| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include "bcachefs.h" |
| #include "btree_key_cache.h" |
| #include "btree_update.h" |
| #include "btree_write_buffer.h" |
| #include "buckets.h" |
| #include "errcode.h" |
| #include "error.h" |
| #include "journal.h" |
| #include "journal_io.h" |
| #include "journal_reclaim.h" |
| #include "replicas.h" |
| #include "sb-members.h" |
| #include "trace.h" |
| |
| #include <linux/kthread.h> |
| #include <linux/sched/mm.h> |
| |
| /* Free space calculations: */ |
| |
| static unsigned journal_space_from(struct journal_device *ja, |
| enum journal_space_from from) |
| { |
| switch (from) { |
| case journal_space_discarded: |
| return ja->discard_idx; |
| case journal_space_clean_ondisk: |
| return ja->dirty_idx_ondisk; |
| case journal_space_clean: |
| return ja->dirty_idx; |
| default: |
| BUG(); |
| } |
| } |
| |
| unsigned bch2_journal_dev_buckets_available(struct journal *j, |
| struct journal_device *ja, |
| enum journal_space_from from) |
| { |
| unsigned available = (journal_space_from(ja, from) - |
| ja->cur_idx - 1 + ja->nr) % ja->nr; |
| |
| /* |
| * Don't use the last bucket unless writing the new last_seq |
| * will make another bucket available: |
| */ |
| if (available && ja->dirty_idx_ondisk == ja->dirty_idx) |
| --available; |
| |
| return available; |
| } |
| |
| void bch2_journal_set_watermark(struct journal *j) |
| { |
| struct bch_fs *c = container_of(j, struct bch_fs, journal); |
| bool low_on_space = j->space[journal_space_clean].total * 4 <= |
| j->space[journal_space_total].total; |
| bool low_on_pin = fifo_free(&j->pin) < j->pin.size / 4; |
| bool low_on_wb = bch2_btree_write_buffer_must_wait(c); |
| unsigned watermark = low_on_space || low_on_pin || low_on_wb |
| ? BCH_WATERMARK_reclaim |
| : BCH_WATERMARK_stripe; |
| |
| if (track_event_change(&c->times[BCH_TIME_blocked_journal_low_on_space], |
| &j->low_on_space_start, low_on_space) || |
| track_event_change(&c->times[BCH_TIME_blocked_journal_low_on_pin], |
| &j->low_on_pin_start, low_on_pin) || |
| track_event_change(&c->times[BCH_TIME_blocked_write_buffer_full], |
| &j->write_buffer_full_start, low_on_wb)) |
| trace_and_count(c, journal_full, c); |
| |
| swap(watermark, j->watermark); |
| if (watermark > j->watermark) |
| journal_wake(j); |
| } |
| |
| static struct journal_space |
| journal_dev_space_available(struct journal *j, struct bch_dev *ca, |
| enum journal_space_from from) |
| { |
| struct journal_device *ja = &ca->journal; |
| unsigned sectors, buckets, unwritten; |
| u64 seq; |
| |
| if (from == journal_space_total) |
| return (struct journal_space) { |
| .next_entry = ca->mi.bucket_size, |
| .total = ca->mi.bucket_size * ja->nr, |
| }; |
| |
| buckets = bch2_journal_dev_buckets_available(j, ja, from); |
| sectors = ja->sectors_free; |
| |
| /* |
| * We that we don't allocate the space for a journal entry |
| * until we write it out - thus, account for it here: |
| */ |
| for (seq = journal_last_unwritten_seq(j); |
| seq <= journal_cur_seq(j); |
| seq++) { |
