| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* |
| * DAMON api |
| * |
| * Author: SeongJae Park <sjpark@amazon.de> |
| */ |
| |
| #ifndef _DAMON_H_ |
| #define _DAMON_H_ |
| |
| #include <linux/mutex.h> |
| #include <linux/time64.h> |
| #include <linux/types.h> |
| |
| /* Minimal region size. Every damon_region is aligned by this. */ |
| #define DAMON_MIN_REGION PAGE_SIZE |
| |
| /** |
| * struct damon_addr_range - Represents an address region of [@start, @end). |
| * @start: Start address of the region (inclusive). |
| * @end: End address of the region (exclusive). |
| */ |
| struct damon_addr_range { |
| unsigned long start; |
| unsigned long end; |
| }; |
| |
| /** |
| * struct damon_region - Represents a monitoring target region. |
| * @ar: The address range of the region. |
| * @sampling_addr: Address of the sample for the next access check. |
| * @nr_accesses: Access frequency of this region. |
| * @list: List head for siblings. |
| */ |
| struct damon_region { |
| struct damon_addr_range ar; |
| unsigned long sampling_addr; |
| unsigned int nr_accesses; |
| struct list_head list; |
| }; |
| |
| /** |
| * struct damon_target - Represents a monitoring target. |
| * @id: Unique identifier for this target. |
| * @nr_regions: Number of monitoring target regions of this target. |
| * @regions_list: Head of the monitoring target regions of this target. |
| * @list: List head for siblings. |
| * |
| * Each monitoring context could have multiple targets. For example, a context |
| * for virtual memory address spaces could have multiple target processes. The |
| * @id of each target should be unique among the targets of the context. For |
| * example, in the virtual address monitoring context, it could be a pidfd or |
| * an address of an mm_struct. |
| */ |
| struct damon_target { |
| unsigned long id; |
| unsigned int nr_regions; |
| struct list_head regions_list; |
| struct list_head list; |
| }; |
| |
| struct damon_ctx; |
| |
| /** |
| * struct damon_primitive Monitoring primitives for given use cases. |
| * |
| * @init: Initialize primitive-internal data structures. |
| * @update: Update primitive-internal data structures. |
| * @prepare_access_checks: Prepare next access check of target regions. |
| * @check_accesses: Check the accesses to target regions. |
| * @reset_aggregated: Reset aggregated accesses monitoring results. |
| * @target_valid: Determine if the target is valid. |
| * @cleanup: Clean up the context. |
| * |
| * DAMON can be extended for various address spaces and usages. For this, |
| * users should register the low level primitives for their target address |
| * space and usecase via the &damon_ctx.primitive. Then, the monitoring thread |
| * (&damon_ctx.kdamond) calls @init and @prepare_access_checks before starting |
| * the monitoring, @update after each &damon_ctx.primitive_update_interval, and |
| * @check_accesses, @target_valid and @prepare_access_checks after each |
| * &damon_ctx.sample_interval. Finally, @reset_aggregated is called after each |
| * &damon_ctx.aggr_interval. |
| * |
| * @init should initialize primitive-internal data structures. For example, |
| * this could be used to construct proper monitoring target regions and link |
| * those to @damon_ctx.adaptive_targets. |
| * @update should update the primitive-internal data structures. For example, |
| * this could be used to update monitoring target regions for current status. |
| * @prepare_access_checks should manipulate the monitoring regions to be |
| * prepared for the next access check. |
| * @check_accesses should check the accesses to each region that made after the |
| * last preparation and update the number of observed accesses of each region. |
| * It should also return max number of observed accesses that made as a result |
| * of its update. The value will be used for regions adjustment threshold. |
| * @reset_aggregated should reset the access monitoring results that aggregated |
| * by @check_accesses. |
| * @target_valid should check whether the target is still valid for the |
| * monitoring. |
| * @cleanup is called from @kdamond just before its termination. |
| */ |
| struct damon_primitive { |
| void (*init)(struct damon_ctx *context); |
| void (*update)(struct damon_ctx *context); |
| void (*prepare_access_checks)(struct damon_ctx *context); |
| unsigned int (*check_accesses)(struct damon_ctx *context); |
| void (*reset_aggregated)(struct damon_ctx *context); |
| bool (*target_valid)(void *target); |
| void (*cleanup)(struct damon_ctx *context); |
| }; |
| |
| /* |
| * struct damon_callback Monitoring events notification callbacks. |
| * |
| * @before_start: Called before starting the monitoring. |
| * @after_sampling: Called after each sampling. |
| * @after_aggregation: Called after each aggregation. |
| * @before_terminate: Called before terminating the monitoring. |
| * @private: User private data. |
| * |
| * The monitoring thread (&damon_ctx.kdamond) calls @before_start and |
| * @before_terminate just before starting and finishing the monitoring, |
| * respectively. Therefore, those are good places for installing and cleaning |
| * @private. |
| * |
| * The monitoring thread calls @after_sampling and @after_aggregation for each |
| * of the sampling intervals and aggregation intervals, respectively. |
| * Therefore, users can safely access the monitoring results without additional |
| * protection. For the reason, users are recommended to use these callback for |
| * the accesses to the results. |
| * |
| * If any callback returns non-zero, monitoring stops. |
| */ |
| struct damon_callback { |
| void *private; |
| |
| int (*before_start)(struct damon_ctx *context); |
