| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Generic OPP OF helpers |
| * |
| * Copyright (C) 2009-2010 Texas Instruments Incorporated. |
| * Nishanth Menon |
| * Romit Dasgupta |
| * Kevin Hilman |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/cpu.h> |
| #include <linux/errno.h> |
| #include <linux/device.h> |
| #include <linux/of.h> |
| #include <linux/pm_domain.h> |
| #include <linux/slab.h> |
| #include <linux/export.h> |
| #include <linux/energy_model.h> |
| |
| #include "opp.h" |
| |
| /* OPP tables with uninitialized required OPPs, protected by opp_table_lock */ |
| static LIST_HEAD(lazy_opp_tables); |
| |
| /* |
| * Returns opp descriptor node for a device node, caller must |
| * do of_node_put(). |
| */ |
| static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np, |
| int index) |
| { |
| /* "operating-points-v2" can be an array for power domain providers */ |
| return of_parse_phandle(np, "operating-points-v2", index); |
| } |
| |
| /* Returns opp descriptor node for a device, caller must do of_node_put() */ |
| struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev) |
| { |
| return _opp_of_get_opp_desc_node(dev->of_node, 0); |
| } |
| EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node); |
| |
| struct opp_table *_managed_opp(struct device *dev, int index) |
| { |
| struct opp_table *opp_table, *managed_table = NULL; |
| struct device_node *np; |
| |
| np = _opp_of_get_opp_desc_node(dev->of_node, index); |
| if (!np) |
| return NULL; |
| |
| list_for_each_entry(opp_table, &opp_tables, node) { |
| if (opp_table->np == np) { |
| /* |
| * Multiple devices can point to the same OPP table and |
| * so will have same node-pointer, np. |
| * |
| * But the OPPs will be considered as shared only if the |
| * OPP table contains a "opp-shared" property. |
| */ |
| if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) { |
| _get_opp_table_kref(opp_table); |
| managed_table = opp_table; |
| } |
| |
| break; |
| } |
| } |
| |
| of_node_put(np); |
| |
| return managed_table; |
| } |
| |
| /* The caller must call dev_pm_opp_put() after the OPP is used */ |
| static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table, |
| struct device_node *opp_np) |
| { |
| struct dev_pm_opp *opp; |
| |
| mutex_lock(&opp_table->lock); |
| |
| list_for_each_entry(opp, &opp_table->opp_list, node) { |
| if (opp->np == opp_np) { |
| dev_pm_opp_get(opp); |
| mutex_unlock(&opp_table->lock); |
| return opp; |
| } |
| } |
| |
| mutex_unlock(&opp_table->lock); |
| |
| return NULL; |
| } |
| |
| static struct device_node *of_parse_required_opp(struct device_node *np, |
| int index) |
| { |
| return of_parse_phandle(np, "required-opps", index); |
| } |
| |
| /* The caller must call dev_pm_opp_put_opp_table() after the table is used */ |
| static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np) |
| { |
| struct opp_table *opp_table; |
| struct device_node *opp_table_np; |
| |
| opp_table_np = of_get_parent(opp_np); |
| if (!opp_table_np) |
| goto err; |
| |
| /* It is safe to put the node now as all we need now is its address */ |
| of_node_put(opp_table_np); |
| |
| mutex_lock(&opp_table_lock); |
| list_for_each_entry(opp_table, &opp_tables, node) { |
| if (opp_table_np == opp_table->np) { |
| _get_opp_table_kref(opp_table); |
| mutex_unlock(&opp_table_lock); |
| return opp_table; |
| } |
| } |
| mutex_unlock(&opp_table_lock); |
| |
| err: |
| return ERR_PTR(-ENODEV); |
| } |
| |
| /* Free resources previously acquired by _opp_table_alloc_required_tables() */ |
| static void _opp_table_free_required_tables(struct opp_table *opp_table) |
| { |
| struct opp_table **required_opp_tables = opp_table->required_opp_tables; |
| int i; |
| |
| if (!required_opp_tables) |
| return; |
| |
| for (i = 0; i < opp_table->required_opp_count; i++) { |
| if (IS_ERR_OR_NULL(required_opp_tables[i])) |
| continue; |
| |
| dev_pm_opp_put_opp_table(required_opp_tables[i]); |
| } |
| |
| kfree(required_opp_tables); |
| |
| opp_table->required_opp_count = 0; |
| opp_table->required_opp_tables = NULL; |
| |
| mutex_lock(&opp_table_lock); |
| list_del(&opp_table->lazy); |
| mutex_unlock(&opp_table_lock); |
| } |
| |
| /* |
| * Populate all devices and opp tables which are part of "required-opps" list. |
| * Checking only the first OPP node should be enough. |
| */ |
| static void _opp_table_alloc_required_tables(struct opp_table *opp_table, |
| struct device *dev, |
| struct device_node *opp_np) |
| { |
| struct opp_table **required_opp_tables; |
| struct device_node *required_np, *np; |
| bool lazy = false; |
| int count, i, size; |
| |
| /* Traversing the first OPP node is all we need */ |
| np = of_get_next_available_child(opp_np, NULL); |
| if (!np) { |
| dev_warn(dev, "Empty OPP table\n"); |
| |
| return; |
| } |
| |
| count = of_count_phandle_with_args(np, "required-opps", NULL); |
| if (count <= 0) |
| goto put_np; |
| |
| size = sizeof(*required_opp_tables) + sizeof(*opp_table->required_devs); |
| required_opp_tables = kcalloc(count, size, GFP_KERNEL); |
| if (!required_opp_tables) |
| goto put_np; |
| |
| opp_table->required_opp_tables = required_opp_tables; |
| opp_table->required_devs = (void *)(required_opp_tables + count); |
| opp_table->required_opp_count = count; |
| |
| for (i = 0; i < count; i++) { |
| required_np = of_parse_required_opp(np, i); |
| if (!required_np) |
| goto free_required_tables; |
| |
| required_opp_tables[i] = _find_table_of_opp_np(required_np); |
| of_node_put(required_np); |
| |
| if (IS_ERR(required_opp_tables[i])) |
| lazy = true; |
| } |
| |
| /* Let's do the linking later on */ |
| if (lazy) { |
| /* |
| * The OPP table is not held while allocating the table, take it |
