
uint32_t v_blank_start = 0;
uint32_t v_blank_end = 0;
uint32_t val = 0;
uint32_t h_position, v_position;
tg->funcs->get_scanoutpos(
tg,
&v_blank_start,
&v_blank_end,
&h_position,
&v_position);
if (v_blank_start == 0 || v_blank_end == 0)
return false;
set_reg_field_value(
val,
v_blank_start,
CRTC_VERTICAL_INTERRUPT0_POSITION,
CRTC_VERTICAL_INTERRUPT0_LINE_START);
/* Set interval width for interrupt to fire to 1 scanline */
set_reg_field_value(
val,
v_blank_start + width,
CRTC_VERTICAL_INTERRUPT0_POSITION,
CRTC_VERTICAL_INTERRUPT0_LINE_END);
dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERTICAL_INTERRUPT0_POSITION), val);
return true;
}
static bool dce110_is_tg_enabled(struct timing_generator *tg)
{
uint32_t addr = 0;
uint32_t value = 0;
uint32_t field = 0;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
addr = CRTC_REG(mmCRTC_CONTROL);
value = dm_read_reg(tg->ctx, addr);
field = get_reg_field_value(value, CRTC_CONTROL,
CRTC_CURRENT_MASTER_EN_STATE);
return field == 1;
}
bool dce110_configure_crc(struct timing_generator *tg,
const struct crc_params *params)
{
uint32_t cntl_addr = 0;
uint32_t addr = 0;
uint32_t value;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
/* Cannot configure crc on a CRTC that is disabled */
if (!dce110_is_tg_enabled(tg))
return false;
cntl_addr = CRTC_REG(mmCRTC_CRC_CNTL);
/* First, disable CRC before we configure it. */
dm_write_reg(tg->ctx, cntl_addr, 0);
if (!params->enable)
return true;
/* Program frame boundaries */
/* Window A x axis start and end. */
value = 0;
addr = CRTC_REG(mmCRTC_CRC0_WINDOWA_X_CONTROL);
set_reg_field_value(value, params->windowa_x_start,
CRTC_CRC0_WINDOWA_X_CONTROL,
CRTC_CRC0_WINDOWA_X_START);
set_reg_field_value(value, params->windowa_x_end,
CRTC_CRC0_WINDOWA_X_CONTROL,
CRTC_CRC0_WINDOWA_X_END);
dm_write_reg(tg->ctx, addr, value);
/* Window A y axis start and end. */
value = 0;
addr = CRTC_REG(mmCRTC_CRC0_WINDOWA_Y_CONTROL);
set_reg_field_value(value, params->windowa_y_start,
CRTC_CRC0_WINDOWA_Y_CONTROL,
CRTC_CRC0_WINDOWA_Y_START);
set_reg_field_value(value, params->windowa_y_end,
CRTC_CRC0_WINDOWA_Y_CONTROL,
CRTC_CRC0_WINDOWA_Y_END);
dm_write_reg(tg->ctx, addr, value);
/* Window B x axis start and end. */
value = 0;
addr = CRTC_REG(mmCRTC_CRC0_WINDOWB_X_CONTROL);
set_reg_field_value(value, params->windowb_x_start,
CRTC_CRC0_WINDOWB_X_CONTROL,
CRTC_CRC0_WINDOWB_X_START);
set_reg_field_value(value, params->windowb_x_end,
CRTC_CRC0_WINDOWB_X_CONTROL,
CRTC_CRC0_WINDOWB_X_END);
dm_write_reg(tg->ctx, addr, value);
/* Window B y axis start and end. */
value = 0;
addr = CRTC_REG(mmCRTC_CRC0_WINDOWB_Y_CONTROL);
set_reg_field_value(value, params->windowb_y_start,
CRTC_CRC0_WINDOWB_Y_CONTROL,
CRTC_CRC0_WINDOWB_Y_START);
set_reg_field_value(value, params->windowb_y_end,
CRTC_CRC0_WINDOWB_Y_CONTROL,
CRTC_CRC0_WINDOWB_Y_END);
dm_write_reg(tg->ctx, addr, value);
/* Set crc mode and selection, and enable. Only using CRC0*/
value = 0;
set_reg_field_value(value, params->continuous_mode ? 1 : 0,
CRTC_CRC_CNTL, CRTC_CRC_CONT_EN);
set_reg_field_value(value, params->selection,
CRTC_CRC_CNTL, CRTC_CRC0_SELECT);
set_reg_field_value(value, 1, CRTC_CRC_CNTL, CRTC_CRC_EN);
dm_write_reg(tg->ctx, cntl_addr, value);
