blob: 40562600a8cf2b38c1f43590297cddb2407fd4bf [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */
#include "ice.h"
#include "ice_base.h"
#include "ice_flow.h"
#include "ice_lib.h"
#include "ice_fltr.h"
#include "ice_dcb_lib.h"
#include "ice_devlink.h"
/**
* ice_vsi_type_str - maps VSI type enum to string equivalents
* @vsi_type: VSI type enum
*/
const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
{
switch (vsi_type) {
case ICE_VSI_PF:
return "ICE_VSI_PF";
case ICE_VSI_VF:
return "ICE_VSI_VF";
case ICE_VSI_CTRL:
return "ICE_VSI_CTRL";
case ICE_VSI_CHNL:
return "ICE_VSI_CHNL";
case ICE_VSI_LB:
return "ICE_VSI_LB";
case ICE_VSI_SWITCHDEV_CTRL:
return "ICE_VSI_SWITCHDEV_CTRL";
default:
return "unknown";
}
}
/**
* ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
* @vsi: the VSI being configured
* @ena: start or stop the Rx rings
*
* First enable/disable all of the Rx rings, flush any remaining writes, and
* then verify that they have all been enabled/disabled successfully. This will
* let all of the register writes complete when enabling/disabling the Rx rings
* before waiting for the change in hardware to complete.
*/
static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
{
int ret = 0;
u16 i;
ice_for_each_rxq(vsi, i)
ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
ice_flush(&vsi->back->hw);
ice_for_each_rxq(vsi, i) {
ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
if (ret)
break;
}
return ret;
}
/**
* ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
* @vsi: VSI pointer
*
* On error: returns error code (negative)
* On success: returns 0
*/
static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct device *dev;
dev = ice_pf_to_dev(pf);
if (vsi->type == ICE_VSI_CHNL)
return 0;
/* allocate memory for both Tx and Rx ring pointers */
vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
sizeof(*vsi->tx_rings), GFP_KERNEL);
if (!vsi->tx_rings)
return -ENOMEM;
vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
sizeof(*vsi->rx_rings), GFP_KERNEL);
if (!vsi->rx_rings)
goto err_rings;
/* XDP will have vsi->alloc_txq Tx queues as well, so double the size */
vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq),
sizeof(*vsi->txq_map), GFP_KERNEL);
if (!vsi->txq_map)
goto err_txq_map;
vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
sizeof(*vsi->rxq_map), GFP_KERNEL);
if (!vsi->rxq_map)
goto err_rxq_map;
/* There is no need to allocate q_vectors for a loopback VSI. */
if (vsi->type == ICE_VSI_LB)
return 0;
/* allocate memory for q_vector pointers */
vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
sizeof(*vsi->q_vectors), GFP_KERNEL);
if (!vsi->q_vectors)
goto err_vectors;
vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
if (!vsi->af_xdp_zc_qps)
goto err_zc_qps;
return 0;
err_zc_qps:
devm_kfree(dev, vsi->q_vectors);
err_vectors:
devm_kfree(dev, vsi->rxq_map);
err_rxq_map:
devm_kfree(dev, vsi->txq_map);
err_txq_map:
devm_kfree(dev, vsi->rx_rings);
err_rings:
devm_kfree(dev, vsi->tx_rings);
return -ENOMEM;
}
/**
* ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
* @vsi: the VSI being configured
*/
static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
{
switch (vsi->type) {
case ICE_VSI_PF:
case ICE_VSI_SWITCHDEV_CTRL:
case ICE_VSI_CTRL:
case ICE_VSI_LB:
/* a user could change the values of num_[tr]x_desc using
* ethtool -G so we should keep those values instead of
* overwriting them with the defaults.
*/
if (!vsi->num_rx_desc)
vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
if (!vsi->num_tx_desc)
vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
break;
default:
dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
vsi->type);
break;
}
}
/**
* ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
* @vsi: the VSI being configured
* @vf_id: ID of the VF being configured
*
* Return 0 on success and a negative value on error
*/
static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
{
struct ice_pf *pf = vsi->back;
struct ice_vf *vf = NULL;
if (vsi->type == ICE_VSI_VF)
vsi->vf_id = vf_id;
else
vsi->vf_id = ICE_INVAL_VFID;
switch (vsi->type) {
case ICE_VSI_PF:
if (vsi->req_txq) {
vsi->alloc_txq = vsi->req_txq;
vsi->num_txq = vsi->req_txq;
} else {
vsi->alloc_txq = min3(pf->num_lan_msix,
ice_get_avail_txq_count(pf),
(u16)num_online_cpus());
}
pf->num_lan_tx = vsi->alloc_txq;
/* only 1 Rx queue unless RSS is enabled */
if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
vsi->alloc_rxq = 1;
} else {
if (vsi->req_rxq) {
vsi->alloc_rxq = vsi->req_rxq;
vsi->num_rxq = vsi->req_rxq;
} else {
vsi->alloc_rxq = min3(pf->num_lan_msix,
ice_get_avail_rxq_count(pf),
(u16)num_online_cpus());
}
}
pf->num_lan_rx = vsi->alloc_rxq;
vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
max_t(int, vsi->alloc_rxq,
vsi->alloc_txq));
break;
case ICE_VSI_SWITCHDEV_CTRL:
/* The number of queues for ctrl VSI is equal to number of VFs.
* Each ring is associated to the corresponding VF_PR netdev.
*/
vsi->alloc_txq = pf->num_alloc_vfs;
vsi->alloc_rxq = pf->num_alloc_vfs;
vsi->num_q_vectors = 1;
break;
case ICE_VSI_VF:
vf = &pf->vf[vsi->vf_id];
if (vf->num_req_qs)
vf->num_vf_qs = vf->num_req_qs;
vsi->alloc_txq = vf->num_vf_qs;
vsi->alloc_rxq = vf->num_vf_qs;
/* pf->num_msix_per_vf includes (VF miscellaneous vector +
* data queue interrupts). Since vsi->num_q_vectors is number
* of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
* original vector count
*/
vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF;
break;
case ICE_VSI_CTRL:
vsi->alloc_txq = 1;
vsi->alloc_rxq = 1;
vsi->num_q_vectors = 1;
break;
case ICE_VSI_CHNL:
vsi->alloc_txq = 0;
vsi->alloc_rxq = 0;
break;
case ICE_VSI_LB:
vsi->alloc_txq = 1;
vsi->alloc_rxq = 1;
break;
default:
dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type);
break;
}
ice_vsi_set_num_desc(vsi);
}
/**
* ice_get_free_slot - get the next non-NULL location index in array
* @array: array to search
* @size: size of the array
* @curr: last known occupied index to be used as a search hint
*
* void * is being used to keep the functionality generic. This lets us use this
* function on any array of pointers.
*/
static int ice_get_free_slot(void *array, int size, int curr)
{
int **tmp_array = (int **)array;
int next;
if (curr < (size - 1) && !tmp_array[curr + 1]) {
next = curr + 1;
} else {
int i = 0;
while ((i < size) && (tmp_array[i]))
i++;
if (i == size)
next = ICE_NO_VSI;
else
next = i;
}
return next;
}
/**
* ice_vsi_delete - delete a VSI from the switch
* @vsi: pointer to VSI being removed
*/
void ice_vsi_delete(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct ice_vsi_ctx *ctxt;
enum ice_status status;
ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
if (!ctxt)
return;
if (vsi->type == ICE_VSI_VF)
ctxt->vf_num = vsi->vf_id;
ctxt->vsi_num = vsi->vsi_num;
memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
if (status)
dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n",
vsi->vsi_num, ice_stat_str(status));
kfree(ctxt);
}
/**
* ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
* @vsi: pointer to VSI being cleared
*/
static void ice_vsi_free_arrays(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct device *dev;
dev = ice_pf_to_dev(pf);
if (vsi->af_xdp_zc_qps) {
bitmap_free(vsi->af_xdp_zc_qps);
vsi->af_xdp_zc_qps = NULL;
}
/* free the ring and vector containers */
if (vsi->q_vectors) {
devm_kfree(dev, vsi->q_vectors);
vsi->q_vectors = NULL;
}
if (vsi->tx_rings) {
devm_kfree(dev, vsi->tx_rings);
vsi->tx_rings = NULL;
}
if (vsi->rx_rings) {
devm_kfree(dev, vsi->rx_rings);
vsi->rx_rings = NULL;
}
if (vsi->txq_map) {
devm_kfree(dev, vsi->txq_map);
vsi->txq_map = NULL;
}
if (vsi->rxq_map) {
devm_kfree(dev, vsi->rxq_map);
vsi->rxq_map = NULL;
}
}
/**
* ice_vsi_clear - clean up and deallocate the provided VSI
* @vsi: pointer to VSI being cleared
*
* This deallocates the VSI's queue resources, removes it from the PF's
* VSI array if necessary, and deallocates the VSI
*
* Returns 0 on success, negative on failure
*/
int ice_vsi_clear(struct ice_vsi *vsi)
{
struct ice_pf *pf = NULL;
struct device *dev;
if (!vsi)
return 0;
if (!vsi->back)
return -EINVAL;
pf = vsi->back;
dev = ice_pf_to_dev(pf);
if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
return -EINVAL;
}
mutex_lock(&pf->sw_mutex);
/* updates the PF for this cleared VSI */
pf->vsi[vsi->idx] = NULL;
if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL)
pf->next_vsi = vsi->idx;
if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL &&
vsi->vf_id != ICE_INVAL_VFID)
pf->next_vsi = vsi->idx;
ice_vsi_free_arrays(vsi);
mutex_unlock(&pf->sw_mutex);
devm_kfree(dev, vsi);
return 0;
}
/**
* ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
* @irq: interrupt number
* @data: pointer to a q_vector
*/
static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
{
struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
if (!q_vector->tx.tx_ring)
return IRQ_HANDLED;
#define FDIR_RX_DESC_CLEAN_BUDGET 64
ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
return IRQ_HANDLED;
}
/**
* ice_msix_clean_rings - MSIX mode Interrupt Handler
* @irq: interrupt number
* @data: pointer to a q_vector
*/
static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
{
struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
return IRQ_HANDLED;
q_vector->total_events++;
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
{
struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
struct ice_pf *pf = q_vector->vsi->back;
int i;
if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
return IRQ_HANDLED;
ice_for_each_vf(pf, i)
napi_schedule(&pf->vf[i].repr->q_vector->napi);
return IRQ_HANDLED;
}
/**
* ice_vsi_alloc - Allocates the next available struct VSI in the PF
* @pf: board private structure
* @vsi_type: type of VSI
* @ch: ptr to channel
* @vf_id: ID of the VF being configured
*
* returns a pointer to a VSI on success, NULL on failure.
