blob: fd49f86e03532c140557af4bb822eb2d7665ef95 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Thunderbolt driver - bus logic (NHI independent)
*
* Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
* Copyright (C) 2019, Intel Corporation
*/
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <linux/platform_data/x86/apple.h>
#include "tb.h"
#include "tb_regs.h"
#include "tunnel.h"
#define TB_TIMEOUT 100 /* ms */
/*
* Minimum bandwidth (in Mb/s) that is needed in the single transmitter/receiver
* direction. This is 40G - 10% guard band bandwidth.
*/
#define TB_ASYM_MIN (40000 * 90 / 100)
/*
* Threshold bandwidth (in Mb/s) that is used to switch the links to
* asymmetric and back. This is selected as 45G which means when the
* request is higher than this, we switch the link to asymmetric, and
* when it is less than this we switch it back. The 45G is selected so
* that we still have 27G (of the total 72G) for bulk PCIe traffic when
* switching back to symmetric.
*/
#define TB_ASYM_THRESHOLD 45000
#define MAX_GROUPS 7 /* max Group_ID is 7 */
static unsigned int asym_threshold = TB_ASYM_THRESHOLD;
module_param_named(asym_threshold, asym_threshold, uint, 0444);
MODULE_PARM_DESC(asym_threshold,
"threshold (Mb/s) when to Gen 4 switch link symmetry. 0 disables. (default: "
__MODULE_STRING(TB_ASYM_THRESHOLD) ")");
/**
* struct tb_cm - Simple Thunderbolt connection manager
* @tunnel_list: List of active tunnels
* @dp_resources: List of available DP resources for DP tunneling
* @hotplug_active: tb_handle_hotplug will stop progressing plug
* events and exit if this is not set (it needs to
* acquire the lock one more time). Used to drain wq
* after cfg has been paused.
* @remove_work: Work used to remove any unplugged routers after
* runtime resume
* @groups: Bandwidth groups used in this domain.
*/
struct tb_cm {
struct list_head tunnel_list;
struct list_head dp_resources;
bool hotplug_active;
struct delayed_work remove_work;
struct tb_bandwidth_group groups[MAX_GROUPS];
};
static inline struct tb *tcm_to_tb(struct tb_cm *tcm)
{
return ((void *)tcm - sizeof(struct tb));
}
struct tb_hotplug_event {
struct work_struct work;
struct tb *tb;
u64 route;
u8 port;
bool unplug;
};
static void tb_init_bandwidth_groups(struct tb_cm *tcm)
{
int i;
for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
struct tb_bandwidth_group *group = &tcm->groups[i];
group->tb = tcm_to_tb(tcm);
group->index = i + 1;
INIT_LIST_HEAD(&group->ports);
}
}
static void tb_bandwidth_group_attach_port(struct tb_bandwidth_group *group,
struct tb_port *in)
{
if (!group || WARN_ON(in->group))
return;
in->group = group;
list_add_tail(&in->group_list, &group->ports);
tb_port_dbg(in, "attached to bandwidth group %d\n", group->index);
}
static struct tb_bandwidth_group *tb_find_free_bandwidth_group(struct tb_cm *tcm)
{
int i;
for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
struct tb_bandwidth_group *group = &tcm->groups[i];
if (list_empty(&group->ports))
return group;
}
return NULL;
}
static struct tb_bandwidth_group *
tb_attach_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
struct tb_port *out)
{
struct tb_bandwidth_group *group;
struct tb_tunnel *tunnel;
/*
* Find all DP tunnels that go through all the same USB4 links
* as this one. Because we always setup tunnels the same way we
* can just check for the routers at both ends of the tunnels
* and if they are the same we have a match.
*/
list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
if (!tb_tunnel_is_dp(tunnel))
continue;
if (tunnel->src_port->sw == in->sw &&
tunnel->dst_port->sw == out->sw) {
group = tunnel->src_port->group;
if (group) {
tb_bandwidth_group_attach_port(group, in);
return group;
}
}
}
/* Pick up next available group then */
group = tb_find_free_bandwidth_group(tcm);
if (group)
tb_bandwidth_group_attach_port(group, in);
else
tb_port_warn(in, "no available bandwidth groups\n");
return group;
}
static void tb_discover_bandwidth_group(struct tb_cm *tcm, struct tb_port *in,
struct tb_port *out)
{
if (usb4_dp_port_bandwidth_mode_enabled(in)) {
int index, i;
index = usb4_dp_port_group_id(in);
for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
if (tcm->groups[i].index == index) {
tb_bandwidth_group_attach_port(&tcm->groups[i], in);
return;
}
}
}
tb_attach_bandwidth_group(tcm, in, out);
}
static void tb_detach_bandwidth_group(struct tb_port *in)
{
struct tb_bandwidth_group *group = in->group;
if (group) {
in->group = NULL;
list_del_init(&in->group_list);
tb_port_dbg(in, "detached from bandwidth group %d\n", group->index);
}
}
static void tb_handle_hotplug(struct work_struct *work);
static void tb_queue_hotplug(struct tb *tb, u64 route, u8 port, bool unplug)
{
struct tb_hotplug_event *ev;
ev = kmalloc(sizeof(*ev), GFP_KERNEL);
if (!ev)
return;
ev->tb = tb;
ev->route = route;
ev->port = port;
ev->unplug = unplug;
INIT_WORK(&ev->work, tb_handle_hotplug);
queue_work(tb->wq, &ev->work);
}
/* enumeration & hot plug handling */
static void tb_add_dp_resources(struct tb_switch *sw)
{
struct tb_cm *tcm = tb_priv(sw->tb);
struct tb_port *port;
tb_switch_for_each_port(sw, port) {
if (!tb_port_is_dpin(port))
continue;
if (!tb_switch_query_dp_resource(sw, port))
continue;
/*
* If DP IN on device router exist, position it at the
* beginning of the DP resources list, so that it is used
* before DP IN of the host router. This way external GPU(s)
* will be prioritized when pairing DP IN to a DP OUT.
*/
if (tb_route(sw))
list_add(&port->list, &tcm->dp_resources);
else
list_add_tail(&port->list, &tcm->dp_resources);
tb_port_dbg(port, "DP IN resource available\n");
}
}
static void tb_remove_dp_resources(struct tb_switch *sw)
{
struct tb_cm *tcm = tb_priv(sw->tb);
struct tb_port *port, *tmp;
/* Clear children resources first */
tb_switch_for_each_port(sw, port) {
if (tb_port_has_remote(port))
tb_remove_dp_resources(port->remote->sw);
}
list_for_each_entry_safe(port, tmp, &tcm->dp_resources, list) {
if (port->sw == sw) {
tb_port_dbg(port, "DP OUT resource unavailable\n");
list_del_init(&port->list);
}
}
}
static void tb_discover_dp_resource(struct tb *tb, struct tb_port *port)
{
struct tb_cm *tcm = tb_priv(tb);
struct tb_port *p;
list_for_each_entry(p, &tcm->dp_resources, list) {
if (p == port)
return;
}
tb_port_dbg(port, "DP %s resource available discovered\n",
tb_port_is_dpin(port) ? "IN" : "OUT");
list_add_tail(&port->list, &tcm->dp_resources);
}
static void tb_discover_dp_resources(struct tb *tb)
{
struct tb_cm *tcm = tb_priv(tb);
struct tb_tunnel *tunnel;
list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
if (tb_tunnel_is_dp(tunnel))
tb_discover_dp_resource(tb, tunnel->dst_port);
}
}
/* Enables CL states up to host router */
static int tb_enable_clx(struct tb_switch *sw)
{
struct tb_cm *tcm = tb_priv(sw->tb);
unsigned int clx = TB_CL0S | TB_CL1;
const struct tb_tunnel *tunnel;
int ret;
/*
* Currently only enable CLx for the first link. This is enough
* to allow the CPU to save energy at least on Intel hardware
* and makes it slightly simpler to implement. We may change
* this in the future to cover the whole topology if it turns
* out to be beneficial.
*/
while (sw && tb_switch_depth(sw) > 1)
sw = tb_switch_parent(sw);
if (!sw)
return 0;
if (tb_switch_depth(sw) != 1)
return 0;
/*
* If we are re-enabling then check if there is an active DMA
* tunnel and in that case bail out.
*/
list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
if (tb_tunnel_is_dma(tunnel)) {
if (tb_tunnel_port_on_path(tunnel, tb_upstream_port(sw)))
return 0;
}
}
/*
* Initially try with CL2. If that's not supported by the
* topology try with CL0s and CL1 and then give up.
*/
ret = tb_switch_clx_enable(sw, clx | TB_CL2);
if (ret == -EOPNOTSUPP)
ret = tb_switch_clx_enable(sw, clx);
return ret == -EOPNOTSUPP ? 0 : ret;
}
/**
* tb_disable_clx() - Disable CL states up to host router
* @sw: Router to start
*
* Disables CL states from @sw up to the host router. Returns true if
* any CL state were disabled. This can be used to figure out whether
* the link was setup by us or the boot firmware so we don't
* accidentally enable them if they were not enabled during discovery.
*/
static bool tb_disable_clx(struct tb_switch *sw)
{
bool disabled = false;
do {
int ret;
ret = tb_switch_clx_disable(sw);
if (ret > 0)
disabled = true;
else if (ret < 0)
tb_sw_warn(sw, "failed to disable CL states\n");
sw = tb_switch_parent(sw);
} while (sw);
return disabled;
}
static int tb_increase_switch_tmu_accuracy(struct device *dev, void *data)
{
struct tb_switch *sw;
sw = tb_to_switch(dev);
if (!sw)
return 0;
if (tb_switch_tmu_is_configured(sw, TB_SWITCH_TMU_MODE_LOWRES)) {
enum tb_switch_tmu_mode mode;
int ret;
if (tb_switch_clx_is_enabled(sw, TB_CL1))
mode = TB_SWITCH_TMU_MODE_HIFI_UNI;
else
mode = TB_SWITCH_TMU_MODE_HIFI_BI;
ret = tb_switch_tmu_configure(sw, mode);
if (ret)
return ret;
return tb_switch_tmu_enable(sw);
}
return 0;
}
static void tb_increase_tmu_accuracy(struct tb_tunnel *tunnel)
{
struct tb_switch *sw;
if (!tunnel)
return;
/*
* Once first DP tunnel is established we change the TMU
* accuracy of first depth child routers (and the host router)
* to the highest. This is needed for the DP tunneling to work
* but also allows CL0s.
*
* If both routers are v2 then we don't need to do anything as
* they are using enhanced TMU mode that allows all CLx.