return true;
}
bool dce110_get_crc(struct timing_generator *tg,
uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
{
uint32_t addr = 0;
uint32_t value = 0;
uint32_t field = 0;
struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg);
addr = CRTC_REG(mmCRTC_CRC_CNTL);
value = dm_read_reg(tg->ctx, addr);
field = get_reg_field_value(value, CRTC_CRC_CNTL, CRTC_CRC_EN);
/* Early return if CRC is not enabled for this CRTC */
if (!field)
return false;
addr = CRTC_REG(mmCRTC_CRC0_DATA_RG);
value = dm_read_reg(tg->ctx, addr);
*r_cr = get_reg_field_value(value, CRTC_CRC0_DATA_RG, CRC0_R_CR);
*g_y = get_reg_field_value(value, CRTC_CRC0_DATA_RG, CRC0_G_Y);
addr = CRTC_REG(mmCRTC_CRC0_DATA_B);
value = dm_read_reg(tg->ctx, addr);
*b_cb = get_reg_field_value(value, CRTC_CRC0_DATA_B, CRC0_B_CB);
return true;
}
static const struct timing_generator_funcs dce110_tg_funcs = {
.validate_timing = dce110_tg_validate_timing,
.program_timing = dce110_tg_program_timing,
.enable_crtc = dce110_timing_generator_enable_crtc,
.disable_crtc = dce110_timing_generator_disable_crtc,
.is_counter_moving = dce110_timing_generator_is_counter_moving,
.get_position = dce110_timing_generator_get_position,
.get_frame_count = dce110_timing_generator_get_vblank_counter,
.get_scanoutpos = dce110_timing_generator_get_crtc_scanoutpos,
.set_early_control = dce110_timing_generator_set_early_control,
.wait_for_state = dce110_tg_wait_for_state,
.set_blank = dce110_tg_set_blank,
.is_blanked = dce110_tg_is_blanked,
.set_colors = dce110_tg_set_colors,
.set_overscan_blank_color =
dce110_timing_generator_set_overscan_color_black,
.set_blank_color = dce110_timing_generator_program_blank_color,
.disable_vga = dce110_timing_generator_disable_vga,
.did_triggered_reset_occur =
dce110_timing_generator_did_triggered_reset_occur,
.setup_global_swap_lock =
dce110_timing_generator_setup_global_swap_lock,
.enable_reset_trigger = dce110_timing_generator_enable_reset_trigger,
.enable_crtc_reset = dce110_timing_generator_enable_crtc_reset,
.disable_reset_trigger = dce110_timing_generator_disable_reset_trigger,
.tear_down_global_swap_lock =
dce110_timing_generator_tear_down_global_swap_lock,
.enable_advanced_request =
dce110_timing_generator_enable_advanced_request,
.set_drr =
dce110_timing_generator_set_drr,
.get_last_used_drr_vtotal = NULL,
.set_static_screen_control =
dce110_timing_generator_set_static_screen_control,
.set_test_pattern = dce110_timing_generator_set_test_pattern,
.arm_vert_intr = dce110_arm_vert_intr,
.is_tg_enabled = dce110_is_tg_enabled,
.configure_crc = dce110_configure_crc,
.get_crc = dce110_get_crc,
};
void dce110_timing_generator_construct(
struct dce110_timing_generator *tg110,
struct dc_context *ctx,
uint32_t instance,
const struct dce110_timing_generator_offsets *offsets)
{
tg110->controller_id = CONTROLLER_ID_D0 + instance;
tg110->base.inst = instance;
tg110->offsets = *offsets;
tg110->base.funcs = &dce110_tg_funcs;
tg110->base.ctx = ctx;
tg110->base.bp = ctx->dc_bios;
tg110->max_h_total = CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1;
tg110->max_v_total = CRTC_V_TOTAL__CRTC_V_TOTAL_MASK + 1;
tg110->min_h_blank = 56;
tg110->min_h_front_porch = 4;
tg110->min_h_back_porch = 4;
}