*/
static struct ice_vsi *
ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type,
struct ice_channel *ch, u16 vf_id)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_vsi *vsi = NULL;
/* Need to protect the allocation of the VSIs at the PF level */
mutex_lock(&pf->sw_mutex);
/* If we have already allocated our maximum number of VSIs,
* pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
* is available to be populated
*/
if (pf->next_vsi == ICE_NO_VSI) {
dev_dbg(dev, "out of VSI slots!\n");
goto unlock_pf;
}
vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
if (!vsi)
goto unlock_pf;
vsi->type = vsi_type;
vsi->back = pf;
set_bit(ICE_VSI_DOWN, vsi->state);
if (vsi_type == ICE_VSI_VF)
ice_vsi_set_num_qs(vsi, vf_id);
else if (vsi_type != ICE_VSI_CHNL)
ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
switch (vsi->type) {
case ICE_VSI_SWITCHDEV_CTRL:
if (ice_vsi_alloc_arrays(vsi))
goto err_rings;
/* Setup eswitch MSIX irq handler for VSI */
vsi->irq_handler = ice_eswitch_msix_clean_rings;
break;
case ICE_VSI_PF:
if (ice_vsi_alloc_arrays(vsi))
goto err_rings;
/* Setup default MSIX irq handler for VSI */
vsi->irq_handler = ice_msix_clean_rings;
break;
case ICE_VSI_CTRL:
if (ice_vsi_alloc_arrays(vsi))
goto err_rings;
/* Setup ctrl VSI MSIX irq handler */
vsi->irq_handler = ice_msix_clean_ctrl_vsi;
break;
case ICE_VSI_VF:
if (ice_vsi_alloc_arrays(vsi))
goto err_rings;
break;
case ICE_VSI_CHNL:
if (!ch)
goto err_rings;
vsi->num_rxq = ch->num_rxq;
vsi->num_txq = ch->num_txq;
vsi->next_base_q = ch->base_q;
break;
case ICE_VSI_LB:
if (ice_vsi_alloc_arrays(vsi))
goto err_rings;
break;
default:
dev_warn(dev, "Unknown VSI type %d\n", vsi->type);
goto unlock_pf;
}
if (vsi->type == ICE_VSI_CTRL && vf_id == ICE_INVAL_VFID) {
/* Use the last VSI slot as the index for PF control VSI */
vsi->idx = pf->num_alloc_vsi - 1;
pf->ctrl_vsi_idx = vsi->idx;
pf->vsi[vsi->idx] = vsi;
} else {
/* fill slot and make note of the index */
vsi->idx = pf->next_vsi;
pf->vsi[pf->next_vsi] = vsi;
/* prepare pf->next_vsi for next use */
pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
pf->next_vsi);
}
if (vsi->type == ICE_VSI_CTRL && vf_id != ICE_INVAL_VFID)
pf->vf[vf_id].ctrl_vsi_idx = vsi->idx;
goto unlock_pf;
err_rings:
devm_kfree(dev, vsi);
vsi = NULL;
unlock_pf:
mutex_unlock(&pf->sw_mutex);
return vsi;
}
/**
* ice_alloc_fd_res - Allocate FD resource for a VSI
* @vsi: pointer to the ice_vsi
*
* This allocates the FD resources
*
* Returns 0 on success, -EPERM on no-op or -EIO on failure
*/
static int ice_alloc_fd_res(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
u32 g_val, b_val;
/* Flow Director filters are only allocated/assigned to the PF VSI which
* passes the traffic. The CTRL VSI is only used to add/delete filters
* so we don't allocate resources to it
*/
/* FD filters from guaranteed pool per VSI */
g_val = pf->hw.func_caps.fd_fltr_guar;
if (!g_val)
return -EPERM;
/* FD filters from best effort pool */
b_val = pf->hw.func_caps.fd_fltr_best_effort;
if (!b_val)
return -EPERM;
if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF))
return -EPERM;
if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
return -EPERM;
vsi->num_gfltr = g_val / pf->num_alloc_vsi;
/* each VSI gets same "best_effort" quota */
vsi->num_bfltr = b_val;
if (vsi->type == ICE_VSI_VF) {
vsi->num_gfltr = 0;
/* each VSI gets same "best_effort" quota */
vsi->num_bfltr = b_val;
}
return 0;
}
/**
* ice_vsi_get_qs - Assign queues from PF to VSI
* @vsi: the VSI to assign queues to
*
* Returns 0 on success and a negative value on error
*/
static int ice_vsi_get_qs(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct ice_qs_cfg tx_qs_cfg = {
.qs_mutex = &pf->avail_q_mutex,
.pf_map = pf->avail_txqs,
.pf_map_size = pf->max_pf_txqs,
.q_count = vsi->alloc_txq,
.scatter_count = ICE_MAX_SCATTER_TXQS,
.vsi_map = vsi->txq_map,
.vsi_map_offset = 0,
.mapping_mode = ICE_VSI_MAP_CONTIG
};
struct ice_qs_cfg rx_qs_cfg = {
.qs_mutex = &pf->avail_q_mutex,
.pf_map = pf->avail_rxqs,
.pf_map_size = pf->max_pf_rxqs,
.q_count = vsi->alloc_rxq,
.scatter_count = ICE_MAX_SCATTER_RXQS,
.vsi_map = vsi->rxq_map,
.vsi_map_offset = 0,
.mapping_mode = ICE_VSI_MAP_CONTIG
};
int ret;
if (vsi->type == ICE_VSI_CHNL)
return 0;
ret = __ice_vsi_get_qs(&tx_qs_cfg);
if (ret)
return ret;
vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
ret = __ice_vsi_get_qs(&rx_qs_cfg);
if (ret)
return ret;
vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
return 0;
}
/**
* ice_vsi_put_qs - Release queues from VSI to PF
* @vsi: the VSI that is going to release queues
*/
static void ice_vsi_put_qs(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int i;
mutex_lock(&pf->avail_q_mutex);
ice_for_each_alloc_txq(vsi, i) {
clear_bit(vsi->txq_map[i], pf->avail_txqs);
vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
}
ice_for_each_alloc_rxq(vsi, i) {
clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
}
mutex_unlock(&pf->avail_q_mutex);
}
/**
* ice_is_safe_mode
* @pf: pointer to the PF struct
*
* returns true if driver is in safe mode, false otherwise
*/
bool ice_is_safe_mode(struct ice_pf *pf)
{
return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
}
/**
* ice_is_aux_ena
* @pf: pointer to the PF struct
*
* returns true if AUX devices/drivers are supported, false otherwise
*/
bool ice_is_aux_ena(struct ice_pf *pf)
{
return test_bit(ICE_FLAG_AUX_ENA, pf->flags);
}
/**
* ice_vsi_clean_rss_flow_fld - Delete RSS configuration
* @vsi: the VSI being cleaned up
*
* This function deletes RSS input set for all flows that were configured
* for this VSI
*/
static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
enum ice_status status;
if (ice_is_safe_mode(pf))
return;
status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
if (status)
dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n",
vsi->vsi_num, ice_stat_str(status));
}
/**
* ice_rss_clean - Delete RSS related VSI structures and configuration
* @vsi: the VSI being removed
*/
static void ice_rss_clean(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct device *dev;
dev = ice_pf_to_dev(pf);
if (vsi->rss_hkey_user)
devm_kfree(dev, vsi->rss_hkey_user);
if (vsi->rss_lut_user)
devm_kfree(dev, vsi->rss_lut_user);
ice_vsi_clean_rss_flow_fld(vsi);
/* remove RSS replay list */
if (!ice_is_safe_mode(pf))
ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
}
/**
* ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
* @vsi: the VSI being configured
*/
static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
{
struct ice_hw_common_caps *cap;
struct ice_pf *pf = vsi->back;
if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
vsi->rss_size = 1;
return;
}
cap = &pf->hw.func_caps.common_cap;
switch (vsi->type) {
case ICE_VSI_CHNL:
case ICE_VSI_PF:
/* PF VSI will inherit RSS instance of PF */
vsi->rss_table_size = (u16)cap->rss_table_size;
if (vsi->type == ICE_VSI_CHNL)
vsi->rss_size = min_t(u16, vsi->num_rxq,
BIT(cap->rss_table_entry_width));
else
vsi->rss_size = min_t(u16, num_online_cpus(),
BIT(cap->rss_table_entry_width));
vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
break;
case ICE_VSI_SWITCHDEV_CTRL:
vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
vsi->rss_size = min_t(u16, num_online_cpus(),
BIT(cap->rss_table_entry_width));
vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
break;
case ICE_VSI_VF:
/* VF VSI will get a small RSS table.
* For VSI_LUT, LUT size should be set to 64 bytes.
*/
vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
break;
case ICE_VSI_LB:
break;
default:
dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
ice_vsi_type_str(vsi->type));
break;
}
}
/**
* ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
* @ctxt: the VSI context being set
*
* This initializes a default VSI context for all sections except the Queues.
*/
static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
{
u32 table = 0;
memset(&ctxt->info, 0, sizeof(ctxt->info));
/* VSI's should be allocated from shared pool */
ctxt->alloc_from_pool = true;
/* Src pruning enabled by default */
ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
/* Traffic from VSI can be sent to LAN */
ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
/* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
* behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
* packets untagged/tagged.
*/
ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
ICE_AQ_VSI_VLAN_MODE_M) >>
ICE_AQ_VSI_VLAN_MODE_S);
/* Have 1:1 UP mapping for both ingress/egress tables */
table |= ICE_UP_TABLE_TRANSLATE(0, 0);
table |= ICE_UP_TABLE_TRANSLATE(1, 1);
table |= ICE_UP_TABLE_TRANSLATE(2, 2);
table |= ICE_UP_TABLE_TRANSLATE(3, 3);
table |= ICE_UP_TABLE_TRANSLATE(4, 4);
table |= ICE_UP_TABLE_TRANSLATE(5, 5);
table |= ICE_UP_TABLE_TRANSLATE(6, 6);
table |= ICE_UP_TABLE_TRANSLATE(7, 7);
ctxt->info.ingress_table = cpu_to_le32(table);
ctxt->info.egress_table = cpu_to_le32(table);
/* Have 1:1 UP mapping for outer to inner UP table */
ctxt->info.outer_up_table = cpu_to_le32(table);
/* No Outer tag support outer_tag_flags remains to zero */
}
/**
* ice_vsi_setup_q_map - Setup a VSI queue map
* @vsi: the VSI being configured
* @ctxt: VSI context structure
*/
static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
{
u16 offset = 0, qmap = 0, tx_count = 0, pow = 0;
u16 num_txq_per_tc, num_rxq_per_tc;
u16 qcount_tx = vsi->alloc_txq;
u16 qcount_rx = vsi->alloc_rxq;
u8 netdev_tc = 0;
int i;
if (!vsi->tc_cfg.numtc) {
/* at least TC0 should be enabled by default */
vsi->tc_cfg.numtc = 1;
vsi->tc_cfg.ena_tc = 1;
}
num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
if (!num_rxq_per_tc)
num_rxq_per_tc = 1;
num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
if (!num_txq_per_tc)
num_txq_per_tc = 1;
/* find the (rounded up) power-of-2 of qcount */
pow = (u16)order_base_2(num_rxq_per_tc);
/* TC mapping is a function of the number of Rx queues assigned to the
* VSI for each traffic class and the offset of these queues.
* The first 10 bits are for queue offset for TC0, next 4 bits for no:of
* queues allocated to TC0. No:of queues is a power-of-2.
*
* If TC is not enabled, the queue offset is set to 0, and allocate one
* queue, this way, traffic for the given TC will be sent to the default
* queue.
*
* Setup number and offset of Rx queues for all TCs for the VSI
*/
ice_for_each_traffic_class(i) {
if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
/* TC is not enabled */
vsi->tc_cfg.tc_info[i].qoffset = 0;
vsi->tc_cfg.tc_info[i].qcount_rx = 1;
vsi->tc_cfg.tc_info[i].qcount_tx = 1;
vsi->tc_cfg.tc_info[i].netdev_tc = 0;
ctxt->info.tc_mapping[i] = 0;
continue;
}
/* TC is enabled */
vsi->tc_cfg.tc_info[i].qoffset = offset;
vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
ICE_AQ_VSI_TC_Q_OFFSET_M) |
((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
ICE_AQ_VSI_TC_Q_NUM_M);
offset += num_rxq_per_tc;
tx_count += num_txq_per_tc;
ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
}
/* if offset is non-zero, means it is calculated correctly based on
* enabled TCs for a given VSI otherwise qcount_rx will always
* be correct and non-zero because it is based off - VSI's
* allocated Rx queues which is at least 1 (hence qcount_tx will be
* at least 1)
*/
if (offset)
vsi->num_rxq = offset;
else
vsi->num_rxq = num_rxq_per_tc;
vsi->num_txq = tx_count;
if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
/* since there is a chance that num_rxq could have been changed
* in the above for loop, make num_txq equal to num_rxq.
*/
vsi->num_txq = vsi->num_rxq;
}
/* Rx queue mapping */
ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
/* q_mapping buffer holds the info for the first queue allocated for
* this VSI in the PF space and also the number of queues associated
* with this VSI.
*/
ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
}
/**
* ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
* @ctxt: the VSI context being set
* @vsi: the VSI being configured
*/
static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
{
u8 dflt_q_group, dflt_q_prio;
u16 dflt_q, report_q, val;
if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
vsi->type != ICE_VSI_VF)
return;
val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
ctxt->info.valid_sections |= cpu_to_le16(val);
dflt_q = 0;
dflt_q_group = 0;
report_q = 0;
dflt_q_prio = 0;
/* enable flow director filtering/programming */
val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
ctxt->info.fd_options = cpu_to_le16(val);
/* max of allocated flow director filters */
ctxt->info.max_fd_fltr_dedicated =
cpu_to_le16(vsi->num_gfltr);
/* max of shared flow director filters any VSI may program */
ctxt->info.max_fd_fltr_shared =
cpu_to_le16(vsi->num_bfltr);
/* default queue index within the VSI of the default FD */
val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
ICE_AQ_VSI_FD_DEF_Q_M);
/* target queue or queue group to the FD filter */
val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
ICE_AQ_VSI_FD_DEF_GRP_M);
ctxt->info.fd_def_q = cpu_to_le16(val);
/* queue index on which FD filter completion is reported */
val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
ICE_AQ_VSI_FD_REPORT_Q_M);
/* priority of the default qindex action */
val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
ICE_AQ_VSI_FD_DEF_PRIORITY_M);
ctxt->info.fd_report_opt = cpu_to_le16(val);
}
/**
* ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
* @ctxt: the VSI context being set
* @vsi: the VSI being configured
*/
static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
{
u8 lut_type, hash_type;
struct device *dev;
struct ice_pf *pf;
pf = vsi->back;
dev = ice_pf_to_dev(pf);
switch (vsi->type) {
case ICE_VSI_CHNL:
case ICE_VSI_PF:
/* PF VSI will inherit RSS instance of PF */
lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
break;
case ICE_VSI_VF:
/* VF VSI will gets a small RSS table which is a VSI LUT type */
lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
break;
default:
dev_dbg(dev, "Unsupported VSI type %s\n",
ice_vsi_type_str(vsi->type));
return;
}
ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
}
static void
ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
{
struct ice_pf *pf = vsi->back;
u16 qcount, qmap;
u8 offset = 0;
int pow;
qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
pow = order_base_2(qcount);
qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
ICE_AQ_VSI_TC_Q_OFFSET_M) |
((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
ICE_AQ_VSI_TC_Q_NUM_M);
ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
}
/**
* ice_vsi_init - Create and initialize a VSI
* @vsi: the VSI being configured
* @init_vsi: is this call creating a VSI
*
* This initializes a VSI context depending on the VSI type to be added and
* passes it down to the add_vsi aq command to create a new VSI.