| unwritten = j->buf[seq & JOURNAL_BUF_MASK].sectors; |
| |
| if (!unwritten) |
| continue; |
| |
| /* entry won't fit on this device, skip: */ |
| if (unwritten > ca->mi.bucket_size) |
| continue; |
| |
| if (unwritten >= sectors) { |
| if (!buckets) { |
| sectors = 0; |
| break; |
| } |
| |
| buckets--; |
| sectors = ca->mi.bucket_size; |
| } |
| |
| sectors -= unwritten; |
| } |
| |
| if (sectors < ca->mi.bucket_size && buckets) { |
| buckets--; |
| sectors = ca->mi.bucket_size; |
| } |
| |
| return (struct journal_space) { |
| .next_entry = sectors, |
| .total = sectors + buckets * ca->mi.bucket_size, |
| }; |
| } |
| |
| static struct journal_space __journal_space_available(struct journal *j, unsigned nr_devs_want, |
| enum journal_space_from from) |
| { |
| struct bch_fs *c = container_of(j, struct bch_fs, journal); |
| struct bch_dev *ca; |
| unsigned i, pos, nr_devs = 0; |
| struct journal_space space, dev_space[BCH_SB_MEMBERS_MAX]; |
| |
| BUG_ON(nr_devs_want > ARRAY_SIZE(dev_space)); |
| |
| rcu_read_lock(); |
| for_each_member_device_rcu(ca, c, i, |
| &c->rw_devs[BCH_DATA_journal]) { |
| if (!ca->journal.nr) |
| continue; |
| |
| space = journal_dev_space_available(j, ca, from); |
| if (!space.next_entry) |
| continue; |
| |
| for (pos = 0; pos < nr_devs; pos++) |
| if (space.total > dev_space[pos].total) |
| break; |
| |
| array_insert_item(dev_space, nr_devs, pos, space); |
| } |
| rcu_read_unlock(); |
| |
| if (nr_devs < nr_devs_want) |
| return (struct journal_space) { 0, 0 }; |
| |
| /* |
| * We sorted largest to smallest, and we want the smallest out of the |
| * @nr_devs_want largest devices: |
| */ |
| return dev_space[nr_devs_want - 1]; |
| } |
| |
| void bch2_journal_space_available(struct journal *j) |
| { |
| struct bch_fs *c = container_of(j, struct bch_fs, journal); |
| struct bch_dev *ca; |
| unsigned clean, clean_ondisk, total; |
| unsigned max_entry_size = min(j->buf[0].buf_size >> 9, |
| j->buf[1].buf_size >> 9); |
| unsigned i, nr_online = 0, nr_devs_want; |
| bool can_discard = false; |
| int ret = 0; |
| |
| lockdep_assert_held(&j->lock); |
| |
| rcu_read_lock(); |
| for_each_member_device_rcu(ca, c, i, |
| &c->rw_devs[BCH_DATA_journal]) { |
| struct journal_device *ja = &ca->journal; |
| |
| if (!ja->nr) |
| continue; |
| |
| while (ja->dirty_idx != ja->cur_idx && |
| ja->bucket_seq[ja->dirty_idx] < journal_last_seq(j)) |
| ja->dirty_idx = (ja->dirty_idx + 1) % ja->nr; |
| |
| while (ja->dirty_idx_ondisk != ja->dirty_idx && |
| ja->bucket_seq[ja->dirty_idx_ondisk] < j->last_seq_ondisk) |
| ja->dirty_idx_ondisk = (ja->dirty_idx_ondisk + 1) % ja->nr; |
| |
| if (ja->discard_idx != ja->dirty_idx_ondisk) |
| can_discard = true; |
| |
| max_entry_size = min_t(unsigned, max_entry_size, ca->mi.bucket_size); |
| nr_online++; |
| } |
| rcu_read_unlock(); |
| |
| j->can_discard = can_discard; |
| |
| if (nr_online < c->opts.metadata_replicas_required) { |
| ret = JOURNAL_ERR_insufficient_devices; |
| goto out; |
| } |
| |
| nr_devs_want = min_t(unsigned, nr_online, c->opts.metadata_replicas); |
| |