| int (*after_sampling)(struct damon_ctx *context); |
| int (*after_aggregation)(struct damon_ctx *context); |
| int (*before_terminate)(struct damon_ctx *context); |
| }; |
| |
| /** |
| * struct damon_ctx - Represents a context for each monitoring. This is the |
| * main interface that allows users to set the attributes and get the results |
| * of the monitoring. |
| * |
| * @sample_interval: The time between access samplings. |
| * @aggr_interval: The time between monitor results aggregations. |
| * @primitive_update_interval: The time between monitoring primitive updates. |
| * |
| * For each @sample_interval, DAMON checks whether each region is accessed or |
| * not. It aggregates and keeps the access information (number of accesses to |
| * each region) for @aggr_interval time. DAMON also checks whether the target |
| * memory regions need update (e.g., by ``mmap()`` calls from the application, |
| * in case of virtual memory monitoring) and applies the changes for each |
| * @primitive_update_interval. All time intervals are in micro-seconds. |
| * Please refer to &struct damon_primitive and &struct damon_callback for more |
| * detail. |
| * |
| * @kdamond: Kernel thread who does the monitoring. |
| * @kdamond_stop: Notifies whether kdamond should stop. |
| * @kdamond_lock: Mutex for the synchronizations with @kdamond. |
| * |
| * For each monitoring context, one kernel thread for the monitoring is |
| * created. The pointer to the thread is stored in @kdamond. |
| * |
| * Once started, the monitoring thread runs until explicitly required to be |
| * terminated or every monitoring target is invalid. The validity of the |
| * targets is checked via the &damon_primitive.target_valid of @primitive. The |
| * termination can also be explicitly requested by writing non-zero to |
| * @kdamond_stop. The thread sets @kdamond to NULL when it terminates. |
| * Therefore, users can know whether the monitoring is ongoing or terminated by |
| * reading @kdamond. Reads and writes to @kdamond and @kdamond_stop from |
| * outside of the monitoring thread must be protected by @kdamond_lock. |
| * |
| * Note that the monitoring thread protects only @kdamond and @kdamond_stop via |
| * @kdamond_lock. Accesses to other fields must be protected by themselves. |
| * |
| * @primitive: Set of monitoring primitives for given use cases. |
| * @callback: Set of callbacks for monitoring events notifications. |
| * |
| * @min_nr_regions: The minimum number of adaptive monitoring regions. |
| * @max_nr_regions: The maximum number of adaptive monitoring regions. |
| * @adaptive_targets: Head of monitoring targets (&damon_target) list. |
| */ |
| struct damon_ctx { |
| unsigned long sample_interval; |
| unsigned long aggr_interval; |
| unsigned long primitive_update_interval; |
| |
| /* private: internal use only */ |
| struct timespec64 last_aggregation; |
| struct timespec64 last_primitive_update; |
| |
| /* public: */ |
| struct task_struct *kdamond; |
| bool kdamond_stop; |
| struct mutex kdamond_lock; |
| |
| struct damon_primitive primitive; |
| struct damon_callback callback; |
| |
| unsigned long min_nr_regions; |
| unsigned long max_nr_regions; |
| struct list_head adaptive_targets; |
| }; |
| |
| #define damon_next_region(r) \ |
| (container_of(r->list.next, struct damon_region, list)) |
| |
| #define damon_prev_region(r) \ |
| (container_of(r->list.prev, struct damon_region, list)) |
| |
| #define damon_for_each_region(r, t) \ |
| list_for_each_entry(r, &t->regions_list, list) |
| |
| #define damon_for_each_region_safe(r, next, t) \ |
| list_for_each_entry_safe(r, next, &t->regions_list, list) |
| |
| #define damon_for_each_target(t, ctx) \ |
| list_for_each_entry(t, &(ctx)->adaptive_targets, list) |
| |
| #define damon_for_each_target_safe(t, next, ctx) \ |
| list_for_each_entry_safe(t, next, &(ctx)->adaptive_targets, list) |
| |
| #ifdef CONFIG_DAMON |
| |
| struct damon_region *damon_new_region(unsigned long start, unsigned long end); |
| inline void damon_insert_region(struct damon_region *r, |
| struct damon_region *prev, struct damon_region *next, |
| struct damon_target *t); |
| void damon_add_region(struct damon_region *r, struct damon_target *t); |
| void damon_destroy_region(struct damon_region *r, struct damon_target *t); |
| |
| struct damon_target *damon_new_target(unsigned long id); |
| void damon_add_target(struct damon_ctx *ctx, struct damon_target *t); |
| void damon_free_target(struct damon_target *t); |
| void damon_destroy_target(struct damon_target *t); |
| unsigned int damon_nr_regions(struct damon_target *t); |
| |
| struct damon_ctx *damon_new_ctx(void); |
| void damon_destroy_ctx(struct damon_ctx *ctx); |
| int damon_set_targets(struct damon_ctx *ctx, |
| unsigned long *ids, ssize_t nr_ids); |
| int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int, |
| unsigned long aggr_int, unsigned long primitive_upd_int, |
| unsigned long min_nr_reg, unsigned long max_nr_reg); |
| int damon_nr_running_ctxs(void); |
| |
| int damon_start(struct damon_ctx **ctxs, int nr_ctxs); |
| int damon_stop(struct damon_ctx **ctxs, int nr_ctxs); |
| |
| #endif /* CONFIG_DAMON */ |
| |
| #ifdef CONFIG_DAMON_VADDR |
| |
| /* Monitoring primitives for virtual memory address spaces */ |
| void damon_va_init(struct damon_ctx *ctx); |
| void damon_va_update(struct damon_ctx *ctx); |
| void damon_va_prepare_access_checks(struct damon_ctx *ctx); |
| unsigned int damon_va_check_accesses(struct damon_ctx *ctx); |
| bool damon_va_target_valid(void *t); |
| void damon_va_cleanup(struct damon_ctx *ctx); |
| void damon_va_set_primitives(struct damon_ctx *ctx); |
| |
| #endif /* CONFIG_DAMON_VADDR */ |
| |
| #endif /* _DAMON_H */ |