*/
static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
struct ice_vsi_ctx *ctxt;
struct device *dev;
int ret = 0;
dev = ice_pf_to_dev(pf);
ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
if (!ctxt)
return -ENOMEM;
switch (vsi->type) {
case ICE_VSI_CTRL:
case ICE_VSI_LB:
case ICE_VSI_PF:
ctxt->flags = ICE_AQ_VSI_TYPE_PF;
break;
case ICE_VSI_SWITCHDEV_CTRL:
case ICE_VSI_CHNL:
ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
break;
case ICE_VSI_VF:
ctxt->flags = ICE_AQ_VSI_TYPE_VF;
/* VF number here is the absolute VF number (0-255) */
ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
break;
default:
ret = -ENODEV;
goto out;
}
/* Handle VLAN pruning for channel VSI if main VSI has VLAN
* prune enabled
*/
if (vsi->type == ICE_VSI_CHNL) {
struct ice_vsi *main_vsi;
main_vsi = ice_get_main_vsi(pf);
if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
ctxt->info.sw_flags2 |=
ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
else
ctxt->info.sw_flags2 &=
~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
}
ice_set_dflt_vsi_ctx(ctxt);
if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
ice_set_fd_vsi_ctx(ctxt, vsi);
/* if the switch is in VEB mode, allow VSI loopback */
if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
/* Set LUT type and HASH type if RSS is enabled */
if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
vsi->type != ICE_VSI_CTRL) {
ice_set_rss_vsi_ctx(ctxt, vsi);
/* if updating VSI context, make sure to set valid_section:
* to indicate which section of VSI context being updated
*/
if (!init_vsi)
ctxt->info.valid_sections |=
cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
}
ctxt->info.sw_id = vsi->port_info->sw_id;
if (vsi->type == ICE_VSI_CHNL) {
ice_chnl_vsi_setup_q_map(vsi, ctxt);
} else {
ice_vsi_setup_q_map(vsi, ctxt);
if (!init_vsi) /* means VSI being updated */
/* must to indicate which section of VSI context are
* being modified
*/
ctxt->info.valid_sections |=
cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
}
/* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off
* respectively
*/
if (vsi->type == ICE_VSI_VF) {
ctxt->info.valid_sections |=
cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
if (pf->vf[vsi->vf_id].spoofchk) {
ctxt->info.sec_flags |=
ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
} else {
ctxt->info.sec_flags &=
~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S));
}
}
/* Allow control frames out of main VSI */
if (vsi->type == ICE_VSI_PF) {
ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
ctxt->info.valid_sections |=
cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
}
if (init_vsi) {
ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
if (ret) {
dev_err(dev, "Add VSI failed, err %d\n", ret);
ret = -EIO;
goto out;
}
} else {
ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
if (ret) {
dev_err(dev, "Update VSI failed, err %d\n", ret);
ret = -EIO;
goto out;
}
}
/* keep context for update VSI operations */
vsi->info = ctxt->info;
/* record VSI number returned */
vsi->vsi_num = ctxt->vsi_num;
out:
kfree(ctxt);
return ret;
}
/**
* ice_free_res - free a block of resources
* @res: pointer to the resource
* @index: starting index previously returned by ice_get_res
* @id: identifier to track owner
*
* Returns number of resources freed
*/
int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
{
int count = 0;
int i;
if (!res || index >= res->end)
return -EINVAL;
id |= ICE_RES_VALID_BIT;
for (i = index; i < res->end && res->list[i] == id; i++) {
res->list[i] = 0;
count++;
}
return count;
}
/**
* ice_search_res - Search the tracker for a block of resources
* @res: pointer to the resource
* @needed: size of the block needed
* @id: identifier to track owner
*
* Returns the base item index of the block, or -ENOMEM for error
*/
static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
{
u16 start = 0, end = 0;
if (needed > res->end)
return -ENOMEM;
id |= ICE_RES_VALID_BIT;
do {
/* skip already allocated entries */
if (res->list[end++] & ICE_RES_VALID_BIT) {
start = end;
if ((start + needed) > res->end)
break;
}
if (end == (start + needed)) {
int i = start;
/* there was enough, so assign it to the requestor */
while (i != end)
res->list[i++] = id;
return start;
}
} while (end < res->end);
return -ENOMEM;
}
/**
* ice_get_free_res_count - Get free count from a resource tracker
* @res: Resource tracker instance
*/
static u16 ice_get_free_res_count(struct ice_res_tracker *res)
{
u16 i, count = 0;
for (i = 0; i < res->end; i++)
if (!(res->list[i] & ICE_RES_VALID_BIT))
count++;
return count;
}
/**
* ice_get_res - get a block of resources
* @pf: board private structure
* @res: pointer to the resource
* @needed: size of the block needed
* @id: identifier to track owner
*
* Returns the base item index of the block, or negative for error
*/
int
ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
{
if (!res || !pf)
return -EINVAL;
if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n",
needed, res->num_entries, id);
return -EINVAL;
}
return ice_search_res(res, needed, id);
}
/**
* ice_vsi_setup_vector_base - Set up the base vector for the given VSI
* @vsi: ptr to the VSI
*
* This should only be called after ice_vsi_alloc() which allocates the
* corresponding SW VSI structure and initializes num_queue_pairs for the
* newly allocated VSI.
*
* Returns 0 on success or negative on failure
*/
static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct device *dev;
u16 num_q_vectors;
int base;
dev = ice_pf_to_dev(pf);
/* SRIOV doesn't grab irq_tracker entries for each VSI */
if (vsi->type == ICE_VSI_VF)
return 0;
if (vsi->type == ICE_VSI_CHNL)
return 0;
if (vsi->base_vector) {
dev_dbg(dev, "VSI %d has non-zero base vector %d\n",
vsi->vsi_num, vsi->base_vector);
return -EEXIST;
}
num_q_vectors = vsi->num_q_vectors;
/* reserve slots from OS requested IRQs */
if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) {
int i;
ice_for_each_vf(pf, i) {
struct ice_vf *vf = &pf->vf[i];
if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) {
base = pf->vsi[vf->ctrl_vsi_idx]->base_vector;
break;
}
}
if (i == pf->num_alloc_vfs)
base = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
ICE_RES_VF_CTRL_VEC_ID);
} else {
base = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
vsi->idx);
}
if (base < 0) {
dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n",
ice_get_free_res_count(pf->irq_tracker),
ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors);
return -ENOENT;
}
vsi->base_vector = (u16)base;
pf->num_avail_sw_msix -= num_q_vectors;
return 0;
}
/**
* ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
* @vsi: the VSI having rings deallocated
*/
static void ice_vsi_clear_rings(struct ice_vsi *vsi)
{
int i;
/* Avoid stale references by clearing map from vector to ring */
if (vsi->q_vectors) {
ice_for_each_q_vector(vsi, i) {
struct ice_q_vector *q_vector = vsi->q_vectors[i];
if (q_vector) {
q_vector->tx.tx_ring = NULL;
q_vector->rx.rx_ring = NULL;
}
}
}
if (vsi->tx_rings) {
ice_for_each_alloc_txq(vsi, i) {
if (vsi->tx_rings[i]) {
kfree_rcu(vsi->tx_rings[i], rcu);
WRITE_ONCE(vsi->tx_rings[i], NULL);
}
}
}
if (vsi->rx_rings) {
ice_for_each_alloc_rxq(vsi, i) {
if (vsi->rx_rings[i]) {
kfree_rcu(vsi->rx_rings[i], rcu);
WRITE_ONCE(vsi->rx_rings[i], NULL);
}
}
}
}
/**
* ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
* @vsi: VSI which is having rings allocated
*/
static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct device *dev;
u16 i;
dev = ice_pf_to_dev(pf);
/* Allocate Tx rings */
ice_for_each_alloc_txq(vsi, i) {
struct ice_tx_ring *ring;
/* allocate with kzalloc(), free with kfree_rcu() */
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring)
goto err_out;
ring->q_index = i;
ring->reg_idx = vsi->txq_map[i];
ring->vsi = vsi;
ring->tx_tstamps = &pf->ptp.port.tx;
ring->dev = dev;
ring->count = vsi->num_tx_desc;
WRITE_ONCE(vsi->tx_rings[i], ring);
}
/* Allocate Rx rings */
ice_for_each_alloc_rxq(vsi, i) {
struct ice_rx_ring *ring;
/* allocate with kzalloc(), free with kfree_rcu() */
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring)
goto err_out;
ring->q_index = i;
ring->reg_idx = vsi->rxq_map[i];
ring->vsi = vsi;
ring->netdev = vsi->netdev;
ring->dev = dev;
ring->count = vsi->num_rx_desc;
WRITE_ONCE(vsi->rx_rings[i], ring);
}
return 0;
err_out:
ice_vsi_clear_rings(vsi);
return -ENOMEM;
}
/**
* ice_vsi_manage_rss_lut - disable/enable RSS
* @vsi: the VSI being changed
* @ena: boolean value indicating if this is an enable or disable request
*
* In the event of disable request for RSS, this function will zero out RSS
* LUT, while in the event of enable request for RSS, it will reconfigure RSS
* LUT.
*/
void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
{
u8 *lut;
lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
if (!lut)
return;
if (ena) {
if (vsi->rss_lut_user)
memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
else
ice_fill_rss_lut(lut, vsi->rss_table_size,
vsi->rss_size);
}
ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
kfree(lut);
}
/**
* ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
* @vsi: VSI to be configured
*/
int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct device *dev;
u8 *lut, *key;
int err;
dev = ice_pf_to_dev(pf);
if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
(test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
} else {
vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
/* If orig_rss_size is valid and it is less than determined
* main VSI's rss_size, update main VSI's rss_size to be
* orig_rss_size so that when tc-qdisc is deleted, main VSI
* RSS table gets programmed to be correct (whatever it was
* to begin with (prior to setup-tc for ADQ config)
*/
if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
vsi->orig_rss_size <= vsi->num_rxq) {
vsi->rss_size = vsi->orig_rss_size;
/* now orig_rss_size is used, reset it to zero */
vsi->orig_rss_size = 0;
}
}
lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
if (!lut)
return -ENOMEM;
if (vsi->rss_lut_user)
memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
else
ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
if (err) {
dev_err(dev, "set_rss_lut failed, error %d\n", err);
goto ice_vsi_cfg_rss_exit;
}
key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
if (!key) {
err = -ENOMEM;
goto ice_vsi_cfg_rss_exit;
}
if (vsi->rss_hkey_user)
memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
else
netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
err = ice_set_rss_key(vsi, key);
if (err)
dev_err(dev, "set_rss_key failed, error %d\n", err);
kfree(key);
ice_vsi_cfg_rss_exit:
kfree(lut);
return err;
}
/**
* ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
* @vsi: VSI to be configured
*
* This function will only be called during the VF VSI setup. Upon successful
* completion of package download, this function will configure default RSS
* input sets for VF VSI.
*/
static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
enum ice_status status;
struct device *dev;
dev = ice_pf_to_dev(pf);
if (ice_is_safe_mode(pf)) {
dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
vsi->vsi_num);
return;
}
status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
if (status)
dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n",
vsi->vsi_num, ice_stat_str(status));
}
/**
* ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
* @vsi: VSI to be configured
*
* This function will only be called after successful download package call
* during initialization of PF. Since the downloaded package will erase the
* RSS section, this function will configure RSS input sets for different
* flow types. The last profile added has the highest priority, therefore 2
* tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
* (i.e. IPv4 src/dst TCP src/dst port).