| for (i = 0; i < journal_space_nr; i++) |
| j->space[i] = __journal_space_available(j, nr_devs_want, i); |
| |
| clean_ondisk = j->space[journal_space_clean_ondisk].total; |
| clean = j->space[journal_space_clean].total; |
| total = j->space[journal_space_total].total; |
| |
| if (!j->space[journal_space_discarded].next_entry) |
| ret = JOURNAL_ERR_journal_full; |
| |
| if ((j->space[journal_space_clean_ondisk].next_entry < |
| j->space[journal_space_clean_ondisk].total) && |
| (clean - clean_ondisk <= total / 8) && |
| (clean_ondisk * 2 > clean)) |
| set_bit(JOURNAL_MAY_SKIP_FLUSH, &j->flags); |
| else |
| clear_bit(JOURNAL_MAY_SKIP_FLUSH, &j->flags); |
| |
| bch2_journal_set_watermark(j); |
| out: |
| j->cur_entry_sectors = !ret ? j->space[journal_space_discarded].next_entry : 0; |
| j->cur_entry_error = ret; |
| |
| if (!ret) |
| journal_wake(j); |
| } |
| |
| /* Discards - last part of journal reclaim: */ |
| |
| static bool should_discard_bucket(struct journal *j, struct journal_device *ja) |
| { |
| bool ret; |
| |
| spin_lock(&j->lock); |
| ret = ja->discard_idx != ja->dirty_idx_ondisk; |
| spin_unlock(&j->lock); |
| |
| return ret; |
| } |
| |
| /* |
| * Advance ja->discard_idx as long as it points to buckets that are no longer |
| * dirty, issuing discards if necessary: |
| */ |
| void bch2_journal_do_discards(struct journal *j) |
| { |
| struct bch_fs *c = container_of(j, struct bch_fs, journal); |
| |
| mutex_lock(&j->discard_lock); |
| |
| for_each_rw_member(c, ca) { |
| struct journal_device *ja = &ca->journal; |
| |
| while (should_discard_bucket(j, ja)) { |
| if (!c->opts.nochanges && |
| ca->mi.discard && |
| bdev_max_discard_sectors(ca->disk_sb.bdev)) |
| blkdev_issue_discard(ca->disk_sb.bdev, |
| bucket_to_sector(ca, |
| ja->buckets[ja->discard_idx]), |
| ca->mi.bucket_size, GFP_NOFS); |
| |
| spin_lock(&j->lock); |
| ja->discard_idx = (ja->discard_idx + 1) % ja->nr; |
| |
| bch2_journal_space_available(j); |
| spin_unlock(&j->lock); |
| } |
| } |
| |
| mutex_unlock(&j->discard_lock); |
| } |
| |
| /* |
| * Journal entry pinning - machinery for holding a reference on a given journal |
| * entry, holding it open to ensure it gets replayed during recovery: |
| */ |
| |
| void bch2_journal_reclaim_fast(struct journal *j) |
| { |
| bool popped = false; |
| |
| lockdep_assert_held(&j->lock); |
| |
| /* |
| * Unpin journal entries whose reference counts reached zero, meaning |
| * all btree nodes got written out |
| */ |
| while (!fifo_empty(&j->pin) && |
| j->pin.front <= j->seq_ondisk && |
| !atomic_read(&fifo_peek_front(&j->pin).count)) { |
| j->pin.front++; |
| popped = true; |
| } |
| |
| if (popped) |
| bch2_journal_space_available(j); |
| } |
| |
| bool __bch2_journal_pin_put(struct journal *j, u64 seq) |
| { |
| struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq); |
| |
| return atomic_dec_and_test(&pin_list->count); |
| } |
| |
| void bch2_journal_pin_put(struct journal *j, u64 seq) |
| { |
| if (__bch2_journal_pin_put(j, seq)) { |
| spin_lock(&j->lock); |
| bch2_journal_reclaim_fast(j); |