| * now to avoid corruption to the lazy_opp_tables list. |
| */ |
| mutex_lock(&opp_table_lock); |
| list_add(&opp_table->lazy, &lazy_opp_tables); |
| mutex_unlock(&opp_table_lock); |
| } |
| |
| goto put_np; |
| |
| free_required_tables: |
| _opp_table_free_required_tables(opp_table); |
| put_np: |
| of_node_put(np); |
| } |
| |
| void _of_init_opp_table(struct opp_table *opp_table, struct device *dev, |
| int index) |
| { |
| struct device_node *np, *opp_np; |
| u32 val; |
| |
| /* |
| * Only required for backward compatibility with v1 bindings, but isn't |
| * harmful for other cases. And so we do it unconditionally. |
| */ |
| np = of_node_get(dev->of_node); |
| if (!np) |
| return; |
| |
| if (!of_property_read_u32(np, "clock-latency", &val)) |
| opp_table->clock_latency_ns_max = val; |
| of_property_read_u32(np, "voltage-tolerance", |
| &opp_table->voltage_tolerance_v1); |
| |
| if (of_property_present(np, "#power-domain-cells")) |
| opp_table->is_genpd = true; |
| |
| /* Get OPP table node */ |
| opp_np = _opp_of_get_opp_desc_node(np, index); |
| of_node_put(np); |
| |
| if (!opp_np) |
| return; |
| |
| if (of_property_read_bool(opp_np, "opp-shared")) |
| opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED; |
| else |
| opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE; |
| |
| opp_table->np = opp_np; |
| |
| _opp_table_alloc_required_tables(opp_table, dev, opp_np); |
| } |
| |
| void _of_clear_opp_table(struct opp_table *opp_table) |
| { |
| _opp_table_free_required_tables(opp_table); |
| of_node_put(opp_table->np); |
| } |
| |
| /* |
| * Release all resources previously acquired with a call to |
| * _of_opp_alloc_required_opps(). |
| */ |
| static void _of_opp_free_required_opps(struct opp_table *opp_table, |
| struct dev_pm_opp *opp) |
| { |
| struct dev_pm_opp **required_opps = opp->required_opps; |
| int i; |
| |
| if (!required_opps) |
| return; |
| |
| for (i = 0; i < opp_table->required_opp_count; i++) { |
| if (!required_opps[i]) |
| continue; |
| |
| /* Put the reference back */ |
| dev_pm_opp_put(required_opps[i]); |
| } |
| |
| opp->required_opps = NULL; |
| kfree(required_opps); |
| } |
| |
| void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp) |
| { |
| _of_opp_free_required_opps(opp_table, opp); |
| of_node_put(opp->np); |
| } |
| |
| static int _link_required_opps(struct dev_pm_opp *opp, struct opp_table *opp_table, |
| struct opp_table *required_table, int index) |
| { |
| struct device_node *np; |
| |
| np = of_parse_required_opp(opp->np, index); |
| if (unlikely(!np)) |
| return -ENODEV; |
| |
| opp->required_opps[index] = _find_opp_of_np(required_table, np); |
| of_node_put(np); |
| |
| if (!opp->required_opps[index]) { |
| pr_err("%s: Unable to find required OPP node: %pOF (%d)\n", |
| __func__, opp->np, index); |
| return -ENODEV; |
| } |
| |
| /* |
| * There are two genpd (as required-opp) cases that we need to handle, |
| * devices with a single genpd and ones with multiple genpds. |
| * |
| * The single genpd case requires special handling as we need to use the |
| * same `dev` structure (instead of a virtual one provided by genpd |
| * core) for setting the performance state. |
| * |
| * It doesn't make sense for a device's DT entry to have both |
| * "opp-level" and single "required-opps" entry pointing to a genpd's |
| * OPP, as that would make the OPP core call |
| * dev_pm_domain_set_performance_state() for two different values for |
| * the same device structure. Lets treat single genpd configuration as a |
| * case where the OPP's level is directly available without required-opp |
| * link in the DT. |
| * |
| * Just update the `level` with the right value, which |
| * dev_pm_opp_set_opp() will take care of in the normal path itself. |
| * |
| * There is another case though, where a genpd's OPP table has |
| * required-opps set to a parent genpd. The OPP core expects the user to |
| * set the respective required `struct device` pointer via |
| * dev_pm_opp_set_config(). |
| */ |
| if (required_table->is_genpd && opp_table->required_opp_count == 1 && |
| !opp_table->required_devs[0]) { |
| /* Genpd core takes care of propagation to parent genpd */ |
| if (!opp_table->is_genpd) { |
| if (!WARN_ON(opp->level != OPP_LEVEL_UNSET)) |
| opp->level = opp->required_opps[0]->level; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Populate all required OPPs which are part of "required-opps" list */ |
| static int _of_opp_alloc_required_opps(struct opp_table *opp_table, |
| struct dev_pm_opp *opp) |
| { |
| struct opp_table *required_table; |
| int i, ret, count = opp_table->required_opp_count; |
| |
| if (!count) |
| return 0; |
| |
| opp->required_opps = kcalloc(count, sizeof(*opp->required_opps), GFP_KERNEL); |
| if (!opp->required_opps) |
| return -ENOMEM; |
| |
| for (i = 0; i < count; i++) { |
| required_table = opp_table->required_opp_tables[i]; |
| |
| /* Required table not added yet, we will link later */ |
| if (IS_ERR_OR_NULL(required_table)) |
| continue; |
| |
| ret = _link_required_opps(opp, opp_table, required_table, i); |
| if (ret) |
| goto free_required_opps; |
| } |
| |
| return 0; |
| |
| free_required_opps: |
| _of_opp_free_required_opps(opp_table, opp); |
| |
| return ret; |
| } |
| |
| /* Link required OPPs for an individual OPP */ |
| static int lazy_link_required_opps(struct opp_table *opp_table, |
| struct opp_table *new_table, int index) |
| { |
| struct dev_pm_opp *opp; |
| int ret; |
| |
| list_for_each_entry(opp, &opp_table->opp_list, node) { |
| ret = _link_required_opps(opp, opp_table, new_table, index); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* Link required OPPs for all OPPs of the newly added OPP table */ |