*/
sw = tunnel->tb->root_switch;
device_for_each_child(&sw->dev, NULL, tb_increase_switch_tmu_accuracy);
}
static int tb_enable_tmu(struct tb_switch *sw)
{
int ret;
/*
* If both routers at the end of the link are v2 we simply
* enable the enhanched uni-directional mode. That covers all
* the CL states. For v1 and before we need to use the normal
* rate to allow CL1 (when supported). Otherwise we keep the TMU
* running at the highest accuracy.
*/
ret = tb_switch_tmu_configure(sw,
TB_SWITCH_TMU_MODE_MEDRES_ENHANCED_UNI);
if (ret == -EOPNOTSUPP) {
if (tb_switch_clx_is_enabled(sw, TB_CL1))
ret = tb_switch_tmu_configure(sw,
TB_SWITCH_TMU_MODE_LOWRES);
else
ret = tb_switch_tmu_configure(sw,
TB_SWITCH_TMU_MODE_HIFI_BI);
}
if (ret)
return ret;
/* If it is already enabled in correct mode, don't touch it */
if (tb_switch_tmu_is_enabled(sw))
return 0;
ret = tb_switch_tmu_disable(sw);
if (ret)
return ret;
ret = tb_switch_tmu_post_time(sw);
if (ret)
return ret;
return tb_switch_tmu_enable(sw);
}
static void tb_switch_discover_tunnels(struct tb_switch *sw,
struct list_head *list,
bool alloc_hopids)
{
struct tb *tb = sw->tb;
struct tb_port *port;
tb_switch_for_each_port(sw, port) {
struct tb_tunnel *tunnel = NULL;
switch (port->config.type) {
case TB_TYPE_DP_HDMI_IN:
tunnel = tb_tunnel_discover_dp(tb, port, alloc_hopids);
tb_increase_tmu_accuracy(tunnel);
break;
case TB_TYPE_PCIE_DOWN:
tunnel = tb_tunnel_discover_pci(tb, port, alloc_hopids);
break;
case TB_TYPE_USB3_DOWN:
tunnel = tb_tunnel_discover_usb3(tb, port, alloc_hopids);
break;
default:
break;
}
if (tunnel)
list_add_tail(&tunnel->list, list);
}
tb_switch_for_each_port(sw, port) {
if (tb_port_has_remote(port)) {
tb_switch_discover_tunnels(port->remote->sw, list,
alloc_hopids);
}
}
}
static void tb_discover_tunnels(struct tb *tb)
{
struct tb_cm *tcm = tb_priv(tb);
struct tb_tunnel *tunnel;
tb_switch_discover_tunnels(tb->root_switch, &tcm->tunnel_list, true);
list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
if (tb_tunnel_is_pci(tunnel)) {
struct tb_switch *parent = tunnel->dst_port->sw;
while (parent != tunnel->src_port->sw) {
parent->boot = true;
parent = tb_switch_parent(parent);
}
} else if (tb_tunnel_is_dp(tunnel)) {
struct tb_port *in = tunnel->src_port;
struct tb_port *out = tunnel->dst_port;
/* Keep the domain from powering down */
pm_runtime_get_sync(&in->sw->dev);
pm_runtime_get_sync(&out->sw->dev);
tb_discover_bandwidth_group(tcm, in, out);
}
}
}
static int tb_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd)
{
if (tb_switch_is_usb4(port->sw))
return usb4_port_configure_xdomain(port, xd);
return tb_lc_configure_xdomain(port);
}
static void tb_port_unconfigure_xdomain(struct tb_port *port)
{
if (tb_switch_is_usb4(port->sw))
usb4_port_unconfigure_xdomain(port);
else
tb_lc_unconfigure_xdomain(port);
tb_port_enable(port->dual_link_port);
}
static void tb_scan_xdomain(struct tb_port *port)
{
struct tb_switch *sw = port->sw;
struct tb *tb = sw->tb;
struct tb_xdomain *xd;
u64 route;
if (!tb_is_xdomain_enabled())
return;
route = tb_downstream_route(port);
xd = tb_xdomain_find_by_route(tb, route);
if (xd) {
tb_xdomain_put(xd);
return;
}
xd = tb_xdomain_alloc(tb, &sw->dev, route, tb->root_switch->uuid,
NULL);
if (xd) {
tb_port_at(route, sw)->xdomain = xd;
tb_port_configure_xdomain(port, xd);
tb_xdomain_add(xd);
}
}
/**
* tb_find_unused_port() - return the first inactive port on @sw
* @sw: Switch to find the port on
* @type: Port type to look for
*/
static struct tb_port *tb_find_unused_port(struct tb_switch *sw,
enum tb_port_type type)
{
struct tb_port *port;
tb_switch_for_each_port(sw, port) {
if (tb_is_upstream_port(port))
continue;
if (port->config.type != type)
continue;
if (!port->cap_adap)
continue;
if (tb_port_is_enabled(port))
continue;
return port;
}
return NULL;
}
static struct tb_port *tb_find_usb3_down(struct tb_switch *sw,
const struct tb_port *port)
{
struct tb_port *down;
down = usb4_switch_map_usb3_down(sw, port);
if (down && !tb_usb3_port_is_enabled(down))
return down;
return NULL;
}
static struct tb_tunnel *tb_find_tunnel(struct tb *tb, enum tb_tunnel_type type,
struct tb_port *src_port,
struct tb_port *dst_port)
{
struct tb_cm *tcm = tb_priv(tb);
struct tb_tunnel *tunnel;
list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
if (tunnel->type == type &&
((src_port && src_port == tunnel->src_port) ||
(dst_port && dst_port == tunnel->dst_port))) {
return tunnel;
}
}
return NULL;
}
static struct tb_tunnel *tb_find_first_usb3_tunnel(struct tb *tb,
struct tb_port *src_port,
struct tb_port *dst_port)
{
struct tb_port *port, *usb3_down;
struct tb_switch *sw;
/* Pick the router that is deepest in the topology */
if (tb_port_path_direction_downstream(src_port, dst_port))
sw = dst_port->sw;
else
sw = src_port->sw;
/* Can't be the host router */
if (sw == tb->root_switch)
return NULL;
/* Find the downstream USB4 port that leads to this router */
port = tb_port_at(tb_route(sw), tb->root_switch);
/* Find the corresponding host router USB3 downstream port */
usb3_down = usb4_switch_map_usb3_down(tb->root_switch, port);
if (!usb3_down)
return NULL;
return tb_find_tunnel(tb, TB_TUNNEL_USB3, usb3_down, NULL);
}
/**
* tb_consumed_usb3_pcie_bandwidth() - Consumed USB3/PCIe bandwidth over a single link
* @tb: Domain structure
* @src_port: Source protocol adapter
* @dst_port: Destination protocol adapter
* @port: USB4 port the consumed bandwidth is calculated
* @consumed_up: Consumed upsream bandwidth (Mb/s)
* @consumed_down: Consumed downstream bandwidth (Mb/s)
*
* Calculates consumed USB3 and PCIe bandwidth at @port between path
* from @src_port to @dst_port. Does not take tunnel starting from
* @src_port and ending from @src_port into account.
*/
static int tb_consumed_usb3_pcie_bandwidth(struct tb *tb,
struct tb_port *src_port,
struct tb_port *dst_port,
struct tb_port *port,
int *consumed_up,
int *consumed_down)
{
int pci_consumed_up, pci_consumed_down;
struct tb_tunnel *tunnel;
*consumed_up = *consumed_down = 0;
tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
if (tunnel && tunnel->src_port != src_port &&
tunnel->dst_port != dst_port) {
int ret;
ret = tb_tunnel_consumed_bandwidth(tunnel, consumed_up,
consumed_down);
if (ret)
return ret;
}
/*
* If there is anything reserved for PCIe bulk traffic take it
* into account here too.
*/
if (tb_tunnel_reserved_pci(port, &pci_consumed_up, &pci_consumed_down)) {
*consumed_up += pci_consumed_up;
*consumed_down += pci_consumed_down;
}
return 0;
}
/**
* tb_consumed_dp_bandwidth() - Consumed DP bandwidth over a single link
* @tb: Domain structure
* @src_port: Source protocol adapter
* @dst_port: Destination protocol adapter
* @port: USB4 port the consumed bandwidth is calculated
* @consumed_up: Consumed upsream bandwidth (Mb/s)
* @consumed_down: Consumed downstream bandwidth (Mb/s)
*
* Calculates consumed DP bandwidth at @port between path from @src_port
* to @dst_port. Does not take tunnel starting from @src_port and ending
* from @src_port into account.
*/
static int tb_consumed_dp_bandwidth(struct tb *tb,
struct tb_port *src_port,
struct tb_port *dst_port,
struct tb_port *port,
int *consumed_up,
int *consumed_down)
{
struct tb_cm *tcm = tb_priv(tb);
struct tb_tunnel *tunnel;
int ret;
*consumed_up = *consumed_down = 0;
/*
* Find all DP tunnels that cross the port and reduce
* their consumed bandwidth from the available.
*/
list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
int dp_consumed_up, dp_consumed_down;
if (tb_tunnel_is_invalid(tunnel))
continue;
if (!tb_tunnel_is_dp(tunnel))
continue;
if (!tb_tunnel_port_on_path(tunnel, port))
continue;
/*
* Ignore the DP tunnel between src_port and dst_port
* because it is the same tunnel and we may be
* re-calculating estimated bandwidth.
*/
if (tunnel->src_port == src_port &&
tunnel->dst_port == dst_port)
continue;
ret = tb_tunnel_consumed_bandwidth(tunnel, &dp_consumed_up,
&dp_consumed_down);
if (ret)
return ret;
*consumed_up += dp_consumed_up;
*consumed_down += dp_consumed_down;
}
return 0;
}
static bool tb_asym_supported(struct tb_port *src_port, struct tb_port *dst_port,
struct tb_port *port)
{
bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
enum tb_link_width width;
if (tb_is_upstream_port(port))
width = downstream ? TB_LINK_WIDTH_ASYM_RX : TB_LINK_WIDTH_ASYM_TX;
else
width = downstream ? TB_LINK_WIDTH_ASYM_TX : TB_LINK_WIDTH_ASYM_RX;
return tb_port_width_supported(port, width);
}
/**
* tb_maximum_bandwidth() - Maximum bandwidth over a single link
* @tb: Domain structure
* @src_port: Source protocol adapter
* @dst_port: Destination protocol adapter
* @port: USB4 port the total bandwidth is calculated
* @max_up: Maximum upstream bandwidth (Mb/s)
* @max_down: Maximum downstream bandwidth (Mb/s)
* @include_asym: Include bandwidth if the link is switched from
* symmetric to asymmetric
*
* Returns maximum possible bandwidth in @max_up and @max_down over a
* single link at @port. If @include_asym is set then includes the
* additional banwdith if the links are transitioned into asymmetric to
* direction from @src_port to @dst_port.