| spin_unlock(&j->lock); |
| } |
| } |
| |
| static inline bool __journal_pin_drop(struct journal *j, |
| struct journal_entry_pin *pin) |
| { |
| struct journal_entry_pin_list *pin_list; |
| |
| if (!journal_pin_active(pin)) |
| return false; |
| |
| if (j->flush_in_progress == pin) |
| j->flush_in_progress_dropped = true; |
| |
| pin_list = journal_seq_pin(j, pin->seq); |
| pin->seq = 0; |
| list_del_init(&pin->list); |
| |
| /* |
| * Unpinning a journal entry may make journal_next_bucket() succeed, if |
| * writing a new last_seq will now make another bucket available: |
| */ |
| return atomic_dec_and_test(&pin_list->count) && |
| pin_list == &fifo_peek_front(&j->pin); |
| } |
| |
| void bch2_journal_pin_drop(struct journal *j, |
| struct journal_entry_pin *pin) |
| { |
| spin_lock(&j->lock); |
| if (__journal_pin_drop(j, pin)) |
| bch2_journal_reclaim_fast(j); |
| spin_unlock(&j->lock); |
| } |
| |
| static enum journal_pin_type journal_pin_type(journal_pin_flush_fn fn) |
| { |
| if (fn == bch2_btree_node_flush0 || |
| fn == bch2_btree_node_flush1) |
| return JOURNAL_PIN_btree; |
| else if (fn == bch2_btree_key_cache_journal_flush) |
| return JOURNAL_PIN_key_cache; |
| else |
| return JOURNAL_PIN_other; |
| } |
| |
| static inline void bch2_journal_pin_set_locked(struct journal *j, u64 seq, |
| struct journal_entry_pin *pin, |
| journal_pin_flush_fn flush_fn, |
| enum journal_pin_type type) |
| { |
| struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq); |
| |
| /* |
| * flush_fn is how we identify journal pins in debugfs, so must always |
| * exist, even if it doesn't do anything: |
| */ |
| BUG_ON(!flush_fn); |
| |
| atomic_inc(&pin_list->count); |
| pin->seq = seq; |
| pin->flush = flush_fn; |
| list_add(&pin->list, &pin_list->list[type]); |
| } |
| |
| void bch2_journal_pin_copy(struct journal *j, |
| struct journal_entry_pin *dst, |
| struct journal_entry_pin *src, |
| journal_pin_flush_fn flush_fn) |
| { |
| bool reclaim; |
| |
| spin_lock(&j->lock); |
| |
| u64 seq = READ_ONCE(src->seq); |
| |
| if (seq < journal_last_seq(j)) { |
| /* |
| * bch2_journal_pin_copy() raced with bch2_journal_pin_drop() on |
| * the src pin - with the pin dropped, the entry to pin might no |
| * longer to exist, but that means there's no longer anything to |
| * copy and we can bail out here: |
| */ |
| spin_unlock(&j->lock); |
| return; |
| } |
| |
| reclaim = __journal_pin_drop(j, dst); |
| |
| bch2_journal_pin_set_locked(j, seq, dst, flush_fn, journal_pin_type(flush_fn)); |
| |
| if (reclaim) |
| bch2_journal_reclaim_fast(j); |
| spin_unlock(&j->lock); |
| |
| /* |
| * If the journal is currently full, we might want to call flush_fn |
| * immediately: |
| */ |
| journal_wake(j); |
| } |
| |
| void bch2_journal_pin_set(struct journal *j, u64 seq, |
| struct journal_entry_pin *pin, |
| journal_pin_flush_fn flush_fn) |
| { |
| bool reclaim; |
| |
| spin_lock(&j->lock); |
| |
| BUG_ON(seq < journal_last_seq(j)); |
| |
| reclaim = __journal_pin_drop(j, pin); |
| |