| static void lazy_link_required_opp_table(struct opp_table *new_table) |
| { |
| struct opp_table *opp_table, *temp, **required_opp_tables; |
| struct device_node *required_np, *opp_np, *required_table_np; |
| struct dev_pm_opp *opp; |
| int i, ret; |
| |
| mutex_lock(&opp_table_lock); |
| |
| list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) { |
| bool lazy = false; |
| |
| /* opp_np can't be invalid here */ |
| opp_np = of_get_next_available_child(opp_table->np, NULL); |
| |
| for (i = 0; i < opp_table->required_opp_count; i++) { |
| required_opp_tables = opp_table->required_opp_tables; |
| |
| /* Required opp-table is already parsed */ |
| if (!IS_ERR(required_opp_tables[i])) |
| continue; |
| |
| /* required_np can't be invalid here */ |
| required_np = of_parse_required_opp(opp_np, i); |
| required_table_np = of_get_parent(required_np); |
| |
| of_node_put(required_table_np); |
| of_node_put(required_np); |
| |
| /* |
| * Newly added table isn't the required opp-table for |
| * opp_table. |
| */ |
| if (required_table_np != new_table->np) { |
| lazy = true; |
| continue; |
| } |
| |
| required_opp_tables[i] = new_table; |
| _get_opp_table_kref(new_table); |
| |
| /* Link OPPs now */ |
| ret = lazy_link_required_opps(opp_table, new_table, i); |
| if (ret) { |
| /* The OPPs will be marked unusable */ |
| lazy = false; |
| break; |
| } |
| } |
| |
| of_node_put(opp_np); |
| |
| /* All required opp-tables found, remove from lazy list */ |
| if (!lazy) { |
| list_del_init(&opp_table->lazy); |
| |
| list_for_each_entry(opp, &opp_table->opp_list, node) |
| _required_opps_available(opp, opp_table->required_opp_count); |
| } |
| } |
| |
| mutex_unlock(&opp_table_lock); |
| } |
| |
| static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table) |
| { |
| struct device_node *np, *opp_np; |
| struct property *prop; |
| |
| if (!opp_table) { |
| np = of_node_get(dev->of_node); |
| if (!np) |
| return -ENODEV; |
| |
| opp_np = _opp_of_get_opp_desc_node(np, 0); |
| of_node_put(np); |
| } else { |
| opp_np = of_node_get(opp_table->np); |
| } |
| |
| /* Lets not fail in case we are parsing opp-v1 bindings */ |
| if (!opp_np) |
| return 0; |
| |
| /* Checking only first OPP is sufficient */ |
| np = of_get_next_available_child(opp_np, NULL); |
| of_node_put(opp_np); |
| if (!np) { |
| dev_err(dev, "OPP table empty\n"); |
| return -EINVAL; |
| } |
| |
| prop = of_find_property(np, "opp-peak-kBps", NULL); |
| of_node_put(np); |
| |
| if (!prop || !prop->length) |
| return 0; |
| |
| return 1; |
| } |
| |
| int dev_pm_opp_of_find_icc_paths(struct device *dev, |
| struct opp_table *opp_table) |
| { |
| struct device_node *np; |
| int ret, i, count, num_paths; |
| struct icc_path **paths; |
| |
| ret = _bandwidth_supported(dev, opp_table); |
| if (ret == -EINVAL) |
| return 0; /* Empty OPP table is a valid corner-case, let's not fail */ |
| else if (ret <= 0) |
| return ret; |
| |
| ret = 0; |
| |
| np = of_node_get(dev->of_node); |
| if (!np) |
| return 0; |
| |
| count = of_count_phandle_with_args(np, "interconnects", |
| "#interconnect-cells"); |
| of_node_put(np); |
| if (count < 0) |
| return 0; |
| |
| /* two phandles when #interconnect-cells = <1> */ |
| if (count % 2) { |
| dev_err(dev, "%s: Invalid interconnects values\n", __func__); |
| return -EINVAL; |
| } |
| |
| num_paths = count / 2; |
| paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL); |
| if (!paths) |
| return -ENOMEM; |
| |
| for (i = 0; i < num_paths; i++) { |
| paths[i] = of_icc_get_by_index(dev, i); |
| if (IS_ERR(paths[i])) { |
| ret = dev_err_probe(dev, PTR_ERR(paths[i]), "%s: Unable to get path%d\n", __func__, i); |
| goto err; |
| } |
| } |
| |
| if (opp_table) { |
| opp_table->paths = paths; |
| opp_table->path_count = num_paths; |
| return 0; |
| } |
| |
| err: |
| while (i--) |
| icc_put(paths[i]); |
| |
| kfree(paths); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths); |
| |
| static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table, |
| struct device_node *np) |
| { |
| unsigned int levels = opp_table->supported_hw_count; |
| int count, versions, ret, i, j; |
| u32 val; |
| |
| if (!opp_table->supported_hw) { |
| /* |
| * In the case that no supported_hw has been set by the |
| * platform but there is an opp-supported-hw value set for |
| * an OPP then the OPP should not be enabled as there is |
| * no way to see if the hardware supports it. |
| */ |
| if (of_property_present(np, "opp-supported-hw")) |
| return false; |
| else |
| return true; |
| } |
| |
| count = of_property_count_u32_elems(np, "opp-supported-hw"); |
| if (count <= 0 || count % levels) { |
| dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n", |
| __func__, count); |
| return false; |
| } |
| |
| versions = count / levels; |
| |
| /* All levels in at least one of the versions should match */ |
| for (i = 0; i < versions; i++) { |
| bool supported = true; |
| |
| for (j = 0; j < levels; j++) { |
| ret = of_property_read_u32_index(np, "opp-supported-hw", |
| i * levels + j, &val); |
| if (ret) { |
| dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n", |
| __func__, i * levels + j, ret); |
| return false; |
| } |
| |
| /* Check if the level is supported */ |
| if (!(val & opp_table->supported_hw[j])) { |
| supported = false; |
| break; |
| } |
| } |
| |
| if (supported) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev, |
| struct opp_table *opp_table, |
| const char *prop_type, bool *triplet) |
| { |
| struct property *prop = NULL; |
| char name[NAME_MAX]; |
| int count, ret; |
| u32 *out; |
| |
| /* Search for "opp-<prop_type>-<name>" */ |
| if (opp_table->prop_name) { |