*/
static int tb_maximum_bandwidth(struct tb *tb, struct tb_port *src_port,
struct tb_port *dst_port, struct tb_port *port,
int *max_up, int *max_down, bool include_asym)
{
bool downstream = tb_port_path_direction_downstream(src_port, dst_port);
int link_speed, link_width, up_bw, down_bw;
/*
* Can include asymmetric, only if it is actually supported by
* the lane adapter.
*/
if (!tb_asym_supported(src_port, dst_port, port))
include_asym = false;
if (tb_is_upstream_port(port)) {
link_speed = port->sw->link_speed;
/*
* sw->link_width is from upstream perspective so we use
* the opposite for downstream of the host router.
*/
if (port->sw->link_width == TB_LINK_WIDTH_ASYM_TX) {
up_bw = link_speed * 3 * 1000;
down_bw = link_speed * 1 * 1000;
} else if (port->sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
up_bw = link_speed * 1 * 1000;
down_bw = link_speed * 3 * 1000;
} else if (include_asym) {
/*
* The link is symmetric at the moment but we
* can switch it to asymmetric as needed. Report
* this bandwidth as available (even though it
* is not yet enabled).
*/
if (downstream) {
up_bw = link_speed * 1 * 1000;
down_bw = link_speed * 3 * 1000;
} else {
up_bw = link_speed * 3 * 1000;
down_bw = link_speed * 1 * 1000;
}
} else {
up_bw = link_speed * port->sw->link_width * 1000;
down_bw = up_bw;
}
} else {
link_speed = tb_port_get_link_speed(port);
if (link_speed < 0)
return link_speed;
link_width = tb_port_get_link_width(port);
if (link_width < 0)
return link_width;
if (link_width == TB_LINK_WIDTH_ASYM_TX) {
up_bw = link_speed * 1 * 1000;
down_bw = link_speed * 3 * 1000;
} else if (link_width == TB_LINK_WIDTH_ASYM_RX) {
up_bw = link_speed * 3 * 1000;
down_bw = link_speed * 1 * 1000;
} else if (include_asym) {
/*
* The link is symmetric at the moment but we
* can switch it to asymmetric as needed. Report
* this bandwidth as available (even though it
* is not yet enabled).
*/
if (downstream) {
up_bw = link_speed * 1 * 1000;
down_bw = link_speed * 3 * 1000;
} else {
up_bw = link_speed * 3 * 1000;
down_bw = link_speed * 1 * 1000;
}
} else {
up_bw = link_speed * link_width * 1000;
down_bw = up_bw;
}
}
/* Leave 10% guard band */
*max_up = up_bw - up_bw / 10;
*max_down = down_bw - down_bw / 10;
tb_port_dbg(port, "link maximum bandwidth %d/%d Mb/s\n", *max_up, *max_down);
return 0;
}
/**
* tb_available_bandwidth() - Available bandwidth for tunneling
* @tb: Domain structure
* @src_port: Source protocol adapter
* @dst_port: Destination protocol adapter
* @available_up: Available bandwidth upstream (Mb/s)
* @available_down: Available bandwidth downstream (Mb/s)
* @include_asym: Include bandwidth if the link is switched from
* symmetric to asymmetric
*
* Calculates maximum available bandwidth for protocol tunneling between
* @src_port and @dst_port at the moment. This is minimum of maximum
* link bandwidth across all links reduced by currently consumed
* bandwidth on that link.
*
* If @include_asym is true then includes also bandwidth that can be
* added when the links are transitioned into asymmetric (but does not
* transition the links).
*/
static int tb_available_bandwidth(struct tb *tb, struct tb_port *src_port,
struct tb_port *dst_port, int *available_up,
int *available_down, bool include_asym)
{
struct tb_port *port;
int ret;
/* Maximum possible bandwidth asymmetric Gen 4 link is 120 Gb/s */
*available_up = *available_down = 120000;
/* Find the minimum available bandwidth over all links */
tb_for_each_port_on_path(src_port, dst_port, port) {
int max_up, max_down, consumed_up, consumed_down;
if (!tb_port_is_null(port))
continue;
ret = tb_maximum_bandwidth(tb, src_port, dst_port, port,
&max_up, &max_down, include_asym);
if (ret)
return ret;
ret = tb_consumed_usb3_pcie_bandwidth(tb, src_port, dst_port,
port, &consumed_up,
&consumed_down);
if (ret)
return ret;
max_up -= consumed_up;
max_down -= consumed_down;
ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, port,
&consumed_up, &consumed_down);
if (ret)
return ret;
max_up -= consumed_up;
max_down -= consumed_down;
if (max_up < *available_up)
*available_up = max_up;
if (max_down < *available_down)
*available_down = max_down;
}
if (*available_up < 0)
*available_up = 0;
if (*available_down < 0)
*available_down = 0;
return 0;
}
static int tb_release_unused_usb3_bandwidth(struct tb *tb,
struct tb_port *src_port,
struct tb_port *dst_port)
{
struct tb_tunnel *tunnel;
tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
return tunnel ? tb_tunnel_release_unused_bandwidth(tunnel) : 0;
}
static void tb_reclaim_usb3_bandwidth(struct tb *tb, struct tb_port *src_port,
struct tb_port *dst_port)
{
int ret, available_up, available_down;
struct tb_tunnel *tunnel;
tunnel = tb_find_first_usb3_tunnel(tb, src_port, dst_port);
if (!tunnel)
return;
tb_tunnel_dbg(tunnel, "reclaiming unused bandwidth\n");
/*
* Calculate available bandwidth for the first hop USB3 tunnel.
* That determines the whole USB3 bandwidth for this branch.
*/
ret = tb_available_bandwidth(tb, tunnel->src_port, tunnel->dst_port,
&available_up, &available_down, false);
if (ret) {
tb_tunnel_warn(tunnel, "failed to calculate available bandwidth\n");
return;
}
tb_tunnel_dbg(tunnel, "available bandwidth %d/%d Mb/s\n", available_up,
available_down);
tb_tunnel_reclaim_available_bandwidth(tunnel, &available_up, &available_down);
}
static int tb_tunnel_usb3(struct tb *tb, struct tb_switch *sw)
{
struct tb_switch *parent = tb_switch_parent(sw);
int ret, available_up, available_down;
struct tb_port *up, *down, *port;
struct tb_cm *tcm = tb_priv(tb);
struct tb_tunnel *tunnel;
if (!tb_acpi_may_tunnel_usb3()) {
tb_dbg(tb, "USB3 tunneling disabled, not creating tunnel\n");
return 0;
}
up = tb_switch_find_port(sw, TB_TYPE_USB3_UP);
if (!up)
return 0;
if (!sw->link_usb4)
return 0;
/*
* Look up available down port. Since we are chaining it should
* be found right above this switch.
*/
port = tb_switch_downstream_port(sw);
down = tb_find_usb3_down(parent, port);
if (!down)
return 0;
if (tb_route(parent)) {
struct tb_port *parent_up;
/*
* Check first that the parent switch has its upstream USB3
* port enabled. Otherwise the chain is not complete and
* there is no point setting up a new tunnel.
*/
parent_up = tb_switch_find_port(parent, TB_TYPE_USB3_UP);
if (!parent_up || !tb_port_is_enabled(parent_up))
return 0;
/* Make all unused bandwidth available for the new tunnel */
ret = tb_release_unused_usb3_bandwidth(tb, down, up);
if (ret)
return ret;
}
ret = tb_available_bandwidth(tb, down, up, &available_up, &available_down,
false);
if (ret)
goto err_reclaim;
tb_port_dbg(up, "available bandwidth for new USB3 tunnel %d/%d Mb/s\n",
available_up, available_down);
tunnel = tb_tunnel_alloc_usb3(tb, up, down, available_up,
available_down);
if (!tunnel) {
ret = -ENOMEM;
goto err_reclaim;
}
if (tb_tunnel_activate(tunnel)) {
tb_port_info(up,
"USB3 tunnel activation failed, aborting\n");
ret = -EIO;
goto err_free;
}
list_add_tail(&tunnel->list, &tcm->tunnel_list);
if (tb_route(parent))
tb_reclaim_usb3_bandwidth(tb, down, up);
return 0;
err_free:
tb_tunnel_free(tunnel);
err_reclaim:
if (tb_route(parent))
tb_reclaim_usb3_bandwidth(tb, down, up);
return ret;
}
static int tb_create_usb3_tunnels(struct tb_switch *sw)
{
struct tb_port *port;
int ret;
if (!tb_acpi_may_tunnel_usb3())
return 0;
if (tb_route(sw)) {
ret = tb_tunnel_usb3(sw->tb, sw);
if (ret)
return ret;
}
tb_switch_for_each_port(sw, port) {
if (!tb_port_has_remote(port))
continue;
ret = tb_create_usb3_tunnels(port->remote->sw);
if (ret)
return ret;
}
return 0;
}
/**
* tb_configure_asym() - Transition links to asymmetric if needed
* @tb: Domain structure
* @src_port: Source adapter to start the transition
* @dst_port: Destination adapter
* @requested_up: Additional bandwidth (Mb/s) required upstream
* @requested_down: Additional bandwidth (Mb/s) required downstream
*
* Transition links between @src_port and @dst_port into asymmetric, with
* three lanes in the direction from @src_port towards @dst_port and one lane
* in the opposite direction, if the bandwidth requirements
* (requested + currently consumed) on that link exceed @asym_threshold.
*
* Must be called with available >= requested over all links.
*/
static int tb_configure_asym(struct tb *tb, struct tb_port *src_port,
struct tb_port *dst_port, int requested_up,
int requested_down)
{
struct tb_switch *sw;
bool clx, downstream;
struct tb_port *up;
int ret = 0;
if (!asym_threshold)
return 0;
/* Disable CL states before doing any transitions */
downstream = tb_port_path_direction_downstream(src_port, dst_port);
/* Pick up router deepest in the hierarchy */
if (downstream)
sw = dst_port->sw;
else
sw = src_port->sw;
clx = tb_disable_clx(sw);
tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
int consumed_up, consumed_down;
enum tb_link_width width;
ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
&consumed_up, &consumed_down);
if (ret)
break;
if (downstream) {
/*
* Downstream so make sure upstream is within the 36G
* (40G - guard band 10%), and the requested is above
* what the threshold is.