*/
static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
{
u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
enum ice_status status;
struct device *dev;
dev = ice_pf_to_dev(pf);
if (ice_is_safe_mode(pf)) {
dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
vsi_num);
return;
}
/* configure RSS for IPv4 with input set IP src/dst */
status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
ICE_FLOW_SEG_HDR_IPV4);
if (status)
dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n",
vsi_num, ice_stat_str(status));
/* configure RSS for IPv6 with input set IPv6 src/dst */
status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
ICE_FLOW_SEG_HDR_IPV6);
if (status)
dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n",
vsi_num, ice_stat_str(status));
/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
if (status)
dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n",
vsi_num, ice_stat_str(status));
/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
if (status)
dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n",
vsi_num, ice_stat_str(status));
/* configure RSS for sctp4 with input set IP src/dst */
status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
if (status)
dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n",
vsi_num, ice_stat_str(status));
/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
if (status)
dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n",
vsi_num, ice_stat_str(status));
/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
if (status)
dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n",
vsi_num, ice_stat_str(status));
/* configure RSS for sctp6 with input set IPv6 src/dst */
status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
if (status)
dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n",
vsi_num, ice_stat_str(status));
}
/**
* ice_pf_state_is_nominal - checks the PF for nominal state
* @pf: pointer to PF to check
*
* Check the PF's state for a collection of bits that would indicate
* the PF is in a state that would inhibit normal operation for
* driver functionality.
*
* Returns true if PF is in a nominal state, false otherwise
*/
bool ice_pf_state_is_nominal(struct ice_pf *pf)
{
DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
if (!pf)
return false;
bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
return false;
return true;
}
/**
* ice_update_eth_stats - Update VSI-specific ethernet statistics counters
* @vsi: the VSI to be updated
*/
void ice_update_eth_stats(struct ice_vsi *vsi)
{
struct ice_eth_stats *prev_es, *cur_es;
struct ice_hw *hw = &vsi->back->hw;
u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
prev_es = &vsi->eth_stats_prev;
cur_es = &vsi->eth_stats;
ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
&prev_es->rx_bytes, &cur_es->rx_bytes);
ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
&prev_es->rx_unicast, &cur_es->rx_unicast);
ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
&prev_es->rx_multicast, &cur_es->rx_multicast);
ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
&prev_es->rx_broadcast, &cur_es->rx_broadcast);
ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
&prev_es->rx_discards, &cur_es->rx_discards);
ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
&prev_es->tx_bytes, &cur_es->tx_bytes);
ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
&prev_es->tx_unicast, &cur_es->tx_unicast);
ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
&prev_es->tx_multicast, &cur_es->tx_multicast);
ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
&prev_es->tx_broadcast, &cur_es->tx_broadcast);
ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
&prev_es->tx_errors, &cur_es->tx_errors);
vsi->stat_offsets_loaded = true;
}
/**
* ice_vsi_add_vlan - Add VSI membership for given VLAN
* @vsi: the VSI being configured
* @vid: VLAN ID to be added
* @action: filter action to be performed on match
*/
int
ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action)
{
struct ice_pf *pf = vsi->back;
struct device *dev;
int err = 0;
dev = ice_pf_to_dev(pf);
if (!ice_fltr_add_vlan(vsi, vid, action)) {
vsi->num_vlan++;
} else {
err = -ENODEV;
dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid,
vsi->vsi_num);
}
return err;
}
/**
* ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
* @vsi: the VSI being configured
* @vid: VLAN ID to be removed
*
* Returns 0 on success and negative on failure
*/
int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
{
struct ice_pf *pf = vsi->back;
enum ice_status status;
struct device *dev;
int err = 0;
dev = ice_pf_to_dev(pf);
status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI);
if (!status) {
vsi->num_vlan--;
} else if (status == ICE_ERR_DOES_NOT_EXIST) {
dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n",
vid, vsi->vsi_num, ice_stat_str(status));
} else {
dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n",
vid, vsi->vsi_num, ice_stat_str(status));
err = -EIO;
}
return err;
}
/**
* ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
* @vsi: VSI
*/
void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
{
if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
vsi->rx_buf_len = ICE_RXBUF_2048;
#if (PAGE_SIZE < 8192)
} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
(vsi->netdev->mtu <= ETH_DATA_LEN)) {
vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
#endif
} else {
vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
#if (PAGE_SIZE < 8192)
vsi->rx_buf_len = ICE_RXBUF_3072;
#else
vsi->rx_buf_len = ICE_RXBUF_2048;
#endif
}
}
/**
* ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
* @hw: HW pointer
* @pf_q: index of the Rx queue in the PF's queue space
* @rxdid: flexible descriptor RXDID
* @prio: priority for the RXDID for this queue
* @ena_ts: true to enable timestamp and false to disable timestamp
*/
void
ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
bool ena_ts)
{
int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
/* clear any previous values */
regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
QRXFLXP_CNTXT_RXDID_PRIO_M |
QRXFLXP_CNTXT_TS_M);
regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
QRXFLXP_CNTXT_RXDID_IDX_M;
regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
QRXFLXP_CNTXT_RXDID_PRIO_M;
if (ena_ts)
/* Enable TimeSync on this queue */
regval |= QRXFLXP_CNTXT_TS_M;
wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
}
int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
{
if (q_idx >= vsi->num_rxq)
return -EINVAL;
return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
}
int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx)
{
struct ice_aqc_add_tx_qgrp *qg_buf;
int err;
if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
return -EINVAL;
qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
if (!qg_buf)
return -ENOMEM;
qg_buf->num_txqs = 1;
err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
kfree(qg_buf);
return err;
}
/**
* ice_vsi_cfg_rxqs - Configure the VSI for Rx
* @vsi: the VSI being configured
*
* Return 0 on success and a negative value on error
* Configure the Rx VSI for operation.
*/
int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
{
u16 i;
if (vsi->type == ICE_VSI_VF)
goto setup_rings;
ice_vsi_cfg_frame_size(vsi);
setup_rings:
/* set up individual rings */
ice_for_each_rxq(vsi, i) {
int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
if (err)
return err;
}
return 0;
}
/**
* ice_vsi_cfg_txqs - Configure the VSI for Tx
* @vsi: the VSI being configured
* @rings: Tx ring array to be configured
* @count: number of Tx ring array elements
*
* Return 0 on success and a negative value on error
* Configure the Tx VSI for operation.
*/
static int
ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
{
struct ice_aqc_add_tx_qgrp *qg_buf;
u16 q_idx = 0;
int err = 0;
qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
if (!qg_buf)
return -ENOMEM;
qg_buf->num_txqs = 1;
for (q_idx = 0; q_idx < count; q_idx++) {
err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
if (err)
goto err_cfg_txqs;
}
err_cfg_txqs:
kfree(qg_buf);
return err;
}
/**
* ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
* @vsi: the VSI being configured
*
* Return 0 on success and a negative value on error
* Configure the Tx VSI for operation.
*/
int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
{
return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
}
/**
* ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
* @vsi: the VSI being configured
*
* Return 0 on success and a negative value on error
* Configure the Tx queues dedicated for XDP in given VSI for operation.
*/
int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
{
int ret;
int i;
ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
if (ret)
return ret;
ice_for_each_xdp_txq(vsi, i)
vsi->xdp_rings[i]->xsk_pool = ice_tx_xsk_pool(vsi->xdp_rings[i]);
return ret;
}
/**
* ice_intrl_usec_to_reg - convert interrupt rate limit to register value
* @intrl: interrupt rate limit in usecs
* @gran: interrupt rate limit granularity in usecs
*
* This function converts a decimal interrupt rate limit in usecs to the format
* expected by firmware.
*/
static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
{
u32 val = intrl / gran;
if (val)
return val | GLINT_RATE_INTRL_ENA_M;
return 0;
}
/**
* ice_write_intrl - write throttle rate limit to interrupt specific register
* @q_vector: pointer to interrupt specific structure
* @intrl: throttle rate limit in microseconds to write
*/
void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
{
struct ice_hw *hw = &q_vector->vsi->back->hw;
wr32(hw, GLINT_RATE(q_vector->reg_idx),
ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
}
static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
{
switch (rc->type) {
case ICE_RX_CONTAINER:
if (rc->rx_ring)
return rc->rx_ring->q_vector;
break;
case ICE_TX_CONTAINER:
if (rc->tx_ring)
return rc->tx_ring->q_vector;
break;
default:
break;
}
return NULL;
}
/**
* __ice_write_itr - write throttle rate to register
* @q_vector: pointer to interrupt data structure
* @rc: pointer to ring container
* @itr: throttle rate in microseconds to write
*/
static void __ice_write_itr(struct ice_q_vector *q_vector,
struct ice_ring_container *rc, u16 itr)
{
struct ice_hw *hw = &q_vector->vsi->back->hw;
wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
}
/**
* ice_write_itr - write throttle rate to queue specific register
* @rc: pointer to ring container
* @itr: throttle rate in microseconds to write
*/
void ice_write_itr(struct ice_ring_container *rc, u16 itr)
{
struct ice_q_vector *q_vector;
q_vector = ice_pull_qvec_from_rc(rc);
if (!q_vector)
return;
__ice_write_itr(q_vector, rc, itr);
}
/**
* ice_set_q_vector_intrl - set up interrupt rate limiting
* @q_vector: the vector to be configured
*
* Interrupt rate limiting is local to the vector, not per-queue so we must
* detect if either ring container has dynamic moderation enabled to decide
* what to set the interrupt rate limit to via INTRL settings. In the case that
* dynamic moderation is disabled on both, write the value with the cached
* setting to make sure INTRL register matches the user visible value.
*/
void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
{
if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
/* in the case of dynamic enabled, cap each vector to no more
* than (4 us) 250,000 ints/sec, which allows low latency
* but still less than 500,000 interrupts per second, which
* reduces CPU a bit in the case of the lowest latency
* setting. The 4 here is a value in microseconds.
*/
ice_write_intrl(q_vector, 4);
} else {
ice_write_intrl(q_vector, q_vector->intrl);
}
}
/**
* ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
* @vsi: the VSI being configured
*
* This configures MSIX mode interrupts for the PF VSI, and should not be used
* for the VF VSI.
*/
void ice_vsi_cfg_msix(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u16 txq = 0, rxq = 0;
int i, q;
ice_for_each_q_vector(vsi, i) {
struct ice_q_vector *q_vector = vsi->q_vectors[i];
u16 reg_idx = q_vector->reg_idx;
ice_cfg_itr(hw, q_vector);
/* Both Transmit Queue Interrupt Cause Control register
* and Receive Queue Interrupt Cause control register
* expects MSIX_INDX field to be the vector index
* within the function space and not the absolute
* vector index across PF or across device.
* For SR-IOV VF VSIs queue vector index always starts
* with 1 since first vector index(0) is used for OICR
* in VF space. Since VMDq and other PF VSIs are within
* the PF function space, use the vector index that is
* tracked for this PF.
*/
for (q = 0; q < q_vector->num_ring_tx; q++) {
ice_cfg_txq_interrupt(vsi, txq, reg_idx,
q_vector->tx.itr_idx);
txq++;
}
for (q = 0; q < q_vector->num_ring_rx; q++) {
ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
q_vector->rx.itr_idx);
rxq++;
}
}
}
/**
* ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
* @vsi: the VSI being changed
*/
int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
{
struct ice_hw *hw = &vsi->back->hw;
struct ice_vsi_ctx *ctxt;
enum ice_status status;
int ret = 0;
ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
if (!ctxt)
return -ENOMEM;
/* Here we are configuring the VSI to let the driver add VLAN tags by
* setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
* insertion happens in the Tx hot path, in ice_tx_map.
*/
ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
/* Preserve existing VLAN strip setting */
ctxt->info.vlan_flags |= (vsi->info.vlan_flags &
ICE_AQ_VSI_VLAN_EMOD_M);
ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
if (status) {
dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n",
ice_stat_str(status),
ice_aq_str(hw->adminq.sq_last_status));
ret = -EIO;
goto out;
}
vsi->info.vlan_flags = ctxt->info.vlan_flags;
out:
kfree(ctxt);
return ret;
}
/**
* ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
* @vsi: the VSI being changed
* @ena: boolean value indicating if this is a enable or disable request
*/
int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
{
struct ice_hw *hw = &vsi->back->hw;
struct ice_vsi_ctx *ctxt;
enum ice_status status;
int ret = 0;
/* do not allow modifying VLAN stripping when a port VLAN is configured
* on this VSI
*/
if (vsi->info.pvid)
return 0;
ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
if (!ctxt)
return -ENOMEM;
/* Here we are configuring what the VSI should do with the VLAN tag in
* the Rx packet. We can either leave the tag in the packet or put it in
* the Rx descriptor.