| snprintf(name, sizeof(name), "opp-%s-%s", prop_type, |
| opp_table->prop_name); |
| prop = of_find_property(opp->np, name, NULL); |
| } |
| |
| if (!prop) { |
| /* Search for "opp-<prop_type>" */ |
| snprintf(name, sizeof(name), "opp-%s", prop_type); |
| prop = of_find_property(opp->np, name, NULL); |
| if (!prop) |
| return NULL; |
| } |
| |
| count = of_property_count_u32_elems(opp->np, name); |
| if (count < 0) { |
| dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name, |
| count); |
| return ERR_PTR(count); |
| } |
| |
| /* |
| * Initialize regulator_count, if regulator information isn't provided |
| * by the platform. Now that one of the properties is available, fix the |
| * regulator_count to 1. |
| */ |
| if (unlikely(opp_table->regulator_count == -1)) |
| opp_table->regulator_count = 1; |
| |
| if (count != opp_table->regulator_count && |
| (!triplet || count != opp_table->regulator_count * 3)) { |
| dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n", |
| __func__, prop_type, count, opp_table->regulator_count); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| out = kmalloc_array(count, sizeof(*out), GFP_KERNEL); |
| if (!out) |
| return ERR_PTR(-EINVAL); |
| |
| ret = of_property_read_u32_array(opp->np, name, out, count); |
| if (ret) { |
| dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret); |
| kfree(out); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| if (triplet) |
| *triplet = count != opp_table->regulator_count; |
| |
| return out; |
| } |
| |
| static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev, |
| struct opp_table *opp_table, bool *triplet) |
| { |
| u32 *microvolt; |
| |
| microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet); |
| if (IS_ERR(microvolt)) |
| return microvolt; |
| |
| if (!microvolt) { |
| /* |
| * Missing property isn't a problem, but an invalid |
| * entry is. This property isn't optional if regulator |
| * information is provided. Check only for the first OPP, as |
| * regulator_count may get initialized after that to a valid |
| * value. |
| */ |
| if (list_empty(&opp_table->opp_list) && |
| opp_table->regulator_count > 0) { |
| dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n", |
| __func__); |
| return ERR_PTR(-EINVAL); |
| } |
| } |
| |
| return microvolt; |
| } |
| |
| static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev, |
| struct opp_table *opp_table) |
| { |
| u32 *microvolt, *microamp, *microwatt; |
| int ret = 0, i, j; |
| bool triplet; |
| |
| microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet); |
| if (IS_ERR(microvolt)) |
| return PTR_ERR(microvolt); |
| |
| microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL); |
| if (IS_ERR(microamp)) { |
| ret = PTR_ERR(microamp); |
| goto free_microvolt; |
| } |
| |
| microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL); |
| if (IS_ERR(microwatt)) { |
| ret = PTR_ERR(microwatt); |
| goto free_microamp; |
| } |
| |
| /* |
| * Initialize regulator_count if it is uninitialized and no properties |
| * are found. |
| */ |
| if (unlikely(opp_table->regulator_count == -1)) { |
| opp_table->regulator_count = 0; |
| return 0; |
| } |
| |
| for (i = 0, j = 0; i < opp_table->regulator_count; i++) { |
| if (microvolt) { |
| opp->supplies[i].u_volt = microvolt[j++]; |
| |
| if (triplet) { |
| opp->supplies[i].u_volt_min = microvolt[j++]; |
| opp->supplies[i].u_volt_max = microvolt[j++]; |
| } else { |
| opp->supplies[i].u_volt_min = opp->supplies[i].u_volt; |
| opp->supplies[i].u_volt_max = opp->supplies[i].u_volt; |
| } |
| } |
| |
| if (microamp) |
| opp->supplies[i].u_amp = microamp[i]; |
| |
| if (microwatt) |
| opp->supplies[i].u_watt = microwatt[i]; |
| } |
| |
| kfree(microwatt); |
| free_microamp: |
| kfree(microamp); |
| free_microvolt: |
| kfree(microvolt); |
| |
| return ret; |
| } |
| |
| /** |
| * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT |
| * entries |
| * @dev: device pointer used to lookup OPP table. |
| * |
| * Free OPPs created using static entries present in DT. |
| */ |
| void dev_pm_opp_of_remove_table(struct device *dev) |
| { |
| dev_pm_opp_remove_table(dev); |
| } |
| EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table); |
| |
| static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table, |
| struct device_node *np) |
| { |
| struct property *prop; |
| int i, count, ret; |
| u64 *rates; |
| |
| prop = of_find_property(np, "opp-hz", NULL); |
| if (!prop) |
| return -ENODEV; |
| |
| count = prop->length / sizeof(u64); |
| if (opp_table->clk_count != count) { |
| pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n", |
| __func__, count, opp_table->clk_count); |
| return -EINVAL; |
| } |
| |
| rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL); |
| if (!rates) |
| return -ENOMEM; |
| |
| ret = of_property_read_u64_array(np, "opp-hz", rates, count); |
| if (ret) { |
| pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret); |
| } else { |
| /* |
| * Rate is defined as an unsigned long in clk API, and so |
| * casting explicitly to its type. Must be fixed once rate is 64 |
| * bit guaranteed in clk API. |
| */ |
| for (i = 0; i < count; i++) { |
| new_opp->rates[i] = (unsigned long)rates[i]; |
| |
| /* This will happen for frequencies > 4.29 GHz */ |
| WARN_ON(new_opp->rates[i] != rates[i]); |
| } |
| } |
| |
| kfree(rates); |
| |
| return ret; |
| } |
| |
| static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table, |
| struct device_node *np, bool peak) |
| { |
| const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps"; |
| struct property *prop; |
| int i, count, ret; |
| u32 *bw; |
| |
| prop = of_find_property(np, name, NULL); |
| if (!prop) |
| return -ENODEV; |