*/
if (consumed_up + requested_up >= TB_ASYM_MIN) {
ret = -ENOBUFS;
break;
}
/* Does consumed + requested exceed the threshold */
if (consumed_down + requested_down < asym_threshold)
continue;
width = TB_LINK_WIDTH_ASYM_RX;
} else {
/* Upstream, the opposite of above */
if (consumed_down + requested_down >= TB_ASYM_MIN) {
ret = -ENOBUFS;
break;
}
if (consumed_up + requested_up < asym_threshold)
continue;
width = TB_LINK_WIDTH_ASYM_TX;
}
if (up->sw->link_width == width)
continue;
if (!tb_port_width_supported(up, width))
continue;
tb_sw_dbg(up->sw, "configuring asymmetric link\n");
/*
* Here requested + consumed > threshold so we need to
* transtion the link into asymmetric now.
*/
ret = tb_switch_set_link_width(up->sw, width);
if (ret) {
tb_sw_warn(up->sw, "failed to set link width\n");
break;
}
}
/* Re-enable CL states if they were previosly enabled */
if (clx)
tb_enable_clx(sw);
return ret;
}
/**
* tb_configure_sym() - Transition links to symmetric if possible
* @tb: Domain structure
* @src_port: Source adapter to start the transition
* @dst_port: Destination adapter
* @requested_up: New lower bandwidth request upstream (Mb/s)
* @requested_down: New lower bandwidth request downstream (Mb/s)
*
* Goes over each link from @src_port to @dst_port and tries to
* transition the link to symmetric if the currently consumed bandwidth
* allows.
*/
static int tb_configure_sym(struct tb *tb, struct tb_port *src_port,
struct tb_port *dst_port, int requested_up,
int requested_down)
{
struct tb_switch *sw;
bool clx, downstream;
struct tb_port *up;
int ret = 0;
if (!asym_threshold)
return 0;
/* Disable CL states before doing any transitions */
downstream = tb_port_path_direction_downstream(src_port, dst_port);
/* Pick up router deepest in the hierarchy */
if (downstream)
sw = dst_port->sw;
else
sw = src_port->sw;
clx = tb_disable_clx(sw);
tb_for_each_upstream_port_on_path(src_port, dst_port, up) {
int consumed_up, consumed_down;
/* Already symmetric */
if (up->sw->link_width <= TB_LINK_WIDTH_DUAL)
continue;
/* Unplugged, no need to switch */
if (up->sw->is_unplugged)
continue;
ret = tb_consumed_dp_bandwidth(tb, src_port, dst_port, up,
&consumed_up, &consumed_down);
if (ret)
break;
if (downstream) {
/*
* Downstream so we want the consumed_down < threshold.
* Upstream traffic should be less than 36G (40G
* guard band 10%) as the link was configured asymmetric
* already.
*/
if (consumed_down + requested_down >= asym_threshold)
continue;
} else {
if (consumed_up + requested_up >= asym_threshold)
continue;
}
if (up->sw->link_width == TB_LINK_WIDTH_DUAL)
continue;
tb_sw_dbg(up->sw, "configuring symmetric link\n");
ret = tb_switch_set_link_width(up->sw, TB_LINK_WIDTH_DUAL);
if (ret) {
tb_sw_warn(up->sw, "failed to set link width\n");
break;
}
}
/* Re-enable CL states if they were previosly enabled */
if (clx)
tb_enable_clx(sw);
return ret;
}
static void tb_configure_link(struct tb_port *down, struct tb_port *up,
struct tb_switch *sw)
{
struct tb *tb = sw->tb;
/* Link the routers using both links if available */
down->remote = up;
up->remote = down;
if (down->dual_link_port && up->dual_link_port) {
down->dual_link_port->remote = up->dual_link_port;
up->dual_link_port->remote = down->dual_link_port;
}
/*
* Enable lane bonding if the link is currently two single lane
* links.
*/
if (sw->link_width < TB_LINK_WIDTH_DUAL)
tb_switch_set_link_width(sw, TB_LINK_WIDTH_DUAL);
/*
* Device router that comes up as symmetric link is
* connected deeper in the hierarchy, we transition the links
* above into symmetric if bandwidth allows.
*/
if (tb_switch_depth(sw) > 1 &&
tb_port_get_link_generation(up) >= 4 &&
up->sw->link_width == TB_LINK_WIDTH_DUAL) {
struct tb_port *host_port;
host_port = tb_port_at(tb_route(sw), tb->root_switch);
tb_configure_sym(tb, host_port, up, 0, 0);
}
/* Set the link configured */
tb_switch_configure_link(sw);
}
static void tb_scan_port(struct tb_port *port);
/*
* tb_scan_switch() - scan for and initialize downstream switches
*/
static void tb_scan_switch(struct tb_switch *sw)
{
struct tb_port *port;
pm_runtime_get_sync(&sw->dev);
tb_switch_for_each_port(sw, port)
tb_scan_port(port);
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
}
/*
* tb_scan_port() - check for and initialize switches below port
*/
static void tb_scan_port(struct tb_port *port)
{
struct tb_cm *tcm = tb_priv(port->sw->tb);
struct tb_port *upstream_port;
bool discovery = false;
struct tb_switch *sw;
if (tb_is_upstream_port(port))
return;
if (tb_port_is_dpout(port) && tb_dp_port_hpd_is_active(port) == 1 &&
!tb_dp_port_is_enabled(port)) {
tb_port_dbg(port, "DP adapter HPD set, queuing hotplug\n");
tb_queue_hotplug(port->sw->tb, tb_route(port->sw), port->port,
false);
return;
}
if (port->config.type != TB_TYPE_PORT)
return;
if (port->dual_link_port && port->link_nr)
return; /*
* Downstream switch is reachable through two ports.
* Only scan on the primary port (link_nr == 0).
*/
if (port->usb4)
pm_runtime_get_sync(&port->usb4->dev);
if (tb_wait_for_port(port, false) <= 0)
goto out_rpm_put;
if (port->remote) {
tb_port_dbg(port, "port already has a remote\n");
goto out_rpm_put;
}
tb_retimer_scan(port, true);
sw = tb_switch_alloc(port->sw->tb, &port->sw->dev,
tb_downstream_route(port));
if (IS_ERR(sw)) {
/*
* If there is an error accessing the connected switch
* it may be connected to another domain. Also we allow
* the other domain to be connected to a max depth switch.
*/
if (PTR_ERR(sw) == -EIO || PTR_ERR(sw) == -EADDRNOTAVAIL)
tb_scan_xdomain(port);
goto out_rpm_put;
}
if (tb_switch_configure(sw)) {
tb_switch_put(sw);
goto out_rpm_put;
}
/*
* If there was previously another domain connected remove it
* first.
*/
if (port->xdomain) {
tb_xdomain_remove(port->xdomain);
tb_port_unconfigure_xdomain(port);
port->xdomain = NULL;
}
/*
* Do not send uevents until we have discovered all existing
* tunnels and know which switches were authorized already by
* the boot firmware.
*/
if (!tcm->hotplug_active) {
dev_set_uevent_suppress(&sw->dev, true);
discovery = true;
}
/*
* At the moment Thunderbolt 2 and beyond (devices with LC) we
* can support runtime PM.
*/
sw->rpm = sw->generation > 1;
if (tb_switch_add(sw)) {
tb_switch_put(sw);
goto out_rpm_put;
}
upstream_port = tb_upstream_port(sw);
tb_configure_link(port, upstream_port, sw);
/*
* CL0s and CL1 are enabled and supported together.
* Silently ignore CLx enabling in case CLx is not supported.
*/
if (discovery)
tb_sw_dbg(sw, "discovery, not touching CL states\n");
else if (tb_enable_clx(sw))
tb_sw_warn(sw, "failed to enable CL states\n");
if (tb_enable_tmu(sw))
tb_sw_warn(sw, "failed to enable TMU\n");
/*
* Configuration valid needs to be set after the TMU has been
* enabled for the upstream port of the router so we do it here.
*/
tb_switch_configuration_valid(sw);
/* Scan upstream retimers */
tb_retimer_scan(upstream_port, true);
/*
* Create USB 3.x tunnels only when the switch is plugged to the
* domain. This is because we scan the domain also during discovery
* and want to discover existing USB 3.x tunnels before we create
* any new.
*/
if (tcm->hotplug_active && tb_tunnel_usb3(sw->tb, sw))
tb_sw_warn(sw, "USB3 tunnel creation failed\n");
tb_add_dp_resources(sw);
tb_scan_switch(sw);
out_rpm_put:
if (port->usb4) {
pm_runtime_mark_last_busy(&port->usb4->dev);
pm_runtime_put_autosuspend(&port->usb4->dev);
}
}
static void tb_deactivate_and_free_tunnel(struct tb_tunnel *tunnel)
{
struct tb_port *src_port, *dst_port;
struct tb *tb;
if (!tunnel)
return;
tb_tunnel_deactivate(tunnel);
list_del(&tunnel->list);
tb = tunnel->tb;
src_port = tunnel->src_port;
dst_port = tunnel->dst_port;
switch (tunnel->type) {
case TB_TUNNEL_DP:
tb_detach_bandwidth_group(src_port);
/*
* In case of DP tunnel make sure the DP IN resource is
* deallocated properly.
*/
tb_switch_dealloc_dp_resource(src_port->sw, src_port);
/*
* If bandwidth on a link is < asym_threshold
* transition the link to symmetric.
*/
tb_configure_sym(tb, src_port, dst_port, 0, 0);
/* Now we can allow the domain to runtime suspend again */
pm_runtime_mark_last_busy(&dst_port->sw->dev);
pm_runtime_put_autosuspend(&dst_port->sw->dev);
pm_runtime_mark_last_busy(&src_port->sw->dev);
pm_runtime_put_autosuspend(&src_port->sw->dev);
fallthrough;
case TB_TUNNEL_USB3:
tb_reclaim_usb3_bandwidth(tb, src_port, dst_port);
break;
default:
/*
* PCIe and DMA tunnels do not consume guaranteed
* bandwidth.