| bch2_journal_pin_set_locked(j, seq, pin, flush_fn, journal_pin_type(flush_fn)); |
| |
| if (reclaim) |
| bch2_journal_reclaim_fast(j); |
| spin_unlock(&j->lock); |
| |
| /* |
| * If the journal is currently full, we might want to call flush_fn |
| * immediately: |
| */ |
| journal_wake(j); |
| } |
| |
| /** |
| * bch2_journal_pin_flush: ensure journal pin callback is no longer running |
| * @j: journal object |
| * @pin: pin to flush |
| */ |
| void bch2_journal_pin_flush(struct journal *j, struct journal_entry_pin *pin) |
| { |
| BUG_ON(journal_pin_active(pin)); |
| |
| wait_event(j->pin_flush_wait, j->flush_in_progress != pin); |
| } |
| |
| /* |
| * Journal reclaim: flush references to open journal entries to reclaim space in |
| * the journal |
| * |
| * May be done by the journal code in the background as needed to free up space |
| * for more journal entries, or as part of doing a clean shutdown, or to migrate |
| * data off of a specific device: |
| */ |
| |
| static struct journal_entry_pin * |
| journal_get_next_pin(struct journal *j, |
| u64 seq_to_flush, |
| unsigned allowed_below_seq, |
| unsigned allowed_above_seq, |
| u64 *seq) |
| { |
| struct journal_entry_pin_list *pin_list; |
| struct journal_entry_pin *ret = NULL; |
| unsigned i; |
| |
| fifo_for_each_entry_ptr(pin_list, &j->pin, *seq) { |
| if (*seq > seq_to_flush && !allowed_above_seq) |
| break; |
| |
| for (i = 0; i < JOURNAL_PIN_NR; i++) |
| if ((((1U << i) & allowed_below_seq) && *seq <= seq_to_flush) || |
| ((1U << i) & allowed_above_seq)) { |
| ret = list_first_entry_or_null(&pin_list->list[i], |
| struct journal_entry_pin, list); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /* returns true if we did work */ |
| static size_t journal_flush_pins(struct journal *j, |
| u64 seq_to_flush, |
| unsigned allowed_below_seq, |
| unsigned allowed_above_seq, |
| unsigned min_any, |
| unsigned min_key_cache) |
| { |
| struct journal_entry_pin *pin; |
| size_t nr_flushed = 0; |
| journal_pin_flush_fn flush_fn; |
| u64 seq; |
| int err; |
| |
| lockdep_assert_held(&j->reclaim_lock); |
| |
| while (1) { |
| unsigned allowed_above = allowed_above_seq; |
| unsigned allowed_below = allowed_below_seq; |
| |
| if (min_any) { |
| allowed_above |= ~0; |
| allowed_below |= ~0; |
| } |
| |
| if (min_key_cache) { |
| allowed_above |= 1U << JOURNAL_PIN_key_cache; |
| allowed_below |= 1U << JOURNAL_PIN_key_cache; |
| } |
| |
| cond_resched(); |
| |
| j->last_flushed = jiffies; |
| |
| spin_lock(&j->lock); |
| pin = journal_get_next_pin(j, seq_to_flush, allowed_below, allowed_above, &seq); |
| if (pin) { |
| BUG_ON(j->flush_in_progress); |
| j->flush_in_progress = pin; |
| j->flush_in_progress_dropped = false; |
| flush_fn = pin->flush; |
| } |
| spin_unlock(&j->lock); |
| |
| if (!pin) |
| break; |
| |
| if (min_key_cache && pin->flush == bch2_btree_key_cache_journal_flush) |
| min_key_cache--; |
| |
| if (min_any) |
| min_any--; |
| |
| err = flush_fn(j, pin, seq); |
| |
| spin_lock(&j->lock); |
| /* Pin might have been dropped or rearmed: */ |
| if (likely(!err && !j->flush_in_progress_dropped)) |