| |
| count = prop->length / sizeof(u32); |
| if (opp_table->path_count != count) { |
| pr_err("%s: Mismatch between %s and paths (%d %d)\n", |
| __func__, name, count, opp_table->path_count); |
| return -EINVAL; |
| } |
| |
| bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL); |
| if (!bw) |
| return -ENOMEM; |
| |
| ret = of_property_read_u32_array(np, name, bw, count); |
| if (ret) { |
| pr_err("%s: Error parsing %s: %d\n", __func__, name, ret); |
| goto out; |
| } |
| |
| for (i = 0; i < count; i++) { |
| if (peak) |
| new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]); |
| else |
| new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]); |
| } |
| |
| out: |
| kfree(bw); |
| return ret; |
| } |
| |
| static int _read_opp_key(struct dev_pm_opp *new_opp, |
| struct opp_table *opp_table, struct device_node *np) |
| { |
| bool found = false; |
| int ret; |
| |
| ret = _read_rate(new_opp, opp_table, np); |
| if (!ret) |
| found = true; |
| else if (ret != -ENODEV) |
| return ret; |
| |
| /* |
| * Bandwidth consists of peak and average (optional) values: |
| * opp-peak-kBps = <path1_value path2_value>; |
| * opp-avg-kBps = <path1_value path2_value>; |
| */ |
| ret = _read_bw(new_opp, opp_table, np, true); |
| if (!ret) { |
| found = true; |
| ret = _read_bw(new_opp, opp_table, np, false); |
| } |
| |
| /* The properties were found but we failed to parse them */ |
| if (ret && ret != -ENODEV) |
| return ret; |
| |
| if (!of_property_read_u32(np, "opp-level", &new_opp->level)) |
| found = true; |
| |
| if (found) |
| return 0; |
| |
| return ret; |
| } |
| |
| /** |
| * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings) |
| * @opp_table: OPP table |
| * @dev: device for which we do this operation |
| * @np: device node |
| * |
| * This function adds an opp definition to the opp table and returns status. The |
| * opp can be controlled using dev_pm_opp_enable/disable functions and may be |
| * removed by dev_pm_opp_remove. |
| * |
| * Return: |
| * Valid OPP pointer: |
| * On success |
| * NULL: |
| * Duplicate OPPs (both freq and volt are same) and opp->available |
| * OR if the OPP is not supported by hardware. |
| * ERR_PTR(-EEXIST): |
| * Freq are same and volt are different OR |
| * Duplicate OPPs (both freq and volt are same) and !opp->available |
| * ERR_PTR(-ENOMEM): |
| * Memory allocation failure |
| * ERR_PTR(-EINVAL): |
| * Failed parsing the OPP node |
| */ |
| static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table, |
| struct device *dev, struct device_node *np) |
| { |
| struct dev_pm_opp *new_opp; |
| u32 val; |
| int ret; |
| |
| new_opp = _opp_allocate(opp_table); |
| if (!new_opp) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = _read_opp_key(new_opp, opp_table, np); |
| if (ret < 0) { |
| dev_err(dev, "%s: opp key field not found\n", __func__); |
| goto free_opp; |
| } |
| |
| /* Check if the OPP supports hardware's hierarchy of versions or not */ |
| if (!_opp_is_supported(dev, opp_table, np)) { |
| dev_dbg(dev, "OPP not supported by hardware: %s\n", |
| of_node_full_name(np)); |
| goto free_opp; |
| } |
| |
| new_opp->turbo = of_property_read_bool(np, "turbo-mode"); |
| |
| new_opp->np = of_node_get(np); |
| new_opp->dynamic = false; |
| new_opp->available = true; |
| |
| ret = _of_opp_alloc_required_opps(opp_table, new_opp); |
| if (ret) |
| goto free_opp; |
| |
| if (!of_property_read_u32(np, "clock-latency-ns", &val)) |
| new_opp->clock_latency_ns = val; |
| |
| ret = opp_parse_supplies(new_opp, dev, opp_table); |
| if (ret) |
| goto free_required_opps; |
| |
| ret = _opp_add(dev, new_opp, opp_table); |
| if (ret) { |
| /* Don't return error for duplicate OPPs */ |
| if (ret == -EBUSY) |
| ret = 0; |
| goto free_required_opps; |
| } |
| |
| /* OPP to select on device suspend */ |
| if (of_property_read_bool(np, "opp-suspend")) { |
| if (opp_table->suspend_opp) { |
| /* Pick the OPP with higher rate/bw/level as suspend OPP */ |
| if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) { |
| opp_table->suspend_opp->suspend = false; |
| new_opp->suspend = true; |
| opp_table->suspend_opp = new_opp; |
| } |
| } else { |
| new_opp->suspend = true; |
| opp_table->suspend_opp = new_opp; |
| } |
| } |
| |
| if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max) |
| opp_table->clock_latency_ns_max = new_opp->clock_latency_ns; |
| |
| pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n", |
| __func__, new_opp->turbo, new_opp->rates[0], |
| new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min, |
| new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns, |
| new_opp->level); |
| |
| /* |
| * Notify the changes in the availability of the operable |
| * frequency/voltage list. |
| */ |
| blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); |
| return new_opp; |
| |
| free_required_opps: |
| _of_opp_free_required_opps(opp_table, new_opp); |
| free_opp: |
| _opp_free(new_opp); |
| |
| return ret ? ERR_PTR(ret) : NULL; |
| } |
| |
| /* Initializes OPP tables based on new bindings */ |
| static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table) |
| { |
| struct device_node *np; |
| int ret, count = 0; |
| struct dev_pm_opp *opp; |
| |
| /* OPP table is already initialized for the device */ |
| mutex_lock(&opp_table->lock); |
| if (opp_table->parsed_static_opps) { |
| opp_table->parsed_static_opps++; |
| mutex_unlock(&opp_table->lock); |
| return 0; |
| } |
| |
| opp_table->parsed_static_opps = 1; |
| mutex_unlock(&opp_table->lock); |
| |
| /* We have opp-table node now, iterate over it and add OPPs */ |
| for_each_available_child_of_node(opp_table->np, np) { |
| opp = _opp_add_static_v2(opp_table, dev, np); |