*/
break;
}
tb_tunnel_free(tunnel);
}
/*
* tb_free_invalid_tunnels() - destroy tunnels of devices that have gone away
*/
static void tb_free_invalid_tunnels(struct tb *tb)
{
struct tb_cm *tcm = tb_priv(tb);
struct tb_tunnel *tunnel;
struct tb_tunnel *n;
list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
if (tb_tunnel_is_invalid(tunnel))
tb_deactivate_and_free_tunnel(tunnel);
}
}
/*
* tb_free_unplugged_children() - traverse hierarchy and free unplugged switches
*/
static void tb_free_unplugged_children(struct tb_switch *sw)
{
struct tb_port *port;
tb_switch_for_each_port(sw, port) {
if (!tb_port_has_remote(port))
continue;
if (port->remote->sw->is_unplugged) {
tb_retimer_remove_all(port);
tb_remove_dp_resources(port->remote->sw);
tb_switch_unconfigure_link(port->remote->sw);
tb_switch_set_link_width(port->remote->sw,
TB_LINK_WIDTH_SINGLE);
tb_switch_remove(port->remote->sw);
port->remote = NULL;
if (port->dual_link_port)
port->dual_link_port->remote = NULL;
} else {
tb_free_unplugged_children(port->remote->sw);
}
}
}
static struct tb_port *tb_find_pcie_down(struct tb_switch *sw,
const struct tb_port *port)
{
struct tb_port *down = NULL;
/*
* To keep plugging devices consistently in the same PCIe
* hierarchy, do mapping here for switch downstream PCIe ports.
*/
if (tb_switch_is_usb4(sw)) {
down = usb4_switch_map_pcie_down(sw, port);
} else if (!tb_route(sw)) {
int phy_port = tb_phy_port_from_link(port->port);
int index;
/*
* Hard-coded Thunderbolt port to PCIe down port mapping
* per controller.
*/
if (tb_switch_is_cactus_ridge(sw) ||
tb_switch_is_alpine_ridge(sw))
index = !phy_port ? 6 : 7;
else if (tb_switch_is_falcon_ridge(sw))
index = !phy_port ? 6 : 8;
else if (tb_switch_is_titan_ridge(sw))
index = !phy_port ? 8 : 9;
else
goto out;
/* Validate the hard-coding */
if (WARN_ON(index > sw->config.max_port_number))
goto out;
down = &sw->ports[index];
}
if (down) {
if (WARN_ON(!tb_port_is_pcie_down(down)))
goto out;
if (tb_pci_port_is_enabled(down))
goto out;
return down;
}
out:
return tb_find_unused_port(sw, TB_TYPE_PCIE_DOWN);
}
static void
tb_recalc_estimated_bandwidth_for_group(struct tb_bandwidth_group *group)
{
struct tb_tunnel *first_tunnel;
struct tb *tb = group->tb;
struct tb_port *in;
int ret;
tb_dbg(tb, "re-calculating bandwidth estimation for group %u\n",
group->index);
first_tunnel = NULL;
list_for_each_entry(in, &group->ports, group_list) {
int estimated_bw, estimated_up, estimated_down;
struct tb_tunnel *tunnel;
struct tb_port *out;
if (!usb4_dp_port_bandwidth_mode_enabled(in))
continue;
tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
if (WARN_ON(!tunnel))
break;
if (!first_tunnel) {
/*
* Since USB3 bandwidth is shared by all DP
* tunnels under the host router USB4 port, even
* if they do not begin from the host router, we
* can release USB3 bandwidth just once and not
* for each tunnel separately.
*/
first_tunnel = tunnel;
ret = tb_release_unused_usb3_bandwidth(tb,
first_tunnel->src_port, first_tunnel->dst_port);
if (ret) {
tb_tunnel_warn(tunnel,
"failed to release unused bandwidth\n");
break;
}
}
out = tunnel->dst_port;
ret = tb_available_bandwidth(tb, in, out, &estimated_up,
&estimated_down, true);
if (ret) {
tb_tunnel_warn(tunnel,
"failed to re-calculate estimated bandwidth\n");
break;
}
/*
* Estimated bandwidth includes:
* - already allocated bandwidth for the DP tunnel
* - available bandwidth along the path
* - bandwidth allocated for USB 3.x but not used.
*/
tb_tunnel_dbg(tunnel,
"re-calculated estimated bandwidth %u/%u Mb/s\n",
estimated_up, estimated_down);
if (tb_port_path_direction_downstream(in, out))
estimated_bw = estimated_down;
else
estimated_bw = estimated_up;
if (usb4_dp_port_set_estimated_bandwidth(in, estimated_bw))
tb_tunnel_warn(tunnel,
"failed to update estimated bandwidth\n");
}
if (first_tunnel)
tb_reclaim_usb3_bandwidth(tb, first_tunnel->src_port,
first_tunnel->dst_port);
tb_dbg(tb, "bandwidth estimation for group %u done\n", group->index);
}
static void tb_recalc_estimated_bandwidth(struct tb *tb)
{
struct tb_cm *tcm = tb_priv(tb);
int i;
tb_dbg(tb, "bandwidth consumption changed, re-calculating estimated bandwidth\n");
for (i = 0; i < ARRAY_SIZE(tcm->groups); i++) {
struct tb_bandwidth_group *group = &tcm->groups[i];
if (!list_empty(&group->ports))
tb_recalc_estimated_bandwidth_for_group(group);
}
tb_dbg(tb, "bandwidth re-calculation done\n");
}
static struct tb_port *tb_find_dp_out(struct tb *tb, struct tb_port *in)
{
struct tb_port *host_port, *port;
struct tb_cm *tcm = tb_priv(tb);
host_port = tb_route(in->sw) ?
tb_port_at(tb_route(in->sw), tb->root_switch) : NULL;
list_for_each_entry(port, &tcm->dp_resources, list) {
if (!tb_port_is_dpout(port))
continue;
if (tb_port_is_enabled(port)) {
tb_port_dbg(port, "DP OUT in use\n");
continue;
}
tb_port_dbg(port, "DP OUT available\n");
/*
* Keep the DP tunnel under the topology starting from
* the same host router downstream port.
*/
if (host_port && tb_route(port->sw)) {
struct tb_port *p;
p = tb_port_at(tb_route(port->sw), tb->root_switch);
if (p != host_port)
continue;
}
return port;
}
return NULL;
}
static bool tb_tunnel_one_dp(struct tb *tb)
{
int available_up, available_down, ret, link_nr;
struct tb_cm *tcm = tb_priv(tb);
struct tb_port *port, *in, *out;
int consumed_up, consumed_down;
struct tb_tunnel *tunnel;
/*
* Find pair of inactive DP IN and DP OUT adapters and then
* establish a DP tunnel between them.
*/
tb_dbg(tb, "looking for DP IN <-> DP OUT pairs:\n");
in = NULL;
out = NULL;
list_for_each_entry(port, &tcm->dp_resources, list) {
if (!tb_port_is_dpin(port))
continue;
if (tb_port_is_enabled(port)) {
tb_port_dbg(port, "DP IN in use\n");
continue;
}
in = port;
tb_port_dbg(in, "DP IN available\n");
out = tb_find_dp_out(tb, port);
if (out)
break;
}
if (!in) {
tb_dbg(tb, "no suitable DP IN adapter available, not tunneling\n");
return false;
}
if (!out) {
tb_dbg(tb, "no suitable DP OUT adapter available, not tunneling\n");
return false;
}
/*
* This is only applicable to links that are not bonded (so
* when Thunderbolt 1 hardware is involved somewhere in the
* topology). For these try to share the DP bandwidth between
* the two lanes.
*/
link_nr = 1;
list_for_each_entry(tunnel, &tcm->tunnel_list, list) {
if (tb_tunnel_is_dp(tunnel)) {
link_nr = 0;
break;
}
}
/*
* DP stream needs the domain to be active so runtime resume
* both ends of the tunnel.
*
* This should bring the routers in the middle active as well
* and keeps the domain from runtime suspending while the DP
* tunnel is active.
*/
pm_runtime_get_sync(&in->sw->dev);
pm_runtime_get_sync(&out->sw->dev);
if (tb_switch_alloc_dp_resource(in->sw, in)) {
tb_port_dbg(in, "no resource available for DP IN, not tunneling\n");
goto err_rpm_put;
}
if (!tb_attach_bandwidth_group(tcm, in, out))
goto err_dealloc_dp;
/* Make all unused USB3 bandwidth available for the new DP tunnel */
ret = tb_release_unused_usb3_bandwidth(tb, in, out);
if (ret) {
tb_warn(tb, "failed to release unused bandwidth\n");
goto err_detach_group;
}
ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
true);
if (ret)
goto err_reclaim_usb;
tb_dbg(tb, "available bandwidth for new DP tunnel %u/%u Mb/s\n",
available_up, available_down);
tunnel = tb_tunnel_alloc_dp(tb, in, out, link_nr, available_up,
available_down);
if (!tunnel) {
tb_port_dbg(out, "could not allocate DP tunnel\n");
goto err_reclaim_usb;
}
if (tb_tunnel_activate(tunnel)) {
tb_port_info(out, "DP tunnel activation failed, aborting\n");
goto err_free;
}
list_add_tail(&tunnel->list, &tcm->tunnel_list);
tb_reclaim_usb3_bandwidth(tb, in, out);
/*
* Transition the links to asymmetric if the consumption exceeds
* the threshold.
*/
if (!tb_tunnel_consumed_bandwidth(tunnel, &consumed_up, &consumed_down))
tb_configure_asym(tb, in, out, consumed_up, consumed_down);
/* Update the domain with the new bandwidth estimation */
tb_recalc_estimated_bandwidth(tb);
/*
* In case of DP tunnel exists, change host router's 1st children
* TMU mode to HiFi for CL0s to work.
*/
tb_increase_tmu_accuracy(tunnel);
return true;
err_free:
tb_tunnel_free(tunnel);
err_reclaim_usb:
tb_reclaim_usb3_bandwidth(tb, in, out);
err_detach_group:
tb_detach_bandwidth_group(in);
err_dealloc_dp:
tb_switch_dealloc_dp_resource(in->sw, in);
err_rpm_put:
pm_runtime_mark_last_busy(&out->sw->dev);
pm_runtime_put_autosuspend(&out->sw->dev);
pm_runtime_mark_last_busy(&in->sw->dev);
pm_runtime_put_autosuspend(&in->sw->dev);
return false;
}
static void tb_tunnel_dp(struct tb *tb)
{
if (!tb_acpi_may_tunnel_dp()) {
tb_dbg(tb, "DP tunneling disabled, not creating tunnel\n");
return;
}
while (tb_tunnel_one_dp(tb))
;
}
static void tb_dp_resource_unavailable(struct tb *tb, struct tb_port *port)
{
struct tb_port *in, *out;
struct tb_tunnel *tunnel;
if (tb_port_is_dpin(port)) {
tb_port_dbg(port, "DP IN resource unavailable\n");
in = port;
out = NULL;
} else {
tb_port_dbg(port, "DP OUT resource unavailable\n");
in = NULL;
out = port;
}
tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, out);
tb_deactivate_and_free_tunnel(tunnel);
list_del_init(&port->list);
/*
* See if there is another DP OUT port that can be used for
* to create another tunnel.