*/
if (ena)
/* Strip VLAN tag from Rx packet and put it in the desc */
ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
else
/* Disable stripping. Leave tag in packet */
ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
/* Allow all packets untagged/tagged */
ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
if (status) {
dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n",
ena, ice_stat_str(status),
ice_aq_str(hw->adminq.sq_last_status));
ret = -EIO;
goto out;
}
vsi->info.vlan_flags = ctxt->info.vlan_flags;
out:
kfree(ctxt);
return ret;
}
/**
* ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
* @vsi: the VSI whose rings are to be enabled
*
* Returns 0 on success and a negative value on error
*/
int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
{
return ice_vsi_ctrl_all_rx_rings(vsi, true);
}
/**
* ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
* @vsi: the VSI whose rings are to be disabled
*
* Returns 0 on success and a negative value on error
*/
int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
{
return ice_vsi_ctrl_all_rx_rings(vsi, false);
}
/**
* ice_vsi_stop_tx_rings - Disable Tx rings
* @vsi: the VSI being configured
* @rst_src: reset source
* @rel_vmvf_num: Relative ID of VF/VM
* @rings: Tx ring array to be stopped
* @count: number of Tx ring array elements
*/
static int
ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
{
u16 q_idx;
if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
return -EINVAL;
for (q_idx = 0; q_idx < count; q_idx++) {
struct ice_txq_meta txq_meta = { };
int status;
if (!rings || !rings[q_idx])
return -EINVAL;
ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
rings[q_idx], &txq_meta);
if (status)
return status;
}
return 0;
}
/**
* ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
* @vsi: the VSI being configured
* @rst_src: reset source
* @rel_vmvf_num: Relative ID of VF/VM
*/
int
ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
u16 rel_vmvf_num)
{
return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
}
/**
* ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
* @vsi: the VSI being configured
*/
int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
{
return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
}
/**
* ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
* @vsi: VSI to check whether or not VLAN pruning is enabled.
*
* returns true if Rx VLAN pruning is enabled and false otherwise.
*/
bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
{
if (!vsi)
return false;
return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
}
/**
* ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
* @vsi: VSI to enable or disable VLAN pruning on
* @ena: set to true to enable VLAN pruning and false to disable it
*
* returns 0 if VSI is updated, negative otherwise
*/
int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena)
{
struct ice_vsi_ctx *ctxt;
struct ice_pf *pf;
int status;
if (!vsi)
return -EINVAL;
/* Don't enable VLAN pruning if the netdev is currently in promiscuous
* mode. VLAN pruning will be enabled when the interface exits
* promiscuous mode if any VLAN filters are active.
*/
if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena)
return 0;
pf = vsi->back;
ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
if (!ctxt)
return -ENOMEM;
ctxt->info = vsi->info;
if (ena)
ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
else
ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL);
if (status) {
netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n",
ena ? "En" : "Dis", vsi->idx, vsi->vsi_num,
ice_stat_str(status),
ice_aq_str(pf->hw.adminq.sq_last_status));
goto err_out;
}
vsi->info.sw_flags2 = ctxt->info.sw_flags2;
kfree(ctxt);
return 0;
err_out:
kfree(ctxt);
return -EIO;
}
static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
{
if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
vsi->tc_cfg.numtc = 1;
return;
}
/* set VSI TC information based on DCB config */
ice_vsi_set_dcb_tc_cfg(vsi);
}
/**
* ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
* @vsi: VSI to set the q_vectors register index on
*/
static int
ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
{
u16 i;
if (!vsi || !vsi->q_vectors)
return -EINVAL;
ice_for_each_q_vector(vsi, i) {
struct ice_q_vector *q_vector = vsi->q_vectors[i];
if (!q_vector) {
dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n",
i, vsi->vsi_num);
goto clear_reg_idx;
}
if (vsi->type == ICE_VSI_VF) {
struct ice_vf *vf = &vsi->back->vf[vsi->vf_id];
q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
} else {
q_vector->reg_idx =
q_vector->v_idx + vsi->base_vector;
}
}
return 0;
clear_reg_idx:
ice_for_each_q_vector(vsi, i) {
struct ice_q_vector *q_vector = vsi->q_vectors[i];
if (q_vector)
q_vector->reg_idx = 0;
}
return -EINVAL;
}
/**
* ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
* @vsi: the VSI being configured
* @tx: bool to determine Tx or Rx rule
* @create: bool to determine create or remove Rule
*/
void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
{
enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
enum ice_sw_fwd_act_type act);
struct ice_pf *pf = vsi->back;
enum ice_status status;
struct device *dev;
dev = ice_pf_to_dev(pf);
eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
if (tx) {
status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
ICE_DROP_PACKET);
} else {
if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
create);
} else {
status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
ICE_FWD_TO_VSI);
}
}
if (status)
dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n",
create ? "adding" : "removing", tx ? "TX" : "RX",
vsi->vsi_num, ice_stat_str(status));
}
/**
* ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
* @vsi: pointer to the VSI
*
* This function will allocate new scheduler aggregator now if needed and will
* move specified VSI into it.
*/
static void ice_set_agg_vsi(struct ice_vsi *vsi)
{
struct device *dev = ice_pf_to_dev(vsi->back);
struct ice_agg_node *agg_node_iter = NULL;
u32 agg_id = ICE_INVALID_AGG_NODE_ID;
struct ice_agg_node *agg_node = NULL;
int node_offset, max_agg_nodes = 0;
struct ice_port_info *port_info;
struct ice_pf *pf = vsi->back;
u32 agg_node_id_start = 0;
enum ice_status status;
/* create (as needed) scheduler aggregator node and move VSI into
* corresponding aggregator node
* - PF aggregator node to contains VSIs of type _PF and _CTRL
* - VF aggregator nodes will contain VF VSI
*/
port_info = pf->hw.port_info;
if (!port_info)
return;
switch (vsi->type) {
case ICE_VSI_CTRL:
case ICE_VSI_CHNL:
case ICE_VSI_LB:
case ICE_VSI_PF:
case ICE_VSI_SWITCHDEV_CTRL:
max_agg_nodes = ICE_MAX_PF_AGG_NODES;
agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
agg_node_iter = &pf->pf_agg_node[0];
break;
case ICE_VSI_VF:
/* user can create 'n' VFs on a given PF, but since max children
* per aggregator node can be only 64. Following code handles
* aggregator(s) for VF VSIs, either selects a agg_node which
* was already created provided num_vsis < 64, otherwise
* select next available node, which will be created
*/
max_agg_nodes = ICE_MAX_VF_AGG_NODES;
agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
agg_node_iter = &pf->vf_agg_node[0];
break;
default:
/* other VSI type, handle later if needed */
dev_dbg(dev, "unexpected VSI type %s\n",
ice_vsi_type_str(vsi->type));
return;
}
/* find the appropriate aggregator node */
for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
/* see if we can find space in previously created
* node if num_vsis < 64, otherwise skip
*/
if (agg_node_iter->num_vsis &&
agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
agg_node_iter++;
continue;
}
if (agg_node_iter->valid &&
agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
agg_id = agg_node_iter->agg_id;
agg_node = agg_node_iter;
break;
}
/* find unclaimed agg_id */
if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
agg_id = node_offset + agg_node_id_start;
agg_node = agg_node_iter;
break;
}
/* move to next agg_node */
agg_node_iter++;
}
if (!agg_node)
return;
/* if selected aggregator node was not created, create it */
if (!agg_node->valid) {
status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
(u8)vsi->tc_cfg.ena_tc);
if (status) {
dev_err(dev, "unable to create aggregator node with agg_id %u\n",
agg_id);
return;
}
/* aggregator node is created, store the neeeded info */
agg_node->valid = true;
agg_node->agg_id = agg_id;
}
/* move VSI to corresponding aggregator node */
status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
(u8)vsi->tc_cfg.ena_tc);
if (status) {
dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
vsi->idx, agg_id);
return;
}
/* keep active children count for aggregator node */
agg_node->num_vsis++;
/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
* to aggregator node
*/
vsi->agg_node = agg_node;
dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
vsi->agg_node->num_vsis);
}
/**
* ice_vsi_setup - Set up a VSI by a given type
* @pf: board private structure
* @pi: pointer to the port_info instance
* @vsi_type: VSI type
* @vf_id: defines VF ID to which this VSI connects. This field is meant to be
* used only for ICE_VSI_VF VSI type. For other VSI types, should
* fill-in ICE_INVAL_VFID as input.
* @ch: ptr to channel
*
* This allocates the sw VSI structure and its queue resources.
*
* Returns pointer to the successfully allocated and configured VSI sw struct on
* success, NULL on failure.
*/
struct ice_vsi *
ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
enum ice_vsi_type vsi_type, u16 vf_id, struct ice_channel *ch)
{
u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
struct device *dev = ice_pf_to_dev(pf);
enum ice_status status;
struct ice_vsi *vsi;
int ret, i;
if (vsi_type == ICE_VSI_CHNL)
vsi = ice_vsi_alloc(pf, vsi_type, ch, ICE_INVAL_VFID);
else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL)
vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf_id);
else
vsi = ice_vsi_alloc(pf, vsi_type, NULL, ICE_INVAL_VFID);
if (!vsi) {
dev_err(dev, "could not allocate VSI\n");
return NULL;
}
vsi->port_info = pi;
vsi->vsw = pf->first_sw;
if (vsi->type == ICE_VSI_PF)
vsi->ethtype = ETH_P_PAUSE;
if (vsi->type == ICE_VSI_VF || vsi->type == ICE_VSI_CTRL)
vsi->vf_id = vf_id;
ice_alloc_fd_res(vsi);
if (vsi_type != ICE_VSI_CHNL) {
if (ice_vsi_get_qs(vsi)) {
dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
vsi->idx);
goto unroll_vsi_alloc;
}
}
/* set RSS capabilities */
ice_vsi_set_rss_params(vsi);
/* set TC configuration */
ice_vsi_set_tc_cfg(vsi);
/* create the VSI */
ret = ice_vsi_init(vsi, true);
if (ret)
goto unroll_get_qs;
switch (vsi->type) {
case ICE_VSI_CTRL:
case ICE_VSI_SWITCHDEV_CTRL:
case ICE_VSI_PF:
ret = ice_vsi_alloc_q_vectors(vsi);
if (ret)
goto unroll_vsi_init;
ret = ice_vsi_setup_vector_base(vsi);
if (ret)
goto unroll_alloc_q_vector;
ret = ice_vsi_set_q_vectors_reg_idx(vsi);
if (ret)
goto unroll_vector_base;
ret = ice_vsi_alloc_rings(vsi);
if (ret)
goto unroll_vector_base;
/* Always add VLAN ID 0 switch rule by default. This is needed
* in order to allow all untagged and 0 tagged priority traffic
* if Rx VLAN pruning is enabled. Also there are cases where we
* don't get the call to add VLAN 0 via ice_vlan_rx_add_vid()
* so this handles those cases (i.e. adding the PF to a bridge
* without the 8021q module loaded).
*/
ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI);
if (ret)
goto unroll_clear_rings;
ice_vsi_map_rings_to_vectors(vsi);
/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
if (vsi->type != ICE_VSI_CTRL)
/* Do not exit if configuring RSS had an issue, at
* least receive traffic on first queue. Hence no
* need to capture return value
*/
if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
ice_vsi_cfg_rss_lut_key(vsi);
ice_vsi_set_rss_flow_fld(vsi);
}
ice_init_arfs(vsi);
break;
case ICE_VSI_CHNL:
if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
ice_vsi_cfg_rss_lut_key(vsi);
ice_vsi_set_rss_flow_fld(vsi);
}
break;
case ICE_VSI_VF:
/* VF driver will take care of creating netdev for this type and
* map queues to vectors through Virtchnl, PF driver only
* creates a VSI and corresponding structures for bookkeeping
* purpose
*/
ret = ice_vsi_alloc_q_vectors(vsi);
if (ret)
goto unroll_vsi_init;
ret = ice_vsi_alloc_rings(vsi);
if (ret)
goto unroll_alloc_q_vector;
ret = ice_vsi_set_q_vectors_reg_idx(vsi);
if (ret)
goto unroll_vector_base;
/* Do not exit if configuring RSS had an issue, at least
* receive traffic on first queue. Hence no need to capture
* return value
*/
if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
ice_vsi_cfg_rss_lut_key(vsi);
ice_vsi_set_vf_rss_flow_fld(vsi);
}
break;
case ICE_VSI_LB:
ret = ice_vsi_alloc_rings(vsi);
if (ret)
goto unroll_vsi_init;
break;
default:
/* clean up the resources and exit */
goto unroll_vsi_init;
}
/* configure VSI nodes based on number of queues and TC's */
ice_for_each_traffic_class(i) {
if (!(vsi->tc_cfg.ena_tc & BIT(i)))
continue;
if (vsi->type == ICE_VSI_CHNL) {
if (!vsi->alloc_txq && vsi->num_txq)
max_txqs[i] = vsi->num_txq;
else
max_txqs[i] = pf->num_lan_tx;
} else {
max_txqs[i] = vsi->alloc_txq;
}
}
dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
max_txqs);
if (status) {
dev_err(dev, "VSI %d failed lan queue config, error %s\n",
vsi->vsi_num, ice_stat_str(status));
goto unroll_clear_rings;
}
/* Add switch rule to drop all Tx Flow Control Frames, of look up
* type ETHERTYPE from VSIs, and restrict malicious VF from sending
* out PAUSE or PFC frames. If enabled, FW can still send FC frames.