| if (IS_ERR(opp)) { |
| ret = PTR_ERR(opp); |
| dev_err(dev, "%s: Failed to add OPP, %d\n", __func__, |
| ret); |
| of_node_put(np); |
| goto remove_static_opp; |
| } else if (opp) { |
| count++; |
| } |
| } |
| |
| /* There should be one or more OPPs defined */ |
| if (!count) { |
| dev_err(dev, "%s: no supported OPPs", __func__); |
| ret = -ENOENT; |
| goto remove_static_opp; |
| } |
| |
| lazy_link_required_opp_table(opp_table); |
| |
| return 0; |
| |
| remove_static_opp: |
| _opp_remove_all_static(opp_table); |
| |
| return ret; |
| } |
| |
| /* Initializes OPP tables based on old-deprecated bindings */ |
| static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table) |
| { |
| const struct property *prop; |
| const __be32 *val; |
| int nr, ret = 0; |
| |
| mutex_lock(&opp_table->lock); |
| if (opp_table->parsed_static_opps) { |
| opp_table->parsed_static_opps++; |
| mutex_unlock(&opp_table->lock); |
| return 0; |
| } |
| |
| opp_table->parsed_static_opps = 1; |
| mutex_unlock(&opp_table->lock); |
| |
| prop = of_find_property(dev->of_node, "operating-points", NULL); |
| if (!prop) { |
| ret = -ENODEV; |
| goto remove_static_opp; |
| } |
| if (!prop->value) { |
| ret = -ENODATA; |
| goto remove_static_opp; |
| } |
| |
| /* |
| * Each OPP is a set of tuples consisting of frequency and |
| * voltage like <freq-kHz vol-uV>. |
| */ |
| nr = prop->length / sizeof(u32); |
| if (nr % 2) { |
| dev_err(dev, "%s: Invalid OPP table\n", __func__); |
| ret = -EINVAL; |
| goto remove_static_opp; |
| } |
| |
| val = prop->value; |
| while (nr) { |
| unsigned long freq = be32_to_cpup(val++) * 1000; |
| unsigned long volt = be32_to_cpup(val++); |
| struct dev_pm_opp_data data = { |
| .freq = freq, |
| .u_volt = volt, |
| }; |
| |
| ret = _opp_add_v1(opp_table, dev, &data, false); |
| if (ret) { |
| dev_err(dev, "%s: Failed to add OPP %ld (%d)\n", |
| __func__, data.freq, ret); |
| goto remove_static_opp; |
| } |
| nr -= 2; |
| } |
| |
| return 0; |
| |
| remove_static_opp: |
| _opp_remove_all_static(opp_table); |
| |
| return ret; |
| } |
| |
| static int _of_add_table_indexed(struct device *dev, int index) |
| { |
| struct opp_table *opp_table; |
| int ret, count; |
| |
| if (index) { |
| /* |
| * If only one phandle is present, then the same OPP table |
| * applies for all index requests. |
| */ |
| count = of_count_phandle_with_args(dev->of_node, |
| "operating-points-v2", NULL); |
| if (count == 1) |
| index = 0; |
| } |
| |
| opp_table = _add_opp_table_indexed(dev, index, true); |
| if (IS_ERR(opp_table)) |
| return PTR_ERR(opp_table); |
| |
| /* |
| * OPPs have two version of bindings now. Also try the old (v1) |
| * bindings for backward compatibility with older dtbs. |
| */ |
| if (opp_table->np) |
| ret = _of_add_opp_table_v2(dev, opp_table); |
| else |
| ret = _of_add_opp_table_v1(dev, opp_table); |
| |
| if (ret) |
| dev_pm_opp_put_opp_table(opp_table); |
| |
| return ret; |
| } |
| |
| static void devm_pm_opp_of_table_release(void *data) |
| { |
| dev_pm_opp_of_remove_table(data); |
| } |
| |
| static int _devm_of_add_table_indexed(struct device *dev, int index) |
| { |
| int ret; |
| |
| ret = _of_add_table_indexed(dev, index); |
| if (ret) |
| return ret; |
| |
| return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev); |
| } |
| |
| /** |
| * devm_pm_opp_of_add_table() - Initialize opp table from device tree |
| * @dev: device pointer used to lookup OPP table. |
| * |
| * Register the initial OPP table with the OPP library for given device. |
| * |
| * The opp_table structure will be freed after the device is destroyed. |
| * |
| * Return: |
| * 0 On success OR |
| * Duplicate OPPs (both freq and volt are same) and opp->available |
| * -EEXIST Freq are same and volt are different OR |
| * Duplicate OPPs (both freq and volt are same) and !opp->available |
| * -ENOMEM Memory allocation failure |
| * -ENODEV when 'operating-points' property is not found or is invalid data |
| * in device node. |
| * -ENODATA when empty 'operating-points' property is found |
| * -EINVAL when invalid entries are found in opp-v2 table |
| */ |
| int devm_pm_opp_of_add_table(struct device *dev) |
| { |
| return _devm_of_add_table_indexed(dev, 0); |
| } |
| EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table); |
| |
| /** |
| * dev_pm_opp_of_add_table() - Initialize opp table from device tree |
| * @dev: device pointer used to lookup OPP table. |
| * |
| * Register the initial OPP table with the OPP library for given device. |
| * |
| * Return: |
| * 0 On success OR |
| * Duplicate OPPs (both freq and volt are same) and opp->available |
| * -EEXIST Freq are same and volt are different OR |
| * Duplicate OPPs (both freq and volt are same) and !opp->available |
| * -ENOMEM Memory allocation failure |
| * -ENODEV when 'operating-points' property is not found or is invalid data |
| * in device node. |
| * -ENODATA when empty 'operating-points' property is found |
| * -EINVAL when invalid entries are found in opp-v2 table |
| */ |
| int dev_pm_opp_of_add_table(struct device *dev) |
| { |
| return _of_add_table_indexed(dev, 0); |
| } |
| EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table); |
| |
| /** |
| * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree |
| * @dev: device pointer used to lookup OPP table. |
| * @index: Index number. |
| * |
| * Register the initial OPP table with the OPP library for given device only |
| * using the "operating-points-v2" property. |
| * |
| * Return: Refer to dev_pm_opp_of_add_table() for return values. |
| */ |
| int dev_pm_opp_of_add_table_indexed(struct device *dev, int index) |
| { |
| return _of_add_table_indexed(dev, index); |
| } |
| EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed); |
| |
| /** |
| * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree |
| * @dev: device pointer used to lookup OPP table. |
| * @index: Index number. |
| * |
| * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed(). |
| */ |
| int devm_pm_opp_of_add_table_indexed(struct device *dev, int index) |
| { |
| return _devm_of_add_table_indexed(dev, index); |
| } |
| EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed); |
| |
| /* CPU device specific helpers */ |
| |
| /** |
| * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask |
| * @cpumask: cpumask for which OPP table needs to be removed |
| * |
| * This removes the OPP tables for CPUs present in the @cpumask. |
| * This should be used only to remove static entries created from DT. |
| */ |
| void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask) |
| { |
| _dev_pm_opp_cpumask_remove_table(cpumask, -1); |
| } |
| EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table); |
| |
| /** |
| * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask |
| * @cpumask: cpumask for which OPP table needs to be added. |
| * |
| * This adds the OPP tables for CPUs present in the @cpumask. |
| */ |
| int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask) |
| { |
| struct device *cpu_dev; |
| int cpu, ret; |
| |
| if (WARN_ON(cpumask_empty(cpumask))) |
| return -ENODEV; |
| |
| for_each_cpu(cpu, cpumask) { |
| cpu_dev = get_cpu_device(cpu); |
| if (!cpu_dev) { |
| pr_err("%s: failed to get cpu%d device\n", __func__, |
| cpu); |
| ret = -ENODEV; |
| goto remove_table; |
| } |
| |
| ret = dev_pm_opp_of_add_table(cpu_dev); |
| if (ret) { |
| /* |
| * OPP may get registered dynamically, don't print error |
| * message here. |
| */ |
| pr_debug("%s: couldn't find opp table for cpu:%d, %d\n", |
| __func__, cpu, ret); |
| |
| goto remove_table; |
| } |
| } |
| |
| return 0; |
| |
| remove_table: |
| /* Free all other OPPs */ |
| _dev_pm_opp_cpumask_remove_table(cpumask, cpu); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table); |
| |
| /* |
| * Works only for OPP v2 bindings. |
| * |
| * Returns -ENOENT if operating-points-v2 bindings aren't supported. |
| */ |
| /** |
| * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with |
| * @cpu_dev using operating-points-v2 |
| * bindings. |
| * |
| * @cpu_dev: CPU device for which we do this operation |
| * @cpumask: cpumask to update with information of sharing CPUs |
| * |
| * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev. |
| * |
| * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev. |
| */ |
| int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev, |
| struct cpumask *cpumask) |
| { |
| struct device_node *np, *tmp_np, *cpu_np; |
| int cpu, ret = 0; |
| |
| /* Get OPP descriptor node */ |
| np = dev_pm_opp_of_get_opp_desc_node(cpu_dev); |
| if (!np) { |
| dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__); |
| return -ENOENT; |
| } |
| |
| cpumask_set_cpu(cpu_dev->id, cpumask); |
| |
| /* OPPs are shared ? */ |
| if (!of_property_read_bool(np, "opp-shared")) |
| goto put_cpu_node; |
| |
| for_each_possible_cpu(cpu) { |
| if (cpu == cpu_dev->id) |
| continue; |
| |
| cpu_np = of_cpu_device_node_get(cpu); |
| if (!cpu_np) { |
| dev_err(cpu_dev, "%s: failed to get cpu%d node\n", |
| __func__, cpu); |
| ret = -ENOENT; |
| goto put_cpu_node; |
| } |
| |
| /* Get OPP descriptor node */ |
| tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0); |
| of_node_put(cpu_np); |
| if (!tmp_np) { |
| pr_err("%pOF: Couldn't find opp node\n", cpu_np); |
| ret = -ENOENT; |
| goto put_cpu_node; |
| } |
| |
| /* CPUs are sharing opp node */ |
| if (np == tmp_np) |
| cpumask_set_cpu(cpu, cpumask); |
| |
| of_node_put(tmp_np); |
| } |
| |
| put_cpu_node: |
| of_node_put(np); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus); |
| |
| /** |
| * of_get_required_opp_performance_state() - Search for required OPP and return its performance state. |
| * @np: Node that contains the "required-opps" property. |
| * @index: Index of the phandle to parse. |
| * |
| * Returns the performance state of the OPP pointed out by the "required-opps" |
| * property at @index in @np. |
| * |
| * Return: Zero or positive performance state on success, otherwise negative |
| * value on errors. |
| */ |
| int of_get_required_opp_performance_state(struct device_node *np, int index) |
| { |
| struct dev_pm_opp *opp; |
| struct device_node *required_np; |
| struct opp_table *opp_table; |
| int pstate = -EINVAL; |
| |
| required_np = of_parse_required_opp(np, index); |
| if (!required_np) |
| return -ENODEV; |
| |
| opp_table = _find_table_of_opp_np(required_np); |
| if (IS_ERR(opp_table)) { |
| pr_err("%s: Failed to find required OPP table %pOF: %ld\n", |
| __func__, np, PTR_ERR(opp_table)); |
| goto put_required_np; |
| } |
| |
| /* The OPP tables must belong to a genpd */ |
| if (unlikely(!opp_table->is_genpd)) { |
| pr_err("%s: Performance state is only valid for genpds.\n", __func__); |
| goto put_required_np; |
| } |
| |
| opp = _find_opp_of_np(opp_table, required_np); |
| if (opp) { |
| if (opp->level == OPP_LEVEL_UNSET) { |
| pr_err("%s: OPP levels aren't available for %pOF\n", |
| __func__, np); |
| } else { |
| pstate = opp->level; |
| } |
| dev_pm_opp_put(opp); |
| |
| } |
| |
| dev_pm_opp_put_opp_table(opp_table); |
| |
| put_required_np: |
| of_node_put(required_np); |
| |
| return pstate; |
| } |
| EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state); |
| |
| /** |
| * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp |
| * @opp: opp for which DT node has to be returned for |
| * |
| * Return: DT node corresponding to the opp, else 0 on success. |