*/
tb_recalc_estimated_bandwidth(tb);
tb_tunnel_dp(tb);
}
static void tb_dp_resource_available(struct tb *tb, struct tb_port *port)
{
struct tb_cm *tcm = tb_priv(tb);
struct tb_port *p;
if (tb_port_is_enabled(port))
return;
list_for_each_entry(p, &tcm->dp_resources, list) {
if (p == port)
return;
}
tb_port_dbg(port, "DP %s resource available\n",
tb_port_is_dpin(port) ? "IN" : "OUT");
list_add_tail(&port->list, &tcm->dp_resources);
/* Look for suitable DP IN <-> DP OUT pairs now */
tb_tunnel_dp(tb);
}
static void tb_disconnect_and_release_dp(struct tb *tb)
{
struct tb_cm *tcm = tb_priv(tb);
struct tb_tunnel *tunnel, *n;
/*
* Tear down all DP tunnels and release their resources. They
* will be re-established after resume based on plug events.
*/
list_for_each_entry_safe_reverse(tunnel, n, &tcm->tunnel_list, list) {
if (tb_tunnel_is_dp(tunnel))
tb_deactivate_and_free_tunnel(tunnel);
}
while (!list_empty(&tcm->dp_resources)) {
struct tb_port *port;
port = list_first_entry(&tcm->dp_resources,
struct tb_port, list);
list_del_init(&port->list);
}
}
static int tb_disconnect_pci(struct tb *tb, struct tb_switch *sw)
{
struct tb_tunnel *tunnel;
struct tb_port *up;
up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
if (WARN_ON(!up))
return -ENODEV;
tunnel = tb_find_tunnel(tb, TB_TUNNEL_PCI, NULL, up);
if (WARN_ON(!tunnel))
return -ENODEV;
tb_switch_xhci_disconnect(sw);
tb_tunnel_deactivate(tunnel);
list_del(&tunnel->list);
tb_tunnel_free(tunnel);
return 0;
}
static int tb_tunnel_pci(struct tb *tb, struct tb_switch *sw)
{
struct tb_port *up, *down, *port;
struct tb_cm *tcm = tb_priv(tb);
struct tb_tunnel *tunnel;
up = tb_switch_find_port(sw, TB_TYPE_PCIE_UP);
if (!up)
return 0;
/*
* Look up available down port. Since we are chaining it should
* be found right above this switch.
*/
port = tb_switch_downstream_port(sw);
down = tb_find_pcie_down(tb_switch_parent(sw), port);
if (!down)
return 0;
tunnel = tb_tunnel_alloc_pci(tb, up, down);
if (!tunnel)
return -ENOMEM;
if (tb_tunnel_activate(tunnel)) {
tb_port_info(up,
"PCIe tunnel activation failed, aborting\n");
tb_tunnel_free(tunnel);
return -EIO;
}
/*
* PCIe L1 is needed to enable CL0s for Titan Ridge so enable it
* here.
*/
if (tb_switch_pcie_l1_enable(sw))
tb_sw_warn(sw, "failed to enable PCIe L1 for Titan Ridge\n");
if (tb_switch_xhci_connect(sw))
tb_sw_warn(sw, "failed to connect xHCI\n");
list_add_tail(&tunnel->list, &tcm->tunnel_list);
return 0;
}
static int tb_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
int transmit_path, int transmit_ring,
int receive_path, int receive_ring)
{
struct tb_cm *tcm = tb_priv(tb);
struct tb_port *nhi_port, *dst_port;
struct tb_tunnel *tunnel;
struct tb_switch *sw;
int ret;
sw = tb_to_switch(xd->dev.parent);
dst_port = tb_port_at(xd->route, sw);
nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
mutex_lock(&tb->lock);
/*
* When tunneling DMA paths the link should not enter CL states
* so disable them now.
*/
tb_disable_clx(sw);
tunnel = tb_tunnel_alloc_dma(tb, nhi_port, dst_port, transmit_path,
transmit_ring, receive_path, receive_ring);
if (!tunnel) {
ret = -ENOMEM;
goto err_clx;
}
if (tb_tunnel_activate(tunnel)) {
tb_port_info(nhi_port,
"DMA tunnel activation failed, aborting\n");
ret = -EIO;
goto err_free;
}
list_add_tail(&tunnel->list, &tcm->tunnel_list);
mutex_unlock(&tb->lock);
return 0;
err_free:
tb_tunnel_free(tunnel);
err_clx:
tb_enable_clx(sw);
mutex_unlock(&tb->lock);
return ret;
}
static void __tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
int transmit_path, int transmit_ring,
int receive_path, int receive_ring)
{
struct tb_cm *tcm = tb_priv(tb);
struct tb_port *nhi_port, *dst_port;
struct tb_tunnel *tunnel, *n;
struct tb_switch *sw;
sw = tb_to_switch(xd->dev.parent);
dst_port = tb_port_at(xd->route, sw);
nhi_port = tb_switch_find_port(tb->root_switch, TB_TYPE_NHI);
list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
if (!tb_tunnel_is_dma(tunnel))
continue;
if (tunnel->src_port != nhi_port || tunnel->dst_port != dst_port)
continue;
if (tb_tunnel_match_dma(tunnel, transmit_path, transmit_ring,
receive_path, receive_ring))
tb_deactivate_and_free_tunnel(tunnel);
}
/*
* Try to re-enable CL states now, it is OK if this fails
* because we may still have another DMA tunnel active through
* the same host router USB4 downstream port.
*/
tb_enable_clx(sw);
}
static int tb_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
int transmit_path, int transmit_ring,
int receive_path, int receive_ring)
{
if (!xd->is_unplugged) {
mutex_lock(&tb->lock);
__tb_disconnect_xdomain_paths(tb, xd, transmit_path,
transmit_ring, receive_path,
receive_ring);
mutex_unlock(&tb->lock);
}
return 0;
}
/* hotplug handling */
/*
* tb_handle_hotplug() - handle hotplug event
*
* Executes on tb->wq.
*/
static void tb_handle_hotplug(struct work_struct *work)
{
struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work);
struct tb *tb = ev->tb;
struct tb_cm *tcm = tb_priv(tb);
struct tb_switch *sw;
struct tb_port *port;
/* Bring the domain back from sleep if it was suspended */
pm_runtime_get_sync(&tb->dev);
mutex_lock(&tb->lock);
if (!tcm->hotplug_active)
goto out; /* during init, suspend or shutdown */
sw = tb_switch_find_by_route(tb, ev->route);
if (!sw) {
tb_warn(tb,
"hotplug event from non existent switch %llx:%x (unplug: %d)\n",
ev->route, ev->port, ev->unplug);
goto out;
}
if (ev->port > sw->config.max_port_number) {
tb_warn(tb,
"hotplug event from non existent port %llx:%x (unplug: %d)\n",
ev->route, ev->port, ev->unplug);
goto put_sw;
}
port = &sw->ports[ev->port];
if (tb_is_upstream_port(port)) {
tb_dbg(tb, "hotplug event for upstream port %llx:%x (unplug: %d)\n",
ev->route, ev->port, ev->unplug);
goto put_sw;
}
pm_runtime_get_sync(&sw->dev);
if (ev->unplug) {
tb_retimer_remove_all(port);
if (tb_port_has_remote(port)) {
tb_port_dbg(port, "switch unplugged\n");
tb_sw_set_unplugged(port->remote->sw);
tb_free_invalid_tunnels(tb);
tb_remove_dp_resources(port->remote->sw);
tb_switch_tmu_disable(port->remote->sw);
tb_switch_unconfigure_link(port->remote->sw);
tb_switch_set_link_width(port->remote->sw,
TB_LINK_WIDTH_SINGLE);
tb_switch_remove(port->remote->sw);
port->remote = NULL;
if (port->dual_link_port)
port->dual_link_port->remote = NULL;
/* Maybe we can create another DP tunnel */
tb_recalc_estimated_bandwidth(tb);
tb_tunnel_dp(tb);
} else if (port->xdomain) {
struct tb_xdomain *xd = tb_xdomain_get(port->xdomain);
tb_port_dbg(port, "xdomain unplugged\n");
/*
* Service drivers are unbound during
* tb_xdomain_remove() so setting XDomain as
* unplugged here prevents deadlock if they call
* tb_xdomain_disable_paths(). We will tear down
* all the tunnels below.
*/
xd->is_unplugged = true;
tb_xdomain_remove(xd);
port->xdomain = NULL;
__tb_disconnect_xdomain_paths(tb, xd, -1, -1, -1, -1);
tb_xdomain_put(xd);
tb_port_unconfigure_xdomain(port);
} else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
tb_dp_resource_unavailable(tb, port);
} else if (!port->port) {
tb_sw_dbg(sw, "xHCI disconnect request\n");
tb_switch_xhci_disconnect(sw);
} else {
tb_port_dbg(port,
"got unplug event for disconnected port, ignoring\n");
}
} else if (port->remote) {
tb_port_dbg(port, "got plug event for connected port, ignoring\n");
} else if (!port->port && sw->authorized) {
tb_sw_dbg(sw, "xHCI connect request\n");
tb_switch_xhci_connect(sw);
} else {
if (tb_port_is_null(port)) {
tb_port_dbg(port, "hotplug: scanning\n");
tb_scan_port(port);
if (!port->remote)
tb_port_dbg(port, "hotplug: no switch found\n");
} else if (tb_port_is_dpout(port) || tb_port_is_dpin(port)) {
tb_dp_resource_available(tb, port);
}
}
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
put_sw:
tb_switch_put(sw);
out:
mutex_unlock(&tb->lock);
pm_runtime_mark_last_busy(&tb->dev);
pm_runtime_put_autosuspend(&tb->dev);
kfree(ev);
}
static int tb_alloc_dp_bandwidth(struct tb_tunnel *tunnel, int *requested_up,
int *requested_down)
{
int allocated_up, allocated_down, available_up, available_down, ret;
int requested_up_corrected, requested_down_corrected, granularity;
int max_up, max_down, max_up_rounded, max_down_rounded;
struct tb *tb = tunnel->tb;
struct tb_port *in, *out;
ret = tb_tunnel_allocated_bandwidth(tunnel, &allocated_up, &allocated_down);
if (ret)
return ret;
in = tunnel->src_port;
out = tunnel->dst_port;
tb_tunnel_dbg(tunnel, "bandwidth allocated currently %d/%d Mb/s\n",
allocated_up, allocated_down);
/*
* If we get rounded up request from graphics side, say HBR2 x 4
* that is 17500 instead of 17280 (this is because of the
* granularity), we allow it too. Here the graphics has already
* negotiated with the DPRX the maximum possible rates (which is
* 17280 in this case).