| list_move(&pin->list, &journal_seq_pin(j, seq)->flushed); |
| j->flush_in_progress = NULL; |
| j->flush_in_progress_dropped = false; |
| spin_unlock(&j->lock); |
| |
| wake_up(&j->pin_flush_wait); |
| |
| if (err) |
| break; |
| |
| nr_flushed++; |
| } |
| |
| return nr_flushed; |
| } |
| |
| static u64 journal_seq_to_flush(struct journal *j) |
| { |
| struct bch_fs *c = container_of(j, struct bch_fs, journal); |
| u64 seq_to_flush = 0; |
| |
| spin_lock(&j->lock); |
| |
| for_each_rw_member(c, ca) { |
| struct journal_device *ja = &ca->journal; |
| unsigned nr_buckets, bucket_to_flush; |
| |
| if (!ja->nr) |
| continue; |
| |
| /* Try to keep the journal at most half full: */ |
| nr_buckets = ja->nr / 2; |
| |
| nr_buckets = min(nr_buckets, ja->nr); |
| |
| bucket_to_flush = (ja->cur_idx + nr_buckets) % ja->nr; |
| seq_to_flush = max(seq_to_flush, |
| ja->bucket_seq[bucket_to_flush]); |
| } |
| |
| /* Also flush if the pin fifo is more than half full */ |
| seq_to_flush = max_t(s64, seq_to_flush, |
| (s64) journal_cur_seq(j) - |
| (j->pin.size >> 1)); |
| spin_unlock(&j->lock); |
| |
| return seq_to_flush; |
| } |
| |
| /** |
| * __bch2_journal_reclaim - free up journal buckets |
| * @j: journal object |
| * @direct: direct or background reclaim? |
| * @kicked: requested to run since we last ran? |
| * Returns: 0 on success, or -EIO if the journal has been shutdown |
| * |
| * Background journal reclaim writes out btree nodes. It should be run |
| * early enough so that we never completely run out of journal buckets. |
| * |
| * High watermarks for triggering background reclaim: |
| * - FIFO has fewer than 512 entries left |
| * - fewer than 25% journal buckets free |
| * |
| * Background reclaim runs until low watermarks are reached: |
| * - FIFO has more than 1024 entries left |
| * - more than 50% journal buckets free |
| * |
| * As long as a reclaim can complete in the time it takes to fill up |
| * 512 journal entries or 25% of all journal buckets, then |
| * journal_next_bucket() should not stall. |
| */ |
| static int __bch2_journal_reclaim(struct journal *j, bool direct, bool kicked) |
| { |
| struct bch_fs *c = container_of(j, struct bch_fs, journal); |
| bool kthread = (current->flags & PF_KTHREAD) != 0; |
| u64 seq_to_flush; |
| size_t min_nr, min_key_cache, nr_flushed; |
| unsigned flags; |
| int ret = 0; |
| |
| /* |
| * We can't invoke memory reclaim while holding the reclaim_lock - |
| * journal reclaim is required to make progress for memory reclaim |
| * (cleaning the caches), so we can't get stuck in memory reclaim while |
| * we're holding the reclaim lock: |
| */ |
| lockdep_assert_held(&j->reclaim_lock); |
| flags = memalloc_noreclaim_save(); |
| |
| do { |
| if (kthread && kthread_should_stop()) |
| break; |
| |
| if (bch2_journal_error(j)) { |
| ret = -EIO; |
| break; |
| } |
| |
| bch2_journal_do_discards(j); |
| |
| seq_to_flush = journal_seq_to_flush(j); |
| min_nr = 0; |
| |
| /* |
| * If it's been longer than j->reclaim_delay_ms since we last flushed, |