* The rule is added once for PF VSI in order to create appropriate
* recipe, since VSI/VSI list is ignored with drop action...
* Also add rules to handle LLDP Tx packets. Tx LLDP packets need to
* be dropped so that VFs cannot send LLDP packets to reconfig DCB
* settings in the HW.
*/
if (!ice_is_safe_mode(pf))
if (vsi->type == ICE_VSI_PF) {
ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
ICE_DROP_PACKET);
ice_cfg_sw_lldp(vsi, true, true);
}
if (!vsi->agg_node)
ice_set_agg_vsi(vsi);
return vsi;
unroll_clear_rings:
ice_vsi_clear_rings(vsi);
unroll_vector_base:
/* reclaim SW interrupts back to the common pool */
ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
pf->num_avail_sw_msix += vsi->num_q_vectors;
unroll_alloc_q_vector:
ice_vsi_free_q_vectors(vsi);
unroll_vsi_init:
ice_vsi_delete(vsi);
unroll_get_qs:
ice_vsi_put_qs(vsi);
unroll_vsi_alloc:
if (vsi_type == ICE_VSI_VF)
ice_enable_lag(pf->lag);
ice_vsi_clear(vsi);
return NULL;
}
/**
* ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
* @vsi: the VSI being cleaned up
*/
static void ice_vsi_release_msix(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u32 txq = 0;
u32 rxq = 0;
int i, q;
ice_for_each_q_vector(vsi, i) {
struct ice_q_vector *q_vector = vsi->q_vectors[i];
ice_write_intrl(q_vector, 0);
for (q = 0; q < q_vector->num_ring_tx; q++) {
ice_write_itr(&q_vector->tx, 0);
wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
if (ice_is_xdp_ena_vsi(vsi)) {
u32 xdp_txq = txq + vsi->num_xdp_txq;
wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
}
txq++;
}
for (q = 0; q < q_vector->num_ring_rx; q++) {
ice_write_itr(&q_vector->rx, 0);
wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
rxq++;
}
}
ice_flush(hw);
}
/**
* ice_vsi_free_irq - Free the IRQ association with the OS
* @vsi: the VSI being configured
*/
void ice_vsi_free_irq(struct ice_vsi *vsi)
{
struct ice_pf *pf = vsi->back;
int base = vsi->base_vector;
int i;
if (!vsi->q_vectors || !vsi->irqs_ready)
return;
ice_vsi_release_msix(vsi);
if (vsi->type == ICE_VSI_VF)
return;
vsi->irqs_ready = false;
ice_for_each_q_vector(vsi, i) {
u16 vector = i + base;
int irq_num;
irq_num = pf->msix_entries[vector].vector;
/* free only the irqs that were actually requested */
if (!vsi->q_vectors[i] ||
!(vsi->q_vectors[i]->num_ring_tx ||
vsi->q_vectors[i]->num_ring_rx))
continue;
/* clear the affinity notifier in the IRQ descriptor */
irq_set_affinity_notifier(irq_num, NULL);
/* clear the affinity_mask in the IRQ descriptor */
irq_set_affinity_hint(irq_num, NULL);
synchronize_irq(irq_num);
devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
}
}
/**
* ice_vsi_free_tx_rings - Free Tx resources for VSI queues
* @vsi: the VSI having resources freed
*/
void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
{
int i;
if (!vsi->tx_rings)
return;
ice_for_each_txq(vsi, i)
if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
ice_free_tx_ring(vsi->tx_rings[i]);
}
/**
* ice_vsi_free_rx_rings - Free Rx resources for VSI queues
* @vsi: the VSI having resources freed
*/
void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
{
int i;
if (!vsi->rx_rings)
return;
ice_for_each_rxq(vsi, i)
if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
ice_free_rx_ring(vsi->rx_rings[i]);
}
/**
* ice_vsi_close - Shut down a VSI
* @vsi: the VSI being shut down
*/
void ice_vsi_close(struct ice_vsi *vsi)
{
if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
ice_down(vsi);
ice_vsi_free_irq(vsi);
ice_vsi_free_tx_rings(vsi);
ice_vsi_free_rx_rings(vsi);
}
/**
* ice_ena_vsi - resume a VSI
* @vsi: the VSI being resume
* @locked: is the rtnl_lock already held
*/
int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
{
int err = 0;
if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
return 0;
clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
if (vsi->netdev && vsi->type == ICE_VSI_PF) {
if (netif_running(vsi->netdev)) {
if (!locked)
rtnl_lock();
err = ice_open_internal(vsi->netdev);
if (!locked)
rtnl_unlock();
}
} else if (vsi->type == ICE_VSI_CTRL) {
err = ice_vsi_open_ctrl(vsi);
}
return err;
}
/**
* ice_dis_vsi - pause a VSI
* @vsi: the VSI being paused
* @locked: is the rtnl_lock already held
*/
void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
{
if (test_bit(ICE_VSI_DOWN, vsi->state))
return;
set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
if (vsi->type == ICE_VSI_PF && vsi->netdev) {
if (netif_running(vsi->netdev)) {
if (!locked)
rtnl_lock();
ice_vsi_close(vsi);
if (!locked)
rtnl_unlock();
} else {
ice_vsi_close(vsi);
}
} else if (vsi->type == ICE_VSI_CTRL ||
vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
ice_vsi_close(vsi);
}
}
/**
* ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
* @vsi: the VSI being un-configured
*/
void ice_vsi_dis_irq(struct ice_vsi *vsi)
{
int base = vsi->base_vector;
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
u32 val;
int i;
/* disable interrupt causation from each queue */
if (vsi->tx_rings) {
ice_for_each_txq(vsi, i) {
if (vsi->tx_rings[i]) {
u16 reg;
reg = vsi->tx_rings[i]->reg_idx;
val = rd32(hw, QINT_TQCTL(reg));
val &= ~QINT_TQCTL_CAUSE_ENA_M;
wr32(hw, QINT_TQCTL(reg), val);
}
}
}
if (vsi->rx_rings) {
ice_for_each_rxq(vsi, i) {
if (vsi->rx_rings[i]) {
u16 reg;
reg = vsi->rx_rings[i]->reg_idx;
val = rd32(hw, QINT_RQCTL(reg));
val &= ~QINT_RQCTL_CAUSE_ENA_M;
wr32(hw, QINT_RQCTL(reg), val);
}
}
}
/* disable each interrupt */
ice_for_each_q_vector(vsi, i) {
if (!vsi->q_vectors[i])
continue;
wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
}
ice_flush(hw);
/* don't call synchronize_irq() for VF's from the host */
if (vsi->type == ICE_VSI_VF)
return;
ice_for_each_q_vector(vsi, i)
synchronize_irq(pf->msix_entries[i + base].vector);
}
/**
* ice_napi_del - Remove NAPI handler for the VSI
* @vsi: VSI for which NAPI handler is to be removed
*/
void ice_napi_del(struct ice_vsi *vsi)
{
int v_idx;
if (!vsi->netdev)
return;
ice_for_each_q_vector(vsi, v_idx)
netif_napi_del(&vsi->q_vectors[v_idx]->napi);
}
/**
* ice_vsi_release - Delete a VSI and free its resources
* @vsi: the VSI being removed
*
* Returns 0 on success or < 0 on error
*/
int ice_vsi_release(struct ice_vsi *vsi)
{
enum ice_status err;
struct ice_pf *pf;
if (!vsi->back)
return -ENODEV;
pf = vsi->back;
/* do not unregister while driver is in the reset recovery pending
* state. Since reset/rebuild happens through PF service task workqueue,
* it's not a good idea to unregister netdev that is associated to the
* PF that is running the work queue items currently. This is done to
* avoid check_flush_dependency() warning on this wq
*/
if (vsi->netdev && !ice_is_reset_in_progress(pf->state) &&
(test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) {
unregister_netdev(vsi->netdev);
clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
}
if (vsi->type == ICE_VSI_PF)
ice_devlink_destroy_pf_port(pf);
if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
ice_rss_clean(vsi);
/* Disable VSI and free resources */
if (vsi->type != ICE_VSI_LB)
ice_vsi_dis_irq(vsi);
ice_vsi_close(vsi);
/* SR-IOV determines needed MSIX resources all at once instead of per
* VSI since when VFs are spawned we know how many VFs there are and how
* many interrupts each VF needs. SR-IOV MSIX resources are also
* cleared in the same manner.
*/
if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) {
int i;
ice_for_each_vf(pf, i) {
struct ice_vf *vf = &pf->vf[i];
if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI)
break;
}
if (i == pf->num_alloc_vfs) {
/* No other VFs left that have control VSI, reclaim SW
* interrupts back to the common pool
*/
ice_free_res(pf->irq_tracker, vsi->base_vector,
ICE_RES_VF_CTRL_VEC_ID);
pf->num_avail_sw_msix += vsi->num_q_vectors;
}
} else if (vsi->type != ICE_VSI_VF) {
/* reclaim SW interrupts back to the common pool */
ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
pf->num_avail_sw_msix += vsi->num_q_vectors;
}
if (!ice_is_safe_mode(pf)) {
if (vsi->type == ICE_VSI_PF) {
ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
ICE_DROP_PACKET);
ice_cfg_sw_lldp(vsi, true, false);
/* The Rx rule will only exist to remove if the LLDP FW
* engine is currently stopped
*/
if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
ice_cfg_sw_lldp(vsi, false, false);
}
}
ice_fltr_remove_all(vsi);
ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
if (err)
dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
vsi->vsi_num, err);
ice_vsi_delete(vsi);
ice_vsi_free_q_vectors(vsi);
if (vsi->netdev) {
if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) {
unregister_netdev(vsi->netdev);
clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
}
if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) {
free_netdev(vsi->netdev);
vsi->netdev = NULL;
clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
}
}
if (vsi->type == ICE_VSI_VF &&
vsi->agg_node && vsi->agg_node->valid)
vsi->agg_node->num_vsis--;
ice_vsi_clear_rings(vsi);
ice_vsi_put_qs(vsi);
/* retain SW VSI data structure since it is needed to unregister and
* free VSI netdev when PF is not in reset recovery pending state,\
* for ex: during rmmod.
*/
if (!ice_is_reset_in_progress(pf->state))
ice_vsi_clear(vsi);
return 0;
}
/**
* ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
* @vsi: VSI connected with q_vectors
* @coalesce: array of struct with stored coalesce
*
* Returns array size.
*/
static int
ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
struct ice_coalesce_stored *coalesce)
{
int i;
ice_for_each_q_vector(vsi, i) {
struct ice_q_vector *q_vector = vsi->q_vectors[i];
coalesce[i].itr_tx = q_vector->tx.itr_setting;
coalesce[i].itr_rx = q_vector->rx.itr_setting;
coalesce[i].intrl = q_vector->intrl;
if (i < vsi->num_txq)
coalesce[i].tx_valid = true;
if (i < vsi->num_rxq)
coalesce[i].rx_valid = true;
}
return vsi->num_q_vectors;
}
/**
* ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
* @vsi: VSI connected with q_vectors
* @coalesce: pointer to array of struct with stored coalesce
* @size: size of coalesce array
*
* Before this function, ice_vsi_rebuild_get_coalesce should be called to save
* ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
* to default value.
*/
static void
ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
struct ice_coalesce_stored *coalesce, int size)
{
struct ice_ring_container *rc;
int i;
if ((size && !coalesce) || !vsi)
return;
/* There are a couple of cases that have to be handled here:
* 1. The case where the number of queue vectors stays the same, but
* the number of Tx or Rx rings changes (the first for loop)
* 2. The case where the number of queue vectors increased (the
* second for loop)
*/
for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
/* There are 2 cases to handle here and they are the same for
* both Tx and Rx:
* if the entry was valid previously (coalesce[i].[tr]x_valid
* and the loop variable is less than the number of rings
* allocated, then write the previous values
*
* if the entry was not valid previously, but the number of
* rings is less than are allocated (this means the number of
* rings increased from previously), then write out the
* values in the first element
*
* Also, always write the ITR, even if in ITR_IS_DYNAMIC
* as there is no harm because the dynamic algorithm
* will just overwrite.