*
* Since the link cannot go higher than 17280 we use that in our
* calculations but the DP IN adapter Allocated BW write must be
* the same value (17500) otherwise the adapter will mark it as
* failed for graphics.
*/
ret = tb_tunnel_maximum_bandwidth(tunnel, &max_up, &max_down);
if (ret)
return ret;
ret = usb4_dp_port_granularity(in);
if (ret < 0)
return ret;
granularity = ret;
max_up_rounded = roundup(max_up, granularity);
max_down_rounded = roundup(max_down, granularity);
/*
* This will "fix" the request down to the maximum supported
* rate * lanes if it is at the maximum rounded up level.
*/
requested_up_corrected = *requested_up;
if (requested_up_corrected == max_up_rounded)
requested_up_corrected = max_up;
else if (requested_up_corrected < 0)
requested_up_corrected = 0;
requested_down_corrected = *requested_down;
if (requested_down_corrected == max_down_rounded)
requested_down_corrected = max_down;
else if (requested_down_corrected < 0)
requested_down_corrected = 0;
tb_tunnel_dbg(tunnel, "corrected bandwidth request %d/%d Mb/s\n",
requested_up_corrected, requested_down_corrected);
if ((*requested_up >= 0 && requested_up_corrected > max_up_rounded) ||
(*requested_down >= 0 && requested_down_corrected > max_down_rounded)) {
tb_tunnel_dbg(tunnel,
"bandwidth request too high (%d/%d Mb/s > %d/%d Mb/s)\n",
requested_up_corrected, requested_down_corrected,
max_up_rounded, max_down_rounded);
return -ENOBUFS;
}
if ((*requested_up >= 0 && requested_up_corrected <= allocated_up) ||
(*requested_down >= 0 && requested_down_corrected <= allocated_down)) {
/*
* If bandwidth on a link is < asym_threshold transition
* the link to symmetric.
*/
tb_configure_sym(tb, in, out, *requested_up, *requested_down);
/*
* If requested bandwidth is less or equal than what is
* currently allocated to that tunnel we simply change
* the reservation of the tunnel. Since all the tunnels
* going out from the same USB4 port are in the same
* group the released bandwidth will be taken into
* account for the other tunnels automatically below.
*/
return tb_tunnel_alloc_bandwidth(tunnel, requested_up,
requested_down);
}
/*
* More bandwidth is requested. Release all the potential
* bandwidth from USB3 first.
*/
ret = tb_release_unused_usb3_bandwidth(tb, in, out);
if (ret)
return ret;
/*
* Then go over all tunnels that cross the same USB4 ports (they
* are also in the same group but we use the same function here
* that we use with the normal bandwidth allocation).
*/
ret = tb_available_bandwidth(tb, in, out, &available_up, &available_down,
true);
if (ret)
goto reclaim;
tb_tunnel_dbg(tunnel, "bandwidth available for allocation %d/%d Mb/s\n",
available_up, available_down);
if ((*requested_up >= 0 && available_up >= requested_up_corrected) ||
(*requested_down >= 0 && available_down >= requested_down_corrected)) {
/*
* If bandwidth on a link is >= asym_threshold
* transition the link to asymmetric.
*/
ret = tb_configure_asym(tb, in, out, *requested_up,
*requested_down);
if (ret) {
tb_configure_sym(tb, in, out, 0, 0);
return ret;
}
ret = tb_tunnel_alloc_bandwidth(tunnel, requested_up,
requested_down);
if (ret) {
tb_tunnel_warn(tunnel, "failed to allocate bandwidth\n");
tb_configure_sym(tb, in, out, 0, 0);
}
} else {
ret = -ENOBUFS;
}
reclaim:
tb_reclaim_usb3_bandwidth(tb, in, out);
return ret;
}
static void tb_handle_dp_bandwidth_request(struct work_struct *work)
{
struct tb_hotplug_event *ev = container_of(work, typeof(*ev), work);
int requested_bw, requested_up, requested_down, ret;
struct tb_port *in, *out;
struct tb_tunnel *tunnel;
struct tb *tb = ev->tb;
struct tb_cm *tcm = tb_priv(tb);
struct tb_switch *sw;
pm_runtime_get_sync(&tb->dev);
mutex_lock(&tb->lock);
if (!tcm->hotplug_active)
goto unlock;
sw = tb_switch_find_by_route(tb, ev->route);
if (!sw) {
tb_warn(tb, "bandwidth request from non-existent router %llx\n",
ev->route);
goto unlock;
}
in = &sw->ports[ev->port];
if (!tb_port_is_dpin(in)) {
tb_port_warn(in, "bandwidth request to non-DP IN adapter\n");
goto put_sw;
}
tb_port_dbg(in, "handling bandwidth allocation request\n");
if (!usb4_dp_port_bandwidth_mode_enabled(in)) {
tb_port_warn(in, "bandwidth allocation mode not enabled\n");
goto put_sw;
}
ret = usb4_dp_port_requested_bandwidth(in);
if (ret < 0) {
if (ret == -ENODATA)
tb_port_dbg(in, "no bandwidth request active\n");
else
tb_port_warn(in, "failed to read requested bandwidth\n");
goto put_sw;
}
requested_bw = ret;
tb_port_dbg(in, "requested bandwidth %d Mb/s\n", requested_bw);
tunnel = tb_find_tunnel(tb, TB_TUNNEL_DP, in, NULL);
if (!tunnel) {
tb_port_warn(in, "failed to find tunnel\n");
goto put_sw;
}
out = tunnel->dst_port;
if (tb_port_path_direction_downstream(in, out)) {
requested_up = -1;
requested_down = requested_bw;
} else {
requested_up = requested_bw;
requested_down = -1;
}
ret = tb_alloc_dp_bandwidth(tunnel, &requested_up, &requested_down);
if (ret) {
if (ret == -ENOBUFS)
tb_tunnel_warn(tunnel,
"not enough bandwidth available\n");
else
tb_tunnel_warn(tunnel,
"failed to change bandwidth allocation\n");
} else {
tb_tunnel_dbg(tunnel,
"bandwidth allocation changed to %d/%d Mb/s\n",
requested_up, requested_down);
/* Update other clients about the allocation change */
tb_recalc_estimated_bandwidth(tb);
}
put_sw:
tb_switch_put(sw);
unlock:
mutex_unlock(&tb->lock);
pm_runtime_mark_last_busy(&tb->dev);
pm_runtime_put_autosuspend(&tb->dev);
kfree(ev);
}
static void tb_queue_dp_bandwidth_request(struct tb *tb, u64 route, u8 port)
{
struct tb_hotplug_event *ev;
ev = kmalloc(sizeof(*ev), GFP_KERNEL);
if (!ev)
return;
ev->tb = tb;
ev->route = route;
ev->port = port;
INIT_WORK(&ev->work, tb_handle_dp_bandwidth_request);
queue_work(tb->wq, &ev->work);
}
static void tb_handle_notification(struct tb *tb, u64 route,
const struct cfg_error_pkg *error)
{
switch (error->error) {
case TB_CFG_ERROR_PCIE_WAKE:
case TB_CFG_ERROR_DP_CON_CHANGE:
case TB_CFG_ERROR_DPTX_DISCOVERY:
if (tb_cfg_ack_notification(tb->ctl, route, error))
tb_warn(tb, "could not ack notification on %llx\n",
route);
break;
case TB_CFG_ERROR_DP_BW:
if (tb_cfg_ack_notification(tb->ctl, route, error))
tb_warn(tb, "could not ack notification on %llx\n",
route);
tb_queue_dp_bandwidth_request(tb, route, error->port);
break;
default:
/* Ignore for now */
break;
}
}
/*
* tb_schedule_hotplug_handler() - callback function for the control channel
*
* Delegates to tb_handle_hotplug.
*/
static void tb_handle_event(struct tb *tb, enum tb_cfg_pkg_type type,
const void *buf, size_t size)
{
const struct cfg_event_pkg *pkg = buf;
u64 route = tb_cfg_get_route(&pkg->header);
switch (type) {
case TB_CFG_PKG_ERROR:
tb_handle_notification(tb, route, (const struct cfg_error_pkg *)buf);
return;
case TB_CFG_PKG_EVENT:
break;
default:
tb_warn(tb, "unexpected event %#x, ignoring\n", type);
return;
}
if (tb_cfg_ack_plug(tb->ctl, route, pkg->port, pkg->unplug)) {
tb_warn(tb, "could not ack plug event on %llx:%x\n", route,
pkg->port);
}
tb_queue_hotplug(tb, route, pkg->port, pkg->unplug);
}
static void tb_stop(struct tb *tb)
{
struct tb_cm *tcm = tb_priv(tb);
struct tb_tunnel *tunnel;
struct tb_tunnel *n;
cancel_delayed_work(&tcm->remove_work);
/* tunnels are only present after everything has been initialized */
list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
/*
* DMA tunnels require the driver to be functional so we
* tear them down. Other protocol tunnels can be left
* intact.
*/
if (tb_tunnel_is_dma(tunnel))
tb_tunnel_deactivate(tunnel);
tb_tunnel_free(tunnel);
}
tb_switch_remove(tb->root_switch);
tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
}
static int tb_scan_finalize_switch(struct device *dev, void *data)
{
if (tb_is_switch(dev)) {
struct tb_switch *sw = tb_to_switch(dev);
/*
* If we found that the switch was already setup by the
* boot firmware, mark it as authorized now before we
* send uevent to userspace.
*/
if (sw->boot)
sw->authorized = 1;
dev_set_uevent_suppress(dev, false);
kobject_uevent(&dev->kobj, KOBJ_ADD);
device_for_each_child(dev, NULL, tb_scan_finalize_switch);
}
return 0;
}
static int tb_start(struct tb *tb)
{
struct tb_cm *tcm = tb_priv(tb);
int ret;
tb->root_switch = tb_switch_alloc(tb, &tb->dev, 0);
if (IS_ERR(tb->root_switch))
return PTR_ERR(tb->root_switch);
/*
* ICM firmware upgrade needs running firmware and in native
* mode that is not available so disable firmware upgrade of the
* root switch.
*
* However, USB4 routers support NVM firmware upgrade if they
* implement the necessary router operations.