| * make sure to flush at least one journal pin: |
| */ |
| if (time_after(jiffies, j->last_flushed + |
| msecs_to_jiffies(c->opts.journal_reclaim_delay))) |
| min_nr = 1; |
| |
| if (j->watermark != BCH_WATERMARK_stripe) |
| min_nr = 1; |
| |
| if (atomic_read(&c->btree_cache.dirty) * 2 > c->btree_cache.used) |
| min_nr = 1; |
| |
| min_key_cache = min(bch2_nr_btree_keys_need_flush(c), (size_t) 128); |
| |
| trace_and_count(c, journal_reclaim_start, c, |
| direct, kicked, |
| min_nr, min_key_cache, |
| atomic_read(&c->btree_cache.dirty), |
| c->btree_cache.used, |
| atomic_long_read(&c->btree_key_cache.nr_dirty), |
| atomic_long_read(&c->btree_key_cache.nr_keys)); |
| |
| nr_flushed = journal_flush_pins(j, seq_to_flush, |
| ~0, 0, |
| min_nr, min_key_cache); |
| |
| if (direct) |
| j->nr_direct_reclaim += nr_flushed; |
| else |
| j->nr_background_reclaim += nr_flushed; |
| trace_and_count(c, journal_reclaim_finish, c, nr_flushed); |
| |
| if (nr_flushed) |
| wake_up(&j->reclaim_wait); |
| } while ((min_nr || min_key_cache) && nr_flushed && !direct); |
| |
| memalloc_noreclaim_restore(flags); |
| |
| return ret; |
| } |
| |
| int bch2_journal_reclaim(struct journal *j) |
| { |
| return __bch2_journal_reclaim(j, true, true); |
| } |
| |
| static int bch2_journal_reclaim_thread(void *arg) |
| { |
| struct journal *j = arg; |
| struct bch_fs *c = container_of(j, struct bch_fs, journal); |
| unsigned long delay, now; |
| bool journal_empty; |
| int ret = 0; |
| |
| set_freezable(); |
| |
| j->last_flushed = jiffies; |
| |
| while (!ret && !kthread_should_stop()) { |
| bool kicked = j->reclaim_kicked; |
| |
| j->reclaim_kicked = false; |
| |
| mutex_lock(&j->reclaim_lock); |
| ret = __bch2_journal_reclaim(j, false, kicked); |
| mutex_unlock(&j->reclaim_lock); |
| |
| now = jiffies; |
| delay = msecs_to_jiffies(c->opts.journal_reclaim_delay); |
| j->next_reclaim = j->last_flushed + delay; |
| |
| if (!time_in_range(j->next_reclaim, now, now + delay)) |
| j->next_reclaim = now + delay; |
| |
| while (1) { |
| set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); |
| if (kthread_should_stop()) |
| break; |
| if (j->reclaim_kicked) |
| break; |
| |
| spin_lock(&j->lock); |
| journal_empty = fifo_empty(&j->pin); |
| spin_unlock(&j->lock); |
| |
| if (journal_empty) |
| schedule(); |
| else if (time_after(j->next_reclaim, jiffies)) |
| schedule_timeout(j->next_reclaim - jiffies); |
| else |
| break; |
| } |
| __set_current_state(TASK_RUNNING); |
| } |
| |
| return 0; |
| } |
| |
| void bch2_journal_reclaim_stop(struct journal *j) |
| { |
| struct task_struct *p = j->reclaim_thread; |
| |
| j->reclaim_thread = NULL; |
| |
| if (p) { |
| kthread_stop(p); |
| put_task_struct(p); |
| } |
| } |
| |
| int bch2_journal_reclaim_start(struct journal *j) |
| { |
| struct bch_fs *c = container_of(j, struct bch_fs, journal); |
| struct task_struct *p; |
| int ret; |
| |
| if (j->reclaim_thread) |
| return 0; |
| |
| p = kthread_create(bch2_journal_reclaim_thread, j, |
| "bch-reclaim/%s", c->name); |
| ret = PTR_ERR_OR_ZERO(p); |