*/
if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
rc = &vsi->q_vectors[i]->rx;
rc->itr_setting = coalesce[i].itr_rx;
ice_write_itr(rc, rc->itr_setting);
} else if (i < vsi->alloc_rxq) {
rc = &vsi->q_vectors[i]->rx;
rc->itr_setting = coalesce[0].itr_rx;
ice_write_itr(rc, rc->itr_setting);
}
if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
rc = &vsi->q_vectors[i]->tx;
rc->itr_setting = coalesce[i].itr_tx;
ice_write_itr(rc, rc->itr_setting);
} else if (i < vsi->alloc_txq) {
rc = &vsi->q_vectors[i]->tx;
rc->itr_setting = coalesce[0].itr_tx;
ice_write_itr(rc, rc->itr_setting);
}
vsi->q_vectors[i]->intrl = coalesce[i].intrl;
ice_set_q_vector_intrl(vsi->q_vectors[i]);
}
/* the number of queue vectors increased so write whatever is in
* the first element
*/
for (; i < vsi->num_q_vectors; i++) {
/* transmit */
rc = &vsi->q_vectors[i]->tx;
rc->itr_setting = coalesce[0].itr_tx;
ice_write_itr(rc, rc->itr_setting);
/* receive */
rc = &vsi->q_vectors[i]->rx;
rc->itr_setting = coalesce[0].itr_rx;
ice_write_itr(rc, rc->itr_setting);
vsi->q_vectors[i]->intrl = coalesce[0].intrl;
ice_set_q_vector_intrl(vsi->q_vectors[i]);
}
}
/**
* ice_vsi_rebuild - Rebuild VSI after reset
* @vsi: VSI to be rebuild
* @init_vsi: is this an initialization or a reconfigure of the VSI
*
* Returns 0 on success and negative value on failure
*/
int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)
{
u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
struct ice_coalesce_stored *coalesce;
int prev_num_q_vectors = 0;
struct ice_vf *vf = NULL;
enum ice_vsi_type vtype;
enum ice_status status;
struct ice_pf *pf;
int ret, i;
if (!vsi)
return -EINVAL;
pf = vsi->back;
vtype = vsi->type;
if (vtype == ICE_VSI_VF)
vf = &pf->vf[vsi->vf_id];
coalesce = kcalloc(vsi->num_q_vectors,
sizeof(struct ice_coalesce_stored), GFP_KERNEL);
if (!coalesce)
return -ENOMEM;
prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
if (ret)
dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
vsi->vsi_num, ret);
ice_vsi_free_q_vectors(vsi);
/* SR-IOV determines needed MSIX resources all at once instead of per
* VSI since when VFs are spawned we know how many VFs there are and how
* many interrupts each VF needs. SR-IOV MSIX resources are also
* cleared in the same manner.
*/
if (vtype != ICE_VSI_VF) {
/* reclaim SW interrupts back to the common pool */
ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
pf->num_avail_sw_msix += vsi->num_q_vectors;
vsi->base_vector = 0;
}
if (ice_is_xdp_ena_vsi(vsi))
/* return value check can be skipped here, it always returns
* 0 if reset is in progress
*/
ice_destroy_xdp_rings(vsi);
ice_vsi_put_qs(vsi);
ice_vsi_clear_rings(vsi);
ice_vsi_free_arrays(vsi);
if (vtype == ICE_VSI_VF)
ice_vsi_set_num_qs(vsi, vf->vf_id);
else
ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
ret = ice_vsi_alloc_arrays(vsi);
if (ret < 0)
goto err_vsi;
ice_vsi_get_qs(vsi);
ice_alloc_fd_res(vsi);
ice_vsi_set_tc_cfg(vsi);
/* Initialize VSI struct elements and create VSI in FW */
ret = ice_vsi_init(vsi, init_vsi);
if (ret < 0)
goto err_vsi;
switch (vtype) {
case ICE_VSI_CTRL:
case ICE_VSI_SWITCHDEV_CTRL:
case ICE_VSI_PF:
ret = ice_vsi_alloc_q_vectors(vsi);
if (ret)
goto err_rings;
ret = ice_vsi_setup_vector_base(vsi);
if (ret)
goto err_vectors;
ret = ice_vsi_set_q_vectors_reg_idx(vsi);
if (ret)
goto err_vectors;
ret = ice_vsi_alloc_rings(vsi);
if (ret)
goto err_vectors;
ice_vsi_map_rings_to_vectors(vsi);
if (ice_is_xdp_ena_vsi(vsi)) {
ret = ice_vsi_determine_xdp_res(vsi);
if (ret)
goto err_vectors;
ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
if (ret)
goto err_vectors;
}
/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
if (vtype != ICE_VSI_CTRL)
/* Do not exit if configuring RSS had an issue, at
* least receive traffic on first queue. Hence no
* need to capture return value
*/
if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
ice_vsi_cfg_rss_lut_key(vsi);
break;
case ICE_VSI_VF:
ret = ice_vsi_alloc_q_vectors(vsi);
if (ret)
goto err_rings;
ret = ice_vsi_set_q_vectors_reg_idx(vsi);
if (ret)
goto err_vectors;
ret = ice_vsi_alloc_rings(vsi);
if (ret)
goto err_vectors;
break;
case ICE_VSI_CHNL:
if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
ice_vsi_cfg_rss_lut_key(vsi);
ice_vsi_set_rss_flow_fld(vsi);
}
break;
default:
break;
}
/* configure VSI nodes based on number of queues and TC's */
for (i = 0; i < vsi->tc_cfg.numtc; i++) {
/* configure VSI nodes based on number of queues and TC's.
* ADQ creates VSIs for each TC/Channel but doesn't
* allocate queues instead it reconfigures the PF queues
* as per the TC command. So max_txqs should point to the
* PF Tx queues.
*/
if (vtype == ICE_VSI_CHNL)
max_txqs[i] = pf->num_lan_tx;
else
max_txqs[i] = vsi->alloc_txq;
if (ice_is_xdp_ena_vsi(vsi))
max_txqs[i] += vsi->num_xdp_txq;
}
if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
/* If MQPRIO is set, means channel code path, hence for main
* VSI's, use TC as 1
*/
status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
else
status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
vsi->tc_cfg.ena_tc, max_txqs);
if (status) {
dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n",
vsi->vsi_num, ice_stat_str(status));
if (init_vsi) {
ret = -EIO;
goto err_vectors;
} else {
return ice_schedule_reset(pf, ICE_RESET_PFR);
}
}
ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
kfree(coalesce);
return 0;
err_vectors:
ice_vsi_free_q_vectors(vsi);
err_rings:
if (vsi->netdev) {
vsi->current_netdev_flags = 0;
unregister_netdev(vsi->netdev);
free_netdev(vsi->netdev);
vsi->netdev = NULL;
}
err_vsi:
ice_vsi_clear(vsi);
set_bit(ICE_RESET_FAILED, pf->state);
kfree(coalesce);
return ret;
}
/**
* ice_is_reset_in_progress - check for a reset in progress
* @state: PF state field
*/
bool ice_is_reset_in_progress(unsigned long *state)
{
return test_bit(ICE_RESET_OICR_RECV, state) ||
test_bit(ICE_PFR_REQ, state) ||
test_bit(ICE_CORER_REQ, state) ||
test_bit(ICE_GLOBR_REQ, state);
}
/**
* ice_wait_for_reset - Wait for driver to finish reset and rebuild
* @pf: pointer to the PF structure
* @timeout: length of time to wait, in jiffies
*
* Wait (sleep) for a short time until the driver finishes cleaning up from
* a device reset. The caller must be able to sleep. Use this to delay
* operations that could fail while the driver is cleaning up after a device
* reset.
*
* Returns 0 on success, -EBUSY if the reset is not finished within the
* timeout, and -ERESTARTSYS if the thread was interrupted.
*/
int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
{
long ret;
ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
!ice_is_reset_in_progress(pf->state),
timeout);
if (ret < 0)
return ret;
else if (!ret)
return -EBUSY;
else
return 0;
}
/**
* ice_vsi_update_q_map - update our copy of the VSI info with new queue map
* @vsi: VSI being configured
* @ctx: the context buffer returned from AQ VSI update command
*/
static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
{
vsi->info.mapping_flags = ctx->info.mapping_flags;
memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
sizeof(vsi->info.q_mapping));
memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
sizeof(vsi->info.tc_mapping));
}
/**
* ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
* @vsi: the VSI being configured
* @ena_tc: TC map to be enabled
*/
void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
{
struct net_device *netdev = vsi->netdev;
struct ice_pf *pf = vsi->back;
int numtc = vsi->tc_cfg.numtc;
struct ice_dcbx_cfg *dcbcfg;
u8 netdev_tc;
int i;
if (!netdev)
return;
/* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
if (vsi->type == ICE_VSI_CHNL)
return;
if (!ena_tc) {
netdev_reset_tc(netdev);
return;
}
if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
numtc = vsi->all_numtc;
if (netdev_set_num_tc(netdev, numtc))
return;
dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
ice_for_each_traffic_class(i)
if (vsi->tc_cfg.ena_tc & BIT(i))
netdev_set_tc_queue(netdev,
vsi->tc_cfg.tc_info[i].netdev_tc,
vsi->tc_cfg.tc_info[i].qcount_tx,
vsi->tc_cfg.tc_info[i].qoffset);
/* setup TC queue map for CHNL TCs */
ice_for_each_chnl_tc(i) {
if (!(vsi->all_enatc & BIT(i)))
break;
if (!vsi->mqprio_qopt.qopt.count[i])
break;
netdev_set_tc_queue(netdev, i,
vsi->mqprio_qopt.qopt.count[i],
vsi->mqprio_qopt.qopt.offset[i]);
}
if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
return;
for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
u8 ets_tc = dcbcfg->etscfg.prio_table[i];
/* Get the mapped netdev TC# for the UP */
netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
netdev_set_prio_tc_map(netdev, i, netdev_tc);
}
}
/**
* ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
* @vsi: the VSI being configured,
* @ctxt: VSI context structure
* @ena_tc: number of traffic classes to enable
*
* Prepares VSI tc_config to have queue configurations based on MQPRIO options.
*/
static void
ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
u8 ena_tc)
{
u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
u8 netdev_tc = 0;
int i;
vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
pow = order_base_2(tc0_qcount);
qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
ICE_AQ_VSI_TC_Q_OFFSET_M) |
((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M);
ice_for_each_traffic_class(i) {
if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
/* TC is not enabled */
vsi->tc_cfg.tc_info[i].qoffset = 0;
vsi->tc_cfg.tc_info[i].qcount_rx = 1;
vsi->tc_cfg.tc_info[i].qcount_tx = 1;
vsi->tc_cfg.tc_info[i].netdev_tc = 0;
ctxt->info.tc_mapping[i] = 0;
continue;
}
offset = vsi->mqprio_qopt.qopt.offset[i];
qcount_rx = vsi->mqprio_qopt.qopt.count[i];
qcount_tx = vsi->mqprio_qopt.qopt.count[i];
vsi->tc_cfg.tc_info[i].qoffset = offset;
vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
}
if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
ice_for_each_chnl_tc(i) {
if (!(vsi->all_enatc & BIT(i)))
continue;
offset = vsi->mqprio_qopt.qopt.offset[i];
qcount_rx = vsi->mqprio_qopt.qopt.count[i];
qcount_tx = vsi->mqprio_qopt.qopt.count[i];
}
}
/* Set actual Tx/Rx queue pairs */
vsi->num_txq = offset + qcount_tx;
vsi->num_rxq = offset + qcount_rx;
/* Setup queue TC[0].qmap for given VSI context */
ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
/* Find queue count available for channel VSIs and starting offset
* for channel VSIs
*/
if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
vsi->next_base_q = tc0_qcount;
}
dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq);
dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq);
dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
}
/**
* ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
* @vsi: VSI to be configured
* @ena_tc: TC bitmap
*
* VSI queues expected to be quiesced before calling this function
*/
int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
{
u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
struct ice_pf *pf = vsi->back;
struct ice_vsi_ctx *ctx;
enum ice_status status;
struct device *dev;
int i, ret = 0;
u8 num_tc = 0;
dev = ice_pf_to_dev(pf);
if (vsi->tc_cfg.ena_tc == ena_tc &&
vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
return ret;
ice_for_each_traffic_class(i) {
/* build bitmap of enabled TCs */
if (ena_tc & BIT(i))
num_tc++;
/* populate max_txqs per TC */
max_txqs[i] = vsi->alloc_txq;
/* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
* zero for CHNL VSI, hence use num_txq instead as max_txqs
*/
if (vsi->type == ICE_VSI_CHNL &&
test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
max_txqs[i] = vsi->num_txq;
}
vsi->tc_cfg.ena_tc = ena_tc;
vsi->tc_cfg.numtc = num_tc;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->vf_num = 0;
ctx->info = vsi->info;
if (vsi->type == ICE_VSI_PF &&
test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
else
ice_vsi_setup_q_map(vsi, ctx);
/* must to indicate which section of VSI context are being modified */
ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
if (status) {
dev_info(dev, "Failed VSI Update\n");
ret = -EIO;
goto out;
}
if (vsi->type == ICE_VSI_PF &&
test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1,
max_txqs);
else
status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
vsi->tc_cfg.ena_tc, max_txqs);
if (status) {
dev_err(dev, "VSI %d failed TC config, error %s\n",
vsi->vsi_num, ice_stat_str(status));
ret = -EIO;
goto out;
}
ice_vsi_update_q_map(vsi, ctx);
vsi->info.valid_sections = 0;
ice_vsi_cfg_netdev_tc(vsi, ena_tc);
out:
kfree(ctx);
return ret;
}
/**
* ice_update_ring_stats - Update ring statistics
* @stats: stats to be updated
* @pkts: number of processed packets
* @bytes: number of processed bytes
*
* This function assumes that caller has acquired a u64_stats_sync lock.