| * |
| * The caller needs to put the node with of_node_put() after using it. |
| */ |
| struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp) |
| { |
| if (IS_ERR_OR_NULL(opp)) { |
| pr_err("%s: Invalid parameters\n", __func__); |
| return NULL; |
| } |
| |
| return of_node_get(opp->np); |
| } |
| EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node); |
| |
| /* |
| * Callback function provided to the Energy Model framework upon registration. |
| * It provides the power used by @dev at @kHz if it is the frequency of an |
| * existing OPP, or at the frequency of the first OPP above @kHz otherwise |
| * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled |
| * frequency and @uW to the associated power. |
| * |
| * Returns 0 on success or a proper -EINVAL value in case of error. |
| */ |
| static int __maybe_unused |
| _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz) |
| { |
| struct dev_pm_opp *opp; |
| unsigned long opp_freq, opp_power; |
| |
| /* Find the right frequency and related OPP */ |
| opp_freq = *kHz * 1000; |
| opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq); |
| if (IS_ERR(opp)) |
| return -EINVAL; |
| |
| opp_power = dev_pm_opp_get_power(opp); |
| dev_pm_opp_put(opp); |
| if (!opp_power) |
| return -EINVAL; |
| |
| *kHz = opp_freq / 1000; |
| *uW = opp_power; |
| |
| return 0; |
| } |
| |
| /** |
| * dev_pm_opp_calc_power() - Calculate power value for device with EM |
| * @dev : Device for which an Energy Model has to be registered |
| * @uW : New power value that is calculated |
| * @kHz : Frequency for which the new power is calculated |
| * |
| * This computes the power estimated by @dev at @kHz if it is the frequency |
| * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise |
| * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled |
| * frequency and @uW to the associated power. The power is estimated as |
| * P = C * V^2 * f with C being the device's capacitance and V and f |
| * respectively the voltage and frequency of the OPP. |
| * It is also used as a callback function provided to the Energy Model |
| * framework upon registration. |
| * |
| * Returns -EINVAL if the power calculation failed because of missing |
| * parameters, 0 otherwise. |
| */ |
| int dev_pm_opp_calc_power(struct device *dev, unsigned long *uW, |
| unsigned long *kHz) |
| { |
| struct dev_pm_opp *opp; |
| struct device_node *np; |
| unsigned long mV, Hz; |
| u32 cap; |
| u64 tmp; |
| int ret; |
| |
| np = of_node_get(dev->of_node); |
| if (!np) |
| return -EINVAL; |
| |
| ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap); |
| of_node_put(np); |
| if (ret) |
| return -EINVAL; |
| |
| Hz = *kHz * 1000; |
| opp = dev_pm_opp_find_freq_ceil(dev, &Hz); |
| if (IS_ERR(opp)) |
| return -EINVAL; |
| |
| mV = dev_pm_opp_get_voltage(opp) / 1000; |
| dev_pm_opp_put(opp); |
| if (!mV) |
| return -EINVAL; |
| |
| tmp = (u64)cap * mV * mV * (Hz / 1000000); |
| /* Provide power in micro-Watts */ |
| do_div(tmp, 1000000); |
| |
| *uW = (unsigned long)tmp; |
| *kHz = Hz / 1000; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(dev_pm_opp_calc_power); |
| |
| static bool _of_has_opp_microwatt_property(struct device *dev) |
| { |
| unsigned long power, freq = 0; |
| struct dev_pm_opp *opp; |
| |
| /* Check if at least one OPP has needed property */ |
| opp = dev_pm_opp_find_freq_ceil(dev, &freq); |
| if (IS_ERR(opp)) |
| return false; |
| |
| power = dev_pm_opp_get_power(opp); |
| dev_pm_opp_put(opp); |
| if (!power) |
| return false; |
| |
| return true; |
| } |
| |
| /** |
| * dev_pm_opp_of_register_em() - Attempt to register an Energy Model |
| * @dev : Device for which an Energy Model has to be registered |
| * @cpus : CPUs for which an Energy Model has to be registered. For |
| * other type of devices it should be set to NULL. |
| * |
| * This checks whether the "dynamic-power-coefficient" devicetree property has |
| * been specified, and tries to register an Energy Model with it if it has. |
| * Having this property means the voltages are known for OPPs and the EM |
| * might be calculated. |
| */ |
| int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus) |
| { |
| struct em_data_callback em_cb; |
| struct device_node *np; |
| int ret, nr_opp; |
| u32 cap; |
| |
| if (IS_ERR_OR_NULL(dev)) { |
| ret = -EINVAL; |
| goto failed; |
| } |
| |
| nr_opp = dev_pm_opp_get_opp_count(dev); |
| if (nr_opp <= 0) { |
| ret = -EINVAL; |
| goto failed; |
| } |
| |
| /* First, try to find more precised Energy Model in DT */ |
| if (_of_has_opp_microwatt_property(dev)) { |
| EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power); |
| goto register_em; |
| } |
| |
| np = of_node_get(dev->of_node); |
| if (!np) { |
| ret = -EINVAL; |
| goto failed; |
| } |
| |
| /* |
| * Register an EM only if the 'dynamic-power-coefficient' property is |
| * set in devicetree. It is assumed the voltage values are known if that |
| * property is set since it is useless otherwise. If voltages are not |
| * known, just let the EM registration fail with an error to alert the |
| * user about the inconsistent configuration. |
| */ |
| ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap); |
| of_node_put(np); |
| if (ret || !cap) { |
| dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n"); |
| ret = -EINVAL; |
| goto failed; |
| } |
| |
| EM_SET_ACTIVE_POWER_CB(em_cb, dev_pm_opp_calc_power); |
| |
| register_em: |
| ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true); |
| if (ret) |
| goto failed; |
| |
| return 0; |
| |
| failed: |
| dev_dbg(dev, "Couldn't register Energy Model %d\n", ret); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em); |