| bch_err_msg(c, ret, "creating journal reclaim thread"); |
| if (ret) |
| return ret; |
| |
| get_task_struct(p); |
| j->reclaim_thread = p; |
| wake_up_process(p); |
| return 0; |
| } |
| |
| static int journal_flush_done(struct journal *j, u64 seq_to_flush, |
| bool *did_work) |
| { |
| int ret; |
| |
| ret = bch2_journal_error(j); |
| if (ret) |
| return ret; |
| |
| mutex_lock(&j->reclaim_lock); |
| |
| if (journal_flush_pins(j, seq_to_flush, |
| (1U << JOURNAL_PIN_key_cache)| |
| (1U << JOURNAL_PIN_other), 0, 0, 0) || |
| journal_flush_pins(j, seq_to_flush, |
| (1U << JOURNAL_PIN_btree), 0, 0, 0)) |
| *did_work = true; |
| |
| if (seq_to_flush > journal_cur_seq(j)) |
| bch2_journal_entry_close(j); |
| |
| spin_lock(&j->lock); |
| /* |
| * If journal replay hasn't completed, the unreplayed journal entries |
| * hold refs on their corresponding sequence numbers |
| */ |
| ret = !test_bit(JOURNAL_REPLAY_DONE, &j->flags) || |
| journal_last_seq(j) > seq_to_flush || |
| !fifo_used(&j->pin); |
| |
| spin_unlock(&j->lock); |
| mutex_unlock(&j->reclaim_lock); |
| |
| return ret; |
| } |
| |
| bool bch2_journal_flush_pins(struct journal *j, u64 seq_to_flush) |
| { |
| /* time_stats this */ |
| bool did_work = false; |
| |
| if (!test_bit(JOURNAL_STARTED, &j->flags)) |
| return false; |
| |
| closure_wait_event(&j->async_wait, |
| journal_flush_done(j, seq_to_flush, &did_work)); |
| |
| return did_work; |
| } |
| |
| int bch2_journal_flush_device_pins(struct journal *j, int dev_idx) |
| { |
| struct bch_fs *c = container_of(j, struct bch_fs, journal); |
| struct journal_entry_pin_list *p; |
| u64 iter, seq = 0; |
| int ret = 0; |
| |
| spin_lock(&j->lock); |
| fifo_for_each_entry_ptr(p, &j->pin, iter) |
| if (dev_idx >= 0 |
| ? bch2_dev_list_has_dev(p->devs, dev_idx) |
| : p->devs.nr < c->opts.metadata_replicas) |
| seq = iter; |
| spin_unlock(&j->lock); |
| |
| bch2_journal_flush_pins(j, seq); |
| |
| ret = bch2_journal_error(j); |
| if (ret) |
| return ret; |
| |
| mutex_lock(&c->replicas_gc_lock); |
| bch2_replicas_gc_start(c, 1 << BCH_DATA_journal); |
| |
| /* |
| * Now that we've populated replicas_gc, write to the journal to mark |
| * active journal devices. This handles the case where the journal might |
| * be empty. Otherwise we could clear all journal replicas and |
| * temporarily put the fs into an unrecoverable state. Journal recovery |
| * expects to find devices marked for journal data on unclean mount. |
| */ |
| ret = bch2_journal_meta(&c->journal); |
| if (ret) |
| goto err; |
| |
| seq = 0; |
| spin_lock(&j->lock); |
| while (!ret) { |
| struct bch_replicas_padded replicas; |
| |
| seq = max(seq, journal_last_seq(j)); |
| if (seq >= j->pin.back) |
| break; |
| bch2_devlist_to_replicas(&replicas.e, BCH_DATA_journal, |
| journal_seq_pin(j, seq)->devs); |
| seq++; |
| |
| spin_unlock(&j->lock); |
| ret = bch2_mark_replicas(c, &replicas.e); |
| spin_lock(&j->lock); |
| } |
| spin_unlock(&j->lock); |
| err: |
| ret = bch2_replicas_gc_end(c, ret); |
| mutex_unlock(&c->replicas_gc_lock); |
| |
| return ret; |
| } |