*/
tb->root_switch->no_nvm_upgrade = !tb_switch_is_usb4(tb->root_switch);
/* All USB4 routers support runtime PM */
tb->root_switch->rpm = tb_switch_is_usb4(tb->root_switch);
ret = tb_switch_configure(tb->root_switch);
if (ret) {
tb_switch_put(tb->root_switch);
return ret;
}
/* Announce the switch to the world */
ret = tb_switch_add(tb->root_switch);
if (ret) {
tb_switch_put(tb->root_switch);
return ret;
}
/*
* To support highest CLx state, we set host router's TMU to
* Normal mode.
*/
tb_switch_tmu_configure(tb->root_switch, TB_SWITCH_TMU_MODE_LOWRES);
/* Enable TMU if it is off */
tb_switch_tmu_enable(tb->root_switch);
/* Full scan to discover devices added before the driver was loaded. */
tb_scan_switch(tb->root_switch);
/* Find out tunnels created by the boot firmware */
tb_discover_tunnels(tb);
/* Add DP resources from the DP tunnels created by the boot firmware */
tb_discover_dp_resources(tb);
/*
* If the boot firmware did not create USB 3.x tunnels create them
* now for the whole topology.
*/
tb_create_usb3_tunnels(tb->root_switch);
/* Add DP IN resources for the root switch */
tb_add_dp_resources(tb->root_switch);
/* Make the discovered switches available to the userspace */
device_for_each_child(&tb->root_switch->dev, NULL,
tb_scan_finalize_switch);
/* Allow tb_handle_hotplug to progress events */
tcm->hotplug_active = true;
return 0;
}
static int tb_suspend_noirq(struct tb *tb)
{
struct tb_cm *tcm = tb_priv(tb);
tb_dbg(tb, "suspending...\n");
tb_disconnect_and_release_dp(tb);
tb_switch_suspend(tb->root_switch, false);
tcm->hotplug_active = false; /* signal tb_handle_hotplug to quit */
tb_dbg(tb, "suspend finished\n");
return 0;
}
static void tb_restore_children(struct tb_switch *sw)
{
struct tb_port *port;
/* No need to restore if the router is already unplugged */
if (sw->is_unplugged)
return;
if (tb_enable_clx(sw))
tb_sw_warn(sw, "failed to re-enable CL states\n");
if (tb_enable_tmu(sw))
tb_sw_warn(sw, "failed to restore TMU configuration\n");
tb_switch_configuration_valid(sw);
tb_switch_for_each_port(sw, port) {
if (!tb_port_has_remote(port) && !port->xdomain)
continue;
if (port->remote) {
tb_switch_set_link_width(port->remote->sw,
port->remote->sw->link_width);
tb_switch_configure_link(port->remote->sw);
tb_restore_children(port->remote->sw);
} else if (port->xdomain) {
tb_port_configure_xdomain(port, port->xdomain);
}
}
}
static int tb_resume_noirq(struct tb *tb)
{
struct tb_cm *tcm = tb_priv(tb);
struct tb_tunnel *tunnel, *n;
unsigned int usb3_delay = 0;
LIST_HEAD(tunnels);
tb_dbg(tb, "resuming...\n");
/* remove any pci devices the firmware might have setup */
tb_switch_reset(tb->root_switch);
tb_switch_resume(tb->root_switch);
tb_free_invalid_tunnels(tb);
tb_free_unplugged_children(tb->root_switch);
tb_restore_children(tb->root_switch);
/*
* If we get here from suspend to disk the boot firmware or the
* restore kernel might have created tunnels of its own. Since
* we cannot be sure they are usable for us we find and tear
* them down.
*/
tb_switch_discover_tunnels(tb->root_switch, &tunnels, false);
list_for_each_entry_safe_reverse(tunnel, n, &tunnels, list) {
if (tb_tunnel_is_usb3(tunnel))
usb3_delay = 500;
tb_tunnel_deactivate(tunnel);
tb_tunnel_free(tunnel);
}
/* Re-create our tunnels now */
list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list) {
/* USB3 requires delay before it can be re-activated */
if (tb_tunnel_is_usb3(tunnel)) {
msleep(usb3_delay);
/* Only need to do it once */
usb3_delay = 0;
}
tb_tunnel_restart(tunnel);
}
if (!list_empty(&tcm->tunnel_list)) {
/*
* the pcie links need some time to get going.
* 100ms works for me...
*/
tb_dbg(tb, "tunnels restarted, sleeping for 100ms\n");
msleep(100);
}
/* Allow tb_handle_hotplug to progress events */
tcm->hotplug_active = true;
tb_dbg(tb, "resume finished\n");
return 0;
}
static int tb_free_unplugged_xdomains(struct tb_switch *sw)
{
struct tb_port *port;
int ret = 0;
tb_switch_for_each_port(sw, port) {
if (tb_is_upstream_port(port))
continue;
if (port->xdomain && port->xdomain->is_unplugged) {
tb_retimer_remove_all(port);
tb_xdomain_remove(port->xdomain);
tb_port_unconfigure_xdomain(port);
port->xdomain = NULL;
ret++;
} else if (port->remote) {
ret += tb_free_unplugged_xdomains(port->remote->sw);
}
}
return ret;
}
static int tb_freeze_noirq(struct tb *tb)
{
struct tb_cm *tcm = tb_priv(tb);
tcm->hotplug_active = false;
return 0;
}
static int tb_thaw_noirq(struct tb *tb)
{
struct tb_cm *tcm = tb_priv(tb);
tcm->hotplug_active = true;
return 0;
}
static void tb_complete(struct tb *tb)
{
/*
* Release any unplugged XDomains and if there is a case where
* another domain is swapped in place of unplugged XDomain we
* need to run another rescan.
*/
mutex_lock(&tb->lock);
if (tb_free_unplugged_xdomains(tb->root_switch))
tb_scan_switch(tb->root_switch);
mutex_unlock(&tb->lock);
}
static int tb_runtime_suspend(struct tb *tb)
{
struct tb_cm *tcm = tb_priv(tb);
mutex_lock(&tb->lock);
tb_switch_suspend(tb->root_switch, true);
tcm->hotplug_active = false;
mutex_unlock(&tb->lock);
return 0;
}
static void tb_remove_work(struct work_struct *work)
{
struct tb_cm *tcm = container_of(work, struct tb_cm, remove_work.work);
struct tb *tb = tcm_to_tb(tcm);
mutex_lock(&tb->lock);
if (tb->root_switch) {
tb_free_unplugged_children(tb->root_switch);
tb_free_unplugged_xdomains(tb->root_switch);
}
mutex_unlock(&tb->lock);
}
static int tb_runtime_resume(struct tb *tb)
{
struct tb_cm *tcm = tb_priv(tb);
struct tb_tunnel *tunnel, *n;
mutex_lock(&tb->lock);
tb_switch_resume(tb->root_switch);
tb_free_invalid_tunnels(tb);
tb_restore_children(tb->root_switch);
list_for_each_entry_safe(tunnel, n, &tcm->tunnel_list, list)
tb_tunnel_restart(tunnel);
tcm->hotplug_active = true;
mutex_unlock(&tb->lock);
/*
* Schedule cleanup of any unplugged devices. Run this in a
* separate thread to avoid possible deadlock if the device
* removal runtime resumes the unplugged device.
*/
queue_delayed_work(tb->wq, &tcm->remove_work, msecs_to_jiffies(50));
return 0;
}
static const struct tb_cm_ops tb_cm_ops = {
.start = tb_start,
.stop = tb_stop,
.suspend_noirq = tb_suspend_noirq,
.resume_noirq = tb_resume_noirq,
.freeze_noirq = tb_freeze_noirq,
.thaw_noirq = tb_thaw_noirq,
.complete = tb_complete,
.runtime_suspend = tb_runtime_suspend,
.runtime_resume = tb_runtime_resume,
.handle_event = tb_handle_event,
.disapprove_switch = tb_disconnect_pci,
.approve_switch = tb_tunnel_pci,
.approve_xdomain_paths = tb_approve_xdomain_paths,
.disconnect_xdomain_paths = tb_disconnect_xdomain_paths,
};
/*
* During suspend the Thunderbolt controller is reset and all PCIe
* tunnels are lost. The NHI driver will try to reestablish all tunnels
* during resume. This adds device links between the tunneled PCIe
* downstream ports and the NHI so that the device core will make sure
* NHI is resumed first before the rest.
*/
static bool tb_apple_add_links(struct tb_nhi *nhi)
{
struct pci_dev *upstream, *pdev;
bool ret;
if (!x86_apple_machine)
return false;
switch (nhi->pdev->device) {
case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
break;
default:
return false;
}
upstream = pci_upstream_bridge(nhi->pdev);
while (upstream) {
if (!pci_is_pcie(upstream))
return false;
if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM)
break;
upstream = pci_upstream_bridge(upstream);
}
if (!upstream)
return false;
/*
* For each hotplug downstream port, create add device link
* back to NHI so that PCIe tunnels can be re-established after
* sleep.
*/
ret = false;
for_each_pci_bridge(pdev, upstream->subordinate) {
const struct device_link *link;
if (!pci_is_pcie(pdev))
continue;
if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM ||
!pdev->is_hotplug_bridge)
continue;
link = device_link_add(&pdev->dev, &nhi->pdev->dev,
DL_FLAG_AUTOREMOVE_SUPPLIER |
DL_FLAG_PM_RUNTIME);
if (link) {
dev_dbg(&nhi->pdev->dev, "created link from %s\n",
dev_name(&pdev->dev));
ret = true;
} else {
dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n",
dev_name(&pdev->dev));
}
}
return ret;
}
struct tb *tb_probe(struct tb_nhi *nhi)
{
struct tb_cm *tcm;
struct tb *tb;
tb = tb_domain_alloc(nhi, TB_TIMEOUT, sizeof(*tcm));
if (!tb)
return NULL;
if (tb_acpi_may_tunnel_pcie())
tb->security_level = TB_SECURITY_USER;
else
tb->security_level = TB_SECURITY_NOPCIE;
tb->cm_ops = &tb_cm_ops;
tcm = tb_priv(tb);
INIT_LIST_HEAD(&tcm->tunnel_list);
INIT_LIST_HEAD(&tcm->dp_resources);
INIT_DELAYED_WORK(&tcm->remove_work, tb_remove_work);
tb_init_bandwidth_groups(tcm);
tb_dbg(tb, "using software connection manager\n");
/*
* Device links are needed to make sure we establish tunnels
* before the PCIe/USB stack is resumed so complain here if we
* found them missing.
*/
if (!tb_apple_add_links(nhi) && !tb_acpi_add_links(nhi))
tb_warn(tb, "device links to tunneled native ports are missing!\n");
return tb;
}