*/
static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
{
stats->bytes += bytes;
stats->pkts += pkts;
}
/**
* ice_update_tx_ring_stats - Update Tx ring specific counters
* @tx_ring: ring to update
* @pkts: number of processed packets
* @bytes: number of processed bytes
*/
void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
{
u64_stats_update_begin(&tx_ring->syncp);
ice_update_ring_stats(&tx_ring->stats, pkts, bytes);
u64_stats_update_end(&tx_ring->syncp);
}
/**
* ice_update_rx_ring_stats - Update Rx ring specific counters
* @rx_ring: ring to update
* @pkts: number of processed packets
* @bytes: number of processed bytes
*/
void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
{
u64_stats_update_begin(&rx_ring->syncp);
ice_update_ring_stats(&rx_ring->stats, pkts, bytes);
u64_stats_update_end(&rx_ring->syncp);
}
/**
* ice_status_to_errno - convert from enum ice_status to Linux errno
* @err: ice_status value to convert
*/
int ice_status_to_errno(enum ice_status err)
{
switch (err) {
case ICE_SUCCESS:
return 0;
case ICE_ERR_DOES_NOT_EXIST:
return -ENOENT;
case ICE_ERR_OUT_OF_RANGE:
case ICE_ERR_AQ_ERROR:
case ICE_ERR_AQ_TIMEOUT:
case ICE_ERR_AQ_EMPTY:
case ICE_ERR_AQ_FW_CRITICAL:
return -EIO;
case ICE_ERR_PARAM:
case ICE_ERR_INVAL_SIZE:
return -EINVAL;
case ICE_ERR_NO_MEMORY:
return -ENOMEM;
case ICE_ERR_MAX_LIMIT:
return -EAGAIN;
case ICE_ERR_RESET_ONGOING:
return -EBUSY;
case ICE_ERR_AQ_FULL:
return -ENOSPC;
default:
return -EINVAL;
}
}
/**
* ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
* @sw: switch to check if its default forwarding VSI is free
*
* Return true if the default forwarding VSI is already being used, else returns
* false signalling that it's available to use.
*/
bool ice_is_dflt_vsi_in_use(struct ice_sw *sw)
{
return (sw->dflt_vsi && sw->dflt_vsi_ena);
}
/**
* ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
* @sw: switch for the default forwarding VSI to compare against
* @vsi: VSI to compare against default forwarding VSI
*
* If this VSI passed in is the default forwarding VSI then return true, else
* return false
*/
bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
{
return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena);
}
/**
* ice_set_dflt_vsi - set the default forwarding VSI
* @sw: switch used to assign the default forwarding VSI
* @vsi: VSI getting set as the default forwarding VSI on the switch
*
* If the VSI passed in is already the default VSI and it's enabled just return
* success.
*
* If there is already a default VSI on the switch and it's enabled then return
* -EEXIST since there can only be one default VSI per switch.
*
* Otherwise try to set the VSI passed in as the switch's default VSI and
* return the result.
*/
int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
{
enum ice_status status;
struct device *dev;
if (!sw || !vsi)
return -EINVAL;
dev = ice_pf_to_dev(vsi->back);
/* the VSI passed in is already the default VSI */
if (ice_is_vsi_dflt_vsi(sw, vsi)) {
dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
vsi->vsi_num);
return 0;
}
/* another VSI is already the default VSI for this switch */
if (ice_is_dflt_vsi_in_use(sw)) {
dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n",
sw->dflt_vsi->vsi_num);
return -EEXIST;
}
status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX);
if (status) {
dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n",
vsi->vsi_num, ice_stat_str(status));
return -EIO;
}
sw->dflt_vsi = vsi;
sw->dflt_vsi_ena = true;
return 0;
}
/**
* ice_clear_dflt_vsi - clear the default forwarding VSI
* @sw: switch used to clear the default VSI
*
* If the switch has no default VSI or it's not enabled then return error.
*
* Otherwise try to clear the default VSI and return the result.
*/
int ice_clear_dflt_vsi(struct ice_sw *sw)
{
struct ice_vsi *dflt_vsi;
enum ice_status status;
struct device *dev;
if (!sw)
return -EINVAL;
dev = ice_pf_to_dev(sw->pf);
dflt_vsi = sw->dflt_vsi;
/* there is no default VSI configured */
if (!ice_is_dflt_vsi_in_use(sw))
return -ENODEV;
status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false,
ICE_FLTR_RX);
if (status) {
dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n",
dflt_vsi->vsi_num, ice_stat_str(status));
return -EIO;
}
sw->dflt_vsi = NULL;
sw->dflt_vsi_ena = false;
return 0;
}
/**
* ice_get_link_speed_mbps - get link speed in Mbps
* @vsi: the VSI whose link speed is being queried
*
* Return current VSI link speed and 0 if the speed is unknown.
*/
int ice_get_link_speed_mbps(struct ice_vsi *vsi)
{
switch (vsi->port_info->phy.link_info.link_speed) {
case ICE_AQ_LINK_SPEED_100GB:
return SPEED_100000;
case ICE_AQ_LINK_SPEED_50GB:
return SPEED_50000;
case ICE_AQ_LINK_SPEED_40GB:
return SPEED_40000;
case ICE_AQ_LINK_SPEED_25GB:
return SPEED_25000;
case ICE_AQ_LINK_SPEED_20GB:
return SPEED_20000;
case ICE_AQ_LINK_SPEED_10GB:
return SPEED_10000;
case ICE_AQ_LINK_SPEED_5GB:
return SPEED_5000;
case ICE_AQ_LINK_SPEED_2500MB:
return SPEED_2500;
case ICE_AQ_LINK_SPEED_1000MB:
return SPEED_1000;
case ICE_AQ_LINK_SPEED_100MB:
return SPEED_100;
case ICE_AQ_LINK_SPEED_10MB:
return SPEED_10;
case ICE_AQ_LINK_SPEED_UNKNOWN:
default:
return 0;
}
}
/**
* ice_get_link_speed_kbps - get link speed in Kbps
* @vsi: the VSI whose link speed is being queried
*
* Return current VSI link speed and 0 if the speed is unknown.
*/
int ice_get_link_speed_kbps(struct ice_vsi *vsi)
{
int speed_mbps;
speed_mbps = ice_get_link_speed_mbps(vsi);
return speed_mbps * 1000;
}
/**
* ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
* @vsi: VSI to be configured
* @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
*
* If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
* profile, otherwise a non-zero value will force a minimum BW limit for the VSI
* on TC 0.
*/
int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
{
struct ice_pf *pf = vsi->back;
enum ice_status status;
struct device *dev;
int speed;
dev = ice_pf_to_dev(pf);
if (!vsi->port_info) {
dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
vsi->idx, vsi->type);
return -EINVAL;
}
speed = ice_get_link_speed_kbps(vsi);
if (min_tx_rate > (u64)speed) {
dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
speed);
return -EINVAL;
}
/* Configure min BW for VSI limit */
if (min_tx_rate) {
status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
ICE_MIN_BW, min_tx_rate);
if (status) {
dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
min_tx_rate, ice_vsi_type_str(vsi->type),
vsi->idx);
return -EIO;
}
dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
min_tx_rate, ice_vsi_type_str(vsi->type));
} else {
status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
vsi->idx, 0,
ICE_MIN_BW);
if (status) {
dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
ice_vsi_type_str(vsi->type), vsi->idx);
return -EIO;
}
dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
ice_vsi_type_str(vsi->type), vsi->idx);
}
return 0;
}
/**
* ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
* @vsi: VSI to be configured
* @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
*
* If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
* profile, otherwise a non-zero value will force a maximum BW limit for the VSI
* on TC 0.
*/
int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
{
struct ice_pf *pf = vsi->back;
enum ice_status status;
struct device *dev;
int speed;
dev = ice_pf_to_dev(pf);
if (!vsi->port_info) {
dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
vsi->idx, vsi->type);
return -EINVAL;
}
speed = ice_get_link_speed_kbps(vsi);
if (max_tx_rate > (u64)speed) {
dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
speed);
return -EINVAL;
}
/* Configure max BW for VSI limit */
if (max_tx_rate) {
status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
ICE_MAX_BW, max_tx_rate);
if (status) {
dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
max_tx_rate, ice_vsi_type_str(vsi->type),
vsi->idx);
return -EIO;
}
dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
} else {
status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
vsi->idx, 0,
ICE_MAX_BW);
if (status) {
dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
ice_vsi_type_str(vsi->type), vsi->idx);
return -EIO;
}
dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
ice_vsi_type_str(vsi->type), vsi->idx);
}
return 0;
}
/**
* ice_set_link - turn on/off physical link
* @vsi: VSI to modify physical link on
* @ena: turn on/off physical link
*/
int ice_set_link(struct ice_vsi *vsi, bool ena)
{
struct device *dev = ice_pf_to_dev(vsi->back);
struct ice_port_info *pi = vsi->port_info;
struct ice_hw *hw = pi->hw;
enum ice_status status;
if (vsi->type != ICE_VSI_PF)
return -EINVAL;
status = ice_aq_set_link_restart_an(pi, ena, NULL);
/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
* this is not a fatal error, so print a warning message and return
* a success code. Return an error if FW returns an error code other
* than ICE_AQ_RC_EMODE
*/
if (status == ICE_ERR_AQ_ERROR) {
if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
dev_warn(dev, "can't set link to %s, err %s aq_err %s. not fatal, continuing\n",
(ena ? "ON" : "OFF"), ice_stat_str(status),
ice_aq_str(hw->adminq.sq_last_status));
} else if (status) {
dev_err(dev, "can't set link to %s, err %s aq_err %s\n",
(ena ? "ON" : "OFF"), ice_stat_str(status),
ice_aq_str(hw->adminq.sq_last_status));
return -EIO;
}
return 0;
}
/**
* ice_is_feature_supported
* @pf: pointer to the struct ice_pf instance
* @f: feature enum to be checked
*
* returns true if feature is supported, false otherwise
*/
bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
{
if (f < 0 || f >= ICE_F_MAX)
return false;
return test_bit(f, pf->features);
}
/**
* ice_set_feature_support
* @pf: pointer to the struct ice_pf instance
* @f: feature enum to set
*/
static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
{
if (f < 0 || f >= ICE_F_MAX)
return;
set_bit(f, pf->features);
}
/**
* ice_clear_feature_support
* @pf: pointer to the struct ice_pf instance
* @f: feature enum to clear
*/
void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
{
if (f < 0 || f >= ICE_F_MAX)
return;
clear_bit(f, pf->features);
}
/**
* ice_init_feature_support
* @pf: pointer to the struct ice_pf instance
*
* called during init to setup supported feature
*/
void ice_init_feature_support(struct ice_pf *pf)
{
switch (pf->hw.device_id) {
case ICE_DEV_ID_E810C_BACKPLANE:
case ICE_DEV_ID_E810C_QSFP:
case ICE_DEV_ID_E810C_SFP:
ice_set_feature_support(pf, ICE_F_DSCP);
if (ice_is_e810t(&pf->hw))
ice_set_feature_support(pf, ICE_F_SMA_CTRL);
break;
default:
break;
}
}
/**
* ice_vsi_update_security - update security block in VSI
* @vsi: pointer to VSI structure
* @fill: function pointer to fill ctx
*/
int
ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
{
struct ice_vsi_ctx ctx = { 0 };
ctx.info = vsi->info;
ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
fill(&ctx);
if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
return -ENODEV;
vsi->info = ctx.info;
return 0;
}
/**
* ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
* @ctx: pointer to VSI ctx structure
*/
void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
{
ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
}
/**
* ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
* @ctx: pointer to VSI ctx structure
*/
void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
{
ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
}
/**
* ice_vsi_ctx_set_allow_override - allow destination override on VSI
* @ctx: pointer to VSI ctx structure
*/
void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
{
ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
}
/**
* ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
* @ctx: pointer to VSI ctx structure
*/
void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
{